]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/ubi/build.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 *
7 * Author: Artem Bityutskiy (Битюцкий Артём),
8 * Frank Haverkamp
9 */
10
11 /*
12 * This file includes UBI initialization and building of UBI devices.
13 *
14 * When UBI is initialized, it attaches all the MTD devices specified as the
15 * module load parameters or the kernel boot parameters. If MTD devices were
16 * specified, UBI does not attach any MTD device, but it is possible to do
17 * later using the "UBI control device".
18 *
19 * At the moment we only attach UBI devices by scanning, which will become a
20 * bottleneck when flashes reach certain large size. Then one may improve UBI
21 * and add other methods, although it does not seem to be easy to do.
22 */
23
24 #ifdef UBI_LINUX
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/stringify.h>
29 #include <linux/stat.h>
30 #include <linux/miscdevice.h>
31 #include <linux/log2.h>
32 #include <linux/kthread.h>
33 #endif
34 #include <ubi_uboot.h>
35 #include "ubi.h"
36
37 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
38 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
39 #endif
40
41 /* Maximum length of the 'mtd=' parameter */
42 #define MTD_PARAM_LEN_MAX 64
43
44 /**
45 * struct mtd_dev_param - MTD device parameter description data structure.
46 * @name: MTD device name or number string
47 * @vid_hdr_offs: VID header offset
48 */
49 struct mtd_dev_param
50 {
51 char name[MTD_PARAM_LEN_MAX];
52 int vid_hdr_offs;
53 };
54
55 /* Numbers of elements set in the @mtd_dev_param array */
56 static int mtd_devs = 0;
57
58 /* MTD devices specification parameters */
59 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
60
61 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
62 struct class *ubi_class;
63
64 #ifdef UBI_LINUX
65 /* Slab cache for wear-leveling entries */
66 struct kmem_cache *ubi_wl_entry_slab;
67
68 /* UBI control character device */
69 static struct miscdevice ubi_ctrl_cdev = {
70 .minor = MISC_DYNAMIC_MINOR,
71 .name = "ubi_ctrl",
72 .fops = &ubi_ctrl_cdev_operations,
73 };
74 #endif
75
76 /* All UBI devices in system */
77 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
78
79 #ifdef UBI_LINUX
80 /* Serializes UBI devices creations and removals */
81 DEFINE_MUTEX(ubi_devices_mutex);
82
83 /* Protects @ubi_devices and @ubi->ref_count */
84 static DEFINE_SPINLOCK(ubi_devices_lock);
85
86 /* "Show" method for files in '/<sysfs>/class/ubi/' */
87 static ssize_t ubi_version_show(struct class *class, char *buf)
88 {
89 return sprintf(buf, "%d\n", UBI_VERSION);
90 }
91
92 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
93 static struct class_attribute ubi_version =
94 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
95
96 static ssize_t dev_attribute_show(struct device *dev,
97 struct device_attribute *attr, char *buf);
98
99 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
100 static struct device_attribute dev_eraseblock_size =
101 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
102 static struct device_attribute dev_avail_eraseblocks =
103 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
104 static struct device_attribute dev_total_eraseblocks =
105 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
106 static struct device_attribute dev_volumes_count =
107 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
108 static struct device_attribute dev_max_ec =
109 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
110 static struct device_attribute dev_reserved_for_bad =
111 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
112 static struct device_attribute dev_bad_peb_count =
113 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_max_vol_count =
115 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_min_io_size =
117 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_bgt_enabled =
119 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_mtd_num =
121 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
122 #endif
123
124 /**
125 * ubi_get_device - get UBI device.
126 * @ubi_num: UBI device number
127 *
128 * This function returns UBI device description object for UBI device number
129 * @ubi_num, or %NULL if the device does not exist. This function increases the
130 * device reference count to prevent removal of the device. In other words, the
131 * device cannot be removed if its reference count is not zero.
132 */
133 struct ubi_device *ubi_get_device(int ubi_num)
134 {
135 struct ubi_device *ubi;
136
137 spin_lock(&ubi_devices_lock);
138 ubi = ubi_devices[ubi_num];
139 if (ubi) {
140 ubi_assert(ubi->ref_count >= 0);
141 ubi->ref_count += 1;
142 get_device(&ubi->dev);
143 }
144 spin_unlock(&ubi_devices_lock);
145
146 return ubi;
147 }
148
149 /**
150 * ubi_put_device - drop an UBI device reference.
151 * @ubi: UBI device description object
152 */
153 void ubi_put_device(struct ubi_device *ubi)
154 {
155 spin_lock(&ubi_devices_lock);
156 ubi->ref_count -= 1;
157 put_device(&ubi->dev);
158 spin_unlock(&ubi_devices_lock);
159 }
160
161 /**
162 * ubi_get_by_major - get UBI device description object by character device
163 * major number.
164 * @major: major number
165 *
166 * This function is similar to 'ubi_get_device()', but it searches the device
167 * by its major number.
168 */
169 struct ubi_device *ubi_get_by_major(int major)
170 {
171 int i;
172 struct ubi_device *ubi;
173
174 spin_lock(&ubi_devices_lock);
175 for (i = 0; i < UBI_MAX_DEVICES; i++) {
176 ubi = ubi_devices[i];
177 if (ubi && MAJOR(ubi->cdev.dev) == major) {
178 ubi_assert(ubi->ref_count >= 0);
179 ubi->ref_count += 1;
180 get_device(&ubi->dev);
181 spin_unlock(&ubi_devices_lock);
182 return ubi;
183 }
184 }
185 spin_unlock(&ubi_devices_lock);
186
187 return NULL;
188 }
189
190 /**
191 * ubi_major2num - get UBI device number by character device major number.
192 * @major: major number
193 *
194 * This function searches UBI device number object by its major number. If UBI
195 * device was not found, this function returns -ENODEV, otherwise the UBI device
196 * number is returned.
197 */
198 int ubi_major2num(int major)
199 {
200 int i, ubi_num = -ENODEV;
201
202 spin_lock(&ubi_devices_lock);
203 for (i = 0; i < UBI_MAX_DEVICES; i++) {
204 struct ubi_device *ubi = ubi_devices[i];
205
206 if (ubi && MAJOR(ubi->cdev.dev) == major) {
207 ubi_num = ubi->ubi_num;
208 break;
209 }
210 }
211 spin_unlock(&ubi_devices_lock);
212
213 return ubi_num;
214 }
215
216 #ifdef UBI_LINUX
217 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
218 static ssize_t dev_attribute_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
220 {
221 ssize_t ret;
222 struct ubi_device *ubi;
223
224 /*
225 * The below code looks weird, but it actually makes sense. We get the
226 * UBI device reference from the contained 'struct ubi_device'. But it
227 * is unclear if the device was removed or not yet. Indeed, if the
228 * device was removed before we increased its reference count,
229 * 'ubi_get_device()' will return -ENODEV and we fail.
230 *
231 * Remember, 'struct ubi_device' is freed in the release function, so
232 * we still can use 'ubi->ubi_num'.
233 */
234 ubi = container_of(dev, struct ubi_device, dev);
235 ubi = ubi_get_device(ubi->ubi_num);
236 if (!ubi)
237 return -ENODEV;
238
239 if (attr == &dev_eraseblock_size)
240 ret = sprintf(buf, "%d\n", ubi->leb_size);
241 else if (attr == &dev_avail_eraseblocks)
242 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
243 else if (attr == &dev_total_eraseblocks)
244 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
245 else if (attr == &dev_volumes_count)
246 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
247 else if (attr == &dev_max_ec)
248 ret = sprintf(buf, "%d\n", ubi->max_ec);
249 else if (attr == &dev_reserved_for_bad)
250 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
251 else if (attr == &dev_bad_peb_count)
252 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
253 else if (attr == &dev_max_vol_count)
254 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
255 else if (attr == &dev_min_io_size)
256 ret = sprintf(buf, "%d\n", ubi->min_io_size);
257 else if (attr == &dev_bgt_enabled)
258 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
259 else if (attr == &dev_mtd_num)
260 ret = sprintf(buf, "%d\n", ubi->mtd->index);
261 else
262 ret = -EINVAL;
263
264 ubi_put_device(ubi);
265 return ret;
266 }
267
268 /* Fake "release" method for UBI devices */
269 static void dev_release(struct device *dev) { }
270
271 /**
272 * ubi_sysfs_init - initialize sysfs for an UBI device.
273 * @ubi: UBI device description object
274 *
275 * This function returns zero in case of success and a negative error code in
276 * case of failure.
277 */
278 static int ubi_sysfs_init(struct ubi_device *ubi)
279 {
280 int err;
281
282 ubi->dev.release = dev_release;
283 ubi->dev.devt = ubi->cdev.dev;
284 ubi->dev.class = ubi_class;
285 sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num);
286 err = device_register(&ubi->dev);
287 if (err)
288 return err;
289
290 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
291 if (err)
292 return err;
293 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
294 if (err)
295 return err;
296 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
297 if (err)
298 return err;
299 err = device_create_file(&ubi->dev, &dev_volumes_count);
300 if (err)
301 return err;
302 err = device_create_file(&ubi->dev, &dev_max_ec);
303 if (err)
304 return err;
305 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
306 if (err)
307 return err;
308 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
309 if (err)
310 return err;
311 err = device_create_file(&ubi->dev, &dev_max_vol_count);
312 if (err)
313 return err;
314 err = device_create_file(&ubi->dev, &dev_min_io_size);
315 if (err)
316 return err;
317 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
318 if (err)
319 return err;
320 err = device_create_file(&ubi->dev, &dev_mtd_num);
321 return err;
322 }
323
324 /**
325 * ubi_sysfs_close - close sysfs for an UBI device.
326 * @ubi: UBI device description object
327 */
328 static void ubi_sysfs_close(struct ubi_device *ubi)
329 {
330 device_remove_file(&ubi->dev, &dev_mtd_num);
331 device_remove_file(&ubi->dev, &dev_bgt_enabled);
332 device_remove_file(&ubi->dev, &dev_min_io_size);
333 device_remove_file(&ubi->dev, &dev_max_vol_count);
334 device_remove_file(&ubi->dev, &dev_bad_peb_count);
335 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
336 device_remove_file(&ubi->dev, &dev_max_ec);
337 device_remove_file(&ubi->dev, &dev_volumes_count);
338 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
339 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
340 device_remove_file(&ubi->dev, &dev_eraseblock_size);
341 device_unregister(&ubi->dev);
342 }
343 #endif
344
345 /**
346 * kill_volumes - destroy all volumes.
347 * @ubi: UBI device description object
348 */
349 static void kill_volumes(struct ubi_device *ubi)
350 {
351 int i;
352
353 for (i = 0; i < ubi->vtbl_slots; i++)
354 if (ubi->volumes[i])
355 ubi_free_volume(ubi, ubi->volumes[i]);
356 }
357
358 /**
359 * uif_init - initialize user interfaces for an UBI device.
360 * @ubi: UBI device description object
361 *
362 * This function returns zero in case of success and a negative error code in
363 * case of failure.
364 */
365 static int uif_init(struct ubi_device *ubi)
366 {
367 int i, err;
368 #ifdef UBI_LINUX
369 dev_t dev;
370 #endif
371
372 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
373
374 /*
375 * Major numbers for the UBI character devices are allocated
376 * dynamically. Major numbers of volume character devices are
377 * equivalent to ones of the corresponding UBI character device. Minor
378 * numbers of UBI character devices are 0, while minor numbers of
379 * volume character devices start from 1. Thus, we allocate one major
380 * number and ubi->vtbl_slots + 1 minor numbers.
381 */
382 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
383 if (err) {
384 ubi_err("cannot register UBI character devices");
385 return err;
386 }
387
388 ubi_assert(MINOR(dev) == 0);
389 cdev_init(&ubi->cdev, &ubi_cdev_operations);
390 dbg_msg("%s major is %u", ubi->ubi_name, MAJOR(dev));
391 ubi->cdev.owner = THIS_MODULE;
392
393 err = cdev_add(&ubi->cdev, dev, 1);
394 if (err) {
395 ubi_err("cannot add character device");
396 goto out_unreg;
397 }
398
399 err = ubi_sysfs_init(ubi);
400 if (err)
401 goto out_sysfs;
402
403 for (i = 0; i < ubi->vtbl_slots; i++)
404 if (ubi->volumes[i]) {
405 err = ubi_add_volume(ubi, ubi->volumes[i]);
406 if (err) {
407 ubi_err("cannot add volume %d", i);
408 goto out_volumes;
409 }
410 }
411
412 return 0;
413
414 out_volumes:
415 kill_volumes(ubi);
416 out_sysfs:
417 ubi_sysfs_close(ubi);
418 cdev_del(&ubi->cdev);
419 out_unreg:
420 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
421 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
422 return err;
423 }
424
425 /**
426 * uif_close - close user interfaces for an UBI device.
427 * @ubi: UBI device description object
428 */
429 static void uif_close(struct ubi_device *ubi)
430 {
431 kill_volumes(ubi);
432 ubi_sysfs_close(ubi);
433 cdev_del(&ubi->cdev);
434 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
435 }
436
437 /**
438 * attach_by_scanning - attach an MTD device using scanning method.
439 * @ubi: UBI device descriptor
440 *
441 * This function returns zero in case of success and a negative error code in
442 * case of failure.
443 *
444 * Note, currently this is the only method to attach UBI devices. Hopefully in
445 * the future we'll have more scalable attaching methods and avoid full media
446 * scanning. But even in this case scanning will be needed as a fall-back
447 * attaching method if there are some on-flash table corruptions.
448 */
449 static int attach_by_scanning(struct ubi_device *ubi)
450 {
451 int err;
452 struct ubi_scan_info *si;
453
454 si = ubi_scan(ubi);
455 if (IS_ERR(si))
456 return PTR_ERR(si);
457
458 ubi->bad_peb_count = si->bad_peb_count;
459 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
460 ubi->max_ec = si->max_ec;
461 ubi->mean_ec = si->mean_ec;
462
463 err = ubi_read_volume_table(ubi, si);
464 if (err)
465 goto out_si;
466
467 err = ubi_eba_init_scan(ubi, si);
468 if (err)
469 goto out_vtbl;
470
471 err = ubi_wl_init_scan(ubi, si);
472 if (err)
473 goto out_eba;
474
475 ubi_scan_destroy_si(si);
476 return 0;
477
478 out_eba:
479 ubi_eba_close(ubi);
480 out_vtbl:
481 vfree(ubi->vtbl);
482 out_si:
483 ubi_scan_destroy_si(si);
484 return err;
485 }
486
487 /**
488 * io_init - initialize I/O unit for a given UBI device.
489 * @ubi: UBI device description object
490 *
491 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
492 * assumed:
493 * o EC header is always at offset zero - this cannot be changed;
494 * o VID header starts just after the EC header at the closest address
495 * aligned to @io->hdrs_min_io_size;
496 * o data starts just after the VID header at the closest address aligned to
497 * @io->min_io_size
498 *
499 * This function returns zero in case of success and a negative error code in
500 * case of failure.
501 */
502 static int io_init(struct ubi_device *ubi)
503 {
504 if (ubi->mtd->numeraseregions != 0) {
505 /*
506 * Some flashes have several erase regions. Different regions
507 * may have different eraseblock size and other
508 * characteristics. It looks like mostly multi-region flashes
509 * have one "main" region and one or more small regions to
510 * store boot loader code or boot parameters or whatever. I
511 * guess we should just pick the largest region. But this is
512 * not implemented.
513 */
514 ubi_err("multiple regions, not implemented");
515 return -EINVAL;
516 }
517
518 if (ubi->vid_hdr_offset < 0)
519 return -EINVAL;
520
521 /*
522 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
523 * physical eraseblocks maximum.
524 */
525
526 ubi->peb_size = ubi->mtd->erasesize;
527 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
528 ubi->flash_size = ubi->mtd->size;
529
530 if (mtd_can_have_bb(ubi->mtd))
531 ubi->bad_allowed = 1;
532
533 ubi->min_io_size = ubi->mtd->writesize;
534 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
535
536 /*
537 * Make sure minimal I/O unit is power of 2. Note, there is no
538 * fundamental reason for this assumption. It is just an optimization
539 * which allows us to avoid costly division operations.
540 */
541 if (!is_power_of_2(ubi->min_io_size)) {
542 ubi_err("min. I/O unit (%d) is not power of 2",
543 ubi->min_io_size);
544 return -EINVAL;
545 }
546
547 ubi_assert(ubi->hdrs_min_io_size > 0);
548 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
549 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
550
551 /* Calculate default aligned sizes of EC and VID headers */
552 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
553 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
554
555 dbg_msg("min_io_size %d", ubi->min_io_size);
556 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
557 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
558 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
559
560 if (ubi->vid_hdr_offset == 0)
561 /* Default offset */
562 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
563 ubi->ec_hdr_alsize;
564 else {
565 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
566 ~(ubi->hdrs_min_io_size - 1);
567 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
568 ubi->vid_hdr_aloffset;
569 }
570
571 /* Similar for the data offset */
572 ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
573 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
574
575 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset);
576 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
577 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift);
578 dbg_msg("leb_start %d", ubi->leb_start);
579
580 /* The shift must be aligned to 32-bit boundary */
581 if (ubi->vid_hdr_shift % 4) {
582 ubi_err("unaligned VID header shift %d",
583 ubi->vid_hdr_shift);
584 return -EINVAL;
585 }
586
587 /* Check sanity */
588 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
589 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
590 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
591 ubi->leb_start & (ubi->min_io_size - 1)) {
592 ubi_err("bad VID header (%d) or data offsets (%d)",
593 ubi->vid_hdr_offset, ubi->leb_start);
594 return -EINVAL;
595 }
596
597 /*
598 * It may happen that EC and VID headers are situated in one minimal
599 * I/O unit. In this case we can only accept this UBI image in
600 * read-only mode.
601 */
602 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
603 ubi_warn("EC and VID headers are in the same minimal I/O unit, "
604 "switch to read-only mode");
605 ubi->ro_mode = 1;
606 }
607
608 ubi->leb_size = ubi->peb_size - ubi->leb_start;
609
610 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
611 ubi_msg("MTD device %d is write-protected, attach in "
612 "read-only mode", ubi->mtd->index);
613 ubi->ro_mode = 1;
614 }
615
616 ubi_msg("physical eraseblock size: %d bytes (%d KiB)",
617 ubi->peb_size, ubi->peb_size >> 10);
618 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size);
619 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size);
620 if (ubi->hdrs_min_io_size != ubi->min_io_size)
621 ubi_msg("sub-page size: %d",
622 ubi->hdrs_min_io_size);
623 ubi_msg("VID header offset: %d (aligned %d)",
624 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
625 ubi_msg("data offset: %d", ubi->leb_start);
626
627 /*
628 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
629 * unfortunately, MTD does not provide this information. We should loop
630 * over all physical eraseblocks and invoke mtd->block_is_bad() for
631 * each physical eraseblock. So, we skip ubi->bad_peb_count
632 * uninitialized and initialize it after scanning.
633 */
634
635 return 0;
636 }
637
638 /**
639 * autoresize - re-size the volume which has the "auto-resize" flag set.
640 * @ubi: UBI device description object
641 * @vol_id: ID of the volume to re-size
642 *
643 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
644 * the volume table to the largest possible size. See comments in ubi-header.h
645 * for more description of the flag. Returns zero in case of success and a
646 * negative error code in case of failure.
647 */
648 static int autoresize(struct ubi_device *ubi, int vol_id)
649 {
650 struct ubi_volume_desc desc;
651 struct ubi_volume *vol = ubi->volumes[vol_id];
652 int err, old_reserved_pebs = vol->reserved_pebs;
653
654 /*
655 * Clear the auto-resize flag in the volume in-memory copy of the
656 * volume table, and 'ubi_resize_volume()' will propogate this change
657 * to the flash.
658 */
659 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
660
661 if (ubi->avail_pebs == 0) {
662 struct ubi_vtbl_record vtbl_rec;
663
664 /*
665 * No avalilable PEBs to re-size the volume, clear the flag on
666 * flash and exit.
667 */
668 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
669 sizeof(struct ubi_vtbl_record));
670 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
671 if (err)
672 ubi_err("cannot clean auto-resize flag for volume %d",
673 vol_id);
674 } else {
675 desc.vol = vol;
676 err = ubi_resize_volume(&desc,
677 old_reserved_pebs + ubi->avail_pebs);
678 if (err)
679 ubi_err("cannot auto-resize volume %d", vol_id);
680 }
681
682 if (err)
683 return err;
684
685 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
686 vol->name, old_reserved_pebs, vol->reserved_pebs);
687 return 0;
688 }
689
690 /**
691 * ubi_attach_mtd_dev - attach an MTD device.
692 * @mtd_dev: MTD device description object
693 * @ubi_num: number to assign to the new UBI device
694 * @vid_hdr_offset: VID header offset
695 *
696 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
697 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
698 * which case this function finds a vacant device nubert and assings it
699 * automatically. Returns the new UBI device number in case of success and a
700 * negative error code in case of failure.
701 *
702 * Note, the invocations of this function has to be serialized by the
703 * @ubi_devices_mutex.
704 */
705 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
706 {
707 struct ubi_device *ubi;
708 int i, err;
709
710 /*
711 * Check if we already have the same MTD device attached.
712 *
713 * Note, this function assumes that UBI devices creations and deletions
714 * are serialized, so it does not take the &ubi_devices_lock.
715 */
716 for (i = 0; i < UBI_MAX_DEVICES; i++) {
717 ubi = ubi_devices[i];
718 if (ubi && mtd->index == ubi->mtd->index) {
719 dbg_err("mtd%d is already attached to ubi%d",
720 mtd->index, i);
721 return -EEXIST;
722 }
723 }
724
725 /*
726 * Make sure this MTD device is not emulated on top of an UBI volume
727 * already. Well, generally this recursion works fine, but there are
728 * different problems like the UBI module takes a reference to itself
729 * by attaching (and thus, opening) the emulated MTD device. This
730 * results in inability to unload the module. And in general it makes
731 * no sense to attach emulated MTD devices, so we prohibit this.
732 */
733 if (mtd->type == MTD_UBIVOLUME) {
734 ubi_err("refuse attaching mtd%d - it is already emulated on "
735 "top of UBI", mtd->index);
736 return -EINVAL;
737 }
738
739 if (ubi_num == UBI_DEV_NUM_AUTO) {
740 /* Search for an empty slot in the @ubi_devices array */
741 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
742 if (!ubi_devices[ubi_num])
743 break;
744 if (ubi_num == UBI_MAX_DEVICES) {
745 dbg_err("only %d UBI devices may be created", UBI_MAX_DEVICES);
746 return -ENFILE;
747 }
748 } else {
749 if (ubi_num >= UBI_MAX_DEVICES)
750 return -EINVAL;
751
752 /* Make sure ubi_num is not busy */
753 if (ubi_devices[ubi_num]) {
754 dbg_err("ubi%d already exists", ubi_num);
755 return -EEXIST;
756 }
757 }
758
759 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
760 if (!ubi)
761 return -ENOMEM;
762
763 ubi->mtd = mtd;
764 ubi->ubi_num = ubi_num;
765 ubi->vid_hdr_offset = vid_hdr_offset;
766 ubi->autoresize_vol_id = -1;
767
768 mutex_init(&ubi->buf_mutex);
769 mutex_init(&ubi->ckvol_mutex);
770 mutex_init(&ubi->volumes_mutex);
771 spin_lock_init(&ubi->volumes_lock);
772
773 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
774
775 err = io_init(ubi);
776 if (err)
777 goto out_free;
778
779 err = -ENOMEM;
780 ubi->peb_buf1 = vmalloc(ubi->peb_size);
781 if (!ubi->peb_buf1)
782 goto out_free;
783
784 ubi->peb_buf2 = vmalloc(ubi->peb_size);
785 if (!ubi->peb_buf2)
786 goto out_free;
787
788 #ifdef CONFIG_MTD_UBI_DEBUG
789 mutex_init(&ubi->dbg_buf_mutex);
790 ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
791 if (!ubi->dbg_peb_buf)
792 goto out_free;
793 #endif
794
795 err = attach_by_scanning(ubi);
796 if (err) {
797 dbg_err("failed to attach by scanning, error %d", err);
798 goto out_free;
799 }
800
801 if (ubi->autoresize_vol_id != -1) {
802 err = autoresize(ubi, ubi->autoresize_vol_id);
803 if (err)
804 goto out_detach;
805 }
806
807 err = uif_init(ubi);
808 if (err)
809 goto out_detach;
810
811 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
812 if (IS_ERR(ubi->bgt_thread)) {
813 err = PTR_ERR(ubi->bgt_thread);
814 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
815 err);
816 goto out_uif;
817 }
818
819 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
820 ubi_msg("MTD device name: \"%s\"", mtd->name);
821 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20);
822 ubi_msg("number of good PEBs: %d", ubi->good_peb_count);
823 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count);
824 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots);
825 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD);
826 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
827 ubi_msg("number of user volumes: %d",
828 ubi->vol_count - UBI_INT_VOL_COUNT);
829 ubi_msg("available PEBs: %d", ubi->avail_pebs);
830 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
831 ubi_msg("number of PEBs reserved for bad PEB handling: %d",
832 ubi->beb_rsvd_pebs);
833 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
834
835 /* Enable the background thread */
836 if (!DBG_DISABLE_BGT) {
837 ubi->thread_enabled = 1;
838 wake_up_process(ubi->bgt_thread);
839 }
840
841 ubi_devices[ubi_num] = ubi;
842 return ubi_num;
843
844 out_uif:
845 uif_close(ubi);
846 out_detach:
847 ubi_eba_close(ubi);
848 ubi_wl_close(ubi);
849 vfree(ubi->vtbl);
850 out_free:
851 vfree(ubi->peb_buf1);
852 vfree(ubi->peb_buf2);
853 #ifdef CONFIG_MTD_UBI_DEBUG
854 vfree(ubi->dbg_peb_buf);
855 #endif
856 kfree(ubi);
857 return err;
858 }
859
860 /**
861 * ubi_detach_mtd_dev - detach an MTD device.
862 * @ubi_num: UBI device number to detach from
863 * @anyway: detach MTD even if device reference count is not zero
864 *
865 * This function destroys an UBI device number @ubi_num and detaches the
866 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
867 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
868 * exist.
869 *
870 * Note, the invocations of this function has to be serialized by the
871 * @ubi_devices_mutex.
872 */
873 int ubi_detach_mtd_dev(int ubi_num, int anyway)
874 {
875 struct ubi_device *ubi;
876
877 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
878 return -EINVAL;
879
880 spin_lock(&ubi_devices_lock);
881 ubi = ubi_devices[ubi_num];
882 if (!ubi) {
883 spin_unlock(&ubi_devices_lock);
884 return -EINVAL;
885 }
886
887 if (ubi->ref_count) {
888 if (!anyway) {
889 spin_unlock(&ubi_devices_lock);
890 return -EBUSY;
891 }
892 /* This may only happen if there is a bug */
893 ubi_err("%s reference count %d, destroy anyway",
894 ubi->ubi_name, ubi->ref_count);
895 }
896 ubi_devices[ubi_num] = NULL;
897 spin_unlock(&ubi_devices_lock);
898
899 ubi_assert(ubi_num == ubi->ubi_num);
900 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
901
902 /*
903 * Before freeing anything, we have to stop the background thread to
904 * prevent it from doing anything on this device while we are freeing.
905 */
906 if (ubi->bgt_thread)
907 kthread_stop(ubi->bgt_thread);
908
909 uif_close(ubi);
910 ubi_eba_close(ubi);
911 ubi_wl_close(ubi);
912 vfree(ubi->vtbl);
913 put_mtd_device(ubi->mtd);
914 vfree(ubi->peb_buf1);
915 vfree(ubi->peb_buf2);
916 #ifdef CONFIG_MTD_UBI_DEBUG
917 vfree(ubi->dbg_peb_buf);
918 #endif
919 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
920 kfree(ubi);
921 return 0;
922 }
923
924 /**
925 * find_mtd_device - open an MTD device by its name or number.
926 * @mtd_dev: name or number of the device
927 *
928 * This function tries to open and MTD device described by @mtd_dev string,
929 * which is first treated as an ASCII number, and if it is not true, it is
930 * treated as MTD device name. Returns MTD device description object in case of
931 * success and a negative error code in case of failure.
932 */
933 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
934 {
935 struct mtd_info *mtd;
936 int mtd_num;
937 char *endp;
938
939 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
940 if (*endp != '\0' || mtd_dev == endp) {
941 /*
942 * This does not look like an ASCII integer, probably this is
943 * MTD device name.
944 */
945 mtd = get_mtd_device_nm(mtd_dev);
946 } else
947 mtd = get_mtd_device(NULL, mtd_num);
948
949 return mtd;
950 }
951
952 int __init ubi_init(void)
953 {
954 int err, i, k;
955
956 /* Ensure that EC and VID headers have correct size */
957 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
958 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
959
960 if (mtd_devs > UBI_MAX_DEVICES) {
961 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
962 return -EINVAL;
963 }
964
965 /* Create base sysfs directory and sysfs files */
966 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
967 if (IS_ERR(ubi_class)) {
968 err = PTR_ERR(ubi_class);
969 ubi_err("cannot create UBI class");
970 goto out;
971 }
972
973 err = class_create_file(ubi_class, &ubi_version);
974 if (err) {
975 ubi_err("cannot create sysfs file");
976 goto out_class;
977 }
978
979 err = misc_register(&ubi_ctrl_cdev);
980 if (err) {
981 ubi_err("cannot register device");
982 goto out_version;
983 }
984
985 #ifdef UBI_LINUX
986 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
987 sizeof(struct ubi_wl_entry),
988 0, 0, NULL);
989 if (!ubi_wl_entry_slab)
990 goto out_dev_unreg;
991 #endif
992
993 /* Attach MTD devices */
994 for (i = 0; i < mtd_devs; i++) {
995 struct mtd_dev_param *p = &mtd_dev_param[i];
996 struct mtd_info *mtd;
997
998 cond_resched();
999
1000 mtd = open_mtd_device(p->name);
1001 if (IS_ERR(mtd)) {
1002 err = PTR_ERR(mtd);
1003 goto out_detach;
1004 }
1005
1006 mutex_lock(&ubi_devices_mutex);
1007 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1008 p->vid_hdr_offs);
1009 mutex_unlock(&ubi_devices_mutex);
1010 if (err < 0) {
1011 put_mtd_device(mtd);
1012 ubi_err("cannot attach mtd%d", mtd->index);
1013 goto out_detach;
1014 }
1015 }
1016
1017 return 0;
1018
1019 out_detach:
1020 for (k = 0; k < i; k++)
1021 if (ubi_devices[k]) {
1022 mutex_lock(&ubi_devices_mutex);
1023 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1024 mutex_unlock(&ubi_devices_mutex);
1025 }
1026 #ifdef UBI_LINUX
1027 kmem_cache_destroy(ubi_wl_entry_slab);
1028 out_dev_unreg:
1029 #endif
1030 misc_deregister(&ubi_ctrl_cdev);
1031 out_version:
1032 class_remove_file(ubi_class, &ubi_version);
1033 out_class:
1034 class_destroy(ubi_class);
1035 out:
1036 mtd_devs = 0;
1037 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1038 return err;
1039 }
1040 module_init(ubi_init);
1041
1042 void __exit ubi_exit(void)
1043 {
1044 int i;
1045
1046 for (i = 0; i < UBI_MAX_DEVICES; i++)
1047 if (ubi_devices[i]) {
1048 mutex_lock(&ubi_devices_mutex);
1049 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1050 mutex_unlock(&ubi_devices_mutex);
1051 }
1052 kmem_cache_destroy(ubi_wl_entry_slab);
1053 misc_deregister(&ubi_ctrl_cdev);
1054 class_remove_file(ubi_class, &ubi_version);
1055 class_destroy(ubi_class);
1056 mtd_devs = 0;
1057 }
1058 module_exit(ubi_exit);
1059
1060 /**
1061 * bytes_str_to_int - convert a string representing number of bytes to an
1062 * integer.
1063 * @str: the string to convert
1064 *
1065 * This function returns positive resulting integer in case of success and a
1066 * negative error code in case of failure.
1067 */
1068 static int __init bytes_str_to_int(const char *str)
1069 {
1070 char *endp;
1071 unsigned long result;
1072
1073 result = simple_strtoul(str, &endp, 0);
1074 if (str == endp || result < 0) {
1075 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1076 str);
1077 return -EINVAL;
1078 }
1079
1080 switch (*endp) {
1081 case 'G':
1082 result *= 1024;
1083 case 'M':
1084 result *= 1024;
1085 case 'K':
1086 result *= 1024;
1087 if (endp[1] == 'i' && endp[2] == 'B')
1088 endp += 2;
1089 case '\0':
1090 break;
1091 default:
1092 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1093 str);
1094 return -EINVAL;
1095 }
1096
1097 return result;
1098 }
1099
1100 /**
1101 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1102 * @val: the parameter value to parse
1103 * @kp: not used
1104 *
1105 * This function returns zero in case of success and a negative error code in
1106 * case of error.
1107 */
1108 int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1109 {
1110 int i, len;
1111 struct mtd_dev_param *p;
1112 char buf[MTD_PARAM_LEN_MAX];
1113 char *pbuf = &buf[0];
1114 char *tokens[2] = {NULL, NULL};
1115
1116 if (!val)
1117 return -EINVAL;
1118
1119 if (mtd_devs == UBI_MAX_DEVICES) {
1120 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1121 UBI_MAX_DEVICES);
1122 return -EINVAL;
1123 }
1124
1125 len = strnlen(val, MTD_PARAM_LEN_MAX);
1126 if (len == MTD_PARAM_LEN_MAX) {
1127 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1128 "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1129 return -EINVAL;
1130 }
1131
1132 if (len == 0) {
1133 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1134 "ignored\n");
1135 return 0;
1136 }
1137
1138 strcpy(buf, val);
1139
1140 /* Get rid of the final newline */
1141 if (buf[len - 1] == '\n')
1142 buf[len - 1] = '\0';
1143
1144 for (i = 0; i < 2; i++)
1145 tokens[i] = strsep(&pbuf, ",");
1146
1147 if (pbuf) {
1148 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1149 val);
1150 return -EINVAL;
1151 }
1152
1153 p = &mtd_dev_param[mtd_devs];
1154 strcpy(&p->name[0], tokens[0]);
1155
1156 if (tokens[1])
1157 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1158
1159 if (p->vid_hdr_offs < 0)
1160 return p->vid_hdr_offs;
1161
1162 mtd_devs += 1;
1163 return 0;
1164 }
1165
1166 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1167 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1168 "mtd=<name|num>[,<vid_hdr_offs>].\n"
1169 "Multiple \"mtd\" parameters may be specified.\n"
1170 "MTD devices may be specified by their number or name.\n"
1171 "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1172 "header position and data starting position to be used "
1173 "by UBI.\n"
1174 "Example: mtd=content,1984 mtd=4 - attach MTD device"
1175 "with name \"content\" using VID header offset 1984, and "
1176 "MTD device number 4 with default VID header offset.");
1177
1178 MODULE_VERSION(__stringify(UBI_VERSION));
1179 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1180 MODULE_AUTHOR("Artem Bityutskiy");
1181 MODULE_LICENSE("GPL");