]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/onenand/onenand_base.c
mtd: resync with Linux-3.7.1
[people/ms/u-boot.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2 * linux/drivers/mtd/onenand/onenand_base.c
3 *
4 * Copyright (C) 2005-2007 Samsung Electronics
5 * Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 * Credits:
8 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
9 * auto-placement support, read-while load support, various fixes
10 * Copyright (C) Nokia Corporation, 2007
11 *
12 * Rohit Hagargundgi <h.rohit at samsung.com>,
13 * Amul Kumar Saha <amul.saha@samsung.com>:
14 * Flex-OneNAND support
15 * Copyright (C) Samsung Electronics, 2009
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License version 2 as
19 * published by the Free Software Foundation.
20 */
21
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34 void *ret = dst;
35 short *d = dst;
36 const short *s = src;
37
38 len >>= 1;
39 while (len-- > 0)
40 *d++ = *s++;
41 return ret;
42 }
43
44 /**
45 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46 * For now, we expose only 64 out of 80 ecc bytes
47 */
48 static struct nand_ecclayout onenand_oob_128 = {
49 .eccbytes = 64,
50 .eccpos = {
51 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57 102, 103, 104, 105
58 },
59 .oobfree = {
60 {2, 4}, {18, 4}, {34, 4}, {50, 4},
61 {66, 4}, {82, 4}, {98, 4}, {114, 4}
62 }
63 };
64
65 /**
66 * onenand_oob_64 - oob info for large (2KB) page
67 */
68 static struct nand_ecclayout onenand_oob_64 = {
69 .eccbytes = 20,
70 .eccpos = {
71 8, 9, 10, 11, 12,
72 24, 25, 26, 27, 28,
73 40, 41, 42, 43, 44,
74 56, 57, 58, 59, 60,
75 },
76 .oobfree = {
77 {2, 3}, {14, 2}, {18, 3}, {30, 2},
78 {34, 3}, {46, 2}, {50, 3}, {62, 2}
79 }
80 };
81
82 /**
83 * onenand_oob_32 - oob info for middle (1KB) page
84 */
85 static struct nand_ecclayout onenand_oob_32 = {
86 .eccbytes = 10,
87 .eccpos = {
88 8, 9, 10, 11, 12,
89 24, 25, 26, 27, 28,
90 },
91 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93
94 static const unsigned char ffchars[] = {
95 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
97 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
99 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
101 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
103 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
105 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
107 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
109 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
111 };
112
113 /**
114 * onenand_readw - [OneNAND Interface] Read OneNAND register
115 * @param addr address to read
116 *
117 * Read OneNAND register
118 */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121 return readw(addr);
122 }
123
124 /**
125 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126 * @param value value to write
127 * @param addr address to write
128 *
129 * Write OneNAND register with value
130 */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133 writew(value, addr);
134 }
135
136 /**
137 * onenand_block_address - [DEFAULT] Get block address
138 * @param device the device id
139 * @param block the block
140 * @return translated block address if DDP, otherwise same
141 *
142 * Setup Start Address 1 Register (F100h)
143 */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146 /* Device Flash Core select, NAND Flash Block Address */
147 if (block & this->density_mask)
148 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149
150 return block;
151 }
152
153 /**
154 * onenand_bufferram_address - [DEFAULT] Get bufferram address
155 * @param device the device id
156 * @param block the block
157 * @return set DBS value if DDP, otherwise 0
158 *
159 * Setup Start Address 2 Register (F101h) for DDP
160 */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163 /* Device BufferRAM Select */
164 if (block & this->density_mask)
165 return ONENAND_DDP_CHIP1;
166
167 return ONENAND_DDP_CHIP0;
168 }
169
170 /**
171 * onenand_page_address - [DEFAULT] Get page address
172 * @param page the page address
173 * @param sector the sector address
174 * @return combined page and sector address
175 *
176 * Setup Start Address 8 Register (F107h)
177 */
178 static int onenand_page_address(int page, int sector)
179 {
180 /* Flash Page Address, Flash Sector Address */
181 int fpa, fsa;
182
183 fpa = page & ONENAND_FPA_MASK;
184 fsa = sector & ONENAND_FSA_MASK;
185
186 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188
189 /**
190 * onenand_buffer_address - [DEFAULT] Get buffer address
191 * @param dataram1 DataRAM index
192 * @param sectors the sector address
193 * @param count the number of sectors
194 * @return the start buffer value
195 *
196 * Setup Start Buffer Register (F200h)
197 */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200 int bsa, bsc;
201
202 /* BufferRAM Sector Address */
203 bsa = sectors & ONENAND_BSA_MASK;
204
205 if (dataram1)
206 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
207 else
208 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
209
210 /* BufferRAM Sector Count */
211 bsc = count & ONENAND_BSC_MASK;
212
213 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215
216 /**
217 * flexonenand_block - Return block number for flash address
218 * @param this - OneNAND device structure
219 * @param addr - Address for which block number is needed
220 */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223 unsigned int boundary, blk, die = 0;
224
225 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226 die = 1;
227 addr -= this->diesize[0];
228 }
229
230 boundary = this->boundary[die];
231
232 blk = addr >> (this->erase_shift - 1);
233 if (blk > boundary)
234 blk = (blk + boundary + 1) >> 1;
235
236 blk += die ? this->density_mask : 0;
237 return blk;
238 }
239
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242 if (!FLEXONENAND(this))
243 return addr >> this->erase_shift;
244 return flexonenand_block(this, addr);
245 }
246
247 /**
248 * flexonenand_addr - Return address of the block
249 * @this: OneNAND device structure
250 * @block: Block number on Flex-OneNAND
251 *
252 * Return address of the block
253 */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256 loff_t ofs = 0;
257 int die = 0, boundary;
258
259 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260 block -= this->density_mask;
261 die = 1;
262 ofs = this->diesize[0];
263 }
264
265 boundary = this->boundary[die];
266 ofs += (loff_t) block << (this->erase_shift - 1);
267 if (block > (boundary + 1))
268 ofs += (loff_t) (block - boundary - 1)
269 << (this->erase_shift - 1);
270 return ofs;
271 }
272
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275 if (!FLEXONENAND(this))
276 return (loff_t) block << this->erase_shift;
277 return flexonenand_addr(this, block);
278 }
279
280 /**
281 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282 * @param mtd MTD device structure
283 * @param addr address whose erase region needs to be identified
284 */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287 int i;
288
289 for (i = 0; i < mtd->numeraseregions; i++)
290 if (addr < mtd->eraseregions[i].offset)
291 break;
292 return i - 1;
293 }
294
295 /**
296 * onenand_get_density - [DEFAULT] Get OneNAND density
297 * @param dev_id OneNAND device ID
298 *
299 * Get OneNAND density from device ID
300 */
301 static inline int onenand_get_density(int dev_id)
302 {
303 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304 return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306
307 /**
308 * onenand_command - [DEFAULT] Send command to OneNAND device
309 * @param mtd MTD device structure
310 * @param cmd the command to be sent
311 * @param addr offset to read from or write to
312 * @param len number of bytes to read or write
313 *
314 * Send command to OneNAND device. This function is used for middle/large page
315 * devices (1KB/2KB Bytes per page)
316 */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318 size_t len)
319 {
320 struct onenand_chip *this = mtd->priv;
321 int value;
322 int block, page;
323
324 /* Now we use page size operation */
325 int sectors = 0, count = 0;
326
327 /* Address translation */
328 switch (cmd) {
329 case ONENAND_CMD_UNLOCK:
330 case ONENAND_CMD_LOCK:
331 case ONENAND_CMD_LOCK_TIGHT:
332 case ONENAND_CMD_UNLOCK_ALL:
333 block = -1;
334 page = -1;
335 break;
336
337 case FLEXONENAND_CMD_PI_ACCESS:
338 /* addr contains die index */
339 block = addr * this->density_mask;
340 page = -1;
341 break;
342
343 case ONENAND_CMD_ERASE:
344 case ONENAND_CMD_BUFFERRAM:
345 block = onenand_block(this, addr);
346 page = -1;
347 break;
348
349 case FLEXONENAND_CMD_READ_PI:
350 cmd = ONENAND_CMD_READ;
351 block = addr * this->density_mask;
352 page = 0;
353 break;
354
355 default:
356 block = onenand_block(this, addr);
357 page = (int) (addr
358 - onenand_addr(this, block)) >> this->page_shift;
359 page &= this->page_mask;
360 break;
361 }
362
363 /* NOTE: The setting order of the registers is very important! */
364 if (cmd == ONENAND_CMD_BUFFERRAM) {
365 /* Select DataRAM for DDP */
366 value = onenand_bufferram_address(this, block);
367 this->write_word(value,
368 this->base + ONENAND_REG_START_ADDRESS2);
369
370 if (ONENAND_IS_4KB_PAGE(this))
371 ONENAND_SET_BUFFERRAM0(this);
372 else
373 /* Switch to the next data buffer */
374 ONENAND_SET_NEXT_BUFFERRAM(this);
375
376 return 0;
377 }
378
379 if (block != -1) {
380 /* Write 'DFS, FBA' of Flash */
381 value = onenand_block_address(this, block);
382 this->write_word(value,
383 this->base + ONENAND_REG_START_ADDRESS1);
384
385 /* Select DataRAM for DDP */
386 value = onenand_bufferram_address(this, block);
387 this->write_word(value,
388 this->base + ONENAND_REG_START_ADDRESS2);
389 }
390
391 if (page != -1) {
392 int dataram;
393
394 switch (cmd) {
395 case FLEXONENAND_CMD_RECOVER_LSB:
396 case ONENAND_CMD_READ:
397 case ONENAND_CMD_READOOB:
398 if (ONENAND_IS_4KB_PAGE(this))
399 dataram = ONENAND_SET_BUFFERRAM0(this);
400 else
401 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402
403 break;
404
405 default:
406 dataram = ONENAND_CURRENT_BUFFERRAM(this);
407 break;
408 }
409
410 /* Write 'FPA, FSA' of Flash */
411 value = onenand_page_address(page, sectors);
412 this->write_word(value,
413 this->base + ONENAND_REG_START_ADDRESS8);
414
415 /* Write 'BSA, BSC' of DataRAM */
416 value = onenand_buffer_address(dataram, sectors, count);
417 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418 }
419
420 /* Interrupt clear */
421 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422 /* Write command */
423 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424
425 return 0;
426 }
427
428 /**
429 * onenand_read_ecc - return ecc status
430 * @param this onenand chip structure
431 */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434 int ecc, i;
435
436 if (!FLEXONENAND(this))
437 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438
439 for (i = 0; i < 4; i++) {
440 ecc = this->read_word(this->base
441 + ((ONENAND_REG_ECC_STATUS + i) << 1));
442 if (likely(!ecc))
443 continue;
444 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445 return ONENAND_ECC_2BIT_ALL;
446 }
447
448 return 0;
449 }
450
451 /**
452 * onenand_wait - [DEFAULT] wait until the command is done
453 * @param mtd MTD device structure
454 * @param state state to select the max. timeout value
455 *
456 * Wait for command done. This applies to all OneNAND command
457 * Read can take up to 30us, erase up to 2ms and program up to 350us
458 * according to general OneNAND specs
459 */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462 struct onenand_chip *this = mtd->priv;
463 unsigned int flags = ONENAND_INT_MASTER;
464 unsigned int interrupt = 0;
465 unsigned int ctrl;
466
467 while (1) {
468 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469 if (interrupt & flags)
470 break;
471 }
472
473 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474
475 if (interrupt & ONENAND_INT_READ) {
476 int ecc = onenand_read_ecc(this);
477 if (ecc & ONENAND_ECC_2BIT_ALL) {
478 printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479 return -EBADMSG;
480 }
481 }
482
483 if (ctrl & ONENAND_CTRL_ERROR) {
484 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485 if (ctrl & ONENAND_CTRL_LOCK)
486 printk("onenand_wait: it's locked error = 0x%04x\n",
487 ctrl);
488
489 return -EIO;
490 }
491
492
493 return 0;
494 }
495
496 /**
497 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498 * @param mtd MTD data structure
499 * @param area BufferRAM area
500 * @return offset given area
501 *
502 * Return BufferRAM offset given area
503 */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506 struct onenand_chip *this = mtd->priv;
507
508 if (ONENAND_CURRENT_BUFFERRAM(this)) {
509 if (area == ONENAND_DATARAM)
510 return mtd->writesize;
511 if (area == ONENAND_SPARERAM)
512 return mtd->oobsize;
513 }
514
515 return 0;
516 }
517
518 /**
519 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520 * @param mtd MTD data structure
521 * @param area BufferRAM area
522 * @param buffer the databuffer to put/get data
523 * @param offset offset to read from or write to
524 * @param count number of bytes to read/write
525 *
526 * Read the BufferRAM area
527 */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529 unsigned char *buffer, int offset,
530 size_t count)
531 {
532 struct onenand_chip *this = mtd->priv;
533 void __iomem *bufferram;
534
535 bufferram = this->base + area;
536 bufferram += onenand_bufferram_offset(mtd, area);
537
538 memcpy_16(buffer, bufferram + offset, count);
539
540 return 0;
541 }
542
543 /**
544 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545 * @param mtd MTD data structure
546 * @param area BufferRAM area
547 * @param buffer the databuffer to put/get data
548 * @param offset offset to read from or write to
549 * @param count number of bytes to read/write
550 *
551 * Read the BufferRAM area with Sync. Burst Mode
552 */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554 unsigned char *buffer, int offset,
555 size_t count)
556 {
557 struct onenand_chip *this = mtd->priv;
558 void __iomem *bufferram;
559
560 bufferram = this->base + area;
561 bufferram += onenand_bufferram_offset(mtd, area);
562
563 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564
565 memcpy_16(buffer, bufferram + offset, count);
566
567 this->mmcontrol(mtd, 0);
568
569 return 0;
570 }
571
572 /**
573 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574 * @param mtd MTD data structure
575 * @param area BufferRAM area
576 * @param buffer the databuffer to put/get data
577 * @param offset offset to read from or write to
578 * @param count number of bytes to read/write
579 *
580 * Write the BufferRAM area
581 */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583 const unsigned char *buffer, int offset,
584 size_t count)
585 {
586 struct onenand_chip *this = mtd->priv;
587 void __iomem *bufferram;
588
589 bufferram = this->base + area;
590 bufferram += onenand_bufferram_offset(mtd, area);
591
592 memcpy_16(bufferram + offset, buffer, count);
593
594 return 0;
595 }
596
597 /**
598 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599 * @param mtd MTD data structure
600 * @param addr address to check
601 * @return blockpage address
602 *
603 * Get blockpage address at 2x program mode
604 */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607 struct onenand_chip *this = mtd->priv;
608 int blockpage, block, page;
609
610 /* Calculate the even block number */
611 block = (int) (addr >> this->erase_shift) & ~1;
612 /* Is it the odd plane? */
613 if (addr & this->writesize)
614 block++;
615 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616 blockpage = (block << 7) | page;
617
618 return blockpage;
619 }
620
621 /**
622 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623 * @param mtd MTD data structure
624 * @param addr address to check
625 * @return 1 if there are valid data, otherwise 0
626 *
627 * Check bufferram if there is data we required
628 */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631 struct onenand_chip *this = mtd->priv;
632 int blockpage, found = 0;
633 unsigned int i;
634
635 if (ONENAND_IS_2PLANE(this))
636 blockpage = onenand_get_2x_blockpage(mtd, addr);
637 else
638 blockpage = (int) (addr >> this->page_shift);
639
640 /* Is there valid data? */
641 i = ONENAND_CURRENT_BUFFERRAM(this);
642 if (this->bufferram[i].blockpage == blockpage)
643 found = 1;
644 else {
645 /* Check another BufferRAM */
646 i = ONENAND_NEXT_BUFFERRAM(this);
647 if (this->bufferram[i].blockpage == blockpage) {
648 ONENAND_SET_NEXT_BUFFERRAM(this);
649 found = 1;
650 }
651 }
652
653 if (found && ONENAND_IS_DDP(this)) {
654 /* Select DataRAM for DDP */
655 int block = onenand_block(this, addr);
656 int value = onenand_bufferram_address(this, block);
657 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
658 }
659
660 return found;
661 }
662
663 /**
664 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
665 * @param mtd MTD data structure
666 * @param addr address to update
667 * @param valid valid flag
668 *
669 * Update BufferRAM information
670 */
671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
672 int valid)
673 {
674 struct onenand_chip *this = mtd->priv;
675 int blockpage;
676 unsigned int i;
677
678 if (ONENAND_IS_2PLANE(this))
679 blockpage = onenand_get_2x_blockpage(mtd, addr);
680 else
681 blockpage = (int)(addr >> this->page_shift);
682
683 /* Invalidate another BufferRAM */
684 i = ONENAND_NEXT_BUFFERRAM(this);
685 if (this->bufferram[i].blockpage == blockpage)
686 this->bufferram[i].blockpage = -1;
687
688 /* Update BufferRAM */
689 i = ONENAND_CURRENT_BUFFERRAM(this);
690 if (valid)
691 this->bufferram[i].blockpage = blockpage;
692 else
693 this->bufferram[i].blockpage = -1;
694
695 return 0;
696 }
697
698 /**
699 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
700 * @param mtd MTD data structure
701 * @param addr start address to invalidate
702 * @param len length to invalidate
703 *
704 * Invalidate BufferRAM information
705 */
706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
707 unsigned int len)
708 {
709 struct onenand_chip *this = mtd->priv;
710 int i;
711 loff_t end_addr = addr + len;
712
713 /* Invalidate BufferRAM */
714 for (i = 0; i < MAX_BUFFERRAM; i++) {
715 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
716
717 if (buf_addr >= addr && buf_addr < end_addr)
718 this->bufferram[i].blockpage = -1;
719 }
720 }
721
722 /**
723 * onenand_get_device - [GENERIC] Get chip for selected access
724 * @param mtd MTD device structure
725 * @param new_state the state which is requested
726 *
727 * Get the device and lock it for exclusive access
728 */
729 static void onenand_get_device(struct mtd_info *mtd, int new_state)
730 {
731 /* Do nothing */
732 }
733
734 /**
735 * onenand_release_device - [GENERIC] release chip
736 * @param mtd MTD device structure
737 *
738 * Deselect, release chip lock and wake up anyone waiting on the device
739 */
740 static void onenand_release_device(struct mtd_info *mtd)
741 {
742 /* Do nothing */
743 }
744
745 /**
746 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
747 * @param mtd MTD device structure
748 * @param buf destination address
749 * @param column oob offset to read from
750 * @param thislen oob length to read
751 */
752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
753 int column, int thislen)
754 {
755 struct onenand_chip *this = mtd->priv;
756 struct nand_oobfree *free;
757 int readcol = column;
758 int readend = column + thislen;
759 int lastgap = 0;
760 unsigned int i;
761 uint8_t *oob_buf = this->oob_buf;
762
763 free = this->ecclayout->oobfree;
764 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
765 if (readcol >= lastgap)
766 readcol += free->offset - lastgap;
767 if (readend >= lastgap)
768 readend += free->offset - lastgap;
769 lastgap = free->offset + free->length;
770 }
771 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
772 free = this->ecclayout->oobfree;
773 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
774 int free_end = free->offset + free->length;
775 if (free->offset < readend && free_end > readcol) {
776 int st = max_t(int,free->offset,readcol);
777 int ed = min_t(int,free_end,readend);
778 int n = ed - st;
779 memcpy(buf, oob_buf + st, n);
780 buf += n;
781 } else if (column == 0)
782 break;
783 }
784 return 0;
785 }
786
787 /**
788 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
789 * @param mtd MTD device structure
790 * @param addr address to recover
791 * @param status return value from onenand_wait
792 *
793 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
794 * lower page address and MSB page has higher page address in paired pages.
795 * If power off occurs during MSB page program, the paired LSB page data can
796 * become corrupt. LSB page recovery read is a way to read LSB page though page
797 * data are corrupted. When uncorrectable error occurs as a result of LSB page
798 * read after power up, issue LSB page recovery read.
799 */
800 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
801 {
802 struct onenand_chip *this = mtd->priv;
803 int i;
804
805 /* Recovery is only for Flex-OneNAND */
806 if (!FLEXONENAND(this))
807 return status;
808
809 /* check if we failed due to uncorrectable error */
810 if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
811 return status;
812
813 /* check if address lies in MLC region */
814 i = flexonenand_region(mtd, addr);
815 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
816 return status;
817
818 printk("onenand_recover_lsb:"
819 "Attempting to recover from uncorrectable read\n");
820
821 /* Issue the LSB page recovery command */
822 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
823 return this->wait(mtd, FL_READING);
824 }
825
826 /**
827 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
828 * @param mtd MTD device structure
829 * @param from offset to read from
830 * @param ops oob operation description structure
831 *
832 * OneNAND read main and/or out-of-band data
833 */
834 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
835 struct mtd_oob_ops *ops)
836 {
837 struct onenand_chip *this = mtd->priv;
838 struct mtd_ecc_stats stats;
839 size_t len = ops->len;
840 size_t ooblen = ops->ooblen;
841 u_char *buf = ops->datbuf;
842 u_char *oobbuf = ops->oobbuf;
843 int read = 0, column, thislen;
844 int oobread = 0, oobcolumn, thisooblen, oobsize;
845 int ret = 0, boundary = 0;
846 int writesize = this->writesize;
847
848 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
849
850 if (ops->mode == MTD_OPS_AUTO_OOB)
851 oobsize = this->ecclayout->oobavail;
852 else
853 oobsize = mtd->oobsize;
854
855 oobcolumn = from & (mtd->oobsize - 1);
856
857 /* Do not allow reads past end of device */
858 if ((from + len) > mtd->size) {
859 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
860 ops->retlen = 0;
861 ops->oobretlen = 0;
862 return -EINVAL;
863 }
864
865 stats = mtd->ecc_stats;
866
867 /* Read-while-load method */
868 /* Note: We can't use this feature in MLC */
869
870 /* Do first load to bufferRAM */
871 if (read < len) {
872 if (!onenand_check_bufferram(mtd, from)) {
873 this->main_buf = buf;
874 this->command(mtd, ONENAND_CMD_READ, from, writesize);
875 ret = this->wait(mtd, FL_READING);
876 if (unlikely(ret))
877 ret = onenand_recover_lsb(mtd, from, ret);
878 onenand_update_bufferram(mtd, from, !ret);
879 if (ret == -EBADMSG)
880 ret = 0;
881 }
882 }
883
884 thislen = min_t(int, writesize, len - read);
885 column = from & (writesize - 1);
886 if (column + thislen > writesize)
887 thislen = writesize - column;
888
889 while (!ret) {
890 /* If there is more to load then start next load */
891 from += thislen;
892 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
893 this->main_buf = buf + thislen;
894 this->command(mtd, ONENAND_CMD_READ, from, writesize);
895 /*
896 * Chip boundary handling in DDP
897 * Now we issued chip 1 read and pointed chip 1
898 * bufferam so we have to point chip 0 bufferam.
899 */
900 if (ONENAND_IS_DDP(this) &&
901 unlikely(from == (this->chipsize >> 1))) {
902 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
903 boundary = 1;
904 } else
905 boundary = 0;
906 ONENAND_SET_PREV_BUFFERRAM(this);
907 }
908
909 /* While load is going, read from last bufferRAM */
910 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
911
912 /* Read oob area if needed */
913 if (oobbuf) {
914 thisooblen = oobsize - oobcolumn;
915 thisooblen = min_t(int, thisooblen, ooblen - oobread);
916
917 if (ops->mode == MTD_OPS_AUTO_OOB)
918 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
919 else
920 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
921 oobread += thisooblen;
922 oobbuf += thisooblen;
923 oobcolumn = 0;
924 }
925
926 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
927 this->command(mtd, ONENAND_CMD_READ, from, writesize);
928 ret = this->wait(mtd, FL_READING);
929 if (unlikely(ret))
930 ret = onenand_recover_lsb(mtd, from, ret);
931 onenand_update_bufferram(mtd, from, !ret);
932 if (mtd_is_eccerr(ret))
933 ret = 0;
934 }
935
936 /* See if we are done */
937 read += thislen;
938 if (read == len)
939 break;
940 /* Set up for next read from bufferRAM */
941 if (unlikely(boundary))
942 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
943 if (!ONENAND_IS_4KB_PAGE(this))
944 ONENAND_SET_NEXT_BUFFERRAM(this);
945 buf += thislen;
946 thislen = min_t(int, writesize, len - read);
947 column = 0;
948
949 if (!ONENAND_IS_4KB_PAGE(this)) {
950 /* Now wait for load */
951 ret = this->wait(mtd, FL_READING);
952 onenand_update_bufferram(mtd, from, !ret);
953 if (mtd_is_eccerr(ret))
954 ret = 0;
955 }
956 }
957
958 /*
959 * Return success, if no ECC failures, else -EBADMSG
960 * fs driver will take care of that, because
961 * retlen == desired len and result == -EBADMSG
962 */
963 ops->retlen = read;
964 ops->oobretlen = oobread;
965
966 if (ret)
967 return ret;
968
969 if (mtd->ecc_stats.failed - stats.failed)
970 return -EBADMSG;
971
972 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
973 }
974
975 /**
976 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
977 * @param mtd MTD device structure
978 * @param from offset to read from
979 * @param ops oob operation description structure
980 *
981 * OneNAND read out-of-band data from the spare area
982 */
983 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
984 struct mtd_oob_ops *ops)
985 {
986 struct onenand_chip *this = mtd->priv;
987 struct mtd_ecc_stats stats;
988 int read = 0, thislen, column, oobsize;
989 size_t len = ops->ooblen;
990 unsigned int mode = ops->mode;
991 u_char *buf = ops->oobbuf;
992 int ret = 0, readcmd;
993
994 from += ops->ooboffs;
995
996 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
997
998 /* Initialize return length value */
999 ops->oobretlen = 0;
1000
1001 if (mode == MTD_OPS_AUTO_OOB)
1002 oobsize = this->ecclayout->oobavail;
1003 else
1004 oobsize = mtd->oobsize;
1005
1006 column = from & (mtd->oobsize - 1);
1007
1008 if (unlikely(column >= oobsize)) {
1009 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1010 return -EINVAL;
1011 }
1012
1013 /* Do not allow reads past end of device */
1014 if (unlikely(from >= mtd->size ||
1015 column + len > ((mtd->size >> this->page_shift) -
1016 (from >> this->page_shift)) * oobsize)) {
1017 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1018 return -EINVAL;
1019 }
1020
1021 stats = mtd->ecc_stats;
1022
1023 readcmd = ONENAND_IS_4KB_PAGE(this) ?
1024 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1025
1026 while (read < len) {
1027 thislen = oobsize - column;
1028 thislen = min_t(int, thislen, len);
1029
1030 this->spare_buf = buf;
1031 this->command(mtd, readcmd, from, mtd->oobsize);
1032
1033 onenand_update_bufferram(mtd, from, 0);
1034
1035 ret = this->wait(mtd, FL_READING);
1036 if (unlikely(ret))
1037 ret = onenand_recover_lsb(mtd, from, ret);
1038
1039 if (ret && ret != -EBADMSG) {
1040 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1041 break;
1042 }
1043
1044 if (mode == MTD_OPS_AUTO_OOB)
1045 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1046 else
1047 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1048
1049 read += thislen;
1050
1051 if (read == len)
1052 break;
1053
1054 buf += thislen;
1055
1056 /* Read more? */
1057 if (read < len) {
1058 /* Page size */
1059 from += mtd->writesize;
1060 column = 0;
1061 }
1062 }
1063
1064 ops->oobretlen = read;
1065
1066 if (ret)
1067 return ret;
1068
1069 if (mtd->ecc_stats.failed - stats.failed)
1070 return -EBADMSG;
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1077 * @param mtd MTD device structure
1078 * @param from offset to read from
1079 * @param len number of bytes to read
1080 * @param retlen pointer to variable to store the number of read bytes
1081 * @param buf the databuffer to put data
1082 *
1083 * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1084 */
1085 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1086 size_t * retlen, u_char * buf)
1087 {
1088 struct mtd_oob_ops ops = {
1089 .len = len,
1090 .ooblen = 0,
1091 .datbuf = buf,
1092 .oobbuf = NULL,
1093 };
1094 int ret;
1095
1096 onenand_get_device(mtd, FL_READING);
1097 ret = onenand_read_ops_nolock(mtd, from, &ops);
1098 onenand_release_device(mtd);
1099
1100 *retlen = ops.retlen;
1101 return ret;
1102 }
1103
1104 /**
1105 * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1106 * @param mtd MTD device structure
1107 * @param from offset to read from
1108 * @param ops oob operations description structure
1109 *
1110 * OneNAND main and/or out-of-band
1111 */
1112 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1113 struct mtd_oob_ops *ops)
1114 {
1115 int ret;
1116
1117 switch (ops->mode) {
1118 case MTD_OPS_PLACE_OOB:
1119 case MTD_OPS_AUTO_OOB:
1120 break;
1121 case MTD_OPS_RAW:
1122 /* Not implemented yet */
1123 default:
1124 return -EINVAL;
1125 }
1126
1127 onenand_get_device(mtd, FL_READING);
1128 if (ops->datbuf)
1129 ret = onenand_read_ops_nolock(mtd, from, ops);
1130 else
1131 ret = onenand_read_oob_nolock(mtd, from, ops);
1132 onenand_release_device(mtd);
1133
1134 return ret;
1135 }
1136
1137 /**
1138 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1139 * @param mtd MTD device structure
1140 * @param state state to select the max. timeout value
1141 *
1142 * Wait for command done.
1143 */
1144 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1145 {
1146 struct onenand_chip *this = mtd->priv;
1147 unsigned int flags = ONENAND_INT_MASTER;
1148 unsigned int interrupt;
1149 unsigned int ctrl;
1150
1151 while (1) {
1152 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1153 if (interrupt & flags)
1154 break;
1155 }
1156
1157 /* To get correct interrupt status in timeout case */
1158 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1159 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1160
1161 if (interrupt & ONENAND_INT_READ) {
1162 int ecc = onenand_read_ecc(this);
1163 if (ecc & ONENAND_ECC_2BIT_ALL) {
1164 printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1165 ", controller = 0x%04x\n", ecc, ctrl);
1166 return ONENAND_BBT_READ_ERROR;
1167 }
1168 } else {
1169 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1170 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1171 return ONENAND_BBT_READ_FATAL_ERROR;
1172 }
1173
1174 /* Initial bad block case: 0x2400 or 0x0400 */
1175 if (ctrl & ONENAND_CTRL_ERROR) {
1176 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1177 return ONENAND_BBT_READ_ERROR;
1178 }
1179
1180 return 0;
1181 }
1182
1183 /**
1184 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1185 * @param mtd MTD device structure
1186 * @param from offset to read from
1187 * @param ops oob operation description structure
1188 *
1189 * OneNAND read out-of-band data from the spare area for bbt scan
1190 */
1191 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1192 struct mtd_oob_ops *ops)
1193 {
1194 struct onenand_chip *this = mtd->priv;
1195 int read = 0, thislen, column;
1196 int ret = 0, readcmd;
1197 size_t len = ops->ooblen;
1198 u_char *buf = ops->oobbuf;
1199
1200 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1201
1202 readcmd = ONENAND_IS_4KB_PAGE(this) ?
1203 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1204
1205 /* Initialize return value */
1206 ops->oobretlen = 0;
1207
1208 /* Do not allow reads past end of device */
1209 if (unlikely((from + len) > mtd->size)) {
1210 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1211 return ONENAND_BBT_READ_FATAL_ERROR;
1212 }
1213
1214 /* Grab the lock and see if the device is available */
1215 onenand_get_device(mtd, FL_READING);
1216
1217 column = from & (mtd->oobsize - 1);
1218
1219 while (read < len) {
1220
1221 thislen = mtd->oobsize - column;
1222 thislen = min_t(int, thislen, len);
1223
1224 this->spare_buf = buf;
1225 this->command(mtd, readcmd, from, mtd->oobsize);
1226
1227 onenand_update_bufferram(mtd, from, 0);
1228
1229 ret = this->bbt_wait(mtd, FL_READING);
1230 if (unlikely(ret))
1231 ret = onenand_recover_lsb(mtd, from, ret);
1232
1233 if (ret)
1234 break;
1235
1236 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1237 read += thislen;
1238 if (read == len)
1239 break;
1240
1241 buf += thislen;
1242
1243 /* Read more? */
1244 if (read < len) {
1245 /* Update Page size */
1246 from += this->writesize;
1247 column = 0;
1248 }
1249 }
1250
1251 /* Deselect and wake up anyone waiting on the device */
1252 onenand_release_device(mtd);
1253
1254 ops->oobretlen = read;
1255 return ret;
1256 }
1257
1258
1259 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1260 /**
1261 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1262 * @param mtd MTD device structure
1263 * @param buf the databuffer to verify
1264 * @param to offset to read from
1265 */
1266 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1267 {
1268 struct onenand_chip *this = mtd->priv;
1269 u_char *oob_buf = this->oob_buf;
1270 int status, i, readcmd;
1271
1272 readcmd = ONENAND_IS_4KB_PAGE(this) ?
1273 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1274
1275 this->command(mtd, readcmd, to, mtd->oobsize);
1276 onenand_update_bufferram(mtd, to, 0);
1277 status = this->wait(mtd, FL_READING);
1278 if (status)
1279 return status;
1280
1281 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1282 for (i = 0; i < mtd->oobsize; i++)
1283 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1284 return -EBADMSG;
1285
1286 return 0;
1287 }
1288
1289 /**
1290 * onenand_verify - [GENERIC] verify the chip contents after a write
1291 * @param mtd MTD device structure
1292 * @param buf the databuffer to verify
1293 * @param addr offset to read from
1294 * @param len number of bytes to read and compare
1295 */
1296 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1297 {
1298 struct onenand_chip *this = mtd->priv;
1299 void __iomem *dataram;
1300 int ret = 0;
1301 int thislen, column;
1302
1303 while (len != 0) {
1304 thislen = min_t(int, this->writesize, len);
1305 column = addr & (this->writesize - 1);
1306 if (column + thislen > this->writesize)
1307 thislen = this->writesize - column;
1308
1309 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1310
1311 onenand_update_bufferram(mtd, addr, 0);
1312
1313 ret = this->wait(mtd, FL_READING);
1314 if (ret)
1315 return ret;
1316
1317 onenand_update_bufferram(mtd, addr, 1);
1318
1319 dataram = this->base + ONENAND_DATARAM;
1320 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1321
1322 if (memcmp(buf, dataram + column, thislen))
1323 return -EBADMSG;
1324
1325 len -= thislen;
1326 buf += thislen;
1327 addr += thislen;
1328 }
1329
1330 return 0;
1331 }
1332 #else
1333 #define onenand_verify(...) (0)
1334 #define onenand_verify_oob(...) (0)
1335 #endif
1336
1337 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1338
1339 /**
1340 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1341 * @param mtd MTD device structure
1342 * @param oob_buf oob buffer
1343 * @param buf source address
1344 * @param column oob offset to write to
1345 * @param thislen oob length to write
1346 */
1347 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1348 const u_char *buf, int column, int thislen)
1349 {
1350 struct onenand_chip *this = mtd->priv;
1351 struct nand_oobfree *free;
1352 int writecol = column;
1353 int writeend = column + thislen;
1354 int lastgap = 0;
1355 unsigned int i;
1356
1357 free = this->ecclayout->oobfree;
1358 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1359 if (writecol >= lastgap)
1360 writecol += free->offset - lastgap;
1361 if (writeend >= lastgap)
1362 writeend += free->offset - lastgap;
1363 lastgap = free->offset + free->length;
1364 }
1365 free = this->ecclayout->oobfree;
1366 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1367 int free_end = free->offset + free->length;
1368 if (free->offset < writeend && free_end > writecol) {
1369 int st = max_t(int,free->offset,writecol);
1370 int ed = min_t(int,free_end,writeend);
1371 int n = ed - st;
1372 memcpy(oob_buf + st, buf, n);
1373 buf += n;
1374 } else if (column == 0)
1375 break;
1376 }
1377 return 0;
1378 }
1379
1380 /**
1381 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1382 * @param mtd MTD device structure
1383 * @param to offset to write to
1384 * @param ops oob operation description structure
1385 *
1386 * Write main and/or oob with ECC
1387 */
1388 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1389 struct mtd_oob_ops *ops)
1390 {
1391 struct onenand_chip *this = mtd->priv;
1392 int written = 0, column, thislen, subpage;
1393 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1394 size_t len = ops->len;
1395 size_t ooblen = ops->ooblen;
1396 const u_char *buf = ops->datbuf;
1397 const u_char *oob = ops->oobbuf;
1398 u_char *oobbuf;
1399 int ret = 0;
1400
1401 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1402
1403 /* Initialize retlen, in case of early exit */
1404 ops->retlen = 0;
1405 ops->oobretlen = 0;
1406
1407 /* Reject writes, which are not page aligned */
1408 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1409 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1410 return -EINVAL;
1411 }
1412
1413 if (ops->mode == MTD_OPS_AUTO_OOB)
1414 oobsize = this->ecclayout->oobavail;
1415 else
1416 oobsize = mtd->oobsize;
1417
1418 oobcolumn = to & (mtd->oobsize - 1);
1419
1420 column = to & (mtd->writesize - 1);
1421
1422 /* Loop until all data write */
1423 while (written < len) {
1424 u_char *wbuf = (u_char *) buf;
1425
1426 thislen = min_t(int, mtd->writesize - column, len - written);
1427 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1428
1429 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1430
1431 /* Partial page write */
1432 subpage = thislen < mtd->writesize;
1433 if (subpage) {
1434 memset(this->page_buf, 0xff, mtd->writesize);
1435 memcpy(this->page_buf + column, buf, thislen);
1436 wbuf = this->page_buf;
1437 }
1438
1439 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1440
1441 if (oob) {
1442 oobbuf = this->oob_buf;
1443
1444 /* We send data to spare ram with oobsize
1445 * * to prevent byte access */
1446 memset(oobbuf, 0xff, mtd->oobsize);
1447 if (ops->mode == MTD_OPS_AUTO_OOB)
1448 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1449 else
1450 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1451
1452 oobwritten += thisooblen;
1453 oob += thisooblen;
1454 oobcolumn = 0;
1455 } else
1456 oobbuf = (u_char *) ffchars;
1457
1458 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1459
1460 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1461
1462 ret = this->wait(mtd, FL_WRITING);
1463
1464 /* In partial page write we don't update bufferram */
1465 onenand_update_bufferram(mtd, to, !ret && !subpage);
1466 if (ONENAND_IS_2PLANE(this)) {
1467 ONENAND_SET_BUFFERRAM1(this);
1468 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1469 }
1470
1471 if (ret) {
1472 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1473 break;
1474 }
1475
1476 /* Only check verify write turn on */
1477 ret = onenand_verify(mtd, buf, to, thislen);
1478 if (ret) {
1479 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1480 break;
1481 }
1482
1483 written += thislen;
1484
1485 if (written == len)
1486 break;
1487
1488 column = 0;
1489 to += thislen;
1490 buf += thislen;
1491 }
1492
1493 ops->retlen = written;
1494
1495 return ret;
1496 }
1497
1498 /**
1499 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1500 * @param mtd MTD device structure
1501 * @param to offset to write to
1502 * @param len number of bytes to write
1503 * @param retlen pointer to variable to store the number of written bytes
1504 * @param buf the data to write
1505 * @param mode operation mode
1506 *
1507 * OneNAND write out-of-band
1508 */
1509 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1510 struct mtd_oob_ops *ops)
1511 {
1512 struct onenand_chip *this = mtd->priv;
1513 int column, ret = 0, oobsize;
1514 int written = 0, oobcmd;
1515 u_char *oobbuf;
1516 size_t len = ops->ooblen;
1517 const u_char *buf = ops->oobbuf;
1518 unsigned int mode = ops->mode;
1519
1520 to += ops->ooboffs;
1521
1522 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1523
1524 /* Initialize retlen, in case of early exit */
1525 ops->oobretlen = 0;
1526
1527 if (mode == MTD_OPS_AUTO_OOB)
1528 oobsize = this->ecclayout->oobavail;
1529 else
1530 oobsize = mtd->oobsize;
1531
1532 column = to & (mtd->oobsize - 1);
1533
1534 if (unlikely(column >= oobsize)) {
1535 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1536 return -EINVAL;
1537 }
1538
1539 /* For compatibility with NAND: Do not allow write past end of page */
1540 if (unlikely(column + len > oobsize)) {
1541 printk(KERN_ERR "onenand_write_oob_nolock: "
1542 "Attempt to write past end of page\n");
1543 return -EINVAL;
1544 }
1545
1546 /* Do not allow reads past end of device */
1547 if (unlikely(to >= mtd->size ||
1548 column + len > ((mtd->size >> this->page_shift) -
1549 (to >> this->page_shift)) * oobsize)) {
1550 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1551 return -EINVAL;
1552 }
1553
1554 oobbuf = this->oob_buf;
1555
1556 oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1557 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1558
1559 /* Loop until all data write */
1560 while (written < len) {
1561 int thislen = min_t(int, oobsize, len - written);
1562
1563 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1564
1565 /* We send data to spare ram with oobsize
1566 * to prevent byte access */
1567 memset(oobbuf, 0xff, mtd->oobsize);
1568 if (mode == MTD_OPS_AUTO_OOB)
1569 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1570 else
1571 memcpy(oobbuf + column, buf, thislen);
1572 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1573
1574 if (ONENAND_IS_4KB_PAGE(this)) {
1575 /* Set main area of DataRAM to 0xff*/
1576 memset(this->page_buf, 0xff, mtd->writesize);
1577 this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1578 this->page_buf, 0, mtd->writesize);
1579 }
1580
1581 this->command(mtd, oobcmd, to, mtd->oobsize);
1582
1583 onenand_update_bufferram(mtd, to, 0);
1584 if (ONENAND_IS_2PLANE(this)) {
1585 ONENAND_SET_BUFFERRAM1(this);
1586 onenand_update_bufferram(mtd, to + this->writesize, 0);
1587 }
1588
1589 ret = this->wait(mtd, FL_WRITING);
1590 if (ret) {
1591 printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1592 break;
1593 }
1594
1595 ret = onenand_verify_oob(mtd, oobbuf, to);
1596 if (ret) {
1597 printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1598 break;
1599 }
1600
1601 written += thislen;
1602 if (written == len)
1603 break;
1604
1605 to += mtd->writesize;
1606 buf += thislen;
1607 column = 0;
1608 }
1609
1610 ops->oobretlen = written;
1611
1612 return ret;
1613 }
1614
1615 /**
1616 * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1617 * @param mtd MTD device structure
1618 * @param to offset to write to
1619 * @param len number of bytes to write
1620 * @param retlen pointer to variable to store the number of written bytes
1621 * @param buf the data to write
1622 *
1623 * Write with ECC
1624 */
1625 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1626 size_t * retlen, const u_char * buf)
1627 {
1628 struct mtd_oob_ops ops = {
1629 .len = len,
1630 .ooblen = 0,
1631 .datbuf = (u_char *) buf,
1632 .oobbuf = NULL,
1633 };
1634 int ret;
1635
1636 onenand_get_device(mtd, FL_WRITING);
1637 ret = onenand_write_ops_nolock(mtd, to, &ops);
1638 onenand_release_device(mtd);
1639
1640 *retlen = ops.retlen;
1641 return ret;
1642 }
1643
1644 /**
1645 * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1646 * @param mtd MTD device structure
1647 * @param to offset to write to
1648 * @param ops oob operation description structure
1649 *
1650 * OneNAND write main and/or out-of-band
1651 */
1652 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1653 struct mtd_oob_ops *ops)
1654 {
1655 int ret;
1656
1657 switch (ops->mode) {
1658 case MTD_OPS_PLACE_OOB:
1659 case MTD_OPS_AUTO_OOB:
1660 break;
1661 case MTD_OPS_RAW:
1662 /* Not implemented yet */
1663 default:
1664 return -EINVAL;
1665 }
1666
1667 onenand_get_device(mtd, FL_WRITING);
1668 if (ops->datbuf)
1669 ret = onenand_write_ops_nolock(mtd, to, ops);
1670 else
1671 ret = onenand_write_oob_nolock(mtd, to, ops);
1672 onenand_release_device(mtd);
1673
1674 return ret;
1675
1676 }
1677
1678 /**
1679 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1680 * @param mtd MTD device structure
1681 * @param ofs offset from device start
1682 * @param allowbbt 1, if its allowed to access the bbt area
1683 *
1684 * Check, if the block is bad, Either by reading the bad block table or
1685 * calling of the scan function.
1686 */
1687 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1688 {
1689 struct onenand_chip *this = mtd->priv;
1690 struct bbm_info *bbm = this->bbm;
1691
1692 /* Return info from the table */
1693 return bbm->isbad_bbt(mtd, ofs, allowbbt);
1694 }
1695
1696
1697 /**
1698 * onenand_erase - [MTD Interface] erase block(s)
1699 * @param mtd MTD device structure
1700 * @param instr erase instruction
1701 *
1702 * Erase one ore more blocks
1703 */
1704 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1705 {
1706 struct onenand_chip *this = mtd->priv;
1707 unsigned int block_size;
1708 loff_t addr = instr->addr;
1709 unsigned int len = instr->len;
1710 int ret = 0, i;
1711 struct mtd_erase_region_info *region = NULL;
1712 unsigned int region_end = 0;
1713
1714 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1715 (unsigned int) addr, len);
1716
1717 if (FLEXONENAND(this)) {
1718 /* Find the eraseregion of this address */
1719 i = flexonenand_region(mtd, addr);
1720 region = &mtd->eraseregions[i];
1721
1722 block_size = region->erasesize;
1723 region_end = region->offset
1724 + region->erasesize * region->numblocks;
1725
1726 /* Start address within region must align on block boundary.
1727 * Erase region's start offset is always block start address.
1728 */
1729 if (unlikely((addr - region->offset) & (block_size - 1))) {
1730 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1731 " Unaligned address\n");
1732 return -EINVAL;
1733 }
1734 } else {
1735 block_size = 1 << this->erase_shift;
1736
1737 /* Start address must align on block boundary */
1738 if (unlikely(addr & (block_size - 1))) {
1739 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1740 "Unaligned address\n");
1741 return -EINVAL;
1742 }
1743 }
1744
1745 /* Length must align on block boundary */
1746 if (unlikely(len & (block_size - 1))) {
1747 MTDDEBUG (MTD_DEBUG_LEVEL0,
1748 "onenand_erase: Length not block aligned\n");
1749 return -EINVAL;
1750 }
1751
1752 /* Grab the lock and see if the device is available */
1753 onenand_get_device(mtd, FL_ERASING);
1754
1755 /* Loop throught the pages */
1756 instr->state = MTD_ERASING;
1757
1758 while (len) {
1759
1760 /* Check if we have a bad block, we do not erase bad blocks */
1761 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1762 printk(KERN_WARNING "onenand_erase: attempt to erase"
1763 " a bad block at addr 0x%08x\n",
1764 (unsigned int) addr);
1765 instr->state = MTD_ERASE_FAILED;
1766 goto erase_exit;
1767 }
1768
1769 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1770
1771 onenand_invalidate_bufferram(mtd, addr, block_size);
1772
1773 ret = this->wait(mtd, FL_ERASING);
1774 /* Check, if it is write protected */
1775 if (ret) {
1776 if (ret == -EPERM)
1777 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1778 "Device is write protected!!!\n");
1779 else
1780 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1781 "Failed erase, block %d\n",
1782 onenand_block(this, addr));
1783 instr->state = MTD_ERASE_FAILED;
1784 instr->fail_addr = addr;
1785
1786 goto erase_exit;
1787 }
1788
1789 len -= block_size;
1790 addr += block_size;
1791
1792 if (addr == region_end) {
1793 if (!len)
1794 break;
1795 region++;
1796
1797 block_size = region->erasesize;
1798 region_end = region->offset
1799 + region->erasesize * region->numblocks;
1800
1801 if (len & (block_size - 1)) {
1802 /* This has been checked at MTD
1803 * partitioning level. */
1804 printk("onenand_erase: Unaligned address\n");
1805 goto erase_exit;
1806 }
1807 }
1808 }
1809
1810 instr->state = MTD_ERASE_DONE;
1811
1812 erase_exit:
1813
1814 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1815 /* Do call back function */
1816 if (!ret)
1817 mtd_erase_callback(instr);
1818
1819 /* Deselect and wake up anyone waiting on the device */
1820 onenand_release_device(mtd);
1821
1822 return ret;
1823 }
1824
1825 /**
1826 * onenand_sync - [MTD Interface] sync
1827 * @param mtd MTD device structure
1828 *
1829 * Sync is actually a wait for chip ready function
1830 */
1831 void onenand_sync(struct mtd_info *mtd)
1832 {
1833 MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1834
1835 /* Grab the lock and see if the device is available */
1836 onenand_get_device(mtd, FL_SYNCING);
1837
1838 /* Release it and go back */
1839 onenand_release_device(mtd);
1840 }
1841
1842 /**
1843 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1844 * @param mtd MTD device structure
1845 * @param ofs offset relative to mtd start
1846 *
1847 * Check whether the block is bad
1848 */
1849 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1850 {
1851 int ret;
1852
1853 /* Check for invalid offset */
1854 if (ofs > mtd->size)
1855 return -EINVAL;
1856
1857 onenand_get_device(mtd, FL_READING);
1858 ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1859 onenand_release_device(mtd);
1860 return ret;
1861 }
1862
1863 /**
1864 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1865 * @param mtd MTD device structure
1866 * @param ofs offset from device start
1867 *
1868 * This is the default implementation, which can be overridden by
1869 * a hardware specific driver.
1870 */
1871 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1872 {
1873 struct onenand_chip *this = mtd->priv;
1874 struct bbm_info *bbm = this->bbm;
1875 u_char buf[2] = {0, 0};
1876 struct mtd_oob_ops ops = {
1877 .mode = MTD_OPS_PLACE_OOB,
1878 .ooblen = 2,
1879 .oobbuf = buf,
1880 .ooboffs = 0,
1881 };
1882 int block;
1883
1884 /* Get block number */
1885 block = onenand_block(this, ofs);
1886 if (bbm->bbt)
1887 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1888
1889 /* We write two bytes, so we dont have to mess with 16 bit access */
1890 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1891 return onenand_write_oob_nolock(mtd, ofs, &ops);
1892 }
1893
1894 /**
1895 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1896 * @param mtd MTD device structure
1897 * @param ofs offset relative to mtd start
1898 *
1899 * Mark the block as bad
1900 */
1901 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1902 {
1903 int ret;
1904
1905 ret = onenand_block_isbad(mtd, ofs);
1906 if (ret) {
1907 /* If it was bad already, return success and do nothing */
1908 if (ret > 0)
1909 return 0;
1910 return ret;
1911 }
1912
1913 ret = mtd_block_markbad(mtd, ofs);
1914 return ret;
1915 }
1916
1917 /**
1918 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1919 * @param mtd MTD device structure
1920 * @param ofs offset relative to mtd start
1921 * @param len number of bytes to lock or unlock
1922 * @param cmd lock or unlock command
1923 *
1924 * Lock or unlock one or more blocks
1925 */
1926 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1927 {
1928 struct onenand_chip *this = mtd->priv;
1929 int start, end, block, value, status;
1930
1931 start = onenand_block(this, ofs);
1932 end = onenand_block(this, ofs + len);
1933
1934 /* Continuous lock scheme */
1935 if (this->options & ONENAND_HAS_CONT_LOCK) {
1936 /* Set start block address */
1937 this->write_word(start,
1938 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1939 /* Set end block address */
1940 this->write_word(end - 1,
1941 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1942 /* Write unlock command */
1943 this->command(mtd, cmd, 0, 0);
1944
1945 /* There's no return value */
1946 this->wait(mtd, FL_UNLOCKING);
1947
1948 /* Sanity check */
1949 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1950 & ONENAND_CTRL_ONGO)
1951 continue;
1952
1953 /* Check lock status */
1954 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1955 if (!(status & ONENAND_WP_US))
1956 printk(KERN_ERR "wp status = 0x%x\n", status);
1957
1958 return 0;
1959 }
1960
1961 /* Block lock scheme */
1962 for (block = start; block < end; block++) {
1963 /* Set block address */
1964 value = onenand_block_address(this, block);
1965 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1966 /* Select DataRAM for DDP */
1967 value = onenand_bufferram_address(this, block);
1968 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1969
1970 /* Set start block address */
1971 this->write_word(block,
1972 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1973 /* Write unlock command */
1974 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1975
1976 /* There's no return value */
1977 this->wait(mtd, FL_UNLOCKING);
1978
1979 /* Sanity check */
1980 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1981 & ONENAND_CTRL_ONGO)
1982 continue;
1983
1984 /* Check lock status */
1985 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1986 if (!(status & ONENAND_WP_US))
1987 printk(KERN_ERR "block = %d, wp status = 0x%x\n",
1988 block, status);
1989 }
1990
1991 return 0;
1992 }
1993
1994 #ifdef ONENAND_LINUX
1995 /**
1996 * onenand_lock - [MTD Interface] Lock block(s)
1997 * @param mtd MTD device structure
1998 * @param ofs offset relative to mtd start
1999 * @param len number of bytes to unlock
2000 *
2001 * Lock one or more blocks
2002 */
2003 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2004 {
2005 int ret;
2006
2007 onenand_get_device(mtd, FL_LOCKING);
2008 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2009 onenand_release_device(mtd);
2010 return ret;
2011 }
2012
2013 /**
2014 * onenand_unlock - [MTD Interface] Unlock block(s)
2015 * @param mtd MTD device structure
2016 * @param ofs offset relative to mtd start
2017 * @param len number of bytes to unlock
2018 *
2019 * Unlock one or more blocks
2020 */
2021 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2022 {
2023 int ret;
2024
2025 onenand_get_device(mtd, FL_LOCKING);
2026 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2027 onenand_release_device(mtd);
2028 return ret;
2029 }
2030 #endif
2031
2032 /**
2033 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2034 * @param this onenand chip data structure
2035 *
2036 * Check lock status
2037 */
2038 static int onenand_check_lock_status(struct onenand_chip *this)
2039 {
2040 unsigned int value, block, status;
2041 unsigned int end;
2042
2043 end = this->chipsize >> this->erase_shift;
2044 for (block = 0; block < end; block++) {
2045 /* Set block address */
2046 value = onenand_block_address(this, block);
2047 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2048 /* Select DataRAM for DDP */
2049 value = onenand_bufferram_address(this, block);
2050 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2051 /* Set start block address */
2052 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2053
2054 /* Check lock status */
2055 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2056 if (!(status & ONENAND_WP_US)) {
2057 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2058 return 0;
2059 }
2060 }
2061
2062 return 1;
2063 }
2064
2065 /**
2066 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2067 * @param mtd MTD device structure
2068 *
2069 * Unlock all blocks
2070 */
2071 static void onenand_unlock_all(struct mtd_info *mtd)
2072 {
2073 struct onenand_chip *this = mtd->priv;
2074 loff_t ofs = 0;
2075 size_t len = mtd->size;
2076
2077 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2078 /* Set start block address */
2079 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2080 /* Write unlock command */
2081 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2082
2083 /* There's no return value */
2084 this->wait(mtd, FL_LOCKING);
2085
2086 /* Sanity check */
2087 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2088 & ONENAND_CTRL_ONGO)
2089 continue;
2090
2091 /* Check lock status */
2092 if (onenand_check_lock_status(this))
2093 return;
2094
2095 /* Workaround for all block unlock in DDP */
2096 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2097 /* All blocks on another chip */
2098 ofs = this->chipsize >> 1;
2099 len = this->chipsize >> 1;
2100 }
2101 }
2102
2103 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2104 }
2105
2106
2107 /**
2108 * onenand_check_features - Check and set OneNAND features
2109 * @param mtd MTD data structure
2110 *
2111 * Check and set OneNAND features
2112 * - lock scheme
2113 * - two plane
2114 */
2115 static void onenand_check_features(struct mtd_info *mtd)
2116 {
2117 struct onenand_chip *this = mtd->priv;
2118 unsigned int density, process;
2119
2120 /* Lock scheme depends on density and process */
2121 density = onenand_get_density(this->device_id);
2122 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2123
2124 /* Lock scheme */
2125 switch (density) {
2126 case ONENAND_DEVICE_DENSITY_4Gb:
2127 if (ONENAND_IS_DDP(this))
2128 this->options |= ONENAND_HAS_2PLANE;
2129 else
2130 this->options |= ONENAND_HAS_4KB_PAGE;
2131
2132 case ONENAND_DEVICE_DENSITY_2Gb:
2133 /* 2Gb DDP don't have 2 plane */
2134 if (!ONENAND_IS_DDP(this))
2135 this->options |= ONENAND_HAS_2PLANE;
2136 this->options |= ONENAND_HAS_UNLOCK_ALL;
2137
2138 case ONENAND_DEVICE_DENSITY_1Gb:
2139 /* A-Die has all block unlock */
2140 if (process)
2141 this->options |= ONENAND_HAS_UNLOCK_ALL;
2142 break;
2143
2144 default:
2145 /* Some OneNAND has continuous lock scheme */
2146 if (!process)
2147 this->options |= ONENAND_HAS_CONT_LOCK;
2148 break;
2149 }
2150
2151 if (ONENAND_IS_MLC(this))
2152 this->options |= ONENAND_HAS_4KB_PAGE;
2153
2154 if (ONENAND_IS_4KB_PAGE(this))
2155 this->options &= ~ONENAND_HAS_2PLANE;
2156
2157 if (FLEXONENAND(this)) {
2158 this->options &= ~ONENAND_HAS_CONT_LOCK;
2159 this->options |= ONENAND_HAS_UNLOCK_ALL;
2160 }
2161
2162 if (this->options & ONENAND_HAS_CONT_LOCK)
2163 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2164 if (this->options & ONENAND_HAS_UNLOCK_ALL)
2165 printk(KERN_DEBUG "Chip support all block unlock\n");
2166 if (this->options & ONENAND_HAS_2PLANE)
2167 printk(KERN_DEBUG "Chip has 2 plane\n");
2168 if (this->options & ONENAND_HAS_4KB_PAGE)
2169 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2170
2171 }
2172
2173 /**
2174 * onenand_print_device_info - Print device ID
2175 * @param device device ID
2176 *
2177 * Print device ID
2178 */
2179 char *onenand_print_device_info(int device, int version)
2180 {
2181 int vcc, demuxed, ddp, density, flexonenand;
2182 char *dev_info = malloc(80);
2183 char *p = dev_info;
2184
2185 vcc = device & ONENAND_DEVICE_VCC_MASK;
2186 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2187 ddp = device & ONENAND_DEVICE_IS_DDP;
2188 density = onenand_get_density(device);
2189 flexonenand = device & DEVICE_IS_FLEXONENAND;
2190 p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2191 demuxed ? "" : "Muxed ",
2192 flexonenand ? "Flex-" : "",
2193 ddp ? "(DDP)" : "",
2194 (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2195
2196 sprintf(p, "\nOneNAND version = 0x%04x", version);
2197 printk("%s\n", dev_info);
2198
2199 return dev_info;
2200 }
2201
2202 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2203 {ONENAND_MFR_NUMONYX, "Numonyx"},
2204 {ONENAND_MFR_SAMSUNG, "Samsung"},
2205 };
2206
2207 /**
2208 * onenand_check_maf - Check manufacturer ID
2209 * @param manuf manufacturer ID
2210 *
2211 * Check manufacturer ID
2212 */
2213 static int onenand_check_maf(int manuf)
2214 {
2215 int size = ARRAY_SIZE(onenand_manuf_ids);
2216 int i;
2217 #ifdef ONENAND_DEBUG
2218 char *name;
2219 #endif
2220
2221 for (i = 0; i < size; i++)
2222 if (manuf == onenand_manuf_ids[i].id)
2223 break;
2224
2225 #ifdef ONENAND_DEBUG
2226 if (i < size)
2227 name = onenand_manuf_ids[i].name;
2228 else
2229 name = "Unknown";
2230
2231 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2232 #endif
2233
2234 return i == size;
2235 }
2236
2237 /**
2238 * flexonenand_get_boundary - Reads the SLC boundary
2239 * @param onenand_info - onenand info structure
2240 *
2241 * Fill up boundary[] field in onenand_chip
2242 **/
2243 static int flexonenand_get_boundary(struct mtd_info *mtd)
2244 {
2245 struct onenand_chip *this = mtd->priv;
2246 unsigned int die, bdry;
2247 int syscfg, locked;
2248
2249 /* Disable ECC */
2250 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2251 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2252
2253 for (die = 0; die < this->dies; die++) {
2254 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2255 this->wait(mtd, FL_SYNCING);
2256
2257 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2258 this->wait(mtd, FL_READING);
2259
2260 bdry = this->read_word(this->base + ONENAND_DATARAM);
2261 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2262 locked = 0;
2263 else
2264 locked = 1;
2265 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2266
2267 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2268 this->wait(mtd, FL_RESETING);
2269
2270 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2271 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2272 }
2273
2274 /* Enable ECC */
2275 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2276 return 0;
2277 }
2278
2279 /**
2280 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2281 * boundary[], diesize[], mtd->size, mtd->erasesize,
2282 * mtd->eraseregions
2283 * @param mtd - MTD device structure
2284 */
2285 static void flexonenand_get_size(struct mtd_info *mtd)
2286 {
2287 struct onenand_chip *this = mtd->priv;
2288 int die, i, eraseshift, density;
2289 int blksperdie, maxbdry;
2290 loff_t ofs;
2291
2292 density = onenand_get_density(this->device_id);
2293 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2294 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2295 maxbdry = blksperdie - 1;
2296 eraseshift = this->erase_shift - 1;
2297
2298 mtd->numeraseregions = this->dies << 1;
2299
2300 /* This fills up the device boundary */
2301 flexonenand_get_boundary(mtd);
2302 die = 0;
2303 ofs = 0;
2304 i = -1;
2305 for (; die < this->dies; die++) {
2306 if (!die || this->boundary[die-1] != maxbdry) {
2307 i++;
2308 mtd->eraseregions[i].offset = ofs;
2309 mtd->eraseregions[i].erasesize = 1 << eraseshift;
2310 mtd->eraseregions[i].numblocks =
2311 this->boundary[die] + 1;
2312 ofs += mtd->eraseregions[i].numblocks << eraseshift;
2313 eraseshift++;
2314 } else {
2315 mtd->numeraseregions -= 1;
2316 mtd->eraseregions[i].numblocks +=
2317 this->boundary[die] + 1;
2318 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2319 }
2320 if (this->boundary[die] != maxbdry) {
2321 i++;
2322 mtd->eraseregions[i].offset = ofs;
2323 mtd->eraseregions[i].erasesize = 1 << eraseshift;
2324 mtd->eraseregions[i].numblocks = maxbdry ^
2325 this->boundary[die];
2326 ofs += mtd->eraseregions[i].numblocks << eraseshift;
2327 eraseshift--;
2328 } else
2329 mtd->numeraseregions -= 1;
2330 }
2331
2332 /* Expose MLC erase size except when all blocks are SLC */
2333 mtd->erasesize = 1 << this->erase_shift;
2334 if (mtd->numeraseregions == 1)
2335 mtd->erasesize >>= 1;
2336
2337 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2338 for (i = 0; i < mtd->numeraseregions; i++)
2339 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2340 " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2341 mtd->eraseregions[i].erasesize,
2342 mtd->eraseregions[i].numblocks);
2343
2344 for (die = 0, mtd->size = 0; die < this->dies; die++) {
2345 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2346 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2347 << (this->erase_shift - 1);
2348 mtd->size += this->diesize[die];
2349 }
2350 }
2351
2352 /**
2353 * flexonenand_check_blocks_erased - Check if blocks are erased
2354 * @param mtd_info - mtd info structure
2355 * @param start - first erase block to check
2356 * @param end - last erase block to check
2357 *
2358 * Converting an unerased block from MLC to SLC
2359 * causes byte values to change. Since both data and its ECC
2360 * have changed, reads on the block give uncorrectable error.
2361 * This might lead to the block being detected as bad.
2362 *
2363 * Avoid this by ensuring that the block to be converted is
2364 * erased.
2365 */
2366 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2367 int start, int end)
2368 {
2369 struct onenand_chip *this = mtd->priv;
2370 int i, ret;
2371 int block;
2372 struct mtd_oob_ops ops = {
2373 .mode = MTD_OPS_PLACE_OOB,
2374 .ooboffs = 0,
2375 .ooblen = mtd->oobsize,
2376 .datbuf = NULL,
2377 .oobbuf = this->oob_buf,
2378 };
2379 loff_t addr;
2380
2381 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2382
2383 for (block = start; block <= end; block++) {
2384 addr = flexonenand_addr(this, block);
2385 if (onenand_block_isbad_nolock(mtd, addr, 0))
2386 continue;
2387
2388 /*
2389 * Since main area write results in ECC write to spare,
2390 * it is sufficient to check only ECC bytes for change.
2391 */
2392 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2393 if (ret)
2394 return ret;
2395
2396 for (i = 0; i < mtd->oobsize; i++)
2397 if (this->oob_buf[i] != 0xff)
2398 break;
2399
2400 if (i != mtd->oobsize) {
2401 printk(KERN_WARNING "Block %d not erased.\n", block);
2402 return 1;
2403 }
2404 }
2405
2406 return 0;
2407 }
2408
2409 /**
2410 * flexonenand_set_boundary - Writes the SLC boundary
2411 * @param mtd - mtd info structure
2412 */
2413 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2414 int boundary, int lock)
2415 {
2416 struct onenand_chip *this = mtd->priv;
2417 int ret, density, blksperdie, old, new, thisboundary;
2418 loff_t addr;
2419
2420 if (die >= this->dies)
2421 return -EINVAL;
2422
2423 if (boundary == this->boundary[die])
2424 return 0;
2425
2426 density = onenand_get_density(this->device_id);
2427 blksperdie = ((16 << density) << 20) >> this->erase_shift;
2428 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2429
2430 if (boundary >= blksperdie) {
2431 printk("flexonenand_set_boundary:"
2432 "Invalid boundary value. "
2433 "Boundary not changed.\n");
2434 return -EINVAL;
2435 }
2436
2437 /* Check if converting blocks are erased */
2438 old = this->boundary[die] + (die * this->density_mask);
2439 new = boundary + (die * this->density_mask);
2440 ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2441 + 1, max(old, new));
2442 if (ret) {
2443 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2444 return ret;
2445 }
2446
2447 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2448 this->wait(mtd, FL_SYNCING);
2449
2450 /* Check is boundary is locked */
2451 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2452 ret = this->wait(mtd, FL_READING);
2453
2454 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2455 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2456 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2457 goto out;
2458 }
2459
2460 printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2461 die, boundary, lock ? "(Locked)" : "(Unlocked)");
2462
2463 boundary &= FLEXONENAND_PI_MASK;
2464 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2465
2466 addr = die ? this->diesize[0] : 0;
2467 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2468 ret = this->wait(mtd, FL_ERASING);
2469 if (ret) {
2470 printk("flexonenand_set_boundary:"
2471 "Failed PI erase for Die %d\n", die);
2472 goto out;
2473 }
2474
2475 this->write_word(boundary, this->base + ONENAND_DATARAM);
2476 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2477 ret = this->wait(mtd, FL_WRITING);
2478 if (ret) {
2479 printk("flexonenand_set_boundary:"
2480 "Failed PI write for Die %d\n", die);
2481 goto out;
2482 }
2483
2484 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2485 ret = this->wait(mtd, FL_WRITING);
2486 out:
2487 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2488 this->wait(mtd, FL_RESETING);
2489 if (!ret)
2490 /* Recalculate device size on boundary change*/
2491 flexonenand_get_size(mtd);
2492
2493 return ret;
2494 }
2495
2496 /**
2497 * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2498 * @param mtd MTD device structure
2499 *
2500 * OneNAND detection method:
2501 * Compare the the values from command with ones from register
2502 */
2503 static int onenand_chip_probe(struct mtd_info *mtd)
2504 {
2505 struct onenand_chip *this = mtd->priv;
2506 int bram_maf_id, bram_dev_id, maf_id, dev_id;
2507 int syscfg;
2508
2509 /* Save system configuration 1 */
2510 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2511
2512 /* Clear Sync. Burst Read mode to read BootRAM */
2513 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2514 this->base + ONENAND_REG_SYS_CFG1);
2515
2516 /* Send the command for reading device ID from BootRAM */
2517 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2518
2519 /* Read manufacturer and device IDs from BootRAM */
2520 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2521 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2522
2523 /* Reset OneNAND to read default register values */
2524 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2525
2526 /* Wait reset */
2527 this->wait(mtd, FL_RESETING);
2528
2529 /* Restore system configuration 1 */
2530 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2531
2532 /* Check manufacturer ID */
2533 if (onenand_check_maf(bram_maf_id))
2534 return -ENXIO;
2535
2536 /* Read manufacturer and device IDs from Register */
2537 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2538 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2539
2540 /* Check OneNAND device */
2541 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2542 return -ENXIO;
2543
2544 return 0;
2545 }
2546
2547 /**
2548 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2549 * @param mtd MTD device structure
2550 *
2551 * OneNAND detection method:
2552 * Compare the the values from command with ones from register
2553 */
2554 int onenand_probe(struct mtd_info *mtd)
2555 {
2556 struct onenand_chip *this = mtd->priv;
2557 int dev_id, ver_id;
2558 int density;
2559 int ret;
2560
2561 ret = this->chip_probe(mtd);
2562 if (ret)
2563 return ret;
2564
2565 /* Read device IDs from Register */
2566 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2567 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2568 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2569
2570 /* Flash device information */
2571 mtd->name = onenand_print_device_info(dev_id, ver_id);
2572 this->device_id = dev_id;
2573 this->version_id = ver_id;
2574
2575 /* Check OneNAND features */
2576 onenand_check_features(mtd);
2577
2578 density = onenand_get_density(dev_id);
2579 if (FLEXONENAND(this)) {
2580 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2581 /* Maximum possible erase regions */
2582 mtd->numeraseregions = this->dies << 1;
2583 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2584 * (this->dies << 1));
2585 if (!mtd->eraseregions)
2586 return -ENOMEM;
2587 }
2588
2589 /*
2590 * For Flex-OneNAND, chipsize represents maximum possible device size.
2591 * mtd->size represents the actual device size.
2592 */
2593 this->chipsize = (16 << density) << 20;
2594
2595 /* OneNAND page size & block size */
2596 /* The data buffer size is equal to page size */
2597 mtd->writesize =
2598 this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2599 /* We use the full BufferRAM */
2600 if (ONENAND_IS_4KB_PAGE(this))
2601 mtd->writesize <<= 1;
2602
2603 mtd->oobsize = mtd->writesize >> 5;
2604 /* Pagers per block is always 64 in OneNAND */
2605 mtd->erasesize = mtd->writesize << 6;
2606 /*
2607 * Flex-OneNAND SLC area has 64 pages per block.
2608 * Flex-OneNAND MLC area has 128 pages per block.
2609 * Expose MLC erase size to find erase_shift and page_mask.
2610 */
2611 if (FLEXONENAND(this))
2612 mtd->erasesize <<= 1;
2613
2614 this->erase_shift = ffs(mtd->erasesize) - 1;
2615 this->page_shift = ffs(mtd->writesize) - 1;
2616 this->ppb_shift = (this->erase_shift - this->page_shift);
2617 this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2618 /* Set density mask. it is used for DDP */
2619 if (ONENAND_IS_DDP(this))
2620 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2621 /* It's real page size */
2622 this->writesize = mtd->writesize;
2623
2624 /* REVIST: Multichip handling */
2625
2626 if (FLEXONENAND(this))
2627 flexonenand_get_size(mtd);
2628 else
2629 mtd->size = this->chipsize;
2630
2631 mtd->flags = MTD_CAP_NANDFLASH;
2632 mtd->_erase = onenand_erase;
2633 mtd->_read = onenand_read;
2634 mtd->_write = onenand_write;
2635 mtd->_read_oob = onenand_read_oob;
2636 mtd->_write_oob = onenand_write_oob;
2637 mtd->_sync = onenand_sync;
2638 mtd->_block_isbad = onenand_block_isbad;
2639 mtd->_block_markbad = onenand_block_markbad;
2640
2641 return 0;
2642 }
2643
2644 /**
2645 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2646 * @param mtd MTD device structure
2647 * @param maxchips Number of chips to scan for
2648 *
2649 * This fills out all the not initialized function pointers
2650 * with the defaults.
2651 * The flash ID is read and the mtd/chip structures are
2652 * filled with the appropriate values.
2653 */
2654 int onenand_scan(struct mtd_info *mtd, int maxchips)
2655 {
2656 int i;
2657 struct onenand_chip *this = mtd->priv;
2658
2659 if (!this->read_word)
2660 this->read_word = onenand_readw;
2661 if (!this->write_word)
2662 this->write_word = onenand_writew;
2663
2664 if (!this->command)
2665 this->command = onenand_command;
2666 if (!this->wait)
2667 this->wait = onenand_wait;
2668 if (!this->bbt_wait)
2669 this->bbt_wait = onenand_bbt_wait;
2670
2671 if (!this->read_bufferram)
2672 this->read_bufferram = onenand_read_bufferram;
2673 if (!this->write_bufferram)
2674 this->write_bufferram = onenand_write_bufferram;
2675
2676 if (!this->chip_probe)
2677 this->chip_probe = onenand_chip_probe;
2678
2679 if (!this->block_markbad)
2680 this->block_markbad = onenand_default_block_markbad;
2681 if (!this->scan_bbt)
2682 this->scan_bbt = onenand_default_bbt;
2683
2684 if (onenand_probe(mtd))
2685 return -ENXIO;
2686
2687 /* Set Sync. Burst Read after probing */
2688 if (this->mmcontrol) {
2689 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2690 this->read_bufferram = onenand_sync_read_bufferram;
2691 }
2692
2693 /* Allocate buffers, if necessary */
2694 if (!this->page_buf) {
2695 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2696 if (!this->page_buf) {
2697 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2698 return -ENOMEM;
2699 }
2700 this->options |= ONENAND_PAGEBUF_ALLOC;
2701 }
2702 if (!this->oob_buf) {
2703 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2704 if (!this->oob_buf) {
2705 printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2706 if (this->options & ONENAND_PAGEBUF_ALLOC) {
2707 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2708 kfree(this->page_buf);
2709 }
2710 return -ENOMEM;
2711 }
2712 this->options |= ONENAND_OOBBUF_ALLOC;
2713 }
2714
2715 this->state = FL_READY;
2716
2717 /*
2718 * Allow subpage writes up to oobsize.
2719 */
2720 switch (mtd->oobsize) {
2721 case 128:
2722 this->ecclayout = &onenand_oob_128;
2723 mtd->subpage_sft = 0;
2724 break;
2725
2726 case 64:
2727 this->ecclayout = &onenand_oob_64;
2728 mtd->subpage_sft = 2;
2729 break;
2730
2731 case 32:
2732 this->ecclayout = &onenand_oob_32;
2733 mtd->subpage_sft = 1;
2734 break;
2735
2736 default:
2737 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2738 mtd->oobsize);
2739 mtd->subpage_sft = 0;
2740 /* To prevent kernel oops */
2741 this->ecclayout = &onenand_oob_32;
2742 break;
2743 }
2744
2745 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2746
2747 /*
2748 * The number of bytes available for a client to place data into
2749 * the out of band area
2750 */
2751 this->ecclayout->oobavail = 0;
2752 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2753 this->ecclayout->oobfree[i].length; i++)
2754 this->ecclayout->oobavail +=
2755 this->ecclayout->oobfree[i].length;
2756 mtd->oobavail = this->ecclayout->oobavail;
2757
2758 mtd->ecclayout = this->ecclayout;
2759
2760 /* Unlock whole block */
2761 onenand_unlock_all(mtd);
2762
2763 return this->scan_bbt(mtd);
2764 }
2765
2766 /**
2767 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2768 * @param mtd MTD device structure
2769 */
2770 void onenand_release(struct mtd_info *mtd)
2771 {
2772 }