]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/mtd/nand/raw/marvell_nand.c
Merge tag 'mtd/for-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux
[thirdparty/linux.git] / drivers / mtd / nand / raw / marvell_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 *
9 * This NAND controller driver handles two versions of the hardware,
10 * one is called NFCv1 and is available on PXA SoCs and the other is
11 * called NFCv2 and is available on Armada SoCs.
12 *
13 * The main visible difference is that NFCv1 only has Hamming ECC
14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15 * is not used with NFCv2.
16 *
17 * The ECC layouts are depicted in details in Marvell AN-379, but here
18 * is a brief description.
19 *
20 * When using Hamming, the data is split in 512B chunks (either 1, 2
21 * or 4) and each chunk will have its own ECC "digest" of 6B at the
22 * beginning of the OOB area and eventually the remaining free OOB
23 * bytes (also called "spare" bytes in the driver). This engine
24 * corrects up to 1 bit per chunk and detects reliably an error if
25 * there are at most 2 bitflips. Here is the page layout used by the
26 * controller when Hamming is chosen:
27 *
28 * +-------------------------------------------------------------+
29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30 * +-------------------------------------------------------------+
31 *
32 * When using the BCH engine, there are N identical (data + free OOB +
33 * ECC) sections and potentially an extra one to deal with
34 * configurations where the chosen (data + free OOB + ECC) sizes do
35 * not align with the page (data + OOB) size. ECC bytes are always
36 * 30B per ECC chunk. Here is the page layout used by the controller
37 * when BCH is chosen:
38 *
39 * +-----------------------------------------
40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41 * +-----------------------------------------
42 *
43 * -------------------------------------------
44 * ... | Data N | Free OOB bytes N | ECC N |
45 * -------------------------------------------
46 *
47 * --------------------------------------------+
48 * Last Data | Last Free OOB bytes | Last ECC |
49 * --------------------------------------------+
50 *
51 * In both cases, the layout seen by the user is always: all data
52 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53 * ECC bytes are 30B long and are padded with 0xFF to align on 32
54 * bytes.
55 *
56 * The controller has certain limitations that are handled by the
57 * driver:
58 * - It can only read 2k at a time. To overcome this limitation, the
59 * driver issues data cycles on the bus, without issuing new
60 * CMD + ADDR cycles. The Marvell term is "naked" operations.
61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62 * bits. What can be tuned is the ECC block size as long as it
63 * stays between 512B and 2kiB. It's usually chosen based on the
64 * chip ECC requirements. For instance, using 2kiB ECC chunks
65 * provides 4b/512B correctability.
66 * - The controller will always treat data bytes, free OOB bytes
67 * and ECC bytes in that order, no matter what the real layout is
68 * (which is usually all data then all OOB bytes). The
69 * marvell_nfc_layouts array below contains the currently
70 * supported layouts.
71 * - Because of these weird layouts, the Bad Block Markers can be
72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73 * option must be set to prevent scanning/writing bad block
74 * markers.
75 */
76
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/platform_device.h>
84 #include <linux/slab.h>
85 #include <linux/mfd/syscon.h>
86 #include <linux/regmap.h>
87 #include <asm/unaligned.h>
88
89 #include <linux/dmaengine.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/dma/pxa-dma.h>
92 #include <linux/platform_data/mtd-nand-pxa3xx.h>
93
94 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
95 #define FIFO_DEPTH 8
96 #define FIFO_REP(x) (x / sizeof(u32))
97 #define BCH_SEQ_READS (32 / FIFO_DEPTH)
98 /* NFC does not support transfers of larger chunks at a time */
99 #define MAX_CHUNK_SIZE 2112
100 /* NFCv1 cannot read more that 7 bytes of ID */
101 #define NFCV1_READID_LEN 7
102 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
103 #define POLL_PERIOD 0
104 #define POLL_TIMEOUT 100000
105 /* Interrupt maximum wait period in ms */
106 #define IRQ_TIMEOUT 1000
107 /* Latency in clock cycles between SoC pins and NFC logic */
108 #define MIN_RD_DEL_CNT 3
109 /* Maximum number of contiguous address cycles */
110 #define MAX_ADDRESS_CYC_NFCV1 5
111 #define MAX_ADDRESS_CYC_NFCV2 7
112 /* System control registers/bits to enable the NAND controller on some SoCs */
113 #define GENCONF_SOC_DEVICE_MUX 0x208
114 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
116 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
117 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
118 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27)
119 #define GENCONF_CLK_GATING_CTRL 0x220
120 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
121 #define GENCONF_ND_CLK_CTRL 0x700
122 #define GENCONF_ND_CLK_CTRL_EN BIT(0)
123
124 /* NAND controller data flash control register */
125 #define NDCR 0x00
126 #define NDCR_ALL_INT GENMASK(11, 0)
127 #define NDCR_CS1_CMDDM BIT(7)
128 #define NDCR_CS0_CMDDM BIT(8)
129 #define NDCR_RDYM BIT(11)
130 #define NDCR_ND_ARB_EN BIT(12)
131 #define NDCR_RA_START BIT(15)
132 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
133 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
134 #define NDCR_DWIDTH_M BIT(26)
135 #define NDCR_DWIDTH_C BIT(27)
136 #define NDCR_ND_RUN BIT(28)
137 #define NDCR_DMA_EN BIT(29)
138 #define NDCR_ECC_EN BIT(30)
139 #define NDCR_SPARE_EN BIT(31)
140 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
141 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
142
143 /* NAND interface timing parameter 0 register */
144 #define NDTR0 0x04
145 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
146 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
147 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
148 #define NDTR0_SEL_NRE_EDGE BIT(7)
149 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
150 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
151 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
152 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
153 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
154 #define NDTR0_SELCNTR BIT(26)
155 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
156
157 /* NAND interface timing parameter 1 register */
158 #define NDTR1 0x0C
159 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
160 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
161 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
162 #define NDTR1_PRESCALE BIT(14)
163 #define NDTR1_WAIT_MODE BIT(15)
164 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
165
166 /* NAND controller status register */
167 #define NDSR 0x14
168 #define NDSR_WRCMDREQ BIT(0)
169 #define NDSR_RDDREQ BIT(1)
170 #define NDSR_WRDREQ BIT(2)
171 #define NDSR_CORERR BIT(3)
172 #define NDSR_UNCERR BIT(4)
173 #define NDSR_CMDD(cs) BIT(8 - cs)
174 #define NDSR_RDY(rb) BIT(11 + rb)
175 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
176
177 /* NAND ECC control register */
178 #define NDECCCTRL 0x28
179 #define NDECCCTRL_BCH_EN BIT(0)
180
181 /* NAND controller data buffer register */
182 #define NDDB 0x40
183
184 /* NAND controller command buffer 0 register */
185 #define NDCB0 0x48
186 #define NDCB0_CMD1(x) ((x & 0xFF) << 0)
187 #define NDCB0_CMD2(x) ((x & 0xFF) << 8)
188 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
189 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
190 #define NDCB0_DBC BIT(19)
191 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
192 #define NDCB0_CSEL BIT(24)
193 #define NDCB0_RDY_BYP BIT(27)
194 #define NDCB0_LEN_OVRD BIT(28)
195 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
196
197 /* NAND controller command buffer 1 register */
198 #define NDCB1 0x4C
199 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
200 #define NDCB1_ADDRS_PAGE(x) (x << 16)
201
202 /* NAND controller command buffer 2 register */
203 #define NDCB2 0x50
204 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
205 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
206
207 /* NAND controller command buffer 3 register */
208 #define NDCB3 0x54
209 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
210 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
211
212 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
213 #define TYPE_READ 0
214 #define TYPE_WRITE 1
215 #define TYPE_ERASE 2
216 #define TYPE_READ_ID 3
217 #define TYPE_STATUS 4
218 #define TYPE_RESET 5
219 #define TYPE_NAKED_CMD 6
220 #define TYPE_NAKED_ADDR 7
221 #define TYPE_MASK 7
222 #define XTYPE_MONOLITHIC_RW 0
223 #define XTYPE_LAST_NAKED_RW 1
224 #define XTYPE_FINAL_COMMAND 3
225 #define XTYPE_READ 4
226 #define XTYPE_WRITE_DISPATCH 4
227 #define XTYPE_NAKED_RW 5
228 #define XTYPE_COMMAND_DISPATCH 6
229 #define XTYPE_MASK 7
230
231 /**
232 * struct marvell_hw_ecc_layout - layout of Marvell ECC
233 *
234 * Marvell ECC engine works differently than the others, in order to limit the
235 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
236 * per subpage, and depending on a the desired strength needed by the NAND chip,
237 * a particular layout mixing data/spare/ecc is defined, with a possible last
238 * chunk smaller that the others.
239 *
240 * @writesize: Full page size on which the layout applies
241 * @chunk: Desired ECC chunk size on which the layout applies
242 * @strength: Desired ECC strength (per chunk size bytes) on which the
243 * layout applies
244 * @nchunks: Total number of chunks
245 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
246 * repetitions of the pattern:
247 * (data_bytes + spare_bytes + ecc_bytes).
248 * @data_bytes: Number of data bytes per chunk
249 * @spare_bytes: Number of spare bytes per chunk
250 * @ecc_bytes: Number of ecc bytes per chunk
251 * @last_data_bytes: Number of data bytes in the last chunk
252 * @last_spare_bytes: Number of spare bytes in the last chunk
253 * @last_ecc_bytes: Number of ecc bytes in the last chunk
254 */
255 struct marvell_hw_ecc_layout {
256 /* Constraints */
257 int writesize;
258 int chunk;
259 int strength;
260 /* Corresponding layout */
261 int nchunks;
262 int full_chunk_cnt;
263 int data_bytes;
264 int spare_bytes;
265 int ecc_bytes;
266 int last_data_bytes;
267 int last_spare_bytes;
268 int last_ecc_bytes;
269 };
270
271 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
272 { \
273 .writesize = ws, \
274 .chunk = dc, \
275 .strength = ds, \
276 .nchunks = nc, \
277 .full_chunk_cnt = fcc, \
278 .data_bytes = db, \
279 .spare_bytes = sb, \
280 .ecc_bytes = eb, \
281 .last_data_bytes = ldb, \
282 .last_spare_bytes = lsb, \
283 .last_ecc_bytes = leb, \
284 }
285
286 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
287 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
288 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
289 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
290 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
291 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30),
292 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30),
293 MARVELL_LAYOUT( 2048, 512, 12, 3, 2, 704, 0, 30,640, 0, 30),
294 MARVELL_LAYOUT( 2048, 512, 16, 5, 4, 512, 0, 30, 0, 32, 30),
295 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
296 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
297 MARVELL_LAYOUT( 4096, 512, 12, 6, 5, 704, 0, 30,576, 32, 30),
298 MARVELL_LAYOUT( 4096, 512, 16, 9, 8, 512, 0, 30, 0, 32, 30),
299 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0),
300 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30),
301 MARVELL_LAYOUT( 8192, 512, 12, 12, 11, 704, 0, 30,448, 64, 30),
302 MARVELL_LAYOUT( 8192, 512, 16, 17, 16, 512, 0, 30, 0, 32, 30),
303 };
304
305 /**
306 * struct marvell_nand_chip_sel - CS line description
307 *
308 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
309 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
310 * The datasheet describes the logic with an error: ADDR5 field is once
311 * declared at the beginning of NDCB2, and another time at its end. Because the
312 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
313 * to use the last bit of this field instead of the first ones.
314 *
315 * @cs: Wanted CE lane.
316 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
317 * selecting the wanted CE lane. This is set once when
318 * the Device Tree is probed.
319 * @rb: Ready/Busy pin for the flash chip
320 */
321 struct marvell_nand_chip_sel {
322 unsigned int cs;
323 u32 ndcb0_csel;
324 unsigned int rb;
325 };
326
327 /**
328 * struct marvell_nand_chip - stores NAND chip device related information
329 *
330 * @chip: Base NAND chip structure
331 * @node: Used to store NAND chips into a list
332 * @layout: NAND layout when using hardware ECC
333 * @ndcr: Controller register value for this NAND chip
334 * @ndtr0: Timing registers 0 value for this NAND chip
335 * @ndtr1: Timing registers 1 value for this NAND chip
336 * @addr_cyc: Amount of cycles needed to pass column address
337 * @selected_die: Current active CS
338 * @nsels: Number of CS lines required by the NAND chip
339 * @sels: Array of CS lines descriptions
340 */
341 struct marvell_nand_chip {
342 struct nand_chip chip;
343 struct list_head node;
344 const struct marvell_hw_ecc_layout *layout;
345 u32 ndcr;
346 u32 ndtr0;
347 u32 ndtr1;
348 int addr_cyc;
349 int selected_die;
350 unsigned int nsels;
351 struct marvell_nand_chip_sel sels[] __counted_by(nsels);
352 };
353
354 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
355 {
356 return container_of(chip, struct marvell_nand_chip, chip);
357 }
358
359 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
360 *nand)
361 {
362 return &nand->sels[nand->selected_die];
363 }
364
365 /**
366 * struct marvell_nfc_caps - NAND controller capabilities for distinction
367 * between compatible strings
368 *
369 * @max_cs_nb: Number of Chip Select lines available
370 * @max_rb_nb: Number of Ready/Busy lines available
371 * @need_system_controller: Indicates if the SoC needs to have access to the
372 * system controller (ie. to enable the NAND controller)
373 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
374 * fashion way
375 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
376 * BCH error detection and correction algorithm,
377 * NDCB3 register has been added
378 * @use_dma: Use dma for data transfers
379 * @max_mode_number: Maximum timing mode supported by the controller
380 */
381 struct marvell_nfc_caps {
382 unsigned int max_cs_nb;
383 unsigned int max_rb_nb;
384 bool need_system_controller;
385 bool legacy_of_bindings;
386 bool is_nfcv2;
387 bool use_dma;
388 unsigned int max_mode_number;
389 };
390
391 /**
392 * struct marvell_nfc - stores Marvell NAND controller information
393 *
394 * @controller: Base controller structure
395 * @dev: Parent device (used to print error messages)
396 * @regs: NAND controller registers
397 * @core_clk: Core clock
398 * @reg_clk: Registers clock
399 * @complete: Completion object to wait for NAND controller events
400 * @assigned_cs: Bitmask describing already assigned CS lines
401 * @chips: List containing all the NAND chips attached to
402 * this NAND controller
403 * @selected_chip: Currently selected target chip
404 * @caps: NAND controller capabilities for each compatible string
405 * @use_dma: Whetner DMA is used
406 * @dma_chan: DMA channel (NFCv1 only)
407 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
408 */
409 struct marvell_nfc {
410 struct nand_controller controller;
411 struct device *dev;
412 void __iomem *regs;
413 struct clk *core_clk;
414 struct clk *reg_clk;
415 struct completion complete;
416 unsigned long assigned_cs;
417 struct list_head chips;
418 struct nand_chip *selected_chip;
419 const struct marvell_nfc_caps *caps;
420
421 /* DMA (NFCv1 only) */
422 bool use_dma;
423 struct dma_chan *dma_chan;
424 u8 *dma_buf;
425 };
426
427 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
428 {
429 return container_of(ctrl, struct marvell_nfc, controller);
430 }
431
432 /**
433 * struct marvell_nfc_timings - NAND controller timings expressed in NAND
434 * Controller clock cycles
435 *
436 * @tRP: ND_nRE pulse width
437 * @tRH: ND_nRE high duration
438 * @tWP: ND_nWE pulse time
439 * @tWH: ND_nWE high duration
440 * @tCS: Enable signal setup time
441 * @tCH: Enable signal hold time
442 * @tADL: Address to write data delay
443 * @tAR: ND_ALE low to ND_nRE low delay
444 * @tWHR: ND_nWE high to ND_nRE low for status read
445 * @tRHW: ND_nRE high duration, read to write delay
446 * @tR: ND_nWE high to ND_nRE low for read
447 */
448 struct marvell_nfc_timings {
449 /* NDTR0 fields */
450 unsigned int tRP;
451 unsigned int tRH;
452 unsigned int tWP;
453 unsigned int tWH;
454 unsigned int tCS;
455 unsigned int tCH;
456 unsigned int tADL;
457 /* NDTR1 fields */
458 unsigned int tAR;
459 unsigned int tWHR;
460 unsigned int tRHW;
461 unsigned int tR;
462 };
463
464 /**
465 * TO_CYCLES() - Derives a duration in numbers of clock cycles.
466 *
467 * @ps: Duration in pico-seconds
468 * @period_ns: Clock period in nano-seconds
469 *
470 * Convert the duration in nano-seconds, then divide by the period and
471 * return the number of clock periods.
472 */
473 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
474 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
475 period_ns))
476
477 /**
478 * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
479 * subop subset of instructions.
480 *
481 * @ndcb: Array of values written to NDCBx registers
482 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
483 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
484 * @rdy_delay_ns: Optional delay after waiting for the RB pin
485 * @data_delay_ns: Optional delay after the data xfer
486 * @data_instr_idx: Index of the data instruction in the subop
487 * @data_instr: Pointer to the data instruction in the subop
488 */
489 struct marvell_nfc_op {
490 u32 ndcb[4];
491 unsigned int cle_ale_delay_ns;
492 unsigned int rdy_timeout_ms;
493 unsigned int rdy_delay_ns;
494 unsigned int data_delay_ns;
495 unsigned int data_instr_idx;
496 const struct nand_op_instr *data_instr;
497 };
498
499 /*
500 * Internal helper to conditionnally apply a delay (from the above structure,
501 * most of the time).
502 */
503 static void cond_delay(unsigned int ns)
504 {
505 if (!ns)
506 return;
507
508 if (ns < 10000)
509 ndelay(ns);
510 else
511 udelay(DIV_ROUND_UP(ns, 1000));
512 }
513
514 /*
515 * The controller has many flags that could generate interrupts, most of them
516 * are disabled and polling is used. For the very slow signals, using interrupts
517 * may relax the CPU charge.
518 */
519 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
520 {
521 u32 reg;
522
523 /* Writing 1 disables the interrupt */
524 reg = readl_relaxed(nfc->regs + NDCR);
525 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
526 }
527
528 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
529 {
530 u32 reg;
531
532 /* Writing 0 enables the interrupt */
533 reg = readl_relaxed(nfc->regs + NDCR);
534 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
535 }
536
537 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
538 {
539 u32 reg;
540
541 reg = readl_relaxed(nfc->regs + NDSR);
542 writel_relaxed(int_mask, nfc->regs + NDSR);
543
544 return reg & int_mask;
545 }
546
547 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
548 bool force_8bit)
549 {
550 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
551 u32 ndcr;
552
553 /*
554 * Callers of this function do not verify if the NAND is using a 16-bit
555 * an 8-bit bus for normal operations, so we need to take care of that
556 * here by leaving the configuration unchanged if the NAND does not have
557 * the NAND_BUSWIDTH_16 flag set.
558 */
559 if (!(chip->options & NAND_BUSWIDTH_16))
560 return;
561
562 ndcr = readl_relaxed(nfc->regs + NDCR);
563
564 if (force_8bit)
565 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
566 else
567 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
568
569 writel_relaxed(ndcr, nfc->regs + NDCR);
570 }
571
572 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
573 {
574 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
575 u32 val;
576 int ret;
577
578 /*
579 * The command is being processed, wait for the ND_RUN bit to be
580 * cleared by the NFC. If not, we must clear it by hand.
581 */
582 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
583 (val & NDCR_ND_RUN) == 0,
584 POLL_PERIOD, POLL_TIMEOUT);
585 if (ret) {
586 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
587 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
588 nfc->regs + NDCR);
589 return ret;
590 }
591
592 return 0;
593 }
594
595 /*
596 * Any time a command has to be sent to the controller, the following sequence
597 * has to be followed:
598 * - call marvell_nfc_prepare_cmd()
599 * -> activate the ND_RUN bit that will kind of 'start a job'
600 * -> wait the signal indicating the NFC is waiting for a command
601 * - send the command (cmd and address cycles)
602 * - enventually send or receive the data
603 * - call marvell_nfc_end_cmd() with the corresponding flag
604 * -> wait the flag to be triggered or cancel the job with a timeout
605 *
606 * The following helpers are here to factorize the code a bit so that
607 * specialized functions responsible for executing the actual NAND
608 * operations do not have to replicate the same code blocks.
609 */
610 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
611 {
612 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
613 u32 ndcr, val;
614 int ret;
615
616 /* Poll ND_RUN and clear NDSR before issuing any command */
617 ret = marvell_nfc_wait_ndrun(chip);
618 if (ret) {
619 dev_err(nfc->dev, "Last operation did not succeed\n");
620 return ret;
621 }
622
623 ndcr = readl_relaxed(nfc->regs + NDCR);
624 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
625
626 /* Assert ND_RUN bit and wait the NFC to be ready */
627 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
628 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
629 val & NDSR_WRCMDREQ,
630 POLL_PERIOD, POLL_TIMEOUT);
631 if (ret) {
632 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
633 return -ETIMEDOUT;
634 }
635
636 /* Command may be written, clear WRCMDREQ status bit */
637 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
638
639 return 0;
640 }
641
642 static void marvell_nfc_send_cmd(struct nand_chip *chip,
643 struct marvell_nfc_op *nfc_op)
644 {
645 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
646 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
647
648 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
649 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
650 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
651 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
652
653 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
654 nfc->regs + NDCB0);
655 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
656 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
657
658 /*
659 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
660 * fields are used (only available on NFCv2).
661 */
662 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
663 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
664 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
665 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
666 }
667 }
668
669 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
670 const char *label)
671 {
672 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
673 u32 val;
674 int ret;
675
676 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
677 val & flag,
678 POLL_PERIOD, POLL_TIMEOUT);
679
680 if (ret) {
681 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
682 label, val);
683 if (nfc->dma_chan)
684 dmaengine_terminate_all(nfc->dma_chan);
685 return ret;
686 }
687
688 /*
689 * DMA function uses this helper to poll on CMDD bits without wanting
690 * them to be cleared.
691 */
692 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
693 return 0;
694
695 writel_relaxed(flag, nfc->regs + NDSR);
696
697 return 0;
698 }
699
700 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
701 {
702 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
703 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
704
705 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
706 }
707
708 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
709 u32 expected_val, unsigned long timeout_ms)
710 {
711 unsigned long limit;
712 u32 st;
713
714 limit = jiffies + msecs_to_jiffies(timeout_ms);
715 do {
716 st = readl_relaxed(nfc->regs + NDSR);
717 if (st & NDSR_RDY(1))
718 st |= NDSR_RDY(0);
719
720 if ((st & mask) == expected_val)
721 return 0;
722
723 cpu_relax();
724 } while (time_after(limit, jiffies));
725
726 return -ETIMEDOUT;
727 }
728
729 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
730 {
731 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
732 struct mtd_info *mtd = nand_to_mtd(chip);
733 u32 pending;
734 int ret;
735
736 /* Timeout is expressed in ms */
737 if (!timeout_ms)
738 timeout_ms = IRQ_TIMEOUT;
739
740 if (mtd->oops_panic_write) {
741 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
742 NDSR_RDY(0),
743 timeout_ms);
744 } else {
745 init_completion(&nfc->complete);
746
747 marvell_nfc_enable_int(nfc, NDCR_RDYM);
748 ret = wait_for_completion_timeout(&nfc->complete,
749 msecs_to_jiffies(timeout_ms));
750 marvell_nfc_disable_int(nfc, NDCR_RDYM);
751 }
752 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
753
754 /*
755 * In case the interrupt was not served in the required time frame,
756 * check if the ISR was not served or if something went actually wrong.
757 */
758 if (!ret && !pending) {
759 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
760 return -ETIMEDOUT;
761 }
762
763 return 0;
764 }
765
766 static void marvell_nfc_select_target(struct nand_chip *chip,
767 unsigned int die_nr)
768 {
769 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
770 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
771 u32 ndcr_generic;
772
773 /*
774 * Reset the NDCR register to a clean state for this particular chip,
775 * also clear ND_RUN bit.
776 */
777 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
778 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
779 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
780
781 /* Also reset the interrupt status register */
782 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
783
784 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
785 return;
786
787 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
788 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
789
790 nfc->selected_chip = chip;
791 marvell_nand->selected_die = die_nr;
792 }
793
794 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
795 {
796 struct marvell_nfc *nfc = dev_id;
797 u32 st = readl_relaxed(nfc->regs + NDSR);
798 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
799
800 /*
801 * RDY interrupt mask is one bit in NDCR while there are two status
802 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
803 */
804 if (st & NDSR_RDY(1))
805 st |= NDSR_RDY(0);
806
807 if (!(st & ien))
808 return IRQ_NONE;
809
810 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
811
812 if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
813 complete(&nfc->complete);
814
815 return IRQ_HANDLED;
816 }
817
818 /* HW ECC related functions */
819 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
820 {
821 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
822 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
823
824 if (!(ndcr & NDCR_ECC_EN)) {
825 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
826
827 /*
828 * When enabling BCH, set threshold to 0 to always know the
829 * number of corrected bitflips.
830 */
831 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
832 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
833 }
834 }
835
836 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
837 {
838 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
839 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
840
841 if (ndcr & NDCR_ECC_EN) {
842 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
843 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
844 writel_relaxed(0, nfc->regs + NDECCCTRL);
845 }
846 }
847
848 /* DMA related helpers */
849 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
850 {
851 u32 reg;
852
853 reg = readl_relaxed(nfc->regs + NDCR);
854 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
855 }
856
857 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
858 {
859 u32 reg;
860
861 reg = readl_relaxed(nfc->regs + NDCR);
862 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
863 }
864
865 /* Read/write PIO/DMA accessors */
866 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
867 enum dma_data_direction direction,
868 unsigned int len)
869 {
870 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
871 struct dma_async_tx_descriptor *tx;
872 struct scatterlist sg;
873 dma_cookie_t cookie;
874 int ret;
875
876 marvell_nfc_enable_dma(nfc);
877 /* Prepare the DMA transfer */
878 sg_init_one(&sg, nfc->dma_buf, dma_len);
879 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
880 if (!ret) {
881 dev_err(nfc->dev, "Could not map DMA S/G list\n");
882 return -ENXIO;
883 }
884
885 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
886 direction == DMA_FROM_DEVICE ?
887 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
888 DMA_PREP_INTERRUPT);
889 if (!tx) {
890 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
891 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
892 return -ENXIO;
893 }
894
895 /* Do the task and wait for it to finish */
896 cookie = dmaengine_submit(tx);
897 ret = dma_submit_error(cookie);
898 if (ret)
899 return -EIO;
900
901 dma_async_issue_pending(nfc->dma_chan);
902 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
903 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
904 marvell_nfc_disable_dma(nfc);
905 if (ret) {
906 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
907 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
908 dmaengine_terminate_all(nfc->dma_chan);
909 return -ETIMEDOUT;
910 }
911
912 return 0;
913 }
914
915 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
916 unsigned int len)
917 {
918 unsigned int last_len = len % FIFO_DEPTH;
919 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
920 int i;
921
922 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
923 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
924
925 if (last_len) {
926 u8 tmp_buf[FIFO_DEPTH];
927
928 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
929 memcpy(in + last_full_offset, tmp_buf, last_len);
930 }
931
932 return 0;
933 }
934
935 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
936 unsigned int len)
937 {
938 unsigned int last_len = len % FIFO_DEPTH;
939 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
940 int i;
941
942 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
943 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
944
945 if (last_len) {
946 u8 tmp_buf[FIFO_DEPTH];
947
948 memcpy(tmp_buf, out + last_full_offset, last_len);
949 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
950 }
951
952 return 0;
953 }
954
955 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
956 u8 *data, int data_len,
957 u8 *spare, int spare_len,
958 u8 *ecc, int ecc_len,
959 unsigned int *max_bitflips)
960 {
961 struct mtd_info *mtd = nand_to_mtd(chip);
962 int bf;
963
964 /*
965 * Blank pages (all 0xFF) that have not been written may be recognized
966 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
967 * check if the entire page (with ECC bytes) is actually blank or not.
968 */
969 if (!data)
970 data_len = 0;
971 if (!spare)
972 spare_len = 0;
973 if (!ecc)
974 ecc_len = 0;
975
976 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
977 spare, spare_len, chip->ecc.strength);
978 if (bf < 0) {
979 mtd->ecc_stats.failed++;
980 return;
981 }
982
983 /* Update the stats and max_bitflips */
984 mtd->ecc_stats.corrected += bf;
985 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
986 }
987
988 /*
989 * Check if a chunk is correct or not according to the hardware ECC engine.
990 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
991 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
992 * value indicating that a check on the emptyness of the subpage must be
993 * performed before actually declaring the subpage as "corrupted".
994 */
995 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
996 unsigned int *max_bitflips)
997 {
998 struct mtd_info *mtd = nand_to_mtd(chip);
999 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1000 int bf = 0;
1001 u32 ndsr;
1002
1003 ndsr = readl_relaxed(nfc->regs + NDSR);
1004
1005 /* Check uncorrectable error flag */
1006 if (ndsr & NDSR_UNCERR) {
1007 writel_relaxed(ndsr, nfc->regs + NDSR);
1008
1009 /*
1010 * Do not increment ->ecc_stats.failed now, instead, return a
1011 * non-zero value to indicate that this chunk was apparently
1012 * bad, and it should be check to see if it empty or not. If
1013 * the chunk (with ECC bytes) is not declared empty, the calling
1014 * function must increment the failure count.
1015 */
1016 return -EBADMSG;
1017 }
1018
1019 /* Check correctable error flag */
1020 if (ndsr & NDSR_CORERR) {
1021 writel_relaxed(ndsr, nfc->regs + NDSR);
1022
1023 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1024 bf = NDSR_ERRCNT(ndsr);
1025 else
1026 bf = 1;
1027 }
1028
1029 /* Update the stats and max_bitflips */
1030 mtd->ecc_stats.corrected += bf;
1031 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1032
1033 return 0;
1034 }
1035
1036 /* Hamming read helpers */
1037 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1038 u8 *data_buf, u8 *oob_buf,
1039 bool raw, int page)
1040 {
1041 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1042 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1043 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1044 struct marvell_nfc_op nfc_op = {
1045 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1046 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1047 NDCB0_DBC |
1048 NDCB0_CMD1(NAND_CMD_READ0) |
1049 NDCB0_CMD2(NAND_CMD_READSTART),
1050 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1051 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1052 };
1053 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1054 int ret;
1055
1056 /* NFCv2 needs more information about the operation being executed */
1057 if (nfc->caps->is_nfcv2)
1058 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1059
1060 ret = marvell_nfc_prepare_cmd(chip);
1061 if (ret)
1062 return ret;
1063
1064 marvell_nfc_send_cmd(chip, &nfc_op);
1065 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1066 "RDDREQ while draining FIFO (data/oob)");
1067 if (ret)
1068 return ret;
1069
1070 /*
1071 * Read the page then the OOB area. Unlike what is shown in current
1072 * documentation, spare bytes are protected by the ECC engine, and must
1073 * be at the beginning of the OOB area or running this driver on legacy
1074 * systems will prevent the discovery of the BBM/BBT.
1075 */
1076 if (nfc->use_dma) {
1077 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1078 lt->data_bytes + oob_bytes);
1079 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1080 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1081 } else {
1082 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1083 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1084 }
1085
1086 ret = marvell_nfc_wait_cmdd(chip);
1087 return ret;
1088 }
1089
1090 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1091 int oob_required, int page)
1092 {
1093 marvell_nfc_select_target(chip, chip->cur_cs);
1094 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1095 true, page);
1096 }
1097
1098 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1099 int oob_required, int page)
1100 {
1101 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1102 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1103 int max_bitflips = 0, ret;
1104 u8 *raw_buf;
1105
1106 marvell_nfc_select_target(chip, chip->cur_cs);
1107 marvell_nfc_enable_hw_ecc(chip);
1108 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1109 page);
1110 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1111 marvell_nfc_disable_hw_ecc(chip);
1112
1113 if (!ret)
1114 return max_bitflips;
1115
1116 /*
1117 * When ECC failures are detected, check if the full page has been
1118 * written or not. Ignore the failure if it is actually empty.
1119 */
1120 raw_buf = kmalloc(full_sz, GFP_KERNEL);
1121 if (!raw_buf)
1122 return -ENOMEM;
1123
1124 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1125 lt->data_bytes, true, page);
1126 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1127 &max_bitflips);
1128 kfree(raw_buf);
1129
1130 return max_bitflips;
1131 }
1132
1133 /*
1134 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1135 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1136 * also stands for ->read_oob().
1137 */
1138 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1139 {
1140 u8 *buf = nand_get_data_buf(chip);
1141
1142 marvell_nfc_select_target(chip, chip->cur_cs);
1143 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1144 true, page);
1145 }
1146
1147 /* Hamming write helpers */
1148 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1149 const u8 *data_buf,
1150 const u8 *oob_buf, bool raw,
1151 int page)
1152 {
1153 const struct nand_sdr_timings *sdr =
1154 nand_get_sdr_timings(nand_get_interface_config(chip));
1155 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1156 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1157 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1158 struct marvell_nfc_op nfc_op = {
1159 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1160 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1161 NDCB0_CMD1(NAND_CMD_SEQIN) |
1162 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1163 NDCB0_DBC,
1164 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1165 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1166 };
1167 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1168 u8 status;
1169 int ret;
1170
1171 /* NFCv2 needs more information about the operation being executed */
1172 if (nfc->caps->is_nfcv2)
1173 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1174
1175 ret = marvell_nfc_prepare_cmd(chip);
1176 if (ret)
1177 return ret;
1178
1179 marvell_nfc_send_cmd(chip, &nfc_op);
1180 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1181 "WRDREQ while loading FIFO (data)");
1182 if (ret)
1183 return ret;
1184
1185 /* Write the page then the OOB area */
1186 if (nfc->use_dma) {
1187 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1188 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1189 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1190 lt->ecc_bytes + lt->spare_bytes);
1191 } else {
1192 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1193 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1194 }
1195
1196 ret = marvell_nfc_wait_cmdd(chip);
1197 if (ret)
1198 return ret;
1199
1200 ret = marvell_nfc_wait_op(chip,
1201 PSEC_TO_MSEC(sdr->tPROG_max));
1202 if (ret)
1203 return ret;
1204
1205 /* Check write status on the chip side */
1206 ret = nand_status_op(chip, &status);
1207 if (ret)
1208 return ret;
1209
1210 if (status & NAND_STATUS_FAIL)
1211 return -EIO;
1212
1213 return 0;
1214 }
1215
1216 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1217 const u8 *buf,
1218 int oob_required, int page)
1219 {
1220 marvell_nfc_select_target(chip, chip->cur_cs);
1221 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1222 true, page);
1223 }
1224
1225 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1226 const u8 *buf,
1227 int oob_required, int page)
1228 {
1229 int ret;
1230
1231 marvell_nfc_select_target(chip, chip->cur_cs);
1232 marvell_nfc_enable_hw_ecc(chip);
1233 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1234 false, page);
1235 marvell_nfc_disable_hw_ecc(chip);
1236
1237 return ret;
1238 }
1239
1240 /*
1241 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1242 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1243 * also stands for ->write_oob().
1244 */
1245 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1246 int page)
1247 {
1248 struct mtd_info *mtd = nand_to_mtd(chip);
1249 u8 *buf = nand_get_data_buf(chip);
1250
1251 memset(buf, 0xFF, mtd->writesize);
1252
1253 marvell_nfc_select_target(chip, chip->cur_cs);
1254 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1255 true, page);
1256 }
1257
1258 /* BCH read helpers */
1259 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1260 int oob_required, int page)
1261 {
1262 struct mtd_info *mtd = nand_to_mtd(chip);
1263 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1264 u8 *oob = chip->oob_poi;
1265 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1266 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1267 lt->last_spare_bytes;
1268 int data_len = lt->data_bytes;
1269 int spare_len = lt->spare_bytes;
1270 int ecc_len = lt->ecc_bytes;
1271 int chunk;
1272
1273 marvell_nfc_select_target(chip, chip->cur_cs);
1274
1275 if (oob_required)
1276 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1277
1278 nand_read_page_op(chip, page, 0, NULL, 0);
1279
1280 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1281 /* Update last chunk length */
1282 if (chunk >= lt->full_chunk_cnt) {
1283 data_len = lt->last_data_bytes;
1284 spare_len = lt->last_spare_bytes;
1285 ecc_len = lt->last_ecc_bytes;
1286 }
1287
1288 /* Read data bytes*/
1289 nand_change_read_column_op(chip, chunk * chunk_size,
1290 buf + (lt->data_bytes * chunk),
1291 data_len, false);
1292
1293 /* Read spare bytes */
1294 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1295 spare_len, false, false);
1296
1297 /* Read ECC bytes */
1298 nand_read_data_op(chip, oob + ecc_offset +
1299 (ALIGN(lt->ecc_bytes, 32) * chunk),
1300 ecc_len, false, false);
1301 }
1302
1303 return 0;
1304 }
1305
1306 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1307 u8 *data, unsigned int data_len,
1308 u8 *spare, unsigned int spare_len,
1309 int page)
1310 {
1311 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1312 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1313 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1314 int i, ret;
1315 struct marvell_nfc_op nfc_op = {
1316 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1317 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1318 NDCB0_LEN_OVRD,
1319 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1320 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1321 .ndcb[3] = data_len + spare_len,
1322 };
1323
1324 ret = marvell_nfc_prepare_cmd(chip);
1325 if (ret)
1326 return;
1327
1328 if (chunk == 0)
1329 nfc_op.ndcb[0] |= NDCB0_DBC |
1330 NDCB0_CMD1(NAND_CMD_READ0) |
1331 NDCB0_CMD2(NAND_CMD_READSTART);
1332
1333 /*
1334 * Trigger the monolithic read on the first chunk, then naked read on
1335 * intermediate chunks and finally a last naked read on the last chunk.
1336 */
1337 if (chunk == 0)
1338 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1339 else if (chunk < lt->nchunks - 1)
1340 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1341 else
1342 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1343
1344 marvell_nfc_send_cmd(chip, &nfc_op);
1345
1346 /*
1347 * According to the datasheet, when reading from NDDB
1348 * with BCH enabled, after each 32 bytes reads, we
1349 * have to make sure that the NDSR.RDDREQ bit is set.
1350 *
1351 * Drain the FIFO, 8 32-bit reads at a time, and skip
1352 * the polling on the last read.
1353 *
1354 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1355 */
1356 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1357 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1358 "RDDREQ while draining FIFO (data)");
1359 marvell_nfc_xfer_data_in_pio(nfc, data,
1360 FIFO_DEPTH * BCH_SEQ_READS);
1361 data += FIFO_DEPTH * BCH_SEQ_READS;
1362 }
1363
1364 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1365 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1366 "RDDREQ while draining FIFO (OOB)");
1367 marvell_nfc_xfer_data_in_pio(nfc, spare,
1368 FIFO_DEPTH * BCH_SEQ_READS);
1369 spare += FIFO_DEPTH * BCH_SEQ_READS;
1370 }
1371 }
1372
1373 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1374 u8 *buf, int oob_required,
1375 int page)
1376 {
1377 struct mtd_info *mtd = nand_to_mtd(chip);
1378 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1379 int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1380 u8 *data = buf, *spare = chip->oob_poi;
1381 int max_bitflips = 0;
1382 u32 failure_mask = 0;
1383 int chunk, ret;
1384
1385 marvell_nfc_select_target(chip, chip->cur_cs);
1386
1387 /*
1388 * With BCH, OOB is not fully used (and thus not read entirely), not
1389 * expected bytes could show up at the end of the OOB buffer if not
1390 * explicitly erased.
1391 */
1392 if (oob_required)
1393 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1394
1395 marvell_nfc_enable_hw_ecc(chip);
1396
1397 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1398 /* Update length for the last chunk */
1399 if (chunk >= lt->full_chunk_cnt) {
1400 data_len = lt->last_data_bytes;
1401 spare_len = lt->last_spare_bytes;
1402 }
1403
1404 /* Read the chunk and detect number of bitflips */
1405 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1406 spare, spare_len, page);
1407 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1408 if (ret)
1409 failure_mask |= BIT(chunk);
1410
1411 data += data_len;
1412 spare += spare_len;
1413 }
1414
1415 marvell_nfc_disable_hw_ecc(chip);
1416
1417 if (!failure_mask)
1418 return max_bitflips;
1419
1420 /*
1421 * Please note that dumping the ECC bytes during a normal read with OOB
1422 * area would add a significant overhead as ECC bytes are "consumed" by
1423 * the controller in normal mode and must be re-read in raw mode. To
1424 * avoid dropping the performances, we prefer not to include them. The
1425 * user should re-read the page in raw mode if ECC bytes are required.
1426 */
1427
1428 /*
1429 * In case there is any subpage read error, we usually re-read only ECC
1430 * bytes in raw mode and check if the whole page is empty. In this case,
1431 * it is normal that the ECC check failed and we just ignore the error.
1432 *
1433 * However, it has been empirically observed that for some layouts (e.g
1434 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1435 * bits and may create itself bitflips in the erased area. To overcome
1436 * this strange behavior, the whole page is re-read in raw mode, not
1437 * only the ECC bytes.
1438 */
1439 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1440 int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1441 int data_off, spare_off, ecc_off;
1442 int data_len, spare_len, ecc_len;
1443
1444 /* No failure reported for this chunk, move to the next one */
1445 if (!(failure_mask & BIT(chunk)))
1446 continue;
1447
1448 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1449 lt->ecc_bytes);
1450 spare_off_in_page = data_off_in_page +
1451 (chunk < lt->full_chunk_cnt ? lt->data_bytes :
1452 lt->last_data_bytes);
1453 ecc_off_in_page = spare_off_in_page +
1454 (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1455 lt->last_spare_bytes);
1456
1457 data_off = chunk * lt->data_bytes;
1458 spare_off = chunk * lt->spare_bytes;
1459 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1460 lt->last_spare_bytes +
1461 (chunk * (lt->ecc_bytes + 2));
1462
1463 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1464 lt->last_data_bytes;
1465 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1466 lt->last_spare_bytes;
1467 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1468 lt->last_ecc_bytes;
1469
1470 /*
1471 * Only re-read the ECC bytes, unless we are using the 2k/8b
1472 * layout which is buggy in the sense that the ECC engine will
1473 * try to correct data bytes anyway, creating bitflips. In this
1474 * case, re-read the entire page.
1475 */
1476 if (lt->writesize == 2048 && lt->strength == 8) {
1477 nand_change_read_column_op(chip, data_off_in_page,
1478 buf + data_off, data_len,
1479 false);
1480 nand_change_read_column_op(chip, spare_off_in_page,
1481 chip->oob_poi + spare_off, spare_len,
1482 false);
1483 }
1484
1485 nand_change_read_column_op(chip, ecc_off_in_page,
1486 chip->oob_poi + ecc_off, ecc_len,
1487 false);
1488
1489 /* Check the entire chunk (data + spare + ecc) for emptyness */
1490 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1491 chip->oob_poi + spare_off, spare_len,
1492 chip->oob_poi + ecc_off, ecc_len,
1493 &max_bitflips);
1494 }
1495
1496 return max_bitflips;
1497 }
1498
1499 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1500 {
1501 u8 *buf = nand_get_data_buf(chip);
1502
1503 return chip->ecc.read_page_raw(chip, buf, true, page);
1504 }
1505
1506 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1507 {
1508 u8 *buf = nand_get_data_buf(chip);
1509
1510 return chip->ecc.read_page(chip, buf, true, page);
1511 }
1512
1513 /* BCH write helpers */
1514 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1515 const u8 *buf,
1516 int oob_required, int page)
1517 {
1518 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1519 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1520 int data_len = lt->data_bytes;
1521 int spare_len = lt->spare_bytes;
1522 int ecc_len = lt->ecc_bytes;
1523 int spare_offset = 0;
1524 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1525 lt->last_spare_bytes;
1526 int chunk;
1527
1528 marvell_nfc_select_target(chip, chip->cur_cs);
1529
1530 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1531
1532 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1533 if (chunk >= lt->full_chunk_cnt) {
1534 data_len = lt->last_data_bytes;
1535 spare_len = lt->last_spare_bytes;
1536 ecc_len = lt->last_ecc_bytes;
1537 }
1538
1539 /* Point to the column of the next chunk */
1540 nand_change_write_column_op(chip, chunk * full_chunk_size,
1541 NULL, 0, false);
1542
1543 /* Write the data */
1544 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1545 data_len, false);
1546
1547 if (!oob_required)
1548 continue;
1549
1550 /* Write the spare bytes */
1551 if (spare_len)
1552 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1553 spare_len, false);
1554
1555 /* Write the ECC bytes */
1556 if (ecc_len)
1557 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1558 ecc_len, false);
1559
1560 spare_offset += spare_len;
1561 ecc_offset += ALIGN(ecc_len, 32);
1562 }
1563
1564 return nand_prog_page_end_op(chip);
1565 }
1566
1567 static int
1568 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1569 const u8 *data, unsigned int data_len,
1570 const u8 *spare, unsigned int spare_len,
1571 int page)
1572 {
1573 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1574 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1575 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1576 u32 xtype;
1577 int ret;
1578 struct marvell_nfc_op nfc_op = {
1579 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1580 .ndcb[3] = data_len + spare_len,
1581 };
1582
1583 /*
1584 * First operation dispatches the CMD_SEQIN command, issue the address
1585 * cycles and asks for the first chunk of data.
1586 * All operations in the middle (if any) will issue a naked write and
1587 * also ask for data.
1588 * Last operation (if any) asks for the last chunk of data through a
1589 * last naked write.
1590 */
1591 if (chunk == 0) {
1592 if (lt->nchunks == 1)
1593 xtype = XTYPE_MONOLITHIC_RW;
1594 else
1595 xtype = XTYPE_WRITE_DISPATCH;
1596
1597 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1598 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1599 NDCB0_CMD1(NAND_CMD_SEQIN);
1600 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1601 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1602 } else if (chunk < lt->nchunks - 1) {
1603 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1604 } else {
1605 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1606 }
1607
1608 /* Always dispatch the PAGEPROG command on the last chunk */
1609 if (chunk == lt->nchunks - 1)
1610 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1611
1612 ret = marvell_nfc_prepare_cmd(chip);
1613 if (ret)
1614 return ret;
1615
1616 marvell_nfc_send_cmd(chip, &nfc_op);
1617 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1618 "WRDREQ while loading FIFO (data)");
1619 if (ret)
1620 return ret;
1621
1622 /* Transfer the contents */
1623 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1624 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1625
1626 return 0;
1627 }
1628
1629 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1630 const u8 *buf,
1631 int oob_required, int page)
1632 {
1633 const struct nand_sdr_timings *sdr =
1634 nand_get_sdr_timings(nand_get_interface_config(chip));
1635 struct mtd_info *mtd = nand_to_mtd(chip);
1636 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1637 const u8 *data = buf;
1638 const u8 *spare = chip->oob_poi;
1639 int data_len = lt->data_bytes;
1640 int spare_len = lt->spare_bytes;
1641 int chunk, ret;
1642 u8 status;
1643
1644 marvell_nfc_select_target(chip, chip->cur_cs);
1645
1646 /* Spare data will be written anyway, so clear it to avoid garbage */
1647 if (!oob_required)
1648 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1649
1650 marvell_nfc_enable_hw_ecc(chip);
1651
1652 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1653 if (chunk >= lt->full_chunk_cnt) {
1654 data_len = lt->last_data_bytes;
1655 spare_len = lt->last_spare_bytes;
1656 }
1657
1658 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1659 spare, spare_len, page);
1660 data += data_len;
1661 spare += spare_len;
1662
1663 /*
1664 * Waiting only for CMDD or PAGED is not enough, ECC are
1665 * partially written. No flag is set once the operation is
1666 * really finished but the ND_RUN bit is cleared, so wait for it
1667 * before stepping into the next command.
1668 */
1669 marvell_nfc_wait_ndrun(chip);
1670 }
1671
1672 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1673
1674 marvell_nfc_disable_hw_ecc(chip);
1675
1676 if (ret)
1677 return ret;
1678
1679 /* Check write status on the chip side */
1680 ret = nand_status_op(chip, &status);
1681 if (ret)
1682 return ret;
1683
1684 if (status & NAND_STATUS_FAIL)
1685 return -EIO;
1686
1687 return 0;
1688 }
1689
1690 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1691 int page)
1692 {
1693 struct mtd_info *mtd = nand_to_mtd(chip);
1694 u8 *buf = nand_get_data_buf(chip);
1695
1696 memset(buf, 0xFF, mtd->writesize);
1697
1698 return chip->ecc.write_page_raw(chip, buf, true, page);
1699 }
1700
1701 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1702 {
1703 struct mtd_info *mtd = nand_to_mtd(chip);
1704 u8 *buf = nand_get_data_buf(chip);
1705
1706 memset(buf, 0xFF, mtd->writesize);
1707
1708 return chip->ecc.write_page(chip, buf, true, page);
1709 }
1710
1711 /* NAND framework ->exec_op() hooks and related helpers */
1712 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1713 const struct nand_subop *subop,
1714 struct marvell_nfc_op *nfc_op)
1715 {
1716 const struct nand_op_instr *instr = NULL;
1717 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1718 bool first_cmd = true;
1719 unsigned int op_id;
1720 int i;
1721
1722 /* Reset the input structure as most of its fields will be OR'ed */
1723 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1724
1725 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1726 unsigned int offset, naddrs;
1727 const u8 *addrs;
1728 int len;
1729
1730 instr = &subop->instrs[op_id];
1731
1732 switch (instr->type) {
1733 case NAND_OP_CMD_INSTR:
1734 if (first_cmd)
1735 nfc_op->ndcb[0] |=
1736 NDCB0_CMD1(instr->ctx.cmd.opcode);
1737 else
1738 nfc_op->ndcb[0] |=
1739 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1740 NDCB0_DBC;
1741
1742 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1743 first_cmd = false;
1744 break;
1745
1746 case NAND_OP_ADDR_INSTR:
1747 offset = nand_subop_get_addr_start_off(subop, op_id);
1748 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1749 addrs = &instr->ctx.addr.addrs[offset];
1750
1751 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1752
1753 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1754 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1755
1756 if (naddrs >= 5)
1757 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1758 if (naddrs >= 6)
1759 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1760 if (naddrs == 7)
1761 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1762
1763 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1764 break;
1765
1766 case NAND_OP_DATA_IN_INSTR:
1767 nfc_op->data_instr = instr;
1768 nfc_op->data_instr_idx = op_id;
1769 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1770 if (nfc->caps->is_nfcv2) {
1771 nfc_op->ndcb[0] |=
1772 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1773 NDCB0_LEN_OVRD;
1774 len = nand_subop_get_data_len(subop, op_id);
1775 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1776 }
1777 nfc_op->data_delay_ns = instr->delay_ns;
1778 break;
1779
1780 case NAND_OP_DATA_OUT_INSTR:
1781 nfc_op->data_instr = instr;
1782 nfc_op->data_instr_idx = op_id;
1783 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1784 if (nfc->caps->is_nfcv2) {
1785 nfc_op->ndcb[0] |=
1786 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1787 NDCB0_LEN_OVRD;
1788 len = nand_subop_get_data_len(subop, op_id);
1789 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1790 }
1791 nfc_op->data_delay_ns = instr->delay_ns;
1792 break;
1793
1794 case NAND_OP_WAITRDY_INSTR:
1795 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1796 nfc_op->rdy_delay_ns = instr->delay_ns;
1797 break;
1798 }
1799 }
1800 }
1801
1802 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1803 const struct nand_subop *subop,
1804 struct marvell_nfc_op *nfc_op)
1805 {
1806 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1807 const struct nand_op_instr *instr = nfc_op->data_instr;
1808 unsigned int op_id = nfc_op->data_instr_idx;
1809 unsigned int len = nand_subop_get_data_len(subop, op_id);
1810 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1811 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1812 int ret;
1813
1814 if (instr->ctx.data.force_8bit)
1815 marvell_nfc_force_byte_access(chip, true);
1816
1817 if (reading) {
1818 u8 *in = instr->ctx.data.buf.in + offset;
1819
1820 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1821 } else {
1822 const u8 *out = instr->ctx.data.buf.out + offset;
1823
1824 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1825 }
1826
1827 if (instr->ctx.data.force_8bit)
1828 marvell_nfc_force_byte_access(chip, false);
1829
1830 return ret;
1831 }
1832
1833 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1834 const struct nand_subop *subop)
1835 {
1836 struct marvell_nfc_op nfc_op;
1837 bool reading;
1838 int ret;
1839
1840 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1841 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1842
1843 ret = marvell_nfc_prepare_cmd(chip);
1844 if (ret)
1845 return ret;
1846
1847 marvell_nfc_send_cmd(chip, &nfc_op);
1848 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1849 "RDDREQ/WRDREQ while draining raw data");
1850 if (ret)
1851 return ret;
1852
1853 cond_delay(nfc_op.cle_ale_delay_ns);
1854
1855 if (reading) {
1856 if (nfc_op.rdy_timeout_ms) {
1857 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1858 if (ret)
1859 return ret;
1860 }
1861
1862 cond_delay(nfc_op.rdy_delay_ns);
1863 }
1864
1865 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1866 ret = marvell_nfc_wait_cmdd(chip);
1867 if (ret)
1868 return ret;
1869
1870 cond_delay(nfc_op.data_delay_ns);
1871
1872 if (!reading) {
1873 if (nfc_op.rdy_timeout_ms) {
1874 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1875 if (ret)
1876 return ret;
1877 }
1878
1879 cond_delay(nfc_op.rdy_delay_ns);
1880 }
1881
1882 /*
1883 * NDCR ND_RUN bit should be cleared automatically at the end of each
1884 * operation but experience shows that the behavior is buggy when it
1885 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1886 */
1887 if (!reading) {
1888 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1889
1890 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1891 nfc->regs + NDCR);
1892 }
1893
1894 return 0;
1895 }
1896
1897 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1898 const struct nand_subop *subop)
1899 {
1900 struct marvell_nfc_op nfc_op;
1901 int ret;
1902
1903 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1904
1905 /*
1906 * Naked access are different in that they need to be flagged as naked
1907 * by the controller. Reset the controller registers fields that inform
1908 * on the type and refill them according to the ongoing operation.
1909 */
1910 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1911 NDCB0_CMD_XTYPE(XTYPE_MASK));
1912 switch (subop->instrs[0].type) {
1913 case NAND_OP_CMD_INSTR:
1914 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1915 break;
1916 case NAND_OP_ADDR_INSTR:
1917 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1918 break;
1919 case NAND_OP_DATA_IN_INSTR:
1920 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1921 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1922 break;
1923 case NAND_OP_DATA_OUT_INSTR:
1924 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1925 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1926 break;
1927 default:
1928 /* This should never happen */
1929 break;
1930 }
1931
1932 ret = marvell_nfc_prepare_cmd(chip);
1933 if (ret)
1934 return ret;
1935
1936 marvell_nfc_send_cmd(chip, &nfc_op);
1937
1938 if (!nfc_op.data_instr) {
1939 ret = marvell_nfc_wait_cmdd(chip);
1940 cond_delay(nfc_op.cle_ale_delay_ns);
1941 return ret;
1942 }
1943
1944 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1945 "RDDREQ/WRDREQ while draining raw data");
1946 if (ret)
1947 return ret;
1948
1949 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1950 ret = marvell_nfc_wait_cmdd(chip);
1951 if (ret)
1952 return ret;
1953
1954 /*
1955 * NDCR ND_RUN bit should be cleared automatically at the end of each
1956 * operation but experience shows that the behavior is buggy when it
1957 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1958 */
1959 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1960 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1961
1962 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1963 nfc->regs + NDCR);
1964 }
1965
1966 return 0;
1967 }
1968
1969 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1970 const struct nand_subop *subop)
1971 {
1972 struct marvell_nfc_op nfc_op;
1973 int ret;
1974
1975 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1976
1977 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1978 cond_delay(nfc_op.rdy_delay_ns);
1979
1980 return ret;
1981 }
1982
1983 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1984 const struct nand_subop *subop)
1985 {
1986 struct marvell_nfc_op nfc_op;
1987 int ret;
1988
1989 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1990 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1991 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1992
1993 ret = marvell_nfc_prepare_cmd(chip);
1994 if (ret)
1995 return ret;
1996
1997 marvell_nfc_send_cmd(chip, &nfc_op);
1998 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1999 "RDDREQ while reading ID");
2000 if (ret)
2001 return ret;
2002
2003 cond_delay(nfc_op.cle_ale_delay_ns);
2004
2005 if (nfc_op.rdy_timeout_ms) {
2006 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2007 if (ret)
2008 return ret;
2009 }
2010
2011 cond_delay(nfc_op.rdy_delay_ns);
2012
2013 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2014 ret = marvell_nfc_wait_cmdd(chip);
2015 if (ret)
2016 return ret;
2017
2018 cond_delay(nfc_op.data_delay_ns);
2019
2020 return 0;
2021 }
2022
2023 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
2024 const struct nand_subop *subop)
2025 {
2026 struct marvell_nfc_op nfc_op;
2027 int ret;
2028
2029 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2030 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
2031 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
2032
2033 ret = marvell_nfc_prepare_cmd(chip);
2034 if (ret)
2035 return ret;
2036
2037 marvell_nfc_send_cmd(chip, &nfc_op);
2038 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2039 "RDDREQ while reading status");
2040 if (ret)
2041 return ret;
2042
2043 cond_delay(nfc_op.cle_ale_delay_ns);
2044
2045 if (nfc_op.rdy_timeout_ms) {
2046 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2047 if (ret)
2048 return ret;
2049 }
2050
2051 cond_delay(nfc_op.rdy_delay_ns);
2052
2053 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2054 ret = marvell_nfc_wait_cmdd(chip);
2055 if (ret)
2056 return ret;
2057
2058 cond_delay(nfc_op.data_delay_ns);
2059
2060 return 0;
2061 }
2062
2063 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2064 const struct nand_subop *subop)
2065 {
2066 struct marvell_nfc_op nfc_op;
2067 int ret;
2068
2069 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2070 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2071
2072 ret = marvell_nfc_prepare_cmd(chip);
2073 if (ret)
2074 return ret;
2075
2076 marvell_nfc_send_cmd(chip, &nfc_op);
2077 ret = marvell_nfc_wait_cmdd(chip);
2078 if (ret)
2079 return ret;
2080
2081 cond_delay(nfc_op.cle_ale_delay_ns);
2082
2083 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2084 if (ret)
2085 return ret;
2086
2087 cond_delay(nfc_op.rdy_delay_ns);
2088
2089 return 0;
2090 }
2091
2092 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2093 const struct nand_subop *subop)
2094 {
2095 struct marvell_nfc_op nfc_op;
2096 int ret;
2097
2098 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2099 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2100
2101 ret = marvell_nfc_prepare_cmd(chip);
2102 if (ret)
2103 return ret;
2104
2105 marvell_nfc_send_cmd(chip, &nfc_op);
2106 ret = marvell_nfc_wait_cmdd(chip);
2107 if (ret)
2108 return ret;
2109
2110 cond_delay(nfc_op.cle_ale_delay_ns);
2111
2112 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2113 if (ret)
2114 return ret;
2115
2116 cond_delay(nfc_op.rdy_delay_ns);
2117
2118 return 0;
2119 }
2120
2121 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2122 /* Monolithic reads/writes */
2123 NAND_OP_PARSER_PATTERN(
2124 marvell_nfc_monolithic_access_exec,
2125 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2126 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2127 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2128 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2129 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2130 NAND_OP_PARSER_PATTERN(
2131 marvell_nfc_monolithic_access_exec,
2132 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2133 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2134 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2135 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2136 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2137 /* Naked commands */
2138 NAND_OP_PARSER_PATTERN(
2139 marvell_nfc_naked_access_exec,
2140 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2141 NAND_OP_PARSER_PATTERN(
2142 marvell_nfc_naked_access_exec,
2143 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2144 NAND_OP_PARSER_PATTERN(
2145 marvell_nfc_naked_access_exec,
2146 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2147 NAND_OP_PARSER_PATTERN(
2148 marvell_nfc_naked_access_exec,
2149 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2150 NAND_OP_PARSER_PATTERN(
2151 marvell_nfc_naked_waitrdy_exec,
2152 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2153 );
2154
2155 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2156 /* Naked commands not supported, use a function for each pattern */
2157 NAND_OP_PARSER_PATTERN(
2158 marvell_nfc_read_id_type_exec,
2159 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2160 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2161 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2162 NAND_OP_PARSER_PATTERN(
2163 marvell_nfc_erase_cmd_type_exec,
2164 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2165 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2166 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2167 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2168 NAND_OP_PARSER_PATTERN(
2169 marvell_nfc_read_status_exec,
2170 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2171 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2172 NAND_OP_PARSER_PATTERN(
2173 marvell_nfc_reset_cmd_type_exec,
2174 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2175 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2176 NAND_OP_PARSER_PATTERN(
2177 marvell_nfc_naked_waitrdy_exec,
2178 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2179 );
2180
2181 static int marvell_nfc_exec_op(struct nand_chip *chip,
2182 const struct nand_operation *op,
2183 bool check_only)
2184 {
2185 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2186
2187 if (!check_only)
2188 marvell_nfc_select_target(chip, op->cs);
2189
2190 if (nfc->caps->is_nfcv2)
2191 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2192 op, check_only);
2193 else
2194 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2195 op, check_only);
2196 }
2197
2198 /*
2199 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2200 * usable.
2201 */
2202 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2203 struct mtd_oob_region *oobregion)
2204 {
2205 struct nand_chip *chip = mtd_to_nand(mtd);
2206 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2207
2208 if (section)
2209 return -ERANGE;
2210
2211 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2212 lt->last_ecc_bytes;
2213 oobregion->offset = mtd->oobsize - oobregion->length;
2214
2215 return 0;
2216 }
2217
2218 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2219 struct mtd_oob_region *oobregion)
2220 {
2221 struct nand_chip *chip = mtd_to_nand(mtd);
2222 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2223
2224 if (section)
2225 return -ERANGE;
2226
2227 /*
2228 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2229 * 4KB page / 4bit BCH combination.
2230 */
2231 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2232 oobregion->offset = 6;
2233 else
2234 oobregion->offset = 2;
2235
2236 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2237 lt->last_spare_bytes - oobregion->offset;
2238
2239 return 0;
2240 }
2241
2242 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2243 .ecc = marvell_nand_ooblayout_ecc,
2244 .free = marvell_nand_ooblayout_free,
2245 };
2246
2247 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2248 struct nand_ecc_ctrl *ecc)
2249 {
2250 struct nand_chip *chip = mtd_to_nand(mtd);
2251 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2252 const struct marvell_hw_ecc_layout *l;
2253 int i;
2254
2255 if (!nfc->caps->is_nfcv2 &&
2256 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2257 dev_err(nfc->dev,
2258 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2259 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2260 return -ENOTSUPP;
2261 }
2262
2263 to_marvell_nand(chip)->layout = NULL;
2264 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2265 l = &marvell_nfc_layouts[i];
2266 if (mtd->writesize == l->writesize &&
2267 ecc->size == l->chunk && ecc->strength == l->strength) {
2268 to_marvell_nand(chip)->layout = l;
2269 break;
2270 }
2271 }
2272
2273 if (!to_marvell_nand(chip)->layout ||
2274 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2275 dev_err(nfc->dev,
2276 "ECC strength %d at page size %d is not supported\n",
2277 ecc->strength, mtd->writesize);
2278 return -ENOTSUPP;
2279 }
2280
2281 /* Special care for the layout 2k/8-bit/512B */
2282 if (l->writesize == 2048 && l->strength == 8) {
2283 if (mtd->oobsize < 128) {
2284 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2285 return -ENOTSUPP;
2286 } else {
2287 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2288 }
2289 }
2290
2291 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2292 ecc->steps = l->nchunks;
2293 ecc->size = l->data_bytes;
2294
2295 if (ecc->strength == 1) {
2296 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2297 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2298 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2299 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2300 ecc->read_oob = ecc->read_oob_raw;
2301 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2302 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2303 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2304 ecc->write_oob = ecc->write_oob_raw;
2305 } else {
2306 chip->ecc.algo = NAND_ECC_ALGO_BCH;
2307 ecc->strength = 16;
2308 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2309 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2310 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2311 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2312 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2313 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2314 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2315 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2316 }
2317
2318 return 0;
2319 }
2320
2321 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2322 struct nand_ecc_ctrl *ecc)
2323 {
2324 struct nand_chip *chip = mtd_to_nand(mtd);
2325 const struct nand_ecc_props *requirements =
2326 nanddev_get_ecc_requirements(&chip->base);
2327 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2328 int ret;
2329
2330 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2331 (!ecc->size || !ecc->strength)) {
2332 if (requirements->step_size && requirements->strength) {
2333 ecc->size = requirements->step_size;
2334 ecc->strength = requirements->strength;
2335 } else {
2336 dev_info(nfc->dev,
2337 "No minimum ECC strength, using 1b/512B\n");
2338 ecc->size = 512;
2339 ecc->strength = 1;
2340 }
2341 }
2342
2343 switch (ecc->engine_type) {
2344 case NAND_ECC_ENGINE_TYPE_ON_HOST:
2345 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2346 if (ret)
2347 return ret;
2348 break;
2349 case NAND_ECC_ENGINE_TYPE_NONE:
2350 case NAND_ECC_ENGINE_TYPE_SOFT:
2351 case NAND_ECC_ENGINE_TYPE_ON_DIE:
2352 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2353 mtd->writesize != SZ_2K) {
2354 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2355 mtd->writesize);
2356 return -EINVAL;
2357 }
2358 break;
2359 default:
2360 return -EINVAL;
2361 }
2362
2363 return 0;
2364 }
2365
2366 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2367 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2368
2369 static struct nand_bbt_descr bbt_main_descr = {
2370 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2371 NAND_BBT_2BIT | NAND_BBT_VERSION,
2372 .offs = 8,
2373 .len = 6,
2374 .veroffs = 14,
2375 .maxblocks = 8, /* Last 8 blocks in each chip */
2376 .pattern = bbt_pattern
2377 };
2378
2379 static struct nand_bbt_descr bbt_mirror_descr = {
2380 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2381 NAND_BBT_2BIT | NAND_BBT_VERSION,
2382 .offs = 8,
2383 .len = 6,
2384 .veroffs = 14,
2385 .maxblocks = 8, /* Last 8 blocks in each chip */
2386 .pattern = bbt_mirror_pattern
2387 };
2388
2389 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2390 const struct nand_interface_config *conf)
2391 {
2392 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2393 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2394 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2395 const struct nand_sdr_timings *sdr;
2396 struct marvell_nfc_timings nfc_tmg;
2397 int read_delay;
2398
2399 sdr = nand_get_sdr_timings(conf);
2400 if (IS_ERR(sdr))
2401 return PTR_ERR(sdr);
2402
2403 if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode)
2404 return -EOPNOTSUPP;
2405
2406 /*
2407 * SDR timings are given in pico-seconds while NFC timings must be
2408 * expressed in NAND controller clock cycles, which is half of the
2409 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2410 * This is not written anywhere in the datasheet but was observed
2411 * with an oscilloscope.
2412 *
2413 * NFC datasheet gives equations from which thoses calculations
2414 * are derived, they tend to be slightly more restrictives than the
2415 * given core timings and may improve the overall speed.
2416 */
2417 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2418 nfc_tmg.tRH = nfc_tmg.tRP;
2419 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2420 nfc_tmg.tWH = nfc_tmg.tWP;
2421 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2422 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2423 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2424 /*
2425 * Read delay is the time of propagation from SoC pins to NFC internal
2426 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2427 * EDO mode, an additional delay of tRH must be taken into account so
2428 * the data is sampled on the falling edge instead of the rising edge.
2429 */
2430 read_delay = sdr->tRC_min >= 30000 ?
2431 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2432
2433 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2434 /*
2435 * tWHR and tRHW are supposed to be read to write delays (and vice
2436 * versa) but in some cases, ie. when doing a change column, they must
2437 * be greater than that to be sure tCCS delay is respected.
2438 */
2439 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2440 period_ns) - 2;
2441 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2442 period_ns);
2443
2444 /*
2445 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2446 * NFCv1: No WAIT_MODE, tR must be maximal.
2447 */
2448 if (nfc->caps->is_nfcv2) {
2449 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2450 } else {
2451 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2452 period_ns);
2453 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2454 nfc_tmg.tR = nfc_tmg.tCH - 3;
2455 else
2456 nfc_tmg.tR = 0;
2457 }
2458
2459 if (chipnr < 0)
2460 return 0;
2461
2462 marvell_nand->ndtr0 =
2463 NDTR0_TRP(nfc_tmg.tRP) |
2464 NDTR0_TRH(nfc_tmg.tRH) |
2465 NDTR0_ETRP(nfc_tmg.tRP) |
2466 NDTR0_TWP(nfc_tmg.tWP) |
2467 NDTR0_TWH(nfc_tmg.tWH) |
2468 NDTR0_TCS(nfc_tmg.tCS) |
2469 NDTR0_TCH(nfc_tmg.tCH);
2470
2471 marvell_nand->ndtr1 =
2472 NDTR1_TAR(nfc_tmg.tAR) |
2473 NDTR1_TWHR(nfc_tmg.tWHR) |
2474 NDTR1_TR(nfc_tmg.tR);
2475
2476 if (nfc->caps->is_nfcv2) {
2477 marvell_nand->ndtr0 |=
2478 NDTR0_RD_CNT_DEL(read_delay) |
2479 NDTR0_SELCNTR |
2480 NDTR0_TADL(nfc_tmg.tADL);
2481
2482 marvell_nand->ndtr1 |=
2483 NDTR1_TRHW(nfc_tmg.tRHW) |
2484 NDTR1_WAIT_MODE;
2485 }
2486
2487 /*
2488 * Reset nfc->selected_chip so the next command will cause the timing
2489 * registers to be updated in marvell_nfc_select_target().
2490 */
2491 nfc->selected_chip = NULL;
2492
2493 return 0;
2494 }
2495
2496 static int marvell_nand_attach_chip(struct nand_chip *chip)
2497 {
2498 struct mtd_info *mtd = nand_to_mtd(chip);
2499 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2500 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2501 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2502 int ret;
2503
2504 if (pdata && pdata->flash_bbt)
2505 chip->bbt_options |= NAND_BBT_USE_FLASH;
2506
2507 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2508 /*
2509 * We'll use a bad block table stored in-flash and don't
2510 * allow writing the bad block marker to the flash.
2511 */
2512 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2513 chip->bbt_td = &bbt_main_descr;
2514 chip->bbt_md = &bbt_mirror_descr;
2515 }
2516
2517 /* Save the chip-specific fields of NDCR */
2518 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2519 if (chip->options & NAND_BUSWIDTH_16)
2520 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2521
2522 /*
2523 * On small page NANDs, only one cycle is needed to pass the
2524 * column address.
2525 */
2526 if (mtd->writesize <= 512) {
2527 marvell_nand->addr_cyc = 1;
2528 } else {
2529 marvell_nand->addr_cyc = 2;
2530 marvell_nand->ndcr |= NDCR_RA_START;
2531 }
2532
2533 /*
2534 * Now add the number of cycles needed to pass the row
2535 * address.
2536 *
2537 * Addressing a chip using CS 2 or 3 should also need the third row
2538 * cycle but due to inconsistance in the documentation and lack of
2539 * hardware to test this situation, this case is not supported.
2540 */
2541 if (chip->options & NAND_ROW_ADDR_3)
2542 marvell_nand->addr_cyc += 3;
2543 else
2544 marvell_nand->addr_cyc += 2;
2545
2546 if (pdata) {
2547 chip->ecc.size = pdata->ecc_step_size;
2548 chip->ecc.strength = pdata->ecc_strength;
2549 }
2550
2551 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2552 if (ret) {
2553 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2554 return ret;
2555 }
2556
2557 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2558 /*
2559 * Subpage write not available with hardware ECC, prohibit also
2560 * subpage read as in userspace subpage access would still be
2561 * allowed and subpage write, if used, would lead to numerous
2562 * uncorrectable ECC errors.
2563 */
2564 chip->options |= NAND_NO_SUBPAGE_WRITE;
2565 }
2566
2567 if (pdata || nfc->caps->legacy_of_bindings) {
2568 /*
2569 * We keep the MTD name unchanged to avoid breaking platforms
2570 * where the MTD cmdline parser is used and the bootloader
2571 * has not been updated to use the new naming scheme.
2572 */
2573 mtd->name = "pxa3xx_nand-0";
2574 } else if (!mtd->name) {
2575 /*
2576 * If the new bindings are used and the bootloader has not been
2577 * updated to pass a new mtdparts parameter on the cmdline, you
2578 * should define the following property in your NAND node, ie:
2579 *
2580 * label = "main-storage";
2581 *
2582 * This way, mtd->name will be set by the core when
2583 * nand_set_flash_node() is called.
2584 */
2585 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2586 "%s:nand.%d", dev_name(nfc->dev),
2587 marvell_nand->sels[0].cs);
2588 if (!mtd->name) {
2589 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2590 return -ENOMEM;
2591 }
2592 }
2593
2594 return 0;
2595 }
2596
2597 static const struct nand_controller_ops marvell_nand_controller_ops = {
2598 .attach_chip = marvell_nand_attach_chip,
2599 .exec_op = marvell_nfc_exec_op,
2600 .setup_interface = marvell_nfc_setup_interface,
2601 };
2602
2603 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2604 struct device_node *np)
2605 {
2606 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2607 struct marvell_nand_chip *marvell_nand;
2608 struct mtd_info *mtd;
2609 struct nand_chip *chip;
2610 int nsels, ret, i;
2611 u32 cs, rb;
2612
2613 /*
2614 * The legacy "num-cs" property indicates the number of CS on the only
2615 * chip connected to the controller (legacy bindings does not support
2616 * more than one chip). The CS and RB pins are always the #0.
2617 *
2618 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2619 * properties must be filled. For each chip, expressed as a subnode,
2620 * "reg" points to the CS lines and "nand-rb" to the RB line.
2621 */
2622 if (pdata || nfc->caps->legacy_of_bindings) {
2623 nsels = 1;
2624 } else {
2625 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2626 if (nsels <= 0) {
2627 dev_err(dev, "missing/invalid reg property\n");
2628 return -EINVAL;
2629 }
2630 }
2631
2632 /* Alloc the nand chip structure */
2633 marvell_nand = devm_kzalloc(dev,
2634 struct_size(marvell_nand, sels, nsels),
2635 GFP_KERNEL);
2636 if (!marvell_nand) {
2637 dev_err(dev, "could not allocate chip structure\n");
2638 return -ENOMEM;
2639 }
2640
2641 marvell_nand->nsels = nsels;
2642 marvell_nand->selected_die = -1;
2643
2644 for (i = 0; i < nsels; i++) {
2645 if (pdata || nfc->caps->legacy_of_bindings) {
2646 /*
2647 * Legacy bindings use the CS lines in natural
2648 * order (0, 1, ...)
2649 */
2650 cs = i;
2651 } else {
2652 /* Retrieve CS id */
2653 ret = of_property_read_u32_index(np, "reg", i, &cs);
2654 if (ret) {
2655 dev_err(dev, "could not retrieve reg property: %d\n",
2656 ret);
2657 return ret;
2658 }
2659 }
2660
2661 if (cs >= nfc->caps->max_cs_nb) {
2662 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2663 cs, nfc->caps->max_cs_nb);
2664 return -EINVAL;
2665 }
2666
2667 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2668 dev_err(dev, "CS %d already assigned\n", cs);
2669 return -EINVAL;
2670 }
2671
2672 /*
2673 * The cs variable represents the chip select id, which must be
2674 * converted in bit fields for NDCB0 and NDCB2 to select the
2675 * right chip. Unfortunately, due to a lack of information on
2676 * the subject and incoherent documentation, the user should not
2677 * use CS1 and CS3 at all as asserting them is not supported in
2678 * a reliable way (due to multiplexing inside ADDR5 field).
2679 */
2680 marvell_nand->sels[i].cs = cs;
2681 switch (cs) {
2682 case 0:
2683 case 2:
2684 marvell_nand->sels[i].ndcb0_csel = 0;
2685 break;
2686 case 1:
2687 case 3:
2688 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2689 break;
2690 default:
2691 return -EINVAL;
2692 }
2693
2694 /* Retrieve RB id */
2695 if (pdata || nfc->caps->legacy_of_bindings) {
2696 /* Legacy bindings always use RB #0 */
2697 rb = 0;
2698 } else {
2699 ret = of_property_read_u32_index(np, "nand-rb", i,
2700 &rb);
2701 if (ret) {
2702 dev_err(dev,
2703 "could not retrieve RB property: %d\n",
2704 ret);
2705 return ret;
2706 }
2707 }
2708
2709 if (rb >= nfc->caps->max_rb_nb) {
2710 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2711 rb, nfc->caps->max_rb_nb);
2712 return -EINVAL;
2713 }
2714
2715 marvell_nand->sels[i].rb = rb;
2716 }
2717
2718 chip = &marvell_nand->chip;
2719 chip->controller = &nfc->controller;
2720 nand_set_flash_node(chip, np);
2721
2722 if (of_property_read_bool(np, "marvell,nand-keep-config"))
2723 chip->options |= NAND_KEEP_TIMINGS;
2724
2725 mtd = nand_to_mtd(chip);
2726 mtd->dev.parent = dev;
2727
2728 /*
2729 * Save a reference value for timing registers before
2730 * ->setup_interface() is called.
2731 */
2732 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2733 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2734
2735 chip->options |= NAND_BUSWIDTH_AUTO;
2736
2737 ret = nand_scan(chip, marvell_nand->nsels);
2738 if (ret) {
2739 dev_err(dev, "could not scan the nand chip\n");
2740 return ret;
2741 }
2742
2743 if (pdata)
2744 /* Legacy bindings support only one chip */
2745 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2746 else
2747 ret = mtd_device_register(mtd, NULL, 0);
2748 if (ret) {
2749 dev_err(dev, "failed to register mtd device: %d\n", ret);
2750 nand_cleanup(chip);
2751 return ret;
2752 }
2753
2754 list_add_tail(&marvell_nand->node, &nfc->chips);
2755
2756 return 0;
2757 }
2758
2759 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2760 {
2761 struct marvell_nand_chip *entry, *temp;
2762 struct nand_chip *chip;
2763 int ret;
2764
2765 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2766 chip = &entry->chip;
2767 ret = mtd_device_unregister(nand_to_mtd(chip));
2768 WARN_ON(ret);
2769 nand_cleanup(chip);
2770 list_del(&entry->node);
2771 }
2772 }
2773
2774 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2775 {
2776 struct device_node *np = dev->of_node;
2777 struct device_node *nand_np;
2778 int max_cs = nfc->caps->max_cs_nb;
2779 int nchips;
2780 int ret;
2781
2782 if (!np)
2783 nchips = 1;
2784 else
2785 nchips = of_get_child_count(np);
2786
2787 if (nchips > max_cs) {
2788 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2789 max_cs);
2790 return -EINVAL;
2791 }
2792
2793 /*
2794 * Legacy bindings do not use child nodes to exhibit NAND chip
2795 * properties and layout. Instead, NAND properties are mixed with the
2796 * controller ones, and partitions are defined as direct subnodes of the
2797 * NAND controller node.
2798 */
2799 if (nfc->caps->legacy_of_bindings) {
2800 ret = marvell_nand_chip_init(dev, nfc, np);
2801 return ret;
2802 }
2803
2804 for_each_child_of_node(np, nand_np) {
2805 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2806 if (ret) {
2807 of_node_put(nand_np);
2808 goto cleanup_chips;
2809 }
2810 }
2811
2812 return 0;
2813
2814 cleanup_chips:
2815 marvell_nand_chips_cleanup(nfc);
2816
2817 return ret;
2818 }
2819
2820 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2821 {
2822 struct platform_device *pdev = container_of(nfc->dev,
2823 struct platform_device,
2824 dev);
2825 struct dma_slave_config config = {};
2826 struct resource *r;
2827 int ret;
2828
2829 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2830 dev_warn(nfc->dev,
2831 "DMA not enabled in configuration\n");
2832 return -ENOTSUPP;
2833 }
2834
2835 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2836 if (ret)
2837 return ret;
2838
2839 nfc->dma_chan = dma_request_chan(nfc->dev, "data");
2840 if (IS_ERR(nfc->dma_chan)) {
2841 ret = PTR_ERR(nfc->dma_chan);
2842 nfc->dma_chan = NULL;
2843 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2844 }
2845
2846 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2847 if (!r) {
2848 ret = -ENXIO;
2849 goto release_channel;
2850 }
2851
2852 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2853 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2854 config.src_addr = r->start + NDDB;
2855 config.dst_addr = r->start + NDDB;
2856 config.src_maxburst = 32;
2857 config.dst_maxburst = 32;
2858 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2859 if (ret < 0) {
2860 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2861 goto release_channel;
2862 }
2863
2864 /*
2865 * DMA must act on length multiple of 32 and this length may be
2866 * bigger than the destination buffer. Use this buffer instead
2867 * for DMA transfers and then copy the desired amount of data to
2868 * the provided buffer.
2869 */
2870 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2871 if (!nfc->dma_buf) {
2872 ret = -ENOMEM;
2873 goto release_channel;
2874 }
2875
2876 nfc->use_dma = true;
2877
2878 return 0;
2879
2880 release_channel:
2881 dma_release_channel(nfc->dma_chan);
2882 nfc->dma_chan = NULL;
2883
2884 return ret;
2885 }
2886
2887 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2888 {
2889 /*
2890 * ECC operations and interruptions are only enabled when specifically
2891 * needed. ECC shall not be activated in the early stages (fails probe).
2892 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2893 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2894 * offset in the read page and this will fail the protection.
2895 */
2896 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2897 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2898 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2899 writel_relaxed(0, nfc->regs + NDECCCTRL);
2900 }
2901
2902 static int marvell_nfc_init(struct marvell_nfc *nfc)
2903 {
2904 struct device_node *np = nfc->dev->of_node;
2905
2906 /*
2907 * Some SoCs like A7k/A8k need to enable manually the NAND
2908 * controller, gated clocks and reset bits to avoid being bootloader
2909 * dependent. This is done through the use of the System Functions
2910 * registers.
2911 */
2912 if (nfc->caps->need_system_controller) {
2913 struct regmap *sysctrl_base =
2914 syscon_regmap_lookup_by_phandle(np,
2915 "marvell,system-controller");
2916
2917 if (IS_ERR(sysctrl_base))
2918 return PTR_ERR(sysctrl_base);
2919
2920 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2921 GENCONF_SOC_DEVICE_MUX_NFC_EN |
2922 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2923 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2924 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN |
2925 GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN);
2926
2927 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2928 GENCONF_CLK_GATING_CTRL_ND_GATE,
2929 GENCONF_CLK_GATING_CTRL_ND_GATE);
2930 }
2931
2932 /* Configure the DMA if appropriate */
2933 if (!nfc->caps->is_nfcv2)
2934 marvell_nfc_init_dma(nfc);
2935
2936 marvell_nfc_reset(nfc);
2937
2938 return 0;
2939 }
2940
2941 static int marvell_nfc_probe(struct platform_device *pdev)
2942 {
2943 struct device *dev = &pdev->dev;
2944 struct marvell_nfc *nfc;
2945 int ret;
2946 int irq;
2947
2948 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2949 GFP_KERNEL);
2950 if (!nfc)
2951 return -ENOMEM;
2952
2953 nfc->dev = dev;
2954 nand_controller_init(&nfc->controller);
2955 nfc->controller.ops = &marvell_nand_controller_ops;
2956 INIT_LIST_HEAD(&nfc->chips);
2957
2958 nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2959 if (IS_ERR(nfc->regs))
2960 return PTR_ERR(nfc->regs);
2961
2962 irq = platform_get_irq(pdev, 0);
2963 if (irq < 0)
2964 return irq;
2965
2966 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2967
2968 /* Managed the legacy case (when the first clock was not named) */
2969 if (nfc->core_clk == ERR_PTR(-ENOENT))
2970 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2971
2972 if (IS_ERR(nfc->core_clk))
2973 return PTR_ERR(nfc->core_clk);
2974
2975 ret = clk_prepare_enable(nfc->core_clk);
2976 if (ret)
2977 return ret;
2978
2979 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2980 if (IS_ERR(nfc->reg_clk)) {
2981 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2982 ret = PTR_ERR(nfc->reg_clk);
2983 goto unprepare_core_clk;
2984 }
2985
2986 nfc->reg_clk = NULL;
2987 }
2988
2989 ret = clk_prepare_enable(nfc->reg_clk);
2990 if (ret)
2991 goto unprepare_core_clk;
2992
2993 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2994 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2995 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2996 0, "marvell-nfc", nfc);
2997 if (ret)
2998 goto unprepare_reg_clk;
2999
3000 /* Get NAND controller capabilities */
3001 if (pdev->id_entry)
3002 nfc->caps = (void *)pdev->id_entry->driver_data;
3003 else
3004 nfc->caps = of_device_get_match_data(&pdev->dev);
3005
3006 if (!nfc->caps) {
3007 dev_err(dev, "Could not retrieve NFC caps\n");
3008 ret = -EINVAL;
3009 goto unprepare_reg_clk;
3010 }
3011
3012 /* Init the controller and then probe the chips */
3013 ret = marvell_nfc_init(nfc);
3014 if (ret)
3015 goto unprepare_reg_clk;
3016
3017 platform_set_drvdata(pdev, nfc);
3018
3019 ret = marvell_nand_chips_init(dev, nfc);
3020 if (ret)
3021 goto release_dma;
3022
3023 return 0;
3024
3025 release_dma:
3026 if (nfc->use_dma)
3027 dma_release_channel(nfc->dma_chan);
3028 unprepare_reg_clk:
3029 clk_disable_unprepare(nfc->reg_clk);
3030 unprepare_core_clk:
3031 clk_disable_unprepare(nfc->core_clk);
3032
3033 return ret;
3034 }
3035
3036 static void marvell_nfc_remove(struct platform_device *pdev)
3037 {
3038 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
3039
3040 marvell_nand_chips_cleanup(nfc);
3041
3042 if (nfc->use_dma) {
3043 dmaengine_terminate_all(nfc->dma_chan);
3044 dma_release_channel(nfc->dma_chan);
3045 }
3046
3047 clk_disable_unprepare(nfc->reg_clk);
3048 clk_disable_unprepare(nfc->core_clk);
3049 }
3050
3051 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3052 {
3053 struct marvell_nfc *nfc = dev_get_drvdata(dev);
3054 struct marvell_nand_chip *chip;
3055
3056 list_for_each_entry(chip, &nfc->chips, node)
3057 marvell_nfc_wait_ndrun(&chip->chip);
3058
3059 clk_disable_unprepare(nfc->reg_clk);
3060 clk_disable_unprepare(nfc->core_clk);
3061
3062 return 0;
3063 }
3064
3065 static int __maybe_unused marvell_nfc_resume(struct device *dev)
3066 {
3067 struct marvell_nfc *nfc = dev_get_drvdata(dev);
3068 int ret;
3069
3070 ret = clk_prepare_enable(nfc->core_clk);
3071 if (ret < 0)
3072 return ret;
3073
3074 ret = clk_prepare_enable(nfc->reg_clk);
3075 if (ret < 0) {
3076 clk_disable_unprepare(nfc->core_clk);
3077 return ret;
3078 }
3079
3080 /*
3081 * Reset nfc->selected_chip so the next command will cause the timing
3082 * registers to be restored in marvell_nfc_select_target().
3083 */
3084 nfc->selected_chip = NULL;
3085
3086 /* Reset registers that have lost their contents */
3087 marvell_nfc_reset(nfc);
3088
3089 return 0;
3090 }
3091
3092 static const struct dev_pm_ops marvell_nfc_pm_ops = {
3093 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3094 };
3095
3096 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3097 .max_cs_nb = 4,
3098 .max_rb_nb = 2,
3099 .need_system_controller = true,
3100 .is_nfcv2 = true,
3101 };
3102
3103 static const struct marvell_nfc_caps marvell_ac5_caps = {
3104 .max_cs_nb = 2,
3105 .max_rb_nb = 1,
3106 .is_nfcv2 = true,
3107 .max_mode_number = 3,
3108 };
3109
3110 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3111 .max_cs_nb = 4,
3112 .max_rb_nb = 2,
3113 .is_nfcv2 = true,
3114 };
3115
3116 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3117 .max_cs_nb = 2,
3118 .max_rb_nb = 1,
3119 .use_dma = true,
3120 };
3121
3122 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3123 .max_cs_nb = 4,
3124 .max_rb_nb = 2,
3125 .need_system_controller = true,
3126 .legacy_of_bindings = true,
3127 .is_nfcv2 = true,
3128 };
3129
3130 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3131 .max_cs_nb = 4,
3132 .max_rb_nb = 2,
3133 .legacy_of_bindings = true,
3134 .is_nfcv2 = true,
3135 };
3136
3137 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3138 .max_cs_nb = 2,
3139 .max_rb_nb = 1,
3140 .legacy_of_bindings = true,
3141 .use_dma = true,
3142 };
3143
3144 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3145 {
3146 .name = "pxa3xx-nand",
3147 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3148 },
3149 { /* sentinel */ },
3150 };
3151 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3152
3153 static const struct of_device_id marvell_nfc_of_ids[] = {
3154 {
3155 .compatible = "marvell,armada-8k-nand-controller",
3156 .data = &marvell_armada_8k_nfc_caps,
3157 },
3158 {
3159 .compatible = "marvell,ac5-nand-controller",
3160 .data = &marvell_ac5_caps,
3161 },
3162 {
3163 .compatible = "marvell,armada370-nand-controller",
3164 .data = &marvell_armada370_nfc_caps,
3165 },
3166 {
3167 .compatible = "marvell,pxa3xx-nand-controller",
3168 .data = &marvell_pxa3xx_nfc_caps,
3169 },
3170 /* Support for old/deprecated bindings: */
3171 {
3172 .compatible = "marvell,armada-8k-nand",
3173 .data = &marvell_armada_8k_nfc_legacy_caps,
3174 },
3175 {
3176 .compatible = "marvell,armada370-nand",
3177 .data = &marvell_armada370_nfc_legacy_caps,
3178 },
3179 {
3180 .compatible = "marvell,pxa3xx-nand",
3181 .data = &marvell_pxa3xx_nfc_legacy_caps,
3182 },
3183 { /* sentinel */ },
3184 };
3185 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3186
3187 static struct platform_driver marvell_nfc_driver = {
3188 .driver = {
3189 .name = "marvell-nfc",
3190 .of_match_table = marvell_nfc_of_ids,
3191 .pm = &marvell_nfc_pm_ops,
3192 },
3193 .id_table = marvell_nfc_platform_ids,
3194 .probe = marvell_nfc_probe,
3195 .remove_new = marvell_nfc_remove,
3196 };
3197 module_platform_driver(marvell_nfc_driver);
3198
3199 MODULE_LICENSE("GPL");
3200 MODULE_DESCRIPTION("Marvell NAND controller driver");