]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/ubi/build.c
mtd, ubi, ubifs: resync with Linux-3.14
[people/ms/u-boot.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 *
7 * Author: Artem Bityutskiy (Битюцкий Артём),
8 * Frank Haverkamp
9 */
10
11 /*
12 * This file includes UBI initialization and building of UBI devices.
13 *
14 * When UBI is initialized, it attaches all the MTD devices specified as the
15 * module load parameters or the kernel boot parameters. If MTD devices were
16 * specified, UBI does not attach any MTD device, but it is possible to do
17 * later using the "UBI control device".
18 */
19
20 #define __UBOOT__
21 #ifndef __UBOOT__
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/stringify.h>
25 #include <linux/namei.h>
26 #include <linux/stat.h>
27 #include <linux/miscdevice.h>
28 #include <linux/log2.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/major.h>
33 #else
34 #include <linux/compat.h>
35 #endif
36 #include <linux/err.h>
37 #include <ubi_uboot.h>
38 #include <linux/mtd/partitions.h>
39
40 #include "ubi.h"
41
42 /* Maximum length of the 'mtd=' parameter */
43 #define MTD_PARAM_LEN_MAX 64
44
45 /* Maximum number of comma-separated items in the 'mtd=' parameter */
46 #define MTD_PARAM_MAX_COUNT 4
47
48 /* Maximum value for the number of bad PEBs per 1024 PEBs */
49 #define MAX_MTD_UBI_BEB_LIMIT 768
50
51 #ifdef CONFIG_MTD_UBI_MODULE
52 #define ubi_is_module() 1
53 #else
54 #define ubi_is_module() 0
55 #endif
56
57 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
58 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
59 #endif
60
61 /**
62 * struct mtd_dev_param - MTD device parameter description data structure.
63 * @name: MTD character device node path, MTD device name, or MTD device number
64 * string
65 * @vid_hdr_offs: VID header offset
66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
67 */
68 struct mtd_dev_param {
69 char name[MTD_PARAM_LEN_MAX];
70 int ubi_num;
71 int vid_hdr_offs;
72 int max_beb_per1024;
73 };
74
75 /* Numbers of elements set in the @mtd_dev_param array */
76 static int __initdata mtd_devs;
77
78 /* MTD devices specification parameters */
79 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
80 #ifndef __UBOOT__
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 #endif
85 #else
86 #ifdef CONFIG_MTD_UBI_FASTMAP
87 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
88 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
89 #endif
90 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
91 #endif
92 #endif
93 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
94 struct class *ubi_class;
95
96 /* Slab cache for wear-leveling entries */
97 struct kmem_cache *ubi_wl_entry_slab;
98
99 #ifndef __UBOOT__
100 /* UBI control character device */
101 static struct miscdevice ubi_ctrl_cdev = {
102 .minor = MISC_DYNAMIC_MINOR,
103 .name = "ubi_ctrl",
104 .fops = &ubi_ctrl_cdev_operations,
105 };
106 #endif
107
108 /* All UBI devices in system */
109 #ifndef __UBOOT__
110 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
111 #else
112 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
113 #endif
114
115 #ifndef __UBOOT__
116 /* Serializes UBI devices creations and removals */
117 DEFINE_MUTEX(ubi_devices_mutex);
118
119 /* Protects @ubi_devices and @ubi->ref_count */
120 static DEFINE_SPINLOCK(ubi_devices_lock);
121
122 /* "Show" method for files in '/<sysfs>/class/ubi/' */
123 static ssize_t ubi_version_show(struct class *class,
124 struct class_attribute *attr, char *buf)
125 {
126 return sprintf(buf, "%d\n", UBI_VERSION);
127 }
128
129 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
130 static struct class_attribute ubi_version =
131 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
132
133 static ssize_t dev_attribute_show(struct device *dev,
134 struct device_attribute *attr, char *buf);
135
136 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
137 static struct device_attribute dev_eraseblock_size =
138 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
139 static struct device_attribute dev_avail_eraseblocks =
140 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
141 static struct device_attribute dev_total_eraseblocks =
142 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
143 static struct device_attribute dev_volumes_count =
144 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
145 static struct device_attribute dev_max_ec =
146 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
147 static struct device_attribute dev_reserved_for_bad =
148 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
149 static struct device_attribute dev_bad_peb_count =
150 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
151 static struct device_attribute dev_max_vol_count =
152 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
153 static struct device_attribute dev_min_io_size =
154 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
155 static struct device_attribute dev_bgt_enabled =
156 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
157 static struct device_attribute dev_mtd_num =
158 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
159 #endif
160
161 /**
162 * ubi_volume_notify - send a volume change notification.
163 * @ubi: UBI device description object
164 * @vol: volume description object of the changed volume
165 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
166 *
167 * This is a helper function which notifies all subscribers about a volume
168 * change event (creation, removal, re-sizing, re-naming, updating). Returns
169 * zero in case of success and a negative error code in case of failure.
170 */
171 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
172 {
173 struct ubi_notification nt;
174
175 ubi_do_get_device_info(ubi, &nt.di);
176 ubi_do_get_volume_info(ubi, vol, &nt.vi);
177
178 #ifdef CONFIG_MTD_UBI_FASTMAP
179 switch (ntype) {
180 case UBI_VOLUME_ADDED:
181 case UBI_VOLUME_REMOVED:
182 case UBI_VOLUME_RESIZED:
183 case UBI_VOLUME_RENAMED:
184 if (ubi_update_fastmap(ubi)) {
185 ubi_err("Unable to update fastmap!");
186 ubi_ro_mode(ubi);
187 }
188 }
189 #endif
190 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
191 }
192
193 /**
194 * ubi_notify_all - send a notification to all volumes.
195 * @ubi: UBI device description object
196 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
197 * @nb: the notifier to call
198 *
199 * This function walks all volumes of UBI device @ubi and sends the @ntype
200 * notification for each volume. If @nb is %NULL, then all registered notifiers
201 * are called, otherwise only the @nb notifier is called. Returns the number of
202 * sent notifications.
203 */
204 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
205 {
206 struct ubi_notification nt;
207 int i, count = 0;
208 #ifndef __UBOOT__
209 int ret;
210 #endif
211
212 ubi_do_get_device_info(ubi, &nt.di);
213
214 mutex_lock(&ubi->device_mutex);
215 for (i = 0; i < ubi->vtbl_slots; i++) {
216 /*
217 * Since the @ubi->device is locked, and we are not going to
218 * change @ubi->volumes, we do not have to lock
219 * @ubi->volumes_lock.
220 */
221 if (!ubi->volumes[i])
222 continue;
223
224 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
225 #ifndef __UBOOT__
226 if (nb)
227 nb->notifier_call(nb, ntype, &nt);
228 else
229 ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
230 &nt);
231 #endif
232 count += 1;
233 }
234 mutex_unlock(&ubi->device_mutex);
235
236 return count;
237 }
238
239 /**
240 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
241 * @nb: the notifier to call
242 *
243 * This function walks all UBI devices and volumes and sends the
244 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
245 * registered notifiers are called, otherwise only the @nb notifier is called.
246 * Returns the number of sent notifications.
247 */
248 int ubi_enumerate_volumes(struct notifier_block *nb)
249 {
250 int i, count = 0;
251
252 /*
253 * Since the @ubi_devices_mutex is locked, and we are not going to
254 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
255 */
256 for (i = 0; i < UBI_MAX_DEVICES; i++) {
257 struct ubi_device *ubi = ubi_devices[i];
258
259 if (!ubi)
260 continue;
261 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
262 }
263
264 return count;
265 }
266
267 /**
268 * ubi_get_device - get UBI device.
269 * @ubi_num: UBI device number
270 *
271 * This function returns UBI device description object for UBI device number
272 * @ubi_num, or %NULL if the device does not exist. This function increases the
273 * device reference count to prevent removal of the device. In other words, the
274 * device cannot be removed if its reference count is not zero.
275 */
276 struct ubi_device *ubi_get_device(int ubi_num)
277 {
278 struct ubi_device *ubi;
279
280 spin_lock(&ubi_devices_lock);
281 ubi = ubi_devices[ubi_num];
282 if (ubi) {
283 ubi_assert(ubi->ref_count >= 0);
284 ubi->ref_count += 1;
285 get_device(&ubi->dev);
286 }
287 spin_unlock(&ubi_devices_lock);
288
289 return ubi;
290 }
291
292 /**
293 * ubi_put_device - drop an UBI device reference.
294 * @ubi: UBI device description object
295 */
296 void ubi_put_device(struct ubi_device *ubi)
297 {
298 spin_lock(&ubi_devices_lock);
299 ubi->ref_count -= 1;
300 put_device(&ubi->dev);
301 spin_unlock(&ubi_devices_lock);
302 }
303
304 /**
305 * ubi_get_by_major - get UBI device by character device major number.
306 * @major: major number
307 *
308 * This function is similar to 'ubi_get_device()', but it searches the device
309 * by its major number.
310 */
311 struct ubi_device *ubi_get_by_major(int major)
312 {
313 int i;
314 struct ubi_device *ubi;
315
316 spin_lock(&ubi_devices_lock);
317 for (i = 0; i < UBI_MAX_DEVICES; i++) {
318 ubi = ubi_devices[i];
319 if (ubi && MAJOR(ubi->cdev.dev) == major) {
320 ubi_assert(ubi->ref_count >= 0);
321 ubi->ref_count += 1;
322 get_device(&ubi->dev);
323 spin_unlock(&ubi_devices_lock);
324 return ubi;
325 }
326 }
327 spin_unlock(&ubi_devices_lock);
328
329 return NULL;
330 }
331
332 /**
333 * ubi_major2num - get UBI device number by character device major number.
334 * @major: major number
335 *
336 * This function searches UBI device number object by its major number. If UBI
337 * device was not found, this function returns -ENODEV, otherwise the UBI device
338 * number is returned.
339 */
340 int ubi_major2num(int major)
341 {
342 int i, ubi_num = -ENODEV;
343
344 spin_lock(&ubi_devices_lock);
345 for (i = 0; i < UBI_MAX_DEVICES; i++) {
346 struct ubi_device *ubi = ubi_devices[i];
347
348 if (ubi && MAJOR(ubi->cdev.dev) == major) {
349 ubi_num = ubi->ubi_num;
350 break;
351 }
352 }
353 spin_unlock(&ubi_devices_lock);
354
355 return ubi_num;
356 }
357
358 #ifndef __UBOOT__
359 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
360 static ssize_t dev_attribute_show(struct device *dev,
361 struct device_attribute *attr, char *buf)
362 {
363 ssize_t ret;
364 struct ubi_device *ubi;
365
366 /*
367 * The below code looks weird, but it actually makes sense. We get the
368 * UBI device reference from the contained 'struct ubi_device'. But it
369 * is unclear if the device was removed or not yet. Indeed, if the
370 * device was removed before we increased its reference count,
371 * 'ubi_get_device()' will return -ENODEV and we fail.
372 *
373 * Remember, 'struct ubi_device' is freed in the release function, so
374 * we still can use 'ubi->ubi_num'.
375 */
376 ubi = container_of(dev, struct ubi_device, dev);
377 ubi = ubi_get_device(ubi->ubi_num);
378 if (!ubi)
379 return -ENODEV;
380
381 if (attr == &dev_eraseblock_size)
382 ret = sprintf(buf, "%d\n", ubi->leb_size);
383 else if (attr == &dev_avail_eraseblocks)
384 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
385 else if (attr == &dev_total_eraseblocks)
386 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
387 else if (attr == &dev_volumes_count)
388 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
389 else if (attr == &dev_max_ec)
390 ret = sprintf(buf, "%d\n", ubi->max_ec);
391 else if (attr == &dev_reserved_for_bad)
392 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
393 else if (attr == &dev_bad_peb_count)
394 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
395 else if (attr == &dev_max_vol_count)
396 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
397 else if (attr == &dev_min_io_size)
398 ret = sprintf(buf, "%d\n", ubi->min_io_size);
399 else if (attr == &dev_bgt_enabled)
400 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
401 else if (attr == &dev_mtd_num)
402 ret = sprintf(buf, "%d\n", ubi->mtd->index);
403 else
404 ret = -EINVAL;
405
406 ubi_put_device(ubi);
407 return ret;
408 }
409
410 static void dev_release(struct device *dev)
411 {
412 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
413
414 kfree(ubi);
415 }
416
417 /**
418 * ubi_sysfs_init - initialize sysfs for an UBI device.
419 * @ubi: UBI device description object
420 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
421 * taken
422 *
423 * This function returns zero in case of success and a negative error code in
424 * case of failure.
425 */
426 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
427 {
428 int err;
429
430 ubi->dev.release = dev_release;
431 ubi->dev.devt = ubi->cdev.dev;
432 ubi->dev.class = ubi_class;
433 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
434 err = device_register(&ubi->dev);
435 if (err)
436 return err;
437
438 *ref = 1;
439 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
440 if (err)
441 return err;
442 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
443 if (err)
444 return err;
445 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
446 if (err)
447 return err;
448 err = device_create_file(&ubi->dev, &dev_volumes_count);
449 if (err)
450 return err;
451 err = device_create_file(&ubi->dev, &dev_max_ec);
452 if (err)
453 return err;
454 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
455 if (err)
456 return err;
457 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
458 if (err)
459 return err;
460 err = device_create_file(&ubi->dev, &dev_max_vol_count);
461 if (err)
462 return err;
463 err = device_create_file(&ubi->dev, &dev_min_io_size);
464 if (err)
465 return err;
466 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
467 if (err)
468 return err;
469 err = device_create_file(&ubi->dev, &dev_mtd_num);
470 return err;
471 }
472
473 /**
474 * ubi_sysfs_close - close sysfs for an UBI device.
475 * @ubi: UBI device description object
476 */
477 static void ubi_sysfs_close(struct ubi_device *ubi)
478 {
479 device_remove_file(&ubi->dev, &dev_mtd_num);
480 device_remove_file(&ubi->dev, &dev_bgt_enabled);
481 device_remove_file(&ubi->dev, &dev_min_io_size);
482 device_remove_file(&ubi->dev, &dev_max_vol_count);
483 device_remove_file(&ubi->dev, &dev_bad_peb_count);
484 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
485 device_remove_file(&ubi->dev, &dev_max_ec);
486 device_remove_file(&ubi->dev, &dev_volumes_count);
487 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
488 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
489 device_remove_file(&ubi->dev, &dev_eraseblock_size);
490 device_unregister(&ubi->dev);
491 }
492 #endif
493
494 /**
495 * kill_volumes - destroy all user volumes.
496 * @ubi: UBI device description object
497 */
498 static void kill_volumes(struct ubi_device *ubi)
499 {
500 int i;
501
502 for (i = 0; i < ubi->vtbl_slots; i++)
503 if (ubi->volumes[i])
504 ubi_free_volume(ubi, ubi->volumes[i]);
505 }
506
507 /**
508 * uif_init - initialize user interfaces for an UBI device.
509 * @ubi: UBI device description object
510 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
511 * taken, otherwise set to %0
512 *
513 * This function initializes various user interfaces for an UBI device. If the
514 * initialization fails at an early stage, this function frees all the
515 * resources it allocated, returns an error, and @ref is set to %0. However,
516 * if the initialization fails after the UBI device was registered in the
517 * driver core subsystem, this function takes a reference to @ubi->dev, because
518 * otherwise the release function ('dev_release()') would free whole @ubi
519 * object. The @ref argument is set to %1 in this case. The caller has to put
520 * this reference.
521 *
522 * This function returns zero in case of success and a negative error code in
523 * case of failure.
524 */
525 static int uif_init(struct ubi_device *ubi, int *ref)
526 {
527 int i, err;
528 #ifndef __UBOOT__
529 dev_t dev;
530 #endif
531
532 *ref = 0;
533 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
534
535 /*
536 * Major numbers for the UBI character devices are allocated
537 * dynamically. Major numbers of volume character devices are
538 * equivalent to ones of the corresponding UBI character device. Minor
539 * numbers of UBI character devices are 0, while minor numbers of
540 * volume character devices start from 1. Thus, we allocate one major
541 * number and ubi->vtbl_slots + 1 minor numbers.
542 */
543 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
544 if (err) {
545 ubi_err("cannot register UBI character devices");
546 return err;
547 }
548
549 ubi_assert(MINOR(dev) == 0);
550 cdev_init(&ubi->cdev, &ubi_cdev_operations);
551 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
552 ubi->cdev.owner = THIS_MODULE;
553
554 err = cdev_add(&ubi->cdev, dev, 1);
555 if (err) {
556 ubi_err("cannot add character device");
557 goto out_unreg;
558 }
559
560 err = ubi_sysfs_init(ubi, ref);
561 if (err)
562 goto out_sysfs;
563
564 for (i = 0; i < ubi->vtbl_slots; i++)
565 if (ubi->volumes[i]) {
566 err = ubi_add_volume(ubi, ubi->volumes[i]);
567 if (err) {
568 ubi_err("cannot add volume %d", i);
569 goto out_volumes;
570 }
571 }
572
573 return 0;
574
575 out_volumes:
576 kill_volumes(ubi);
577 out_sysfs:
578 if (*ref)
579 get_device(&ubi->dev);
580 ubi_sysfs_close(ubi);
581 cdev_del(&ubi->cdev);
582 out_unreg:
583 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
584 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
585 return err;
586 }
587
588 /**
589 * uif_close - close user interfaces for an UBI device.
590 * @ubi: UBI device description object
591 *
592 * Note, since this function un-registers UBI volume device objects (@vol->dev),
593 * the memory allocated voe the volumes is freed as well (in the release
594 * function).
595 */
596 static void uif_close(struct ubi_device *ubi)
597 {
598 kill_volumes(ubi);
599 ubi_sysfs_close(ubi);
600 cdev_del(&ubi->cdev);
601 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
602 }
603
604 /**
605 * ubi_free_internal_volumes - free internal volumes.
606 * @ubi: UBI device description object
607 */
608 void ubi_free_internal_volumes(struct ubi_device *ubi)
609 {
610 int i;
611
612 for (i = ubi->vtbl_slots;
613 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
614 kfree(ubi->volumes[i]->eba_tbl);
615 kfree(ubi->volumes[i]);
616 }
617 }
618
619 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
620 {
621 int limit, device_pebs;
622 uint64_t device_size;
623
624 if (!max_beb_per1024)
625 return 0;
626
627 /*
628 * Here we are using size of the entire flash chip and
629 * not just the MTD partition size because the maximum
630 * number of bad eraseblocks is a percentage of the
631 * whole device and bad eraseblocks are not fairly
632 * distributed over the flash chip. So the worst case
633 * is that all the bad eraseblocks of the chip are in
634 * the MTD partition we are attaching (ubi->mtd).
635 */
636 device_size = mtd_get_device_size(ubi->mtd);
637 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
638 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
639
640 /* Round it up */
641 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
642 limit += 1;
643
644 return limit;
645 }
646
647 /**
648 * io_init - initialize I/O sub-system for a given UBI device.
649 * @ubi: UBI device description object
650 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
651 *
652 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
653 * assumed:
654 * o EC header is always at offset zero - this cannot be changed;
655 * o VID header starts just after the EC header at the closest address
656 * aligned to @io->hdrs_min_io_size;
657 * o data starts just after the VID header at the closest address aligned to
658 * @io->min_io_size
659 *
660 * This function returns zero in case of success and a negative error code in
661 * case of failure.
662 */
663 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
664 {
665 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
666 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
667
668 if (ubi->mtd->numeraseregions != 0) {
669 /*
670 * Some flashes have several erase regions. Different regions
671 * may have different eraseblock size and other
672 * characteristics. It looks like mostly multi-region flashes
673 * have one "main" region and one or more small regions to
674 * store boot loader code or boot parameters or whatever. I
675 * guess we should just pick the largest region. But this is
676 * not implemented.
677 */
678 ubi_err("multiple regions, not implemented");
679 return -EINVAL;
680 }
681
682 if (ubi->vid_hdr_offset < 0)
683 return -EINVAL;
684
685 /*
686 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
687 * physical eraseblocks maximum.
688 */
689
690 ubi->peb_size = ubi->mtd->erasesize;
691 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
692 ubi->flash_size = ubi->mtd->size;
693
694 if (mtd_can_have_bb(ubi->mtd)) {
695 ubi->bad_allowed = 1;
696 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
697 }
698
699 if (ubi->mtd->type == MTD_NORFLASH) {
700 ubi_assert(ubi->mtd->writesize == 1);
701 ubi->nor_flash = 1;
702 }
703
704 ubi->min_io_size = ubi->mtd->writesize;
705 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
706
707 /*
708 * Make sure minimal I/O unit is power of 2. Note, there is no
709 * fundamental reason for this assumption. It is just an optimization
710 * which allows us to avoid costly division operations.
711 */
712 if (!is_power_of_2(ubi->min_io_size)) {
713 ubi_err("min. I/O unit (%d) is not power of 2",
714 ubi->min_io_size);
715 return -EINVAL;
716 }
717
718 ubi_assert(ubi->hdrs_min_io_size > 0);
719 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
720 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
721
722 ubi->max_write_size = ubi->mtd->writebufsize;
723 /*
724 * Maximum write size has to be greater or equivalent to min. I/O
725 * size, and be multiple of min. I/O size.
726 */
727 if (ubi->max_write_size < ubi->min_io_size ||
728 ubi->max_write_size % ubi->min_io_size ||
729 !is_power_of_2(ubi->max_write_size)) {
730 ubi_err("bad write buffer size %d for %d min. I/O unit",
731 ubi->max_write_size, ubi->min_io_size);
732 return -EINVAL;
733 }
734
735 /* Calculate default aligned sizes of EC and VID headers */
736 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
737 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
738
739 dbg_gen("min_io_size %d", ubi->min_io_size);
740 dbg_gen("max_write_size %d", ubi->max_write_size);
741 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
742 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
743 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
744
745 if (ubi->vid_hdr_offset == 0)
746 /* Default offset */
747 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
748 ubi->ec_hdr_alsize;
749 else {
750 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
751 ~(ubi->hdrs_min_io_size - 1);
752 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
753 ubi->vid_hdr_aloffset;
754 }
755
756 /* Similar for the data offset */
757 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
758 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
759
760 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
761 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
762 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
763 dbg_gen("leb_start %d", ubi->leb_start);
764
765 /* The shift must be aligned to 32-bit boundary */
766 if (ubi->vid_hdr_shift % 4) {
767 ubi_err("unaligned VID header shift %d",
768 ubi->vid_hdr_shift);
769 return -EINVAL;
770 }
771
772 /* Check sanity */
773 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
774 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
775 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
776 ubi->leb_start & (ubi->min_io_size - 1)) {
777 ubi_err("bad VID header (%d) or data offsets (%d)",
778 ubi->vid_hdr_offset, ubi->leb_start);
779 return -EINVAL;
780 }
781
782 /*
783 * Set maximum amount of physical erroneous eraseblocks to be 10%.
784 * Erroneous PEB are those which have read errors.
785 */
786 ubi->max_erroneous = ubi->peb_count / 10;
787 if (ubi->max_erroneous < 16)
788 ubi->max_erroneous = 16;
789 dbg_gen("max_erroneous %d", ubi->max_erroneous);
790
791 /*
792 * It may happen that EC and VID headers are situated in one minimal
793 * I/O unit. In this case we can only accept this UBI image in
794 * read-only mode.
795 */
796 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
797 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
798 ubi->ro_mode = 1;
799 }
800
801 ubi->leb_size = ubi->peb_size - ubi->leb_start;
802
803 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
804 ubi_msg("MTD device %d is write-protected, attach in read-only mode",
805 ubi->mtd->index);
806 ubi->ro_mode = 1;
807 }
808
809 /*
810 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
811 * unfortunately, MTD does not provide this information. We should loop
812 * over all physical eraseblocks and invoke mtd->block_is_bad() for
813 * each physical eraseblock. So, we leave @ubi->bad_peb_count
814 * uninitialized so far.
815 */
816
817 return 0;
818 }
819
820 /**
821 * autoresize - re-size the volume which has the "auto-resize" flag set.
822 * @ubi: UBI device description object
823 * @vol_id: ID of the volume to re-size
824 *
825 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
826 * the volume table to the largest possible size. See comments in ubi-header.h
827 * for more description of the flag. Returns zero in case of success and a
828 * negative error code in case of failure.
829 */
830 static int autoresize(struct ubi_device *ubi, int vol_id)
831 {
832 struct ubi_volume_desc desc;
833 struct ubi_volume *vol = ubi->volumes[vol_id];
834 int err, old_reserved_pebs = vol->reserved_pebs;
835
836 if (ubi->ro_mode) {
837 ubi_warn("skip auto-resize because of R/O mode");
838 return 0;
839 }
840
841 /*
842 * Clear the auto-resize flag in the volume in-memory copy of the
843 * volume table, and 'ubi_resize_volume()' will propagate this change
844 * to the flash.
845 */
846 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
847
848 if (ubi->avail_pebs == 0) {
849 struct ubi_vtbl_record vtbl_rec;
850
851 /*
852 * No available PEBs to re-size the volume, clear the flag on
853 * flash and exit.
854 */
855 vtbl_rec = ubi->vtbl[vol_id];
856 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
857 if (err)
858 ubi_err("cannot clean auto-resize flag for volume %d",
859 vol_id);
860 } else {
861 desc.vol = vol;
862 err = ubi_resize_volume(&desc,
863 old_reserved_pebs + ubi->avail_pebs);
864 if (err)
865 ubi_err("cannot auto-resize volume %d", vol_id);
866 }
867
868 if (err)
869 return err;
870
871 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
872 vol->name, old_reserved_pebs, vol->reserved_pebs);
873 return 0;
874 }
875
876 /**
877 * ubi_attach_mtd_dev - attach an MTD device.
878 * @mtd: MTD device description object
879 * @ubi_num: number to assign to the new UBI device
880 * @vid_hdr_offset: VID header offset
881 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
882 *
883 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
884 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
885 * which case this function finds a vacant device number and assigns it
886 * automatically. Returns the new UBI device number in case of success and a
887 * negative error code in case of failure.
888 *
889 * Note, the invocations of this function has to be serialized by the
890 * @ubi_devices_mutex.
891 */
892 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
893 int vid_hdr_offset, int max_beb_per1024)
894 {
895 struct ubi_device *ubi;
896 int i, err, ref = 0;
897
898 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
899 return -EINVAL;
900
901 if (!max_beb_per1024)
902 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
903
904 /*
905 * Check if we already have the same MTD device attached.
906 *
907 * Note, this function assumes that UBI devices creations and deletions
908 * are serialized, so it does not take the &ubi_devices_lock.
909 */
910 for (i = 0; i < UBI_MAX_DEVICES; i++) {
911 ubi = ubi_devices[i];
912 if (ubi && mtd->index == ubi->mtd->index) {
913 ubi_err("mtd%d is already attached to ubi%d",
914 mtd->index, i);
915 return -EEXIST;
916 }
917 }
918
919 /*
920 * Make sure this MTD device is not emulated on top of an UBI volume
921 * already. Well, generally this recursion works fine, but there are
922 * different problems like the UBI module takes a reference to itself
923 * by attaching (and thus, opening) the emulated MTD device. This
924 * results in inability to unload the module. And in general it makes
925 * no sense to attach emulated MTD devices, so we prohibit this.
926 */
927 if (mtd->type == MTD_UBIVOLUME) {
928 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
929 mtd->index);
930 return -EINVAL;
931 }
932
933 if (ubi_num == UBI_DEV_NUM_AUTO) {
934 /* Search for an empty slot in the @ubi_devices array */
935 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
936 if (!ubi_devices[ubi_num])
937 break;
938 if (ubi_num == UBI_MAX_DEVICES) {
939 ubi_err("only %d UBI devices may be created",
940 UBI_MAX_DEVICES);
941 return -ENFILE;
942 }
943 } else {
944 if (ubi_num >= UBI_MAX_DEVICES)
945 return -EINVAL;
946
947 /* Make sure ubi_num is not busy */
948 if (ubi_devices[ubi_num]) {
949 ubi_err("ubi%d already exists", ubi_num);
950 return -EEXIST;
951 }
952 }
953
954 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
955 if (!ubi)
956 return -ENOMEM;
957
958 ubi->mtd = mtd;
959 ubi->ubi_num = ubi_num;
960 ubi->vid_hdr_offset = vid_hdr_offset;
961 ubi->autoresize_vol_id = -1;
962
963 #ifdef CONFIG_MTD_UBI_FASTMAP
964 ubi->fm_pool.used = ubi->fm_pool.size = 0;
965 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
966
967 /*
968 * fm_pool.max_size is 5% of the total number of PEBs but it's also
969 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
970 */
971 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
972 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
973 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
974 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
975
976 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
977 ubi->fm_disabled = !fm_autoconvert;
978
979 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
980 <= UBI_FM_MAX_START) {
981 ubi_err("More than %i PEBs are needed for fastmap, sorry.",
982 UBI_FM_MAX_START);
983 ubi->fm_disabled = 1;
984 }
985
986 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size);
987 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
988 #else
989 ubi->fm_disabled = 1;
990 #endif
991 mutex_init(&ubi->buf_mutex);
992 mutex_init(&ubi->ckvol_mutex);
993 mutex_init(&ubi->device_mutex);
994 spin_lock_init(&ubi->volumes_lock);
995 mutex_init(&ubi->fm_mutex);
996 init_rwsem(&ubi->fm_sem);
997
998 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
999
1000 err = io_init(ubi, max_beb_per1024);
1001 if (err)
1002 goto out_free;
1003
1004 err = -ENOMEM;
1005 ubi->peb_buf = vmalloc(ubi->peb_size);
1006 if (!ubi->peb_buf)
1007 goto out_free;
1008
1009 #ifdef CONFIG_MTD_UBI_FASTMAP
1010 ubi->fm_size = ubi_calc_fm_size(ubi);
1011 ubi->fm_buf = vzalloc(ubi->fm_size);
1012 if (!ubi->fm_buf)
1013 goto out_free;
1014 #endif
1015 err = ubi_attach(ubi, 0);
1016 if (err) {
1017 ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
1018 goto out_free;
1019 }
1020
1021 if (ubi->autoresize_vol_id != -1) {
1022 err = autoresize(ubi, ubi->autoresize_vol_id);
1023 if (err)
1024 goto out_detach;
1025 }
1026
1027 err = uif_init(ubi, &ref);
1028 if (err)
1029 goto out_detach;
1030
1031 err = ubi_debugfs_init_dev(ubi);
1032 if (err)
1033 goto out_uif;
1034
1035 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1036 if (IS_ERR(ubi->bgt_thread)) {
1037 err = PTR_ERR(ubi->bgt_thread);
1038 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1039 err);
1040 goto out_debugfs;
1041 }
1042
1043 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
1044 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
1045 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1046 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1047 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d",
1048 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1049 ubi_msg("VID header offset: %d (aligned %d), data offset: %d",
1050 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1051 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1052 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1053 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d",
1054 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1055 ubi->vtbl_slots);
1056 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1057 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1058 ubi->image_seq);
1059 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1060 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1061
1062 /*
1063 * The below lock makes sure we do not race with 'ubi_thread()' which
1064 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1065 */
1066 spin_lock(&ubi->wl_lock);
1067 ubi->thread_enabled = 1;
1068 wake_up_process(ubi->bgt_thread);
1069 spin_unlock(&ubi->wl_lock);
1070
1071 ubi_devices[ubi_num] = ubi;
1072 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1073 return ubi_num;
1074
1075 out_debugfs:
1076 ubi_debugfs_exit_dev(ubi);
1077 out_uif:
1078 get_device(&ubi->dev);
1079 ubi_assert(ref);
1080 uif_close(ubi);
1081 out_detach:
1082 ubi_wl_close(ubi);
1083 ubi_free_internal_volumes(ubi);
1084 vfree(ubi->vtbl);
1085 out_free:
1086 vfree(ubi->peb_buf);
1087 vfree(ubi->fm_buf);
1088 if (ref)
1089 put_device(&ubi->dev);
1090 else
1091 kfree(ubi);
1092 return err;
1093 }
1094
1095 /**
1096 * ubi_detach_mtd_dev - detach an MTD device.
1097 * @ubi_num: UBI device number to detach from
1098 * @anyway: detach MTD even if device reference count is not zero
1099 *
1100 * This function destroys an UBI device number @ubi_num and detaches the
1101 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1102 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1103 * exist.
1104 *
1105 * Note, the invocations of this function has to be serialized by the
1106 * @ubi_devices_mutex.
1107 */
1108 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1109 {
1110 struct ubi_device *ubi;
1111
1112 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1113 return -EINVAL;
1114
1115 ubi = ubi_get_device(ubi_num);
1116 if (!ubi)
1117 return -EINVAL;
1118
1119 spin_lock(&ubi_devices_lock);
1120 put_device(&ubi->dev);
1121 ubi->ref_count -= 1;
1122 if (ubi->ref_count) {
1123 if (!anyway) {
1124 spin_unlock(&ubi_devices_lock);
1125 return -EBUSY;
1126 }
1127 /* This may only happen if there is a bug */
1128 ubi_err("%s reference count %d, destroy anyway",
1129 ubi->ubi_name, ubi->ref_count);
1130 }
1131 ubi_devices[ubi_num] = NULL;
1132 spin_unlock(&ubi_devices_lock);
1133
1134 ubi_assert(ubi_num == ubi->ubi_num);
1135 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1136 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1137 #ifdef CONFIG_MTD_UBI_FASTMAP
1138 /* If we don't write a new fastmap at detach time we lose all
1139 * EC updates that have been made since the last written fastmap. */
1140 ubi_update_fastmap(ubi);
1141 #endif
1142 /*
1143 * Before freeing anything, we have to stop the background thread to
1144 * prevent it from doing anything on this device while we are freeing.
1145 */
1146 if (ubi->bgt_thread)
1147 kthread_stop(ubi->bgt_thread);
1148
1149 /*
1150 * Get a reference to the device in order to prevent 'dev_release()'
1151 * from freeing the @ubi object.
1152 */
1153 get_device(&ubi->dev);
1154
1155 ubi_debugfs_exit_dev(ubi);
1156 uif_close(ubi);
1157
1158 ubi_wl_close(ubi);
1159 ubi_free_internal_volumes(ubi);
1160 vfree(ubi->vtbl);
1161 put_mtd_device(ubi->mtd);
1162 vfree(ubi->peb_buf);
1163 vfree(ubi->fm_buf);
1164 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1165 put_device(&ubi->dev);
1166 return 0;
1167 }
1168
1169 #ifndef __UBOOT__
1170 /**
1171 * open_mtd_by_chdev - open an MTD device by its character device node path.
1172 * @mtd_dev: MTD character device node path
1173 *
1174 * This helper function opens an MTD device by its character node device path.
1175 * Returns MTD device description object in case of success and a negative
1176 * error code in case of failure.
1177 */
1178 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1179 {
1180 int err, major, minor, mode;
1181 struct path path;
1182
1183 /* Probably this is an MTD character device node path */
1184 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1185 if (err)
1186 return ERR_PTR(err);
1187
1188 /* MTD device number is defined by the major / minor numbers */
1189 major = imajor(path.dentry->d_inode);
1190 minor = iminor(path.dentry->d_inode);
1191 mode = path.dentry->d_inode->i_mode;
1192 path_put(&path);
1193 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1194 return ERR_PTR(-EINVAL);
1195
1196 if (minor & 1)
1197 /*
1198 * Just do not think the "/dev/mtdrX" devices support is need,
1199 * so do not support them to avoid doing extra work.
1200 */
1201 return ERR_PTR(-EINVAL);
1202
1203 return get_mtd_device(NULL, minor / 2);
1204 }
1205 #endif
1206
1207 /**
1208 * open_mtd_device - open MTD device by name, character device path, or number.
1209 * @mtd_dev: name, character device node path, or MTD device device number
1210 *
1211 * This function tries to open and MTD device described by @mtd_dev string,
1212 * which is first treated as ASCII MTD device number, and if it is not true, it
1213 * is treated as MTD device name, and if that is also not true, it is treated
1214 * as MTD character device node path. Returns MTD device description object in
1215 * case of success and a negative error code in case of failure.
1216 */
1217 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1218 {
1219 struct mtd_info *mtd;
1220 int mtd_num;
1221 char *endp;
1222
1223 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1224 if (*endp != '\0' || mtd_dev == endp) {
1225 /*
1226 * This does not look like an ASCII integer, probably this is
1227 * MTD device name.
1228 */
1229 mtd = get_mtd_device_nm(mtd_dev);
1230 #ifndef __UBOOT__
1231 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1232 /* Probably this is an MTD character device node path */
1233 mtd = open_mtd_by_chdev(mtd_dev);
1234 #endif
1235 } else
1236 mtd = get_mtd_device(NULL, mtd_num);
1237
1238 return mtd;
1239 }
1240
1241 #ifndef __UBOOT__
1242 static int __init ubi_init(void)
1243 #else
1244 int ubi_init(void)
1245 #endif
1246 {
1247 int err, i, k;
1248
1249 /* Ensure that EC and VID headers have correct size */
1250 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1251 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1252
1253 if (mtd_devs > UBI_MAX_DEVICES) {
1254 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1255 return -EINVAL;
1256 }
1257
1258 /* Create base sysfs directory and sysfs files */
1259 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1260 if (IS_ERR(ubi_class)) {
1261 err = PTR_ERR(ubi_class);
1262 ubi_err("cannot create UBI class");
1263 goto out;
1264 }
1265
1266 err = class_create_file(ubi_class, &ubi_version);
1267 if (err) {
1268 ubi_err("cannot create sysfs file");
1269 goto out_class;
1270 }
1271
1272 err = misc_register(&ubi_ctrl_cdev);
1273 if (err) {
1274 ubi_err("cannot register device");
1275 goto out_version;
1276 }
1277
1278 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1279 sizeof(struct ubi_wl_entry),
1280 0, 0, NULL);
1281 if (!ubi_wl_entry_slab) {
1282 err = -ENOMEM;
1283 goto out_dev_unreg;
1284 }
1285
1286 err = ubi_debugfs_init();
1287 if (err)
1288 goto out_slab;
1289
1290
1291 /* Attach MTD devices */
1292 for (i = 0; i < mtd_devs; i++) {
1293 struct mtd_dev_param *p = &mtd_dev_param[i];
1294 struct mtd_info *mtd;
1295
1296 cond_resched();
1297
1298 mtd = open_mtd_device(p->name);
1299 if (IS_ERR(mtd)) {
1300 err = PTR_ERR(mtd);
1301 ubi_err("cannot open mtd %s, error %d", p->name, err);
1302 /* See comment below re-ubi_is_module(). */
1303 if (ubi_is_module())
1304 goto out_detach;
1305 continue;
1306 }
1307
1308 mutex_lock(&ubi_devices_mutex);
1309 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1310 p->vid_hdr_offs, p->max_beb_per1024);
1311 mutex_unlock(&ubi_devices_mutex);
1312 if (err < 0) {
1313 ubi_err("cannot attach mtd%d", mtd->index);
1314 put_mtd_device(mtd);
1315
1316 /*
1317 * Originally UBI stopped initializing on any error.
1318 * However, later on it was found out that this
1319 * behavior is not very good when UBI is compiled into
1320 * the kernel and the MTD devices to attach are passed
1321 * through the command line. Indeed, UBI failure
1322 * stopped whole boot sequence.
1323 *
1324 * To fix this, we changed the behavior for the
1325 * non-module case, but preserved the old behavior for
1326 * the module case, just for compatibility. This is a
1327 * little inconsistent, though.
1328 */
1329 if (ubi_is_module())
1330 goto out_detach;
1331 }
1332 }
1333
1334 return 0;
1335
1336 out_detach:
1337 for (k = 0; k < i; k++)
1338 if (ubi_devices[k]) {
1339 mutex_lock(&ubi_devices_mutex);
1340 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1341 mutex_unlock(&ubi_devices_mutex);
1342 }
1343 ubi_debugfs_exit();
1344 out_slab:
1345 kmem_cache_destroy(ubi_wl_entry_slab);
1346 out_dev_unreg:
1347 misc_deregister(&ubi_ctrl_cdev);
1348 out_version:
1349 class_remove_file(ubi_class, &ubi_version);
1350 out_class:
1351 class_destroy(ubi_class);
1352 out:
1353 ubi_err("cannot initialize UBI, error %d", err);
1354 return err;
1355 }
1356 late_initcall(ubi_init);
1357
1358 #ifndef __UBOOT__
1359 static void __exit ubi_exit(void)
1360 #else
1361 void ubi_exit(void)
1362 #endif
1363 {
1364 int i;
1365
1366 for (i = 0; i < UBI_MAX_DEVICES; i++)
1367 if (ubi_devices[i]) {
1368 mutex_lock(&ubi_devices_mutex);
1369 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1370 mutex_unlock(&ubi_devices_mutex);
1371 }
1372 ubi_debugfs_exit();
1373 kmem_cache_destroy(ubi_wl_entry_slab);
1374 misc_deregister(&ubi_ctrl_cdev);
1375 class_remove_file(ubi_class, &ubi_version);
1376 class_destroy(ubi_class);
1377 }
1378 module_exit(ubi_exit);
1379
1380 /**
1381 * bytes_str_to_int - convert a number of bytes string into an integer.
1382 * @str: the string to convert
1383 *
1384 * This function returns positive resulting integer in case of success and a
1385 * negative error code in case of failure.
1386 */
1387 static int __init bytes_str_to_int(const char *str)
1388 {
1389 char *endp;
1390 unsigned long result;
1391
1392 result = simple_strtoul(str, &endp, 0);
1393 if (str == endp || result >= INT_MAX) {
1394 ubi_err("incorrect bytes count: \"%s\"\n", str);
1395 return -EINVAL;
1396 }
1397
1398 switch (*endp) {
1399 case 'G':
1400 result *= 1024;
1401 case 'M':
1402 result *= 1024;
1403 case 'K':
1404 result *= 1024;
1405 if (endp[1] == 'i' && endp[2] == 'B')
1406 endp += 2;
1407 case '\0':
1408 break;
1409 default:
1410 ubi_err("incorrect bytes count: \"%s\"\n", str);
1411 return -EINVAL;
1412 }
1413
1414 return result;
1415 }
1416
1417 int kstrtoint(const char *s, unsigned int base, int *res)
1418 {
1419 unsigned long long tmp;
1420
1421 tmp = simple_strtoull(s, NULL, base);
1422 if (tmp != (unsigned long long)(int)tmp)
1423 return -ERANGE;
1424
1425 return (int)tmp;
1426 }
1427
1428 /**
1429 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1430 * @val: the parameter value to parse
1431 * @kp: not used
1432 *
1433 * This function returns zero in case of success and a negative error code in
1434 * case of error.
1435 */
1436 #ifndef __UBOOT__
1437 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1438 #else
1439 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1440 #endif
1441 {
1442 int i, len;
1443 struct mtd_dev_param *p;
1444 char buf[MTD_PARAM_LEN_MAX];
1445 char *pbuf = &buf[0];
1446 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1447
1448 if (!val)
1449 return -EINVAL;
1450
1451 if (mtd_devs == UBI_MAX_DEVICES) {
1452 ubi_err("too many parameters, max. is %d\n",
1453 UBI_MAX_DEVICES);
1454 return -EINVAL;
1455 }
1456
1457 len = strnlen(val, MTD_PARAM_LEN_MAX);
1458 if (len == MTD_PARAM_LEN_MAX) {
1459 ubi_err("parameter \"%s\" is too long, max. is %d\n",
1460 val, MTD_PARAM_LEN_MAX);
1461 return -EINVAL;
1462 }
1463
1464 if (len == 0) {
1465 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1466 return 0;
1467 }
1468
1469 strcpy(buf, val);
1470
1471 /* Get rid of the final newline */
1472 if (buf[len - 1] == '\n')
1473 buf[len - 1] = '\0';
1474
1475 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1476 tokens[i] = strsep(&pbuf, ",");
1477
1478 if (pbuf) {
1479 ubi_err("too many arguments at \"%s\"\n", val);
1480 return -EINVAL;
1481 }
1482
1483 p = &mtd_dev_param[mtd_devs];
1484 strcpy(&p->name[0], tokens[0]);
1485
1486 token = tokens[1];
1487 if (token) {
1488 p->vid_hdr_offs = bytes_str_to_int(token);
1489
1490 if (p->vid_hdr_offs < 0)
1491 return p->vid_hdr_offs;
1492 }
1493
1494 token = tokens[2];
1495 if (token) {
1496 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1497
1498 if (err) {
1499 ubi_err("bad value for max_beb_per1024 parameter: %s",
1500 token);
1501 return -EINVAL;
1502 }
1503 }
1504
1505 token = tokens[3];
1506 if (token) {
1507 int err = kstrtoint(token, 10, &p->ubi_num);
1508
1509 if (err) {
1510 ubi_err("bad value for ubi_num parameter: %s", token);
1511 return -EINVAL;
1512 }
1513 } else
1514 p->ubi_num = UBI_DEV_NUM_AUTO;
1515
1516 mtd_devs += 1;
1517 return 0;
1518 }
1519
1520 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1521 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1522 "Multiple \"mtd\" parameters may be specified.\n"
1523 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1524 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1525 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1526 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1527 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1528 "\n"
1529 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1530 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1531 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1532 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1533 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1534 #ifdef CONFIG_MTD_UBI_FASTMAP
1535 module_param(fm_autoconvert, bool, 0644);
1536 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1537 #endif
1538 MODULE_VERSION(__stringify(UBI_VERSION));
1539 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1540 MODULE_AUTHOR("Artem Bityutskiy");
1541 MODULE_LICENSE("GPL");