]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/bnx2.c
wimax/i2400m: fix oops when the TX FIFO fills up due to a missing check
[thirdparty/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
52
53 #include "bnx2.h"
54 #include "bnx2_fw.h"
55
56 #define DRV_MODULE_NAME "bnx2"
57 #define PFX DRV_MODULE_NAME ": "
58 #define DRV_MODULE_VERSION "2.0.1"
59 #define DRV_MODULE_RELDATE "May 6, 2009"
60 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
61 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
62 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
63 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
64
65 #define RUN_AT(x) (jiffies + (x))
66
67 /* Time in jiffies before concluding the transmitter is hung. */
68 #define TX_TIMEOUT (5*HZ)
69
70 static char version[] __devinitdata =
71 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
72
73 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
74 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
75 MODULE_LICENSE("GPL");
76 MODULE_VERSION(DRV_MODULE_VERSION);
77 MODULE_FIRMWARE(FW_MIPS_FILE_06);
78 MODULE_FIRMWARE(FW_RV2P_FILE_06);
79 MODULE_FIRMWARE(FW_MIPS_FILE_09);
80 MODULE_FIRMWARE(FW_RV2P_FILE_09);
81
82 static int disable_msi = 0;
83
84 module_param(disable_msi, int, 0);
85 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
86
87 typedef enum {
88 BCM5706 = 0,
89 NC370T,
90 NC370I,
91 BCM5706S,
92 NC370F,
93 BCM5708,
94 BCM5708S,
95 BCM5709,
96 BCM5709S,
97 BCM5716,
98 BCM5716S,
99 } board_t;
100
101 /* indexed by board_t, above */
102 static struct {
103 char *name;
104 } board_info[] __devinitdata = {
105 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
106 { "HP NC370T Multifunction Gigabit Server Adapter" },
107 { "HP NC370i Multifunction Gigabit Server Adapter" },
108 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
109 { "HP NC370F Multifunction Gigabit Server Adapter" },
110 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
111 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
112 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
113 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
114 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
116 };
117
118 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
119 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
120 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
121 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
122 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
123 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
124 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
126 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
128 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
134 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
137 { PCI_VENDOR_ID_BROADCOM, 0x163b,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
139 { PCI_VENDOR_ID_BROADCOM, 0x163c,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
141 { 0, }
142 };
143
144 static struct flash_spec flash_table[] =
145 {
146 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
147 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
148 /* Slow EEPROM */
149 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
150 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
151 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
152 "EEPROM - slow"},
153 /* Expansion entry 0001 */
154 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
155 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
156 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
157 "Entry 0001"},
158 /* Saifun SA25F010 (non-buffered flash) */
159 /* strap, cfg1, & write1 need updates */
160 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
162 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
163 "Non-buffered flash (128kB)"},
164 /* Saifun SA25F020 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
168 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
169 "Non-buffered flash (256kB)"},
170 /* Expansion entry 0100 */
171 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
173 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
174 "Entry 0100"},
175 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
176 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
178 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
179 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
180 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
181 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
184 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
185 /* Saifun SA25F005 (non-buffered flash) */
186 /* strap, cfg1, & write1 need updates */
187 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
190 "Non-buffered flash (64kB)"},
191 /* Fast EEPROM */
192 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
193 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
194 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
195 "EEPROM - fast"},
196 /* Expansion entry 1001 */
197 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
198 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
199 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
200 "Entry 1001"},
201 /* Expansion entry 1010 */
202 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
204 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
205 "Entry 1010"},
206 /* ATMEL AT45DB011B (buffered flash) */
207 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
208 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
209 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
210 "Buffered flash (128kB)"},
211 /* Expansion entry 1100 */
212 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
213 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
214 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
215 "Entry 1100"},
216 /* Expansion entry 1101 */
217 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
219 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
220 "Entry 1101"},
221 /* Ateml Expansion entry 1110 */
222 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
223 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
224 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
225 "Entry 1110 (Atmel)"},
226 /* ATMEL AT45DB021B (buffered flash) */
227 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
229 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
230 "Buffered flash (256kB)"},
231 };
232
233 static struct flash_spec flash_5709 = {
234 .flags = BNX2_NV_BUFFERED,
235 .page_bits = BCM5709_FLASH_PAGE_BITS,
236 .page_size = BCM5709_FLASH_PAGE_SIZE,
237 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
238 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
239 .name = "5709 Buffered flash (256kB)",
240 };
241
242 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
243
244 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
245 {
246 u32 diff;
247
248 smp_mb();
249
250 /* The ring uses 256 indices for 255 entries, one of them
251 * needs to be skipped.
252 */
253 diff = txr->tx_prod - txr->tx_cons;
254 if (unlikely(diff >= TX_DESC_CNT)) {
255 diff &= 0xffff;
256 if (diff == TX_DESC_CNT)
257 diff = MAX_TX_DESC_CNT;
258 }
259 return (bp->tx_ring_size - diff);
260 }
261
262 static u32
263 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
264 {
265 u32 val;
266
267 spin_lock_bh(&bp->indirect_lock);
268 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
269 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
270 spin_unlock_bh(&bp->indirect_lock);
271 return val;
272 }
273
274 static void
275 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
276 {
277 spin_lock_bh(&bp->indirect_lock);
278 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
279 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
280 spin_unlock_bh(&bp->indirect_lock);
281 }
282
283 static void
284 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
285 {
286 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
287 }
288
289 static u32
290 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
291 {
292 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
293 }
294
295 static void
296 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
297 {
298 offset += cid_addr;
299 spin_lock_bh(&bp->indirect_lock);
300 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
301 int i;
302
303 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
304 REG_WR(bp, BNX2_CTX_CTX_CTRL,
305 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
306 for (i = 0; i < 5; i++) {
307 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
308 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
309 break;
310 udelay(5);
311 }
312 } else {
313 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
314 REG_WR(bp, BNX2_CTX_DATA, val);
315 }
316 spin_unlock_bh(&bp->indirect_lock);
317 }
318
319 static int
320 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
321 {
322 u32 val1;
323 int i, ret;
324
325 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
326 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
327 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
328
329 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
330 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
331
332 udelay(40);
333 }
334
335 val1 = (bp->phy_addr << 21) | (reg << 16) |
336 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
337 BNX2_EMAC_MDIO_COMM_START_BUSY;
338 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
339
340 for (i = 0; i < 50; i++) {
341 udelay(10);
342
343 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
344 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
345 udelay(5);
346
347 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
348 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
349
350 break;
351 }
352 }
353
354 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
355 *val = 0x0;
356 ret = -EBUSY;
357 }
358 else {
359 *val = val1;
360 ret = 0;
361 }
362
363 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
364 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
365 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
366
367 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
368 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
369
370 udelay(40);
371 }
372
373 return ret;
374 }
375
376 static int
377 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
378 {
379 u32 val1;
380 int i, ret;
381
382 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
383 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
384 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
385
386 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
387 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
388
389 udelay(40);
390 }
391
392 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
393 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
394 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
395 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
396
397 for (i = 0; i < 50; i++) {
398 udelay(10);
399
400 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
401 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
402 udelay(5);
403 break;
404 }
405 }
406
407 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
408 ret = -EBUSY;
409 else
410 ret = 0;
411
412 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
413 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
414 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
415
416 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
417 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
418
419 udelay(40);
420 }
421
422 return ret;
423 }
424
425 static void
426 bnx2_disable_int(struct bnx2 *bp)
427 {
428 int i;
429 struct bnx2_napi *bnapi;
430
431 for (i = 0; i < bp->irq_nvecs; i++) {
432 bnapi = &bp->bnx2_napi[i];
433 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
434 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
435 }
436 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
437 }
438
439 static void
440 bnx2_enable_int(struct bnx2 *bp)
441 {
442 int i;
443 struct bnx2_napi *bnapi;
444
445 for (i = 0; i < bp->irq_nvecs; i++) {
446 bnapi = &bp->bnx2_napi[i];
447
448 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
449 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
450 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
451 bnapi->last_status_idx);
452
453 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
454 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
455 bnapi->last_status_idx);
456 }
457 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
458 }
459
460 static void
461 bnx2_disable_int_sync(struct bnx2 *bp)
462 {
463 int i;
464
465 atomic_inc(&bp->intr_sem);
466 bnx2_disable_int(bp);
467 for (i = 0; i < bp->irq_nvecs; i++)
468 synchronize_irq(bp->irq_tbl[i].vector);
469 }
470
471 static void
472 bnx2_napi_disable(struct bnx2 *bp)
473 {
474 int i;
475
476 for (i = 0; i < bp->irq_nvecs; i++)
477 napi_disable(&bp->bnx2_napi[i].napi);
478 }
479
480 static void
481 bnx2_napi_enable(struct bnx2 *bp)
482 {
483 int i;
484
485 for (i = 0; i < bp->irq_nvecs; i++)
486 napi_enable(&bp->bnx2_napi[i].napi);
487 }
488
489 static void
490 bnx2_netif_stop(struct bnx2 *bp)
491 {
492 bnx2_disable_int_sync(bp);
493 if (netif_running(bp->dev)) {
494 bnx2_napi_disable(bp);
495 netif_tx_disable(bp->dev);
496 bp->dev->trans_start = jiffies; /* prevent tx timeout */
497 }
498 }
499
500 static void
501 bnx2_netif_start(struct bnx2 *bp)
502 {
503 if (atomic_dec_and_test(&bp->intr_sem)) {
504 if (netif_running(bp->dev)) {
505 netif_tx_wake_all_queues(bp->dev);
506 bnx2_napi_enable(bp);
507 bnx2_enable_int(bp);
508 }
509 }
510 }
511
512 static void
513 bnx2_free_tx_mem(struct bnx2 *bp)
514 {
515 int i;
516
517 for (i = 0; i < bp->num_tx_rings; i++) {
518 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
519 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
520
521 if (txr->tx_desc_ring) {
522 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
523 txr->tx_desc_ring,
524 txr->tx_desc_mapping);
525 txr->tx_desc_ring = NULL;
526 }
527 kfree(txr->tx_buf_ring);
528 txr->tx_buf_ring = NULL;
529 }
530 }
531
532 static void
533 bnx2_free_rx_mem(struct bnx2 *bp)
534 {
535 int i;
536
537 for (i = 0; i < bp->num_rx_rings; i++) {
538 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
539 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
540 int j;
541
542 for (j = 0; j < bp->rx_max_ring; j++) {
543 if (rxr->rx_desc_ring[j])
544 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
545 rxr->rx_desc_ring[j],
546 rxr->rx_desc_mapping[j]);
547 rxr->rx_desc_ring[j] = NULL;
548 }
549 vfree(rxr->rx_buf_ring);
550 rxr->rx_buf_ring = NULL;
551
552 for (j = 0; j < bp->rx_max_pg_ring; j++) {
553 if (rxr->rx_pg_desc_ring[j])
554 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
555 rxr->rx_pg_desc_ring[j],
556 rxr->rx_pg_desc_mapping[j]);
557 rxr->rx_pg_desc_ring[j] = NULL;
558 }
559 vfree(rxr->rx_pg_ring);
560 rxr->rx_pg_ring = NULL;
561 }
562 }
563
564 static int
565 bnx2_alloc_tx_mem(struct bnx2 *bp)
566 {
567 int i;
568
569 for (i = 0; i < bp->num_tx_rings; i++) {
570 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
571 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
572
573 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
574 if (txr->tx_buf_ring == NULL)
575 return -ENOMEM;
576
577 txr->tx_desc_ring =
578 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
579 &txr->tx_desc_mapping);
580 if (txr->tx_desc_ring == NULL)
581 return -ENOMEM;
582 }
583 return 0;
584 }
585
586 static int
587 bnx2_alloc_rx_mem(struct bnx2 *bp)
588 {
589 int i;
590
591 for (i = 0; i < bp->num_rx_rings; i++) {
592 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
593 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
594 int j;
595
596 rxr->rx_buf_ring =
597 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
598 if (rxr->rx_buf_ring == NULL)
599 return -ENOMEM;
600
601 memset(rxr->rx_buf_ring, 0,
602 SW_RXBD_RING_SIZE * bp->rx_max_ring);
603
604 for (j = 0; j < bp->rx_max_ring; j++) {
605 rxr->rx_desc_ring[j] =
606 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
607 &rxr->rx_desc_mapping[j]);
608 if (rxr->rx_desc_ring[j] == NULL)
609 return -ENOMEM;
610
611 }
612
613 if (bp->rx_pg_ring_size) {
614 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
615 bp->rx_max_pg_ring);
616 if (rxr->rx_pg_ring == NULL)
617 return -ENOMEM;
618
619 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
620 bp->rx_max_pg_ring);
621 }
622
623 for (j = 0; j < bp->rx_max_pg_ring; j++) {
624 rxr->rx_pg_desc_ring[j] =
625 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
626 &rxr->rx_pg_desc_mapping[j]);
627 if (rxr->rx_pg_desc_ring[j] == NULL)
628 return -ENOMEM;
629
630 }
631 }
632 return 0;
633 }
634
635 static void
636 bnx2_free_mem(struct bnx2 *bp)
637 {
638 int i;
639 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
640
641 bnx2_free_tx_mem(bp);
642 bnx2_free_rx_mem(bp);
643
644 for (i = 0; i < bp->ctx_pages; i++) {
645 if (bp->ctx_blk[i]) {
646 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
647 bp->ctx_blk[i],
648 bp->ctx_blk_mapping[i]);
649 bp->ctx_blk[i] = NULL;
650 }
651 }
652 if (bnapi->status_blk.msi) {
653 pci_free_consistent(bp->pdev, bp->status_stats_size,
654 bnapi->status_blk.msi,
655 bp->status_blk_mapping);
656 bnapi->status_blk.msi = NULL;
657 bp->stats_blk = NULL;
658 }
659 }
660
661 static int
662 bnx2_alloc_mem(struct bnx2 *bp)
663 {
664 int i, status_blk_size, err;
665 struct bnx2_napi *bnapi;
666 void *status_blk;
667
668 /* Combine status and statistics blocks into one allocation. */
669 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
670 if (bp->flags & BNX2_FLAG_MSIX_CAP)
671 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
672 BNX2_SBLK_MSIX_ALIGN_SIZE);
673 bp->status_stats_size = status_blk_size +
674 sizeof(struct statistics_block);
675
676 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
677 &bp->status_blk_mapping);
678 if (status_blk == NULL)
679 goto alloc_mem_err;
680
681 memset(status_blk, 0, bp->status_stats_size);
682
683 bnapi = &bp->bnx2_napi[0];
684 bnapi->status_blk.msi = status_blk;
685 bnapi->hw_tx_cons_ptr =
686 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
687 bnapi->hw_rx_cons_ptr =
688 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
689 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
690 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
691 struct status_block_msix *sblk;
692
693 bnapi = &bp->bnx2_napi[i];
694
695 sblk = (void *) (status_blk +
696 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
697 bnapi->status_blk.msix = sblk;
698 bnapi->hw_tx_cons_ptr =
699 &sblk->status_tx_quick_consumer_index;
700 bnapi->hw_rx_cons_ptr =
701 &sblk->status_rx_quick_consumer_index;
702 bnapi->int_num = i << 24;
703 }
704 }
705
706 bp->stats_blk = status_blk + status_blk_size;
707
708 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
709
710 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
711 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
712 if (bp->ctx_pages == 0)
713 bp->ctx_pages = 1;
714 for (i = 0; i < bp->ctx_pages; i++) {
715 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
716 BCM_PAGE_SIZE,
717 &bp->ctx_blk_mapping[i]);
718 if (bp->ctx_blk[i] == NULL)
719 goto alloc_mem_err;
720 }
721 }
722
723 err = bnx2_alloc_rx_mem(bp);
724 if (err)
725 goto alloc_mem_err;
726
727 err = bnx2_alloc_tx_mem(bp);
728 if (err)
729 goto alloc_mem_err;
730
731 return 0;
732
733 alloc_mem_err:
734 bnx2_free_mem(bp);
735 return -ENOMEM;
736 }
737
738 static void
739 bnx2_report_fw_link(struct bnx2 *bp)
740 {
741 u32 fw_link_status = 0;
742
743 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
744 return;
745
746 if (bp->link_up) {
747 u32 bmsr;
748
749 switch (bp->line_speed) {
750 case SPEED_10:
751 if (bp->duplex == DUPLEX_HALF)
752 fw_link_status = BNX2_LINK_STATUS_10HALF;
753 else
754 fw_link_status = BNX2_LINK_STATUS_10FULL;
755 break;
756 case SPEED_100:
757 if (bp->duplex == DUPLEX_HALF)
758 fw_link_status = BNX2_LINK_STATUS_100HALF;
759 else
760 fw_link_status = BNX2_LINK_STATUS_100FULL;
761 break;
762 case SPEED_1000:
763 if (bp->duplex == DUPLEX_HALF)
764 fw_link_status = BNX2_LINK_STATUS_1000HALF;
765 else
766 fw_link_status = BNX2_LINK_STATUS_1000FULL;
767 break;
768 case SPEED_2500:
769 if (bp->duplex == DUPLEX_HALF)
770 fw_link_status = BNX2_LINK_STATUS_2500HALF;
771 else
772 fw_link_status = BNX2_LINK_STATUS_2500FULL;
773 break;
774 }
775
776 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
777
778 if (bp->autoneg) {
779 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
780
781 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
782 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
783
784 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
785 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
786 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
787 else
788 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
789 }
790 }
791 else
792 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
793
794 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
795 }
796
797 static char *
798 bnx2_xceiver_str(struct bnx2 *bp)
799 {
800 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
801 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
802 "Copper"));
803 }
804
805 static void
806 bnx2_report_link(struct bnx2 *bp)
807 {
808 if (bp->link_up) {
809 netif_carrier_on(bp->dev);
810 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
811 bnx2_xceiver_str(bp));
812
813 printk("%d Mbps ", bp->line_speed);
814
815 if (bp->duplex == DUPLEX_FULL)
816 printk("full duplex");
817 else
818 printk("half duplex");
819
820 if (bp->flow_ctrl) {
821 if (bp->flow_ctrl & FLOW_CTRL_RX) {
822 printk(", receive ");
823 if (bp->flow_ctrl & FLOW_CTRL_TX)
824 printk("& transmit ");
825 }
826 else {
827 printk(", transmit ");
828 }
829 printk("flow control ON");
830 }
831 printk("\n");
832 }
833 else {
834 netif_carrier_off(bp->dev);
835 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
836 bnx2_xceiver_str(bp));
837 }
838
839 bnx2_report_fw_link(bp);
840 }
841
842 static void
843 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
844 {
845 u32 local_adv, remote_adv;
846
847 bp->flow_ctrl = 0;
848 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
849 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
850
851 if (bp->duplex == DUPLEX_FULL) {
852 bp->flow_ctrl = bp->req_flow_ctrl;
853 }
854 return;
855 }
856
857 if (bp->duplex != DUPLEX_FULL) {
858 return;
859 }
860
861 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
862 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
863 u32 val;
864
865 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
866 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
867 bp->flow_ctrl |= FLOW_CTRL_TX;
868 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
869 bp->flow_ctrl |= FLOW_CTRL_RX;
870 return;
871 }
872
873 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
874 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
875
876 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
877 u32 new_local_adv = 0;
878 u32 new_remote_adv = 0;
879
880 if (local_adv & ADVERTISE_1000XPAUSE)
881 new_local_adv |= ADVERTISE_PAUSE_CAP;
882 if (local_adv & ADVERTISE_1000XPSE_ASYM)
883 new_local_adv |= ADVERTISE_PAUSE_ASYM;
884 if (remote_adv & ADVERTISE_1000XPAUSE)
885 new_remote_adv |= ADVERTISE_PAUSE_CAP;
886 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
887 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
888
889 local_adv = new_local_adv;
890 remote_adv = new_remote_adv;
891 }
892
893 /* See Table 28B-3 of 802.3ab-1999 spec. */
894 if (local_adv & ADVERTISE_PAUSE_CAP) {
895 if(local_adv & ADVERTISE_PAUSE_ASYM) {
896 if (remote_adv & ADVERTISE_PAUSE_CAP) {
897 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
898 }
899 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
900 bp->flow_ctrl = FLOW_CTRL_RX;
901 }
902 }
903 else {
904 if (remote_adv & ADVERTISE_PAUSE_CAP) {
905 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
906 }
907 }
908 }
909 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
910 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
911 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
912
913 bp->flow_ctrl = FLOW_CTRL_TX;
914 }
915 }
916 }
917
918 static int
919 bnx2_5709s_linkup(struct bnx2 *bp)
920 {
921 u32 val, speed;
922
923 bp->link_up = 1;
924
925 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
926 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
927 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
928
929 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
930 bp->line_speed = bp->req_line_speed;
931 bp->duplex = bp->req_duplex;
932 return 0;
933 }
934 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
935 switch (speed) {
936 case MII_BNX2_GP_TOP_AN_SPEED_10:
937 bp->line_speed = SPEED_10;
938 break;
939 case MII_BNX2_GP_TOP_AN_SPEED_100:
940 bp->line_speed = SPEED_100;
941 break;
942 case MII_BNX2_GP_TOP_AN_SPEED_1G:
943 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
944 bp->line_speed = SPEED_1000;
945 break;
946 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
947 bp->line_speed = SPEED_2500;
948 break;
949 }
950 if (val & MII_BNX2_GP_TOP_AN_FD)
951 bp->duplex = DUPLEX_FULL;
952 else
953 bp->duplex = DUPLEX_HALF;
954 return 0;
955 }
956
957 static int
958 bnx2_5708s_linkup(struct bnx2 *bp)
959 {
960 u32 val;
961
962 bp->link_up = 1;
963 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
964 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
965 case BCM5708S_1000X_STAT1_SPEED_10:
966 bp->line_speed = SPEED_10;
967 break;
968 case BCM5708S_1000X_STAT1_SPEED_100:
969 bp->line_speed = SPEED_100;
970 break;
971 case BCM5708S_1000X_STAT1_SPEED_1G:
972 bp->line_speed = SPEED_1000;
973 break;
974 case BCM5708S_1000X_STAT1_SPEED_2G5:
975 bp->line_speed = SPEED_2500;
976 break;
977 }
978 if (val & BCM5708S_1000X_STAT1_FD)
979 bp->duplex = DUPLEX_FULL;
980 else
981 bp->duplex = DUPLEX_HALF;
982
983 return 0;
984 }
985
986 static int
987 bnx2_5706s_linkup(struct bnx2 *bp)
988 {
989 u32 bmcr, local_adv, remote_adv, common;
990
991 bp->link_up = 1;
992 bp->line_speed = SPEED_1000;
993
994 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
995 if (bmcr & BMCR_FULLDPLX) {
996 bp->duplex = DUPLEX_FULL;
997 }
998 else {
999 bp->duplex = DUPLEX_HALF;
1000 }
1001
1002 if (!(bmcr & BMCR_ANENABLE)) {
1003 return 0;
1004 }
1005
1006 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1007 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1008
1009 common = local_adv & remote_adv;
1010 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1011
1012 if (common & ADVERTISE_1000XFULL) {
1013 bp->duplex = DUPLEX_FULL;
1014 }
1015 else {
1016 bp->duplex = DUPLEX_HALF;
1017 }
1018 }
1019
1020 return 0;
1021 }
1022
1023 static int
1024 bnx2_copper_linkup(struct bnx2 *bp)
1025 {
1026 u32 bmcr;
1027
1028 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1029 if (bmcr & BMCR_ANENABLE) {
1030 u32 local_adv, remote_adv, common;
1031
1032 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1033 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1034
1035 common = local_adv & (remote_adv >> 2);
1036 if (common & ADVERTISE_1000FULL) {
1037 bp->line_speed = SPEED_1000;
1038 bp->duplex = DUPLEX_FULL;
1039 }
1040 else if (common & ADVERTISE_1000HALF) {
1041 bp->line_speed = SPEED_1000;
1042 bp->duplex = DUPLEX_HALF;
1043 }
1044 else {
1045 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1046 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1047
1048 common = local_adv & remote_adv;
1049 if (common & ADVERTISE_100FULL) {
1050 bp->line_speed = SPEED_100;
1051 bp->duplex = DUPLEX_FULL;
1052 }
1053 else if (common & ADVERTISE_100HALF) {
1054 bp->line_speed = SPEED_100;
1055 bp->duplex = DUPLEX_HALF;
1056 }
1057 else if (common & ADVERTISE_10FULL) {
1058 bp->line_speed = SPEED_10;
1059 bp->duplex = DUPLEX_FULL;
1060 }
1061 else if (common & ADVERTISE_10HALF) {
1062 bp->line_speed = SPEED_10;
1063 bp->duplex = DUPLEX_HALF;
1064 }
1065 else {
1066 bp->line_speed = 0;
1067 bp->link_up = 0;
1068 }
1069 }
1070 }
1071 else {
1072 if (bmcr & BMCR_SPEED100) {
1073 bp->line_speed = SPEED_100;
1074 }
1075 else {
1076 bp->line_speed = SPEED_10;
1077 }
1078 if (bmcr & BMCR_FULLDPLX) {
1079 bp->duplex = DUPLEX_FULL;
1080 }
1081 else {
1082 bp->duplex = DUPLEX_HALF;
1083 }
1084 }
1085
1086 return 0;
1087 }
1088
1089 static void
1090 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1091 {
1092 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1093
1094 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1095 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1096 val |= 0x02 << 8;
1097
1098 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1099 u32 lo_water, hi_water;
1100
1101 if (bp->flow_ctrl & FLOW_CTRL_TX)
1102 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1103 else
1104 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1105 if (lo_water >= bp->rx_ring_size)
1106 lo_water = 0;
1107
1108 hi_water = bp->rx_ring_size / 4;
1109
1110 if (hi_water <= lo_water)
1111 lo_water = 0;
1112
1113 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1114 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1115
1116 if (hi_water > 0xf)
1117 hi_water = 0xf;
1118 else if (hi_water == 0)
1119 lo_water = 0;
1120 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1121 }
1122 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1123 }
1124
1125 static void
1126 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1127 {
1128 int i;
1129 u32 cid;
1130
1131 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1132 if (i == 1)
1133 cid = RX_RSS_CID;
1134 bnx2_init_rx_context(bp, cid);
1135 }
1136 }
1137
1138 static void
1139 bnx2_set_mac_link(struct bnx2 *bp)
1140 {
1141 u32 val;
1142
1143 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1144 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1145 (bp->duplex == DUPLEX_HALF)) {
1146 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1147 }
1148
1149 /* Configure the EMAC mode register. */
1150 val = REG_RD(bp, BNX2_EMAC_MODE);
1151
1152 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1153 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1154 BNX2_EMAC_MODE_25G_MODE);
1155
1156 if (bp->link_up) {
1157 switch (bp->line_speed) {
1158 case SPEED_10:
1159 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1160 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1161 break;
1162 }
1163 /* fall through */
1164 case SPEED_100:
1165 val |= BNX2_EMAC_MODE_PORT_MII;
1166 break;
1167 case SPEED_2500:
1168 val |= BNX2_EMAC_MODE_25G_MODE;
1169 /* fall through */
1170 case SPEED_1000:
1171 val |= BNX2_EMAC_MODE_PORT_GMII;
1172 break;
1173 }
1174 }
1175 else {
1176 val |= BNX2_EMAC_MODE_PORT_GMII;
1177 }
1178
1179 /* Set the MAC to operate in the appropriate duplex mode. */
1180 if (bp->duplex == DUPLEX_HALF)
1181 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1182 REG_WR(bp, BNX2_EMAC_MODE, val);
1183
1184 /* Enable/disable rx PAUSE. */
1185 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1186
1187 if (bp->flow_ctrl & FLOW_CTRL_RX)
1188 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1189 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1190
1191 /* Enable/disable tx PAUSE. */
1192 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1193 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1194
1195 if (bp->flow_ctrl & FLOW_CTRL_TX)
1196 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1197 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1198
1199 /* Acknowledge the interrupt. */
1200 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1201
1202 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1203 bnx2_init_all_rx_contexts(bp);
1204 }
1205
1206 static void
1207 bnx2_enable_bmsr1(struct bnx2 *bp)
1208 {
1209 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1210 (CHIP_NUM(bp) == CHIP_NUM_5709))
1211 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1212 MII_BNX2_BLK_ADDR_GP_STATUS);
1213 }
1214
1215 static void
1216 bnx2_disable_bmsr1(struct bnx2 *bp)
1217 {
1218 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1219 (CHIP_NUM(bp) == CHIP_NUM_5709))
1220 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1221 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1222 }
1223
1224 static int
1225 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1226 {
1227 u32 up1;
1228 int ret = 1;
1229
1230 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1231 return 0;
1232
1233 if (bp->autoneg & AUTONEG_SPEED)
1234 bp->advertising |= ADVERTISED_2500baseX_Full;
1235
1236 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1237 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1238
1239 bnx2_read_phy(bp, bp->mii_up1, &up1);
1240 if (!(up1 & BCM5708S_UP1_2G5)) {
1241 up1 |= BCM5708S_UP1_2G5;
1242 bnx2_write_phy(bp, bp->mii_up1, up1);
1243 ret = 0;
1244 }
1245
1246 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1247 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1248 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1249
1250 return ret;
1251 }
1252
1253 static int
1254 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1255 {
1256 u32 up1;
1257 int ret = 0;
1258
1259 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1260 return 0;
1261
1262 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1263 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1264
1265 bnx2_read_phy(bp, bp->mii_up1, &up1);
1266 if (up1 & BCM5708S_UP1_2G5) {
1267 up1 &= ~BCM5708S_UP1_2G5;
1268 bnx2_write_phy(bp, bp->mii_up1, up1);
1269 ret = 1;
1270 }
1271
1272 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1273 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1274 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1275
1276 return ret;
1277 }
1278
1279 static void
1280 bnx2_enable_forced_2g5(struct bnx2 *bp)
1281 {
1282 u32 bmcr;
1283
1284 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1285 return;
1286
1287 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1288 u32 val;
1289
1290 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1291 MII_BNX2_BLK_ADDR_SERDES_DIG);
1292 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1293 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1294 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1295 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1296
1297 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1298 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1299 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1300
1301 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1302 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1303 bmcr |= BCM5708S_BMCR_FORCE_2500;
1304 }
1305
1306 if (bp->autoneg & AUTONEG_SPEED) {
1307 bmcr &= ~BMCR_ANENABLE;
1308 if (bp->req_duplex == DUPLEX_FULL)
1309 bmcr |= BMCR_FULLDPLX;
1310 }
1311 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1312 }
1313
1314 static void
1315 bnx2_disable_forced_2g5(struct bnx2 *bp)
1316 {
1317 u32 bmcr;
1318
1319 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1320 return;
1321
1322 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1323 u32 val;
1324
1325 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1326 MII_BNX2_BLK_ADDR_SERDES_DIG);
1327 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1328 val &= ~MII_BNX2_SD_MISC1_FORCE;
1329 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1330
1331 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1332 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1333 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1334
1335 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1336 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1337 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1338 }
1339
1340 if (bp->autoneg & AUTONEG_SPEED)
1341 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1342 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1343 }
1344
1345 static void
1346 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1347 {
1348 u32 val;
1349
1350 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1351 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1352 if (start)
1353 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1354 else
1355 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1356 }
1357
1358 static int
1359 bnx2_set_link(struct bnx2 *bp)
1360 {
1361 u32 bmsr;
1362 u8 link_up;
1363
1364 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1365 bp->link_up = 1;
1366 return 0;
1367 }
1368
1369 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1370 return 0;
1371
1372 link_up = bp->link_up;
1373
1374 bnx2_enable_bmsr1(bp);
1375 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1376 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1377 bnx2_disable_bmsr1(bp);
1378
1379 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1380 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1381 u32 val, an_dbg;
1382
1383 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1384 bnx2_5706s_force_link_dn(bp, 0);
1385 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1386 }
1387 val = REG_RD(bp, BNX2_EMAC_STATUS);
1388
1389 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1390 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1391 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1392
1393 if ((val & BNX2_EMAC_STATUS_LINK) &&
1394 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1395 bmsr |= BMSR_LSTATUS;
1396 else
1397 bmsr &= ~BMSR_LSTATUS;
1398 }
1399
1400 if (bmsr & BMSR_LSTATUS) {
1401 bp->link_up = 1;
1402
1403 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1404 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1405 bnx2_5706s_linkup(bp);
1406 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1407 bnx2_5708s_linkup(bp);
1408 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1409 bnx2_5709s_linkup(bp);
1410 }
1411 else {
1412 bnx2_copper_linkup(bp);
1413 }
1414 bnx2_resolve_flow_ctrl(bp);
1415 }
1416 else {
1417 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1418 (bp->autoneg & AUTONEG_SPEED))
1419 bnx2_disable_forced_2g5(bp);
1420
1421 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1422 u32 bmcr;
1423
1424 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1425 bmcr |= BMCR_ANENABLE;
1426 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1427
1428 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1429 }
1430 bp->link_up = 0;
1431 }
1432
1433 if (bp->link_up != link_up) {
1434 bnx2_report_link(bp);
1435 }
1436
1437 bnx2_set_mac_link(bp);
1438
1439 return 0;
1440 }
1441
1442 static int
1443 bnx2_reset_phy(struct bnx2 *bp)
1444 {
1445 int i;
1446 u32 reg;
1447
1448 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1449
1450 #define PHY_RESET_MAX_WAIT 100
1451 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1452 udelay(10);
1453
1454 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1455 if (!(reg & BMCR_RESET)) {
1456 udelay(20);
1457 break;
1458 }
1459 }
1460 if (i == PHY_RESET_MAX_WAIT) {
1461 return -EBUSY;
1462 }
1463 return 0;
1464 }
1465
1466 static u32
1467 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1468 {
1469 u32 adv = 0;
1470
1471 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1472 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1473
1474 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1475 adv = ADVERTISE_1000XPAUSE;
1476 }
1477 else {
1478 adv = ADVERTISE_PAUSE_CAP;
1479 }
1480 }
1481 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1482 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1483 adv = ADVERTISE_1000XPSE_ASYM;
1484 }
1485 else {
1486 adv = ADVERTISE_PAUSE_ASYM;
1487 }
1488 }
1489 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1490 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1491 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1492 }
1493 else {
1494 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1495 }
1496 }
1497 return adv;
1498 }
1499
1500 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1501
1502 static int
1503 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1504 __releases(&bp->phy_lock)
1505 __acquires(&bp->phy_lock)
1506 {
1507 u32 speed_arg = 0, pause_adv;
1508
1509 pause_adv = bnx2_phy_get_pause_adv(bp);
1510
1511 if (bp->autoneg & AUTONEG_SPEED) {
1512 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1513 if (bp->advertising & ADVERTISED_10baseT_Half)
1514 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1515 if (bp->advertising & ADVERTISED_10baseT_Full)
1516 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1517 if (bp->advertising & ADVERTISED_100baseT_Half)
1518 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1519 if (bp->advertising & ADVERTISED_100baseT_Full)
1520 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1521 if (bp->advertising & ADVERTISED_1000baseT_Full)
1522 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1523 if (bp->advertising & ADVERTISED_2500baseX_Full)
1524 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1525 } else {
1526 if (bp->req_line_speed == SPEED_2500)
1527 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1528 else if (bp->req_line_speed == SPEED_1000)
1529 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1530 else if (bp->req_line_speed == SPEED_100) {
1531 if (bp->req_duplex == DUPLEX_FULL)
1532 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1533 else
1534 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1535 } else if (bp->req_line_speed == SPEED_10) {
1536 if (bp->req_duplex == DUPLEX_FULL)
1537 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1538 else
1539 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1540 }
1541 }
1542
1543 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1544 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1545 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1546 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1547
1548 if (port == PORT_TP)
1549 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1550 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1551
1552 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1553
1554 spin_unlock_bh(&bp->phy_lock);
1555 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1556 spin_lock_bh(&bp->phy_lock);
1557
1558 return 0;
1559 }
1560
1561 static int
1562 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1563 __releases(&bp->phy_lock)
1564 __acquires(&bp->phy_lock)
1565 {
1566 u32 adv, bmcr;
1567 u32 new_adv = 0;
1568
1569 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1570 return (bnx2_setup_remote_phy(bp, port));
1571
1572 if (!(bp->autoneg & AUTONEG_SPEED)) {
1573 u32 new_bmcr;
1574 int force_link_down = 0;
1575
1576 if (bp->req_line_speed == SPEED_2500) {
1577 if (!bnx2_test_and_enable_2g5(bp))
1578 force_link_down = 1;
1579 } else if (bp->req_line_speed == SPEED_1000) {
1580 if (bnx2_test_and_disable_2g5(bp))
1581 force_link_down = 1;
1582 }
1583 bnx2_read_phy(bp, bp->mii_adv, &adv);
1584 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1585
1586 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1587 new_bmcr = bmcr & ~BMCR_ANENABLE;
1588 new_bmcr |= BMCR_SPEED1000;
1589
1590 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1591 if (bp->req_line_speed == SPEED_2500)
1592 bnx2_enable_forced_2g5(bp);
1593 else if (bp->req_line_speed == SPEED_1000) {
1594 bnx2_disable_forced_2g5(bp);
1595 new_bmcr &= ~0x2000;
1596 }
1597
1598 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1599 if (bp->req_line_speed == SPEED_2500)
1600 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1601 else
1602 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1603 }
1604
1605 if (bp->req_duplex == DUPLEX_FULL) {
1606 adv |= ADVERTISE_1000XFULL;
1607 new_bmcr |= BMCR_FULLDPLX;
1608 }
1609 else {
1610 adv |= ADVERTISE_1000XHALF;
1611 new_bmcr &= ~BMCR_FULLDPLX;
1612 }
1613 if ((new_bmcr != bmcr) || (force_link_down)) {
1614 /* Force a link down visible on the other side */
1615 if (bp->link_up) {
1616 bnx2_write_phy(bp, bp->mii_adv, adv &
1617 ~(ADVERTISE_1000XFULL |
1618 ADVERTISE_1000XHALF));
1619 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1620 BMCR_ANRESTART | BMCR_ANENABLE);
1621
1622 bp->link_up = 0;
1623 netif_carrier_off(bp->dev);
1624 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1625 bnx2_report_link(bp);
1626 }
1627 bnx2_write_phy(bp, bp->mii_adv, adv);
1628 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1629 } else {
1630 bnx2_resolve_flow_ctrl(bp);
1631 bnx2_set_mac_link(bp);
1632 }
1633 return 0;
1634 }
1635
1636 bnx2_test_and_enable_2g5(bp);
1637
1638 if (bp->advertising & ADVERTISED_1000baseT_Full)
1639 new_adv |= ADVERTISE_1000XFULL;
1640
1641 new_adv |= bnx2_phy_get_pause_adv(bp);
1642
1643 bnx2_read_phy(bp, bp->mii_adv, &adv);
1644 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1645
1646 bp->serdes_an_pending = 0;
1647 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1648 /* Force a link down visible on the other side */
1649 if (bp->link_up) {
1650 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1651 spin_unlock_bh(&bp->phy_lock);
1652 msleep(20);
1653 spin_lock_bh(&bp->phy_lock);
1654 }
1655
1656 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1657 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1658 BMCR_ANENABLE);
1659 /* Speed up link-up time when the link partner
1660 * does not autonegotiate which is very common
1661 * in blade servers. Some blade servers use
1662 * IPMI for kerboard input and it's important
1663 * to minimize link disruptions. Autoneg. involves
1664 * exchanging base pages plus 3 next pages and
1665 * normally completes in about 120 msec.
1666 */
1667 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1668 bp->serdes_an_pending = 1;
1669 mod_timer(&bp->timer, jiffies + bp->current_interval);
1670 } else {
1671 bnx2_resolve_flow_ctrl(bp);
1672 bnx2_set_mac_link(bp);
1673 }
1674
1675 return 0;
1676 }
1677
1678 #define ETHTOOL_ALL_FIBRE_SPEED \
1679 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1680 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1681 (ADVERTISED_1000baseT_Full)
1682
1683 #define ETHTOOL_ALL_COPPER_SPEED \
1684 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1685 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1686 ADVERTISED_1000baseT_Full)
1687
1688 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1689 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1690
1691 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1692
1693 static void
1694 bnx2_set_default_remote_link(struct bnx2 *bp)
1695 {
1696 u32 link;
1697
1698 if (bp->phy_port == PORT_TP)
1699 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1700 else
1701 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1702
1703 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1704 bp->req_line_speed = 0;
1705 bp->autoneg |= AUTONEG_SPEED;
1706 bp->advertising = ADVERTISED_Autoneg;
1707 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1708 bp->advertising |= ADVERTISED_10baseT_Half;
1709 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1710 bp->advertising |= ADVERTISED_10baseT_Full;
1711 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1712 bp->advertising |= ADVERTISED_100baseT_Half;
1713 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1714 bp->advertising |= ADVERTISED_100baseT_Full;
1715 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1716 bp->advertising |= ADVERTISED_1000baseT_Full;
1717 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1718 bp->advertising |= ADVERTISED_2500baseX_Full;
1719 } else {
1720 bp->autoneg = 0;
1721 bp->advertising = 0;
1722 bp->req_duplex = DUPLEX_FULL;
1723 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1724 bp->req_line_speed = SPEED_10;
1725 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1726 bp->req_duplex = DUPLEX_HALF;
1727 }
1728 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1729 bp->req_line_speed = SPEED_100;
1730 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1731 bp->req_duplex = DUPLEX_HALF;
1732 }
1733 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1734 bp->req_line_speed = SPEED_1000;
1735 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1736 bp->req_line_speed = SPEED_2500;
1737 }
1738 }
1739
1740 static void
1741 bnx2_set_default_link(struct bnx2 *bp)
1742 {
1743 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1744 bnx2_set_default_remote_link(bp);
1745 return;
1746 }
1747
1748 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1749 bp->req_line_speed = 0;
1750 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1751 u32 reg;
1752
1753 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1754
1755 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1756 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1757 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1758 bp->autoneg = 0;
1759 bp->req_line_speed = bp->line_speed = SPEED_1000;
1760 bp->req_duplex = DUPLEX_FULL;
1761 }
1762 } else
1763 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1764 }
1765
1766 static void
1767 bnx2_send_heart_beat(struct bnx2 *bp)
1768 {
1769 u32 msg;
1770 u32 addr;
1771
1772 spin_lock(&bp->indirect_lock);
1773 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1774 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1775 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1776 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1777 spin_unlock(&bp->indirect_lock);
1778 }
1779
1780 static void
1781 bnx2_remote_phy_event(struct bnx2 *bp)
1782 {
1783 u32 msg;
1784 u8 link_up = bp->link_up;
1785 u8 old_port;
1786
1787 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1788
1789 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1790 bnx2_send_heart_beat(bp);
1791
1792 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1793
1794 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1795 bp->link_up = 0;
1796 else {
1797 u32 speed;
1798
1799 bp->link_up = 1;
1800 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1801 bp->duplex = DUPLEX_FULL;
1802 switch (speed) {
1803 case BNX2_LINK_STATUS_10HALF:
1804 bp->duplex = DUPLEX_HALF;
1805 case BNX2_LINK_STATUS_10FULL:
1806 bp->line_speed = SPEED_10;
1807 break;
1808 case BNX2_LINK_STATUS_100HALF:
1809 bp->duplex = DUPLEX_HALF;
1810 case BNX2_LINK_STATUS_100BASE_T4:
1811 case BNX2_LINK_STATUS_100FULL:
1812 bp->line_speed = SPEED_100;
1813 break;
1814 case BNX2_LINK_STATUS_1000HALF:
1815 bp->duplex = DUPLEX_HALF;
1816 case BNX2_LINK_STATUS_1000FULL:
1817 bp->line_speed = SPEED_1000;
1818 break;
1819 case BNX2_LINK_STATUS_2500HALF:
1820 bp->duplex = DUPLEX_HALF;
1821 case BNX2_LINK_STATUS_2500FULL:
1822 bp->line_speed = SPEED_2500;
1823 break;
1824 default:
1825 bp->line_speed = 0;
1826 break;
1827 }
1828
1829 bp->flow_ctrl = 0;
1830 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1831 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1832 if (bp->duplex == DUPLEX_FULL)
1833 bp->flow_ctrl = bp->req_flow_ctrl;
1834 } else {
1835 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1836 bp->flow_ctrl |= FLOW_CTRL_TX;
1837 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1838 bp->flow_ctrl |= FLOW_CTRL_RX;
1839 }
1840
1841 old_port = bp->phy_port;
1842 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
1843 bp->phy_port = PORT_FIBRE;
1844 else
1845 bp->phy_port = PORT_TP;
1846
1847 if (old_port != bp->phy_port)
1848 bnx2_set_default_link(bp);
1849
1850 }
1851 if (bp->link_up != link_up)
1852 bnx2_report_link(bp);
1853
1854 bnx2_set_mac_link(bp);
1855 }
1856
1857 static int
1858 bnx2_set_remote_link(struct bnx2 *bp)
1859 {
1860 u32 evt_code;
1861
1862 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
1863 switch (evt_code) {
1864 case BNX2_FW_EVT_CODE_LINK_EVENT:
1865 bnx2_remote_phy_event(bp);
1866 break;
1867 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
1868 default:
1869 bnx2_send_heart_beat(bp);
1870 break;
1871 }
1872 return 0;
1873 }
1874
1875 static int
1876 bnx2_setup_copper_phy(struct bnx2 *bp)
1877 __releases(&bp->phy_lock)
1878 __acquires(&bp->phy_lock)
1879 {
1880 u32 bmcr;
1881 u32 new_bmcr;
1882
1883 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1884
1885 if (bp->autoneg & AUTONEG_SPEED) {
1886 u32 adv_reg, adv1000_reg;
1887 u32 new_adv_reg = 0;
1888 u32 new_adv1000_reg = 0;
1889
1890 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
1891 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1892 ADVERTISE_PAUSE_ASYM);
1893
1894 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1895 adv1000_reg &= PHY_ALL_1000_SPEED;
1896
1897 if (bp->advertising & ADVERTISED_10baseT_Half)
1898 new_adv_reg |= ADVERTISE_10HALF;
1899 if (bp->advertising & ADVERTISED_10baseT_Full)
1900 new_adv_reg |= ADVERTISE_10FULL;
1901 if (bp->advertising & ADVERTISED_100baseT_Half)
1902 new_adv_reg |= ADVERTISE_100HALF;
1903 if (bp->advertising & ADVERTISED_100baseT_Full)
1904 new_adv_reg |= ADVERTISE_100FULL;
1905 if (bp->advertising & ADVERTISED_1000baseT_Full)
1906 new_adv1000_reg |= ADVERTISE_1000FULL;
1907
1908 new_adv_reg |= ADVERTISE_CSMA;
1909
1910 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1911
1912 if ((adv1000_reg != new_adv1000_reg) ||
1913 (adv_reg != new_adv_reg) ||
1914 ((bmcr & BMCR_ANENABLE) == 0)) {
1915
1916 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
1917 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1918 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
1919 BMCR_ANENABLE);
1920 }
1921 else if (bp->link_up) {
1922 /* Flow ctrl may have changed from auto to forced */
1923 /* or vice-versa. */
1924
1925 bnx2_resolve_flow_ctrl(bp);
1926 bnx2_set_mac_link(bp);
1927 }
1928 return 0;
1929 }
1930
1931 new_bmcr = 0;
1932 if (bp->req_line_speed == SPEED_100) {
1933 new_bmcr |= BMCR_SPEED100;
1934 }
1935 if (bp->req_duplex == DUPLEX_FULL) {
1936 new_bmcr |= BMCR_FULLDPLX;
1937 }
1938 if (new_bmcr != bmcr) {
1939 u32 bmsr;
1940
1941 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1942 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1943
1944 if (bmsr & BMSR_LSTATUS) {
1945 /* Force link down */
1946 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1947 spin_unlock_bh(&bp->phy_lock);
1948 msleep(50);
1949 spin_lock_bh(&bp->phy_lock);
1950
1951 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1952 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1953 }
1954
1955 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1956
1957 /* Normally, the new speed is setup after the link has
1958 * gone down and up again. In some cases, link will not go
1959 * down so we need to set up the new speed here.
1960 */
1961 if (bmsr & BMSR_LSTATUS) {
1962 bp->line_speed = bp->req_line_speed;
1963 bp->duplex = bp->req_duplex;
1964 bnx2_resolve_flow_ctrl(bp);
1965 bnx2_set_mac_link(bp);
1966 }
1967 } else {
1968 bnx2_resolve_flow_ctrl(bp);
1969 bnx2_set_mac_link(bp);
1970 }
1971 return 0;
1972 }
1973
1974 static int
1975 bnx2_setup_phy(struct bnx2 *bp, u8 port)
1976 __releases(&bp->phy_lock)
1977 __acquires(&bp->phy_lock)
1978 {
1979 if (bp->loopback == MAC_LOOPBACK)
1980 return 0;
1981
1982 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1983 return (bnx2_setup_serdes_phy(bp, port));
1984 }
1985 else {
1986 return (bnx2_setup_copper_phy(bp));
1987 }
1988 }
1989
1990 static int
1991 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
1992 {
1993 u32 val;
1994
1995 bp->mii_bmcr = MII_BMCR + 0x10;
1996 bp->mii_bmsr = MII_BMSR + 0x10;
1997 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
1998 bp->mii_adv = MII_ADVERTISE + 0x10;
1999 bp->mii_lpa = MII_LPA + 0x10;
2000 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2001
2002 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2003 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2004
2005 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2006 if (reset_phy)
2007 bnx2_reset_phy(bp);
2008
2009 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2010
2011 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2012 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2013 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2014 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2015
2016 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2017 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2018 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2019 val |= BCM5708S_UP1_2G5;
2020 else
2021 val &= ~BCM5708S_UP1_2G5;
2022 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2023
2024 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2025 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2026 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2027 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2028
2029 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2030
2031 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2032 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2033 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2034
2035 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2036
2037 return 0;
2038 }
2039
2040 static int
2041 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2042 {
2043 u32 val;
2044
2045 if (reset_phy)
2046 bnx2_reset_phy(bp);
2047
2048 bp->mii_up1 = BCM5708S_UP1;
2049
2050 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2051 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2052 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2053
2054 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2055 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2056 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2057
2058 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2059 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2060 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2061
2062 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2063 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2064 val |= BCM5708S_UP1_2G5;
2065 bnx2_write_phy(bp, BCM5708S_UP1, val);
2066 }
2067
2068 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2069 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2070 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2071 /* increase tx signal amplitude */
2072 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2073 BCM5708S_BLK_ADDR_TX_MISC);
2074 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2075 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2076 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2077 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2078 }
2079
2080 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2081 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2082
2083 if (val) {
2084 u32 is_backplane;
2085
2086 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2087 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2088 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2089 BCM5708S_BLK_ADDR_TX_MISC);
2090 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2091 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2092 BCM5708S_BLK_ADDR_DIG);
2093 }
2094 }
2095 return 0;
2096 }
2097
2098 static int
2099 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2100 {
2101 if (reset_phy)
2102 bnx2_reset_phy(bp);
2103
2104 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2105
2106 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2107 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2108
2109 if (bp->dev->mtu > 1500) {
2110 u32 val;
2111
2112 /* Set extended packet length bit */
2113 bnx2_write_phy(bp, 0x18, 0x7);
2114 bnx2_read_phy(bp, 0x18, &val);
2115 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2116
2117 bnx2_write_phy(bp, 0x1c, 0x6c00);
2118 bnx2_read_phy(bp, 0x1c, &val);
2119 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2120 }
2121 else {
2122 u32 val;
2123
2124 bnx2_write_phy(bp, 0x18, 0x7);
2125 bnx2_read_phy(bp, 0x18, &val);
2126 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2127
2128 bnx2_write_phy(bp, 0x1c, 0x6c00);
2129 bnx2_read_phy(bp, 0x1c, &val);
2130 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2131 }
2132
2133 return 0;
2134 }
2135
2136 static int
2137 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2138 {
2139 u32 val;
2140
2141 if (reset_phy)
2142 bnx2_reset_phy(bp);
2143
2144 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2145 bnx2_write_phy(bp, 0x18, 0x0c00);
2146 bnx2_write_phy(bp, 0x17, 0x000a);
2147 bnx2_write_phy(bp, 0x15, 0x310b);
2148 bnx2_write_phy(bp, 0x17, 0x201f);
2149 bnx2_write_phy(bp, 0x15, 0x9506);
2150 bnx2_write_phy(bp, 0x17, 0x401f);
2151 bnx2_write_phy(bp, 0x15, 0x14e2);
2152 bnx2_write_phy(bp, 0x18, 0x0400);
2153 }
2154
2155 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2156 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2157 MII_BNX2_DSP_EXPAND_REG | 0x8);
2158 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2159 val &= ~(1 << 8);
2160 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2161 }
2162
2163 if (bp->dev->mtu > 1500) {
2164 /* Set extended packet length bit */
2165 bnx2_write_phy(bp, 0x18, 0x7);
2166 bnx2_read_phy(bp, 0x18, &val);
2167 bnx2_write_phy(bp, 0x18, val | 0x4000);
2168
2169 bnx2_read_phy(bp, 0x10, &val);
2170 bnx2_write_phy(bp, 0x10, val | 0x1);
2171 }
2172 else {
2173 bnx2_write_phy(bp, 0x18, 0x7);
2174 bnx2_read_phy(bp, 0x18, &val);
2175 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2176
2177 bnx2_read_phy(bp, 0x10, &val);
2178 bnx2_write_phy(bp, 0x10, val & ~0x1);
2179 }
2180
2181 /* ethernet@wirespeed */
2182 bnx2_write_phy(bp, 0x18, 0x7007);
2183 bnx2_read_phy(bp, 0x18, &val);
2184 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2185 return 0;
2186 }
2187
2188
2189 static int
2190 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2191 __releases(&bp->phy_lock)
2192 __acquires(&bp->phy_lock)
2193 {
2194 u32 val;
2195 int rc = 0;
2196
2197 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2198 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2199
2200 bp->mii_bmcr = MII_BMCR;
2201 bp->mii_bmsr = MII_BMSR;
2202 bp->mii_bmsr1 = MII_BMSR;
2203 bp->mii_adv = MII_ADVERTISE;
2204 bp->mii_lpa = MII_LPA;
2205
2206 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2207
2208 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2209 goto setup_phy;
2210
2211 bnx2_read_phy(bp, MII_PHYSID1, &val);
2212 bp->phy_id = val << 16;
2213 bnx2_read_phy(bp, MII_PHYSID2, &val);
2214 bp->phy_id |= val & 0xffff;
2215
2216 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2217 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2218 rc = bnx2_init_5706s_phy(bp, reset_phy);
2219 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2220 rc = bnx2_init_5708s_phy(bp, reset_phy);
2221 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2222 rc = bnx2_init_5709s_phy(bp, reset_phy);
2223 }
2224 else {
2225 rc = bnx2_init_copper_phy(bp, reset_phy);
2226 }
2227
2228 setup_phy:
2229 if (!rc)
2230 rc = bnx2_setup_phy(bp, bp->phy_port);
2231
2232 return rc;
2233 }
2234
2235 static int
2236 bnx2_set_mac_loopback(struct bnx2 *bp)
2237 {
2238 u32 mac_mode;
2239
2240 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2241 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2242 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2243 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2244 bp->link_up = 1;
2245 return 0;
2246 }
2247
2248 static int bnx2_test_link(struct bnx2 *);
2249
2250 static int
2251 bnx2_set_phy_loopback(struct bnx2 *bp)
2252 {
2253 u32 mac_mode;
2254 int rc, i;
2255
2256 spin_lock_bh(&bp->phy_lock);
2257 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2258 BMCR_SPEED1000);
2259 spin_unlock_bh(&bp->phy_lock);
2260 if (rc)
2261 return rc;
2262
2263 for (i = 0; i < 10; i++) {
2264 if (bnx2_test_link(bp) == 0)
2265 break;
2266 msleep(100);
2267 }
2268
2269 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2270 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2271 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2272 BNX2_EMAC_MODE_25G_MODE);
2273
2274 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2275 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2276 bp->link_up = 1;
2277 return 0;
2278 }
2279
2280 static int
2281 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2282 {
2283 int i;
2284 u32 val;
2285
2286 bp->fw_wr_seq++;
2287 msg_data |= bp->fw_wr_seq;
2288
2289 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2290
2291 if (!ack)
2292 return 0;
2293
2294 /* wait for an acknowledgement. */
2295 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2296 msleep(10);
2297
2298 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2299
2300 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2301 break;
2302 }
2303 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2304 return 0;
2305
2306 /* If we timed out, inform the firmware that this is the case. */
2307 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2308 if (!silent)
2309 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2310 "%x\n", msg_data);
2311
2312 msg_data &= ~BNX2_DRV_MSG_CODE;
2313 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2314
2315 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2316
2317 return -EBUSY;
2318 }
2319
2320 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2321 return -EIO;
2322
2323 return 0;
2324 }
2325
2326 static int
2327 bnx2_init_5709_context(struct bnx2 *bp)
2328 {
2329 int i, ret = 0;
2330 u32 val;
2331
2332 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2333 val |= (BCM_PAGE_BITS - 8) << 16;
2334 REG_WR(bp, BNX2_CTX_COMMAND, val);
2335 for (i = 0; i < 10; i++) {
2336 val = REG_RD(bp, BNX2_CTX_COMMAND);
2337 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2338 break;
2339 udelay(2);
2340 }
2341 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2342 return -EBUSY;
2343
2344 for (i = 0; i < bp->ctx_pages; i++) {
2345 int j;
2346
2347 if (bp->ctx_blk[i])
2348 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2349 else
2350 return -ENOMEM;
2351
2352 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2353 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2354 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2355 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2356 (u64) bp->ctx_blk_mapping[i] >> 32);
2357 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2358 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2359 for (j = 0; j < 10; j++) {
2360
2361 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2362 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2363 break;
2364 udelay(5);
2365 }
2366 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2367 ret = -EBUSY;
2368 break;
2369 }
2370 }
2371 return ret;
2372 }
2373
2374 static void
2375 bnx2_init_context(struct bnx2 *bp)
2376 {
2377 u32 vcid;
2378
2379 vcid = 96;
2380 while (vcid) {
2381 u32 vcid_addr, pcid_addr, offset;
2382 int i;
2383
2384 vcid--;
2385
2386 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2387 u32 new_vcid;
2388
2389 vcid_addr = GET_PCID_ADDR(vcid);
2390 if (vcid & 0x8) {
2391 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2392 }
2393 else {
2394 new_vcid = vcid;
2395 }
2396 pcid_addr = GET_PCID_ADDR(new_vcid);
2397 }
2398 else {
2399 vcid_addr = GET_CID_ADDR(vcid);
2400 pcid_addr = vcid_addr;
2401 }
2402
2403 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2404 vcid_addr += (i << PHY_CTX_SHIFT);
2405 pcid_addr += (i << PHY_CTX_SHIFT);
2406
2407 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2408 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2409
2410 /* Zero out the context. */
2411 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2412 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2413 }
2414 }
2415 }
2416
2417 static int
2418 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2419 {
2420 u16 *good_mbuf;
2421 u32 good_mbuf_cnt;
2422 u32 val;
2423
2424 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2425 if (good_mbuf == NULL) {
2426 printk(KERN_ERR PFX "Failed to allocate memory in "
2427 "bnx2_alloc_bad_rbuf\n");
2428 return -ENOMEM;
2429 }
2430
2431 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2432 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2433
2434 good_mbuf_cnt = 0;
2435
2436 /* Allocate a bunch of mbufs and save the good ones in an array. */
2437 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2438 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2439 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2440 BNX2_RBUF_COMMAND_ALLOC_REQ);
2441
2442 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2443
2444 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2445
2446 /* The addresses with Bit 9 set are bad memory blocks. */
2447 if (!(val & (1 << 9))) {
2448 good_mbuf[good_mbuf_cnt] = (u16) val;
2449 good_mbuf_cnt++;
2450 }
2451
2452 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2453 }
2454
2455 /* Free the good ones back to the mbuf pool thus discarding
2456 * all the bad ones. */
2457 while (good_mbuf_cnt) {
2458 good_mbuf_cnt--;
2459
2460 val = good_mbuf[good_mbuf_cnt];
2461 val = (val << 9) | val | 1;
2462
2463 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2464 }
2465 kfree(good_mbuf);
2466 return 0;
2467 }
2468
2469 static void
2470 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2471 {
2472 u32 val;
2473
2474 val = (mac_addr[0] << 8) | mac_addr[1];
2475
2476 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2477
2478 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2479 (mac_addr[4] << 8) | mac_addr[5];
2480
2481 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2482 }
2483
2484 static inline int
2485 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2486 {
2487 dma_addr_t mapping;
2488 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2489 struct rx_bd *rxbd =
2490 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2491 struct page *page = alloc_page(GFP_ATOMIC);
2492
2493 if (!page)
2494 return -ENOMEM;
2495 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2496 PCI_DMA_FROMDEVICE);
2497 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2498 __free_page(page);
2499 return -EIO;
2500 }
2501
2502 rx_pg->page = page;
2503 pci_unmap_addr_set(rx_pg, mapping, mapping);
2504 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2505 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2506 return 0;
2507 }
2508
2509 static void
2510 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2511 {
2512 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2513 struct page *page = rx_pg->page;
2514
2515 if (!page)
2516 return;
2517
2518 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2519 PCI_DMA_FROMDEVICE);
2520
2521 __free_page(page);
2522 rx_pg->page = NULL;
2523 }
2524
2525 static inline int
2526 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2527 {
2528 struct sk_buff *skb;
2529 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2530 dma_addr_t mapping;
2531 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2532 unsigned long align;
2533
2534 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2535 if (skb == NULL) {
2536 return -ENOMEM;
2537 }
2538
2539 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2540 skb_reserve(skb, BNX2_RX_ALIGN - align);
2541
2542 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2543 PCI_DMA_FROMDEVICE);
2544 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2545 dev_kfree_skb(skb);
2546 return -EIO;
2547 }
2548
2549 rx_buf->skb = skb;
2550 pci_unmap_addr_set(rx_buf, mapping, mapping);
2551
2552 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2553 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2554
2555 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2556
2557 return 0;
2558 }
2559
2560 static int
2561 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2562 {
2563 struct status_block *sblk = bnapi->status_blk.msi;
2564 u32 new_link_state, old_link_state;
2565 int is_set = 1;
2566
2567 new_link_state = sblk->status_attn_bits & event;
2568 old_link_state = sblk->status_attn_bits_ack & event;
2569 if (new_link_state != old_link_state) {
2570 if (new_link_state)
2571 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2572 else
2573 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2574 } else
2575 is_set = 0;
2576
2577 return is_set;
2578 }
2579
2580 static void
2581 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2582 {
2583 spin_lock(&bp->phy_lock);
2584
2585 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2586 bnx2_set_link(bp);
2587 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2588 bnx2_set_remote_link(bp);
2589
2590 spin_unlock(&bp->phy_lock);
2591
2592 }
2593
2594 static inline u16
2595 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2596 {
2597 u16 cons;
2598
2599 /* Tell compiler that status block fields can change. */
2600 barrier();
2601 cons = *bnapi->hw_tx_cons_ptr;
2602 barrier();
2603 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2604 cons++;
2605 return cons;
2606 }
2607
2608 static int
2609 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2610 {
2611 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2612 u16 hw_cons, sw_cons, sw_ring_cons;
2613 int tx_pkt = 0, index;
2614 struct netdev_queue *txq;
2615
2616 index = (bnapi - bp->bnx2_napi);
2617 txq = netdev_get_tx_queue(bp->dev, index);
2618
2619 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2620 sw_cons = txr->tx_cons;
2621
2622 while (sw_cons != hw_cons) {
2623 struct sw_tx_bd *tx_buf;
2624 struct sk_buff *skb;
2625 int i, last;
2626
2627 sw_ring_cons = TX_RING_IDX(sw_cons);
2628
2629 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2630 skb = tx_buf->skb;
2631
2632 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2633 prefetch(&skb->end);
2634
2635 /* partial BD completions possible with TSO packets */
2636 if (tx_buf->is_gso) {
2637 u16 last_idx, last_ring_idx;
2638
2639 last_idx = sw_cons + tx_buf->nr_frags + 1;
2640 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2641 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2642 last_idx++;
2643 }
2644 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2645 break;
2646 }
2647 }
2648
2649 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2650
2651 tx_buf->skb = NULL;
2652 last = tx_buf->nr_frags;
2653
2654 for (i = 0; i < last; i++) {
2655 sw_cons = NEXT_TX_BD(sw_cons);
2656 }
2657
2658 sw_cons = NEXT_TX_BD(sw_cons);
2659
2660 dev_kfree_skb(skb);
2661 tx_pkt++;
2662 if (tx_pkt == budget)
2663 break;
2664
2665 if (hw_cons == sw_cons)
2666 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2667 }
2668
2669 txr->hw_tx_cons = hw_cons;
2670 txr->tx_cons = sw_cons;
2671
2672 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2673 * before checking for netif_tx_queue_stopped(). Without the
2674 * memory barrier, there is a small possibility that bnx2_start_xmit()
2675 * will miss it and cause the queue to be stopped forever.
2676 */
2677 smp_mb();
2678
2679 if (unlikely(netif_tx_queue_stopped(txq)) &&
2680 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2681 __netif_tx_lock(txq, smp_processor_id());
2682 if ((netif_tx_queue_stopped(txq)) &&
2683 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2684 netif_tx_wake_queue(txq);
2685 __netif_tx_unlock(txq);
2686 }
2687
2688 return tx_pkt;
2689 }
2690
2691 static void
2692 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2693 struct sk_buff *skb, int count)
2694 {
2695 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2696 struct rx_bd *cons_bd, *prod_bd;
2697 int i;
2698 u16 hw_prod, prod;
2699 u16 cons = rxr->rx_pg_cons;
2700
2701 cons_rx_pg = &rxr->rx_pg_ring[cons];
2702
2703 /* The caller was unable to allocate a new page to replace the
2704 * last one in the frags array, so we need to recycle that page
2705 * and then free the skb.
2706 */
2707 if (skb) {
2708 struct page *page;
2709 struct skb_shared_info *shinfo;
2710
2711 shinfo = skb_shinfo(skb);
2712 shinfo->nr_frags--;
2713 page = shinfo->frags[shinfo->nr_frags].page;
2714 shinfo->frags[shinfo->nr_frags].page = NULL;
2715
2716 cons_rx_pg->page = page;
2717 dev_kfree_skb(skb);
2718 }
2719
2720 hw_prod = rxr->rx_pg_prod;
2721
2722 for (i = 0; i < count; i++) {
2723 prod = RX_PG_RING_IDX(hw_prod);
2724
2725 prod_rx_pg = &rxr->rx_pg_ring[prod];
2726 cons_rx_pg = &rxr->rx_pg_ring[cons];
2727 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2728 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2729
2730 if (prod != cons) {
2731 prod_rx_pg->page = cons_rx_pg->page;
2732 cons_rx_pg->page = NULL;
2733 pci_unmap_addr_set(prod_rx_pg, mapping,
2734 pci_unmap_addr(cons_rx_pg, mapping));
2735
2736 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2737 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2738
2739 }
2740 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2741 hw_prod = NEXT_RX_BD(hw_prod);
2742 }
2743 rxr->rx_pg_prod = hw_prod;
2744 rxr->rx_pg_cons = cons;
2745 }
2746
2747 static inline void
2748 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2749 struct sk_buff *skb, u16 cons, u16 prod)
2750 {
2751 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2752 struct rx_bd *cons_bd, *prod_bd;
2753
2754 cons_rx_buf = &rxr->rx_buf_ring[cons];
2755 prod_rx_buf = &rxr->rx_buf_ring[prod];
2756
2757 pci_dma_sync_single_for_device(bp->pdev,
2758 pci_unmap_addr(cons_rx_buf, mapping),
2759 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2760
2761 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2762
2763 prod_rx_buf->skb = skb;
2764
2765 if (cons == prod)
2766 return;
2767
2768 pci_unmap_addr_set(prod_rx_buf, mapping,
2769 pci_unmap_addr(cons_rx_buf, mapping));
2770
2771 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2772 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2773 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2774 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2775 }
2776
2777 static int
2778 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2779 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2780 u32 ring_idx)
2781 {
2782 int err;
2783 u16 prod = ring_idx & 0xffff;
2784
2785 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2786 if (unlikely(err)) {
2787 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2788 if (hdr_len) {
2789 unsigned int raw_len = len + 4;
2790 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2791
2792 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2793 }
2794 return err;
2795 }
2796
2797 skb_reserve(skb, BNX2_RX_OFFSET);
2798 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2799 PCI_DMA_FROMDEVICE);
2800
2801 if (hdr_len == 0) {
2802 skb_put(skb, len);
2803 return 0;
2804 } else {
2805 unsigned int i, frag_len, frag_size, pages;
2806 struct sw_pg *rx_pg;
2807 u16 pg_cons = rxr->rx_pg_cons;
2808 u16 pg_prod = rxr->rx_pg_prod;
2809
2810 frag_size = len + 4 - hdr_len;
2811 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2812 skb_put(skb, hdr_len);
2813
2814 for (i = 0; i < pages; i++) {
2815 dma_addr_t mapping_old;
2816
2817 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2818 if (unlikely(frag_len <= 4)) {
2819 unsigned int tail = 4 - frag_len;
2820
2821 rxr->rx_pg_cons = pg_cons;
2822 rxr->rx_pg_prod = pg_prod;
2823 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2824 pages - i);
2825 skb->len -= tail;
2826 if (i == 0) {
2827 skb->tail -= tail;
2828 } else {
2829 skb_frag_t *frag =
2830 &skb_shinfo(skb)->frags[i - 1];
2831 frag->size -= tail;
2832 skb->data_len -= tail;
2833 skb->truesize -= tail;
2834 }
2835 return 0;
2836 }
2837 rx_pg = &rxr->rx_pg_ring[pg_cons];
2838
2839 /* Don't unmap yet. If we're unable to allocate a new
2840 * page, we need to recycle the page and the DMA addr.
2841 */
2842 mapping_old = pci_unmap_addr(rx_pg, mapping);
2843 if (i == pages - 1)
2844 frag_len -= 4;
2845
2846 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
2847 rx_pg->page = NULL;
2848
2849 err = bnx2_alloc_rx_page(bp, rxr,
2850 RX_PG_RING_IDX(pg_prod));
2851 if (unlikely(err)) {
2852 rxr->rx_pg_cons = pg_cons;
2853 rxr->rx_pg_prod = pg_prod;
2854 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
2855 pages - i);
2856 return err;
2857 }
2858
2859 pci_unmap_page(bp->pdev, mapping_old,
2860 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2861
2862 frag_size -= frag_len;
2863 skb->data_len += frag_len;
2864 skb->truesize += frag_len;
2865 skb->len += frag_len;
2866
2867 pg_prod = NEXT_RX_BD(pg_prod);
2868 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
2869 }
2870 rxr->rx_pg_prod = pg_prod;
2871 rxr->rx_pg_cons = pg_cons;
2872 }
2873 return 0;
2874 }
2875
2876 static inline u16
2877 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
2878 {
2879 u16 cons;
2880
2881 /* Tell compiler that status block fields can change. */
2882 barrier();
2883 cons = *bnapi->hw_rx_cons_ptr;
2884 barrier();
2885 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
2886 cons++;
2887 return cons;
2888 }
2889
2890 static int
2891 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2892 {
2893 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
2894 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
2895 struct l2_fhdr *rx_hdr;
2896 int rx_pkt = 0, pg_ring_used = 0;
2897
2898 hw_cons = bnx2_get_hw_rx_cons(bnapi);
2899 sw_cons = rxr->rx_cons;
2900 sw_prod = rxr->rx_prod;
2901
2902 /* Memory barrier necessary as speculative reads of the rx
2903 * buffer can be ahead of the index in the status block
2904 */
2905 rmb();
2906 while (sw_cons != hw_cons) {
2907 unsigned int len, hdr_len;
2908 u32 status;
2909 struct sw_bd *rx_buf;
2910 struct sk_buff *skb;
2911 dma_addr_t dma_addr;
2912 u16 vtag = 0;
2913 int hw_vlan __maybe_unused = 0;
2914
2915 sw_ring_cons = RX_RING_IDX(sw_cons);
2916 sw_ring_prod = RX_RING_IDX(sw_prod);
2917
2918 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
2919 skb = rx_buf->skb;
2920
2921 rx_buf->skb = NULL;
2922
2923 dma_addr = pci_unmap_addr(rx_buf, mapping);
2924
2925 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
2926 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
2927 PCI_DMA_FROMDEVICE);
2928
2929 rx_hdr = (struct l2_fhdr *) skb->data;
2930 len = rx_hdr->l2_fhdr_pkt_len;
2931 status = rx_hdr->l2_fhdr_status;
2932
2933 hdr_len = 0;
2934 if (status & L2_FHDR_STATUS_SPLIT) {
2935 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
2936 pg_ring_used = 1;
2937 } else if (len > bp->rx_jumbo_thresh) {
2938 hdr_len = bp->rx_jumbo_thresh;
2939 pg_ring_used = 1;
2940 }
2941
2942 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
2943 L2_FHDR_ERRORS_PHY_DECODE |
2944 L2_FHDR_ERRORS_ALIGNMENT |
2945 L2_FHDR_ERRORS_TOO_SHORT |
2946 L2_FHDR_ERRORS_GIANT_FRAME))) {
2947
2948 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
2949 sw_ring_prod);
2950 if (pg_ring_used) {
2951 int pages;
2952
2953 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
2954
2955 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2956 }
2957 goto next_rx;
2958 }
2959
2960 len -= 4;
2961
2962 if (len <= bp->rx_copy_thresh) {
2963 struct sk_buff *new_skb;
2964
2965 new_skb = netdev_alloc_skb(bp->dev, len + 6);
2966 if (new_skb == NULL) {
2967 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
2968 sw_ring_prod);
2969 goto next_rx;
2970 }
2971
2972 /* aligned copy */
2973 skb_copy_from_linear_data_offset(skb,
2974 BNX2_RX_OFFSET - 6,
2975 new_skb->data, len + 6);
2976 skb_reserve(new_skb, 6);
2977 skb_put(new_skb, len);
2978
2979 bnx2_reuse_rx_skb(bp, rxr, skb,
2980 sw_ring_cons, sw_ring_prod);
2981
2982 skb = new_skb;
2983 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
2984 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
2985 goto next_rx;
2986
2987 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
2988 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
2989 vtag = rx_hdr->l2_fhdr_vlan_tag;
2990 #ifdef BCM_VLAN
2991 if (bp->vlgrp)
2992 hw_vlan = 1;
2993 else
2994 #endif
2995 {
2996 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
2997 __skb_push(skb, 4);
2998
2999 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3000 ve->h_vlan_proto = htons(ETH_P_8021Q);
3001 ve->h_vlan_TCI = htons(vtag);
3002 len += 4;
3003 }
3004 }
3005
3006 skb->protocol = eth_type_trans(skb, bp->dev);
3007
3008 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3009 (ntohs(skb->protocol) != 0x8100)) {
3010
3011 dev_kfree_skb(skb);
3012 goto next_rx;
3013
3014 }
3015
3016 skb->ip_summed = CHECKSUM_NONE;
3017 if (bp->rx_csum &&
3018 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3019 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3020
3021 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3022 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3023 skb->ip_summed = CHECKSUM_UNNECESSARY;
3024 }
3025
3026 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3027
3028 #ifdef BCM_VLAN
3029 if (hw_vlan)
3030 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3031 else
3032 #endif
3033 netif_receive_skb(skb);
3034
3035 rx_pkt++;
3036
3037 next_rx:
3038 sw_cons = NEXT_RX_BD(sw_cons);
3039 sw_prod = NEXT_RX_BD(sw_prod);
3040
3041 if ((rx_pkt == budget))
3042 break;
3043
3044 /* Refresh hw_cons to see if there is new work */
3045 if (sw_cons == hw_cons) {
3046 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3047 rmb();
3048 }
3049 }
3050 rxr->rx_cons = sw_cons;
3051 rxr->rx_prod = sw_prod;
3052
3053 if (pg_ring_used)
3054 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3055
3056 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3057
3058 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3059
3060 mmiowb();
3061
3062 return rx_pkt;
3063
3064 }
3065
3066 /* MSI ISR - The only difference between this and the INTx ISR
3067 * is that the MSI interrupt is always serviced.
3068 */
3069 static irqreturn_t
3070 bnx2_msi(int irq, void *dev_instance)
3071 {
3072 struct bnx2_napi *bnapi = dev_instance;
3073 struct bnx2 *bp = bnapi->bp;
3074
3075 prefetch(bnapi->status_blk.msi);
3076 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3077 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3078 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3079
3080 /* Return here if interrupt is disabled. */
3081 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3082 return IRQ_HANDLED;
3083
3084 napi_schedule(&bnapi->napi);
3085
3086 return IRQ_HANDLED;
3087 }
3088
3089 static irqreturn_t
3090 bnx2_msi_1shot(int irq, void *dev_instance)
3091 {
3092 struct bnx2_napi *bnapi = dev_instance;
3093 struct bnx2 *bp = bnapi->bp;
3094
3095 prefetch(bnapi->status_blk.msi);
3096
3097 /* Return here if interrupt is disabled. */
3098 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3099 return IRQ_HANDLED;
3100
3101 napi_schedule(&bnapi->napi);
3102
3103 return IRQ_HANDLED;
3104 }
3105
3106 static irqreturn_t
3107 bnx2_interrupt(int irq, void *dev_instance)
3108 {
3109 struct bnx2_napi *bnapi = dev_instance;
3110 struct bnx2 *bp = bnapi->bp;
3111 struct status_block *sblk = bnapi->status_blk.msi;
3112
3113 /* When using INTx, it is possible for the interrupt to arrive
3114 * at the CPU before the status block posted prior to the
3115 * interrupt. Reading a register will flush the status block.
3116 * When using MSI, the MSI message will always complete after
3117 * the status block write.
3118 */
3119 if ((sblk->status_idx == bnapi->last_status_idx) &&
3120 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3121 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3122 return IRQ_NONE;
3123
3124 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3125 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3126 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3127
3128 /* Read back to deassert IRQ immediately to avoid too many
3129 * spurious interrupts.
3130 */
3131 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3132
3133 /* Return here if interrupt is shared and is disabled. */
3134 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3135 return IRQ_HANDLED;
3136
3137 if (napi_schedule_prep(&bnapi->napi)) {
3138 bnapi->last_status_idx = sblk->status_idx;
3139 __napi_schedule(&bnapi->napi);
3140 }
3141
3142 return IRQ_HANDLED;
3143 }
3144
3145 static inline int
3146 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3147 {
3148 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3149 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3150
3151 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3152 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3153 return 1;
3154 return 0;
3155 }
3156
3157 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3158 STATUS_ATTN_BITS_TIMER_ABORT)
3159
3160 static inline int
3161 bnx2_has_work(struct bnx2_napi *bnapi)
3162 {
3163 struct status_block *sblk = bnapi->status_blk.msi;
3164
3165 if (bnx2_has_fast_work(bnapi))
3166 return 1;
3167
3168 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3169 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3170 return 1;
3171
3172 return 0;
3173 }
3174
3175 static void
3176 bnx2_chk_missed_msi(struct bnx2 *bp)
3177 {
3178 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3179 u32 msi_ctrl;
3180
3181 if (bnx2_has_work(bnapi)) {
3182 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3183 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3184 return;
3185
3186 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3187 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3188 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3189 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3190 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3191 }
3192 }
3193
3194 bp->idle_chk_status_idx = bnapi->last_status_idx;
3195 }
3196
3197 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3198 {
3199 struct status_block *sblk = bnapi->status_blk.msi;
3200 u32 status_attn_bits = sblk->status_attn_bits;
3201 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3202
3203 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3204 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3205
3206 bnx2_phy_int(bp, bnapi);
3207
3208 /* This is needed to take care of transient status
3209 * during link changes.
3210 */
3211 REG_WR(bp, BNX2_HC_COMMAND,
3212 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3213 REG_RD(bp, BNX2_HC_COMMAND);
3214 }
3215 }
3216
3217 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3218 int work_done, int budget)
3219 {
3220 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3221 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3222
3223 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3224 bnx2_tx_int(bp, bnapi, 0);
3225
3226 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3227 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3228
3229 return work_done;
3230 }
3231
3232 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3233 {
3234 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3235 struct bnx2 *bp = bnapi->bp;
3236 int work_done = 0;
3237 struct status_block_msix *sblk = bnapi->status_blk.msix;
3238
3239 while (1) {
3240 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3241 if (unlikely(work_done >= budget))
3242 break;
3243
3244 bnapi->last_status_idx = sblk->status_idx;
3245 /* status idx must be read before checking for more work. */
3246 rmb();
3247 if (likely(!bnx2_has_fast_work(bnapi))) {
3248
3249 napi_complete(napi);
3250 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3251 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3252 bnapi->last_status_idx);
3253 break;
3254 }
3255 }
3256 return work_done;
3257 }
3258
3259 static int bnx2_poll(struct napi_struct *napi, int budget)
3260 {
3261 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3262 struct bnx2 *bp = bnapi->bp;
3263 int work_done = 0;
3264 struct status_block *sblk = bnapi->status_blk.msi;
3265
3266 while (1) {
3267 bnx2_poll_link(bp, bnapi);
3268
3269 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3270
3271 /* bnapi->last_status_idx is used below to tell the hw how
3272 * much work has been processed, so we must read it before
3273 * checking for more work.
3274 */
3275 bnapi->last_status_idx = sblk->status_idx;
3276
3277 if (unlikely(work_done >= budget))
3278 break;
3279
3280 rmb();
3281 if (likely(!bnx2_has_work(bnapi))) {
3282 napi_complete(napi);
3283 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3284 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3285 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3286 bnapi->last_status_idx);
3287 break;
3288 }
3289 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3290 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3291 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3292 bnapi->last_status_idx);
3293
3294 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3295 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3296 bnapi->last_status_idx);
3297 break;
3298 }
3299 }
3300
3301 return work_done;
3302 }
3303
3304 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3305 * from set_multicast.
3306 */
3307 static void
3308 bnx2_set_rx_mode(struct net_device *dev)
3309 {
3310 struct bnx2 *bp = netdev_priv(dev);
3311 u32 rx_mode, sort_mode;
3312 struct netdev_hw_addr *ha;
3313 int i;
3314
3315 if (!netif_running(dev))
3316 return;
3317
3318 spin_lock_bh(&bp->phy_lock);
3319
3320 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3321 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3322 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3323 #ifdef BCM_VLAN
3324 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3325 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3326 #else
3327 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3328 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3329 #endif
3330 if (dev->flags & IFF_PROMISC) {
3331 /* Promiscuous mode. */
3332 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3333 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3334 BNX2_RPM_SORT_USER0_PROM_VLAN;
3335 }
3336 else if (dev->flags & IFF_ALLMULTI) {
3337 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3338 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3339 0xffffffff);
3340 }
3341 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3342 }
3343 else {
3344 /* Accept one or more multicast(s). */
3345 struct dev_mc_list *mclist;
3346 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3347 u32 regidx;
3348 u32 bit;
3349 u32 crc;
3350
3351 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3352
3353 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3354 i++, mclist = mclist->next) {
3355
3356 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3357 bit = crc & 0xff;
3358 regidx = (bit & 0xe0) >> 5;
3359 bit &= 0x1f;
3360 mc_filter[regidx] |= (1 << bit);
3361 }
3362
3363 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3364 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3365 mc_filter[i]);
3366 }
3367
3368 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3369 }
3370
3371 if (dev->uc_count > BNX2_MAX_UNICAST_ADDRESSES) {
3372 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3373 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3374 BNX2_RPM_SORT_USER0_PROM_VLAN;
3375 } else if (!(dev->flags & IFF_PROMISC)) {
3376 /* Add all entries into to the match filter list */
3377 i = 0;
3378 list_for_each_entry(ha, &dev->uc_list, list) {
3379 bnx2_set_mac_addr(bp, ha->addr,
3380 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3381 sort_mode |= (1 <<
3382 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3383 i++;
3384 }
3385
3386 }
3387
3388 if (rx_mode != bp->rx_mode) {
3389 bp->rx_mode = rx_mode;
3390 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3391 }
3392
3393 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3394 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3395 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3396
3397 spin_unlock_bh(&bp->phy_lock);
3398 }
3399
3400 static int __devinit
3401 check_fw_section(const struct firmware *fw,
3402 const struct bnx2_fw_file_section *section,
3403 u32 alignment, bool non_empty)
3404 {
3405 u32 offset = be32_to_cpu(section->offset);
3406 u32 len = be32_to_cpu(section->len);
3407
3408 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3409 return -EINVAL;
3410 if ((non_empty && len == 0) || len > fw->size - offset ||
3411 len & (alignment - 1))
3412 return -EINVAL;
3413 return 0;
3414 }
3415
3416 static int __devinit
3417 check_mips_fw_entry(const struct firmware *fw,
3418 const struct bnx2_mips_fw_file_entry *entry)
3419 {
3420 if (check_fw_section(fw, &entry->text, 4, true) ||
3421 check_fw_section(fw, &entry->data, 4, false) ||
3422 check_fw_section(fw, &entry->rodata, 4, false))
3423 return -EINVAL;
3424 return 0;
3425 }
3426
3427 static int __devinit
3428 bnx2_request_firmware(struct bnx2 *bp)
3429 {
3430 const char *mips_fw_file, *rv2p_fw_file;
3431 const struct bnx2_mips_fw_file *mips_fw;
3432 const struct bnx2_rv2p_fw_file *rv2p_fw;
3433 int rc;
3434
3435 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3436 mips_fw_file = FW_MIPS_FILE_09;
3437 rv2p_fw_file = FW_RV2P_FILE_09;
3438 } else {
3439 mips_fw_file = FW_MIPS_FILE_06;
3440 rv2p_fw_file = FW_RV2P_FILE_06;
3441 }
3442
3443 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3444 if (rc) {
3445 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3446 mips_fw_file);
3447 return rc;
3448 }
3449
3450 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3451 if (rc) {
3452 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3453 rv2p_fw_file);
3454 return rc;
3455 }
3456 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3457 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3458 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3459 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3460 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3461 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3462 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3463 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3464 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3465 mips_fw_file);
3466 return -EINVAL;
3467 }
3468 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3469 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3470 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3471 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3472 rv2p_fw_file);
3473 return -EINVAL;
3474 }
3475
3476 return 0;
3477 }
3478
3479 static u32
3480 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3481 {
3482 switch (idx) {
3483 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3484 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3485 rv2p_code |= RV2P_BD_PAGE_SIZE;
3486 break;
3487 }
3488 return rv2p_code;
3489 }
3490
3491 static int
3492 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3493 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3494 {
3495 u32 rv2p_code_len, file_offset;
3496 __be32 *rv2p_code;
3497 int i;
3498 u32 val, cmd, addr;
3499
3500 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3501 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3502
3503 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3504
3505 if (rv2p_proc == RV2P_PROC1) {
3506 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3507 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3508 } else {
3509 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3510 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3511 }
3512
3513 for (i = 0; i < rv2p_code_len; i += 8) {
3514 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3515 rv2p_code++;
3516 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3517 rv2p_code++;
3518
3519 val = (i / 8) | cmd;
3520 REG_WR(bp, addr, val);
3521 }
3522
3523 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3524 for (i = 0; i < 8; i++) {
3525 u32 loc, code;
3526
3527 loc = be32_to_cpu(fw_entry->fixup[i]);
3528 if (loc && ((loc * 4) < rv2p_code_len)) {
3529 code = be32_to_cpu(*(rv2p_code + loc - 1));
3530 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3531 code = be32_to_cpu(*(rv2p_code + loc));
3532 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3533 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3534
3535 val = (loc / 2) | cmd;
3536 REG_WR(bp, addr, val);
3537 }
3538 }
3539
3540 /* Reset the processor, un-stall is done later. */
3541 if (rv2p_proc == RV2P_PROC1) {
3542 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3543 }
3544 else {
3545 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3546 }
3547
3548 return 0;
3549 }
3550
3551 static int
3552 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3553 const struct bnx2_mips_fw_file_entry *fw_entry)
3554 {
3555 u32 addr, len, file_offset;
3556 __be32 *data;
3557 u32 offset;
3558 u32 val;
3559
3560 /* Halt the CPU. */
3561 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3562 val |= cpu_reg->mode_value_halt;
3563 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3564 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3565
3566 /* Load the Text area. */
3567 addr = be32_to_cpu(fw_entry->text.addr);
3568 len = be32_to_cpu(fw_entry->text.len);
3569 file_offset = be32_to_cpu(fw_entry->text.offset);
3570 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3571
3572 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3573 if (len) {
3574 int j;
3575
3576 for (j = 0; j < (len / 4); j++, offset += 4)
3577 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3578 }
3579
3580 /* Load the Data area. */
3581 addr = be32_to_cpu(fw_entry->data.addr);
3582 len = be32_to_cpu(fw_entry->data.len);
3583 file_offset = be32_to_cpu(fw_entry->data.offset);
3584 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3585
3586 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3587 if (len) {
3588 int j;
3589
3590 for (j = 0; j < (len / 4); j++, offset += 4)
3591 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3592 }
3593
3594 /* Load the Read-Only area. */
3595 addr = be32_to_cpu(fw_entry->rodata.addr);
3596 len = be32_to_cpu(fw_entry->rodata.len);
3597 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3598 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3599
3600 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3601 if (len) {
3602 int j;
3603
3604 for (j = 0; j < (len / 4); j++, offset += 4)
3605 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3606 }
3607
3608 /* Clear the pre-fetch instruction. */
3609 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3610
3611 val = be32_to_cpu(fw_entry->start_addr);
3612 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3613
3614 /* Start the CPU. */
3615 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3616 val &= ~cpu_reg->mode_value_halt;
3617 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3618 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3619
3620 return 0;
3621 }
3622
3623 static int
3624 bnx2_init_cpus(struct bnx2 *bp)
3625 {
3626 const struct bnx2_mips_fw_file *mips_fw =
3627 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3628 const struct bnx2_rv2p_fw_file *rv2p_fw =
3629 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3630 int rc;
3631
3632 /* Initialize the RV2P processor. */
3633 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3634 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3635
3636 /* Initialize the RX Processor. */
3637 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3638 if (rc)
3639 goto init_cpu_err;
3640
3641 /* Initialize the TX Processor. */
3642 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3643 if (rc)
3644 goto init_cpu_err;
3645
3646 /* Initialize the TX Patch-up Processor. */
3647 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3648 if (rc)
3649 goto init_cpu_err;
3650
3651 /* Initialize the Completion Processor. */
3652 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3653 if (rc)
3654 goto init_cpu_err;
3655
3656 /* Initialize the Command Processor. */
3657 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3658
3659 init_cpu_err:
3660 return rc;
3661 }
3662
3663 static int
3664 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3665 {
3666 u16 pmcsr;
3667
3668 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3669
3670 switch (state) {
3671 case PCI_D0: {
3672 u32 val;
3673
3674 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3675 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3676 PCI_PM_CTRL_PME_STATUS);
3677
3678 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3679 /* delay required during transition out of D3hot */
3680 msleep(20);
3681
3682 val = REG_RD(bp, BNX2_EMAC_MODE);
3683 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3684 val &= ~BNX2_EMAC_MODE_MPKT;
3685 REG_WR(bp, BNX2_EMAC_MODE, val);
3686
3687 val = REG_RD(bp, BNX2_RPM_CONFIG);
3688 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3689 REG_WR(bp, BNX2_RPM_CONFIG, val);
3690 break;
3691 }
3692 case PCI_D3hot: {
3693 int i;
3694 u32 val, wol_msg;
3695
3696 if (bp->wol) {
3697 u32 advertising;
3698 u8 autoneg;
3699
3700 autoneg = bp->autoneg;
3701 advertising = bp->advertising;
3702
3703 if (bp->phy_port == PORT_TP) {
3704 bp->autoneg = AUTONEG_SPEED;
3705 bp->advertising = ADVERTISED_10baseT_Half |
3706 ADVERTISED_10baseT_Full |
3707 ADVERTISED_100baseT_Half |
3708 ADVERTISED_100baseT_Full |
3709 ADVERTISED_Autoneg;
3710 }
3711
3712 spin_lock_bh(&bp->phy_lock);
3713 bnx2_setup_phy(bp, bp->phy_port);
3714 spin_unlock_bh(&bp->phy_lock);
3715
3716 bp->autoneg = autoneg;
3717 bp->advertising = advertising;
3718
3719 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3720
3721 val = REG_RD(bp, BNX2_EMAC_MODE);
3722
3723 /* Enable port mode. */
3724 val &= ~BNX2_EMAC_MODE_PORT;
3725 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3726 BNX2_EMAC_MODE_ACPI_RCVD |
3727 BNX2_EMAC_MODE_MPKT;
3728 if (bp->phy_port == PORT_TP)
3729 val |= BNX2_EMAC_MODE_PORT_MII;
3730 else {
3731 val |= BNX2_EMAC_MODE_PORT_GMII;
3732 if (bp->line_speed == SPEED_2500)
3733 val |= BNX2_EMAC_MODE_25G_MODE;
3734 }
3735
3736 REG_WR(bp, BNX2_EMAC_MODE, val);
3737
3738 /* receive all multicast */
3739 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3740 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3741 0xffffffff);
3742 }
3743 REG_WR(bp, BNX2_EMAC_RX_MODE,
3744 BNX2_EMAC_RX_MODE_SORT_MODE);
3745
3746 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3747 BNX2_RPM_SORT_USER0_MC_EN;
3748 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3749 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3750 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3751 BNX2_RPM_SORT_USER0_ENA);
3752
3753 /* Need to enable EMAC and RPM for WOL. */
3754 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3755 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3756 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3757 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3758
3759 val = REG_RD(bp, BNX2_RPM_CONFIG);
3760 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3761 REG_WR(bp, BNX2_RPM_CONFIG, val);
3762
3763 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3764 }
3765 else {
3766 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3767 }
3768
3769 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3770 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3771 1, 0);
3772
3773 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3774 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3775 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3776
3777 if (bp->wol)
3778 pmcsr |= 3;
3779 }
3780 else {
3781 pmcsr |= 3;
3782 }
3783 if (bp->wol) {
3784 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3785 }
3786 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3787 pmcsr);
3788
3789 /* No more memory access after this point until
3790 * device is brought back to D0.
3791 */
3792 udelay(50);
3793 break;
3794 }
3795 default:
3796 return -EINVAL;
3797 }
3798 return 0;
3799 }
3800
3801 static int
3802 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3803 {
3804 u32 val;
3805 int j;
3806
3807 /* Request access to the flash interface. */
3808 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3809 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3810 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3811 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3812 break;
3813
3814 udelay(5);
3815 }
3816
3817 if (j >= NVRAM_TIMEOUT_COUNT)
3818 return -EBUSY;
3819
3820 return 0;
3821 }
3822
3823 static int
3824 bnx2_release_nvram_lock(struct bnx2 *bp)
3825 {
3826 int j;
3827 u32 val;
3828
3829 /* Relinquish nvram interface. */
3830 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
3831
3832 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3833 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3834 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
3835 break;
3836
3837 udelay(5);
3838 }
3839
3840 if (j >= NVRAM_TIMEOUT_COUNT)
3841 return -EBUSY;
3842
3843 return 0;
3844 }
3845
3846
3847 static int
3848 bnx2_enable_nvram_write(struct bnx2 *bp)
3849 {
3850 u32 val;
3851
3852 val = REG_RD(bp, BNX2_MISC_CFG);
3853 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
3854
3855 if (bp->flash_info->flags & BNX2_NV_WREN) {
3856 int j;
3857
3858 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3859 REG_WR(bp, BNX2_NVM_COMMAND,
3860 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
3861
3862 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3863 udelay(5);
3864
3865 val = REG_RD(bp, BNX2_NVM_COMMAND);
3866 if (val & BNX2_NVM_COMMAND_DONE)
3867 break;
3868 }
3869
3870 if (j >= NVRAM_TIMEOUT_COUNT)
3871 return -EBUSY;
3872 }
3873 return 0;
3874 }
3875
3876 static void
3877 bnx2_disable_nvram_write(struct bnx2 *bp)
3878 {
3879 u32 val;
3880
3881 val = REG_RD(bp, BNX2_MISC_CFG);
3882 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
3883 }
3884
3885
3886 static void
3887 bnx2_enable_nvram_access(struct bnx2 *bp)
3888 {
3889 u32 val;
3890
3891 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3892 /* Enable both bits, even on read. */
3893 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3894 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
3895 }
3896
3897 static void
3898 bnx2_disable_nvram_access(struct bnx2 *bp)
3899 {
3900 u32 val;
3901
3902 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3903 /* Disable both bits, even after read. */
3904 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3905 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
3906 BNX2_NVM_ACCESS_ENABLE_WR_EN));
3907 }
3908
3909 static int
3910 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
3911 {
3912 u32 cmd;
3913 int j;
3914
3915 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
3916 /* Buffered flash, no erase needed */
3917 return 0;
3918
3919 /* Build an erase command */
3920 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
3921 BNX2_NVM_COMMAND_DOIT;
3922
3923 /* Need to clear DONE bit separately. */
3924 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3925
3926 /* Address of the NVRAM to read from. */
3927 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3928
3929 /* Issue an erase command. */
3930 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3931
3932 /* Wait for completion. */
3933 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3934 u32 val;
3935
3936 udelay(5);
3937
3938 val = REG_RD(bp, BNX2_NVM_COMMAND);
3939 if (val & BNX2_NVM_COMMAND_DONE)
3940 break;
3941 }
3942
3943 if (j >= NVRAM_TIMEOUT_COUNT)
3944 return -EBUSY;
3945
3946 return 0;
3947 }
3948
3949 static int
3950 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
3951 {
3952 u32 cmd;
3953 int j;
3954
3955 /* Build the command word. */
3956 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
3957
3958 /* Calculate an offset of a buffered flash, not needed for 5709. */
3959 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
3960 offset = ((offset / bp->flash_info->page_size) <<
3961 bp->flash_info->page_bits) +
3962 (offset % bp->flash_info->page_size);
3963 }
3964
3965 /* Need to clear DONE bit separately. */
3966 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3967
3968 /* Address of the NVRAM to read from. */
3969 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3970
3971 /* Issue a read command. */
3972 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3973
3974 /* Wait for completion. */
3975 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3976 u32 val;
3977
3978 udelay(5);
3979
3980 val = REG_RD(bp, BNX2_NVM_COMMAND);
3981 if (val & BNX2_NVM_COMMAND_DONE) {
3982 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
3983 memcpy(ret_val, &v, 4);
3984 break;
3985 }
3986 }
3987 if (j >= NVRAM_TIMEOUT_COUNT)
3988 return -EBUSY;
3989
3990 return 0;
3991 }
3992
3993
3994 static int
3995 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
3996 {
3997 u32 cmd;
3998 __be32 val32;
3999 int j;
4000
4001 /* Build the command word. */
4002 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4003
4004 /* Calculate an offset of a buffered flash, not needed for 5709. */
4005 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4006 offset = ((offset / bp->flash_info->page_size) <<
4007 bp->flash_info->page_bits) +
4008 (offset % bp->flash_info->page_size);
4009 }
4010
4011 /* Need to clear DONE bit separately. */
4012 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4013
4014 memcpy(&val32, val, 4);
4015
4016 /* Write the data. */
4017 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4018
4019 /* Address of the NVRAM to write to. */
4020 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4021
4022 /* Issue the write command. */
4023 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4024
4025 /* Wait for completion. */
4026 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4027 udelay(5);
4028
4029 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4030 break;
4031 }
4032 if (j >= NVRAM_TIMEOUT_COUNT)
4033 return -EBUSY;
4034
4035 return 0;
4036 }
4037
4038 static int
4039 bnx2_init_nvram(struct bnx2 *bp)
4040 {
4041 u32 val;
4042 int j, entry_count, rc = 0;
4043 struct flash_spec *flash;
4044
4045 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4046 bp->flash_info = &flash_5709;
4047 goto get_flash_size;
4048 }
4049
4050 /* Determine the selected interface. */
4051 val = REG_RD(bp, BNX2_NVM_CFG1);
4052
4053 entry_count = ARRAY_SIZE(flash_table);
4054
4055 if (val & 0x40000000) {
4056
4057 /* Flash interface has been reconfigured */
4058 for (j = 0, flash = &flash_table[0]; j < entry_count;
4059 j++, flash++) {
4060 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4061 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4062 bp->flash_info = flash;
4063 break;
4064 }
4065 }
4066 }
4067 else {
4068 u32 mask;
4069 /* Not yet been reconfigured */
4070
4071 if (val & (1 << 23))
4072 mask = FLASH_BACKUP_STRAP_MASK;
4073 else
4074 mask = FLASH_STRAP_MASK;
4075
4076 for (j = 0, flash = &flash_table[0]; j < entry_count;
4077 j++, flash++) {
4078
4079 if ((val & mask) == (flash->strapping & mask)) {
4080 bp->flash_info = flash;
4081
4082 /* Request access to the flash interface. */
4083 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4084 return rc;
4085
4086 /* Enable access to flash interface */
4087 bnx2_enable_nvram_access(bp);
4088
4089 /* Reconfigure the flash interface */
4090 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4091 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4092 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4093 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4094
4095 /* Disable access to flash interface */
4096 bnx2_disable_nvram_access(bp);
4097 bnx2_release_nvram_lock(bp);
4098
4099 break;
4100 }
4101 }
4102 } /* if (val & 0x40000000) */
4103
4104 if (j == entry_count) {
4105 bp->flash_info = NULL;
4106 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4107 return -ENODEV;
4108 }
4109
4110 get_flash_size:
4111 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4112 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4113 if (val)
4114 bp->flash_size = val;
4115 else
4116 bp->flash_size = bp->flash_info->total_size;
4117
4118 return rc;
4119 }
4120
4121 static int
4122 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4123 int buf_size)
4124 {
4125 int rc = 0;
4126 u32 cmd_flags, offset32, len32, extra;
4127
4128 if (buf_size == 0)
4129 return 0;
4130
4131 /* Request access to the flash interface. */
4132 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4133 return rc;
4134
4135 /* Enable access to flash interface */
4136 bnx2_enable_nvram_access(bp);
4137
4138 len32 = buf_size;
4139 offset32 = offset;
4140 extra = 0;
4141
4142 cmd_flags = 0;
4143
4144 if (offset32 & 3) {
4145 u8 buf[4];
4146 u32 pre_len;
4147
4148 offset32 &= ~3;
4149 pre_len = 4 - (offset & 3);
4150
4151 if (pre_len >= len32) {
4152 pre_len = len32;
4153 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4154 BNX2_NVM_COMMAND_LAST;
4155 }
4156 else {
4157 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4158 }
4159
4160 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4161
4162 if (rc)
4163 return rc;
4164
4165 memcpy(ret_buf, buf + (offset & 3), pre_len);
4166
4167 offset32 += 4;
4168 ret_buf += pre_len;
4169 len32 -= pre_len;
4170 }
4171 if (len32 & 3) {
4172 extra = 4 - (len32 & 3);
4173 len32 = (len32 + 4) & ~3;
4174 }
4175
4176 if (len32 == 4) {
4177 u8 buf[4];
4178
4179 if (cmd_flags)
4180 cmd_flags = BNX2_NVM_COMMAND_LAST;
4181 else
4182 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4183 BNX2_NVM_COMMAND_LAST;
4184
4185 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4186
4187 memcpy(ret_buf, buf, 4 - extra);
4188 }
4189 else if (len32 > 0) {
4190 u8 buf[4];
4191
4192 /* Read the first word. */
4193 if (cmd_flags)
4194 cmd_flags = 0;
4195 else
4196 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4197
4198 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4199
4200 /* Advance to the next dword. */
4201 offset32 += 4;
4202 ret_buf += 4;
4203 len32 -= 4;
4204
4205 while (len32 > 4 && rc == 0) {
4206 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4207
4208 /* Advance to the next dword. */
4209 offset32 += 4;
4210 ret_buf += 4;
4211 len32 -= 4;
4212 }
4213
4214 if (rc)
4215 return rc;
4216
4217 cmd_flags = BNX2_NVM_COMMAND_LAST;
4218 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4219
4220 memcpy(ret_buf, buf, 4 - extra);
4221 }
4222
4223 /* Disable access to flash interface */
4224 bnx2_disable_nvram_access(bp);
4225
4226 bnx2_release_nvram_lock(bp);
4227
4228 return rc;
4229 }
4230
4231 static int
4232 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4233 int buf_size)
4234 {
4235 u32 written, offset32, len32;
4236 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4237 int rc = 0;
4238 int align_start, align_end;
4239
4240 buf = data_buf;
4241 offset32 = offset;
4242 len32 = buf_size;
4243 align_start = align_end = 0;
4244
4245 if ((align_start = (offset32 & 3))) {
4246 offset32 &= ~3;
4247 len32 += align_start;
4248 if (len32 < 4)
4249 len32 = 4;
4250 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4251 return rc;
4252 }
4253
4254 if (len32 & 3) {
4255 align_end = 4 - (len32 & 3);
4256 len32 += align_end;
4257 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4258 return rc;
4259 }
4260
4261 if (align_start || align_end) {
4262 align_buf = kmalloc(len32, GFP_KERNEL);
4263 if (align_buf == NULL)
4264 return -ENOMEM;
4265 if (align_start) {
4266 memcpy(align_buf, start, 4);
4267 }
4268 if (align_end) {
4269 memcpy(align_buf + len32 - 4, end, 4);
4270 }
4271 memcpy(align_buf + align_start, data_buf, buf_size);
4272 buf = align_buf;
4273 }
4274
4275 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4276 flash_buffer = kmalloc(264, GFP_KERNEL);
4277 if (flash_buffer == NULL) {
4278 rc = -ENOMEM;
4279 goto nvram_write_end;
4280 }
4281 }
4282
4283 written = 0;
4284 while ((written < len32) && (rc == 0)) {
4285 u32 page_start, page_end, data_start, data_end;
4286 u32 addr, cmd_flags;
4287 int i;
4288
4289 /* Find the page_start addr */
4290 page_start = offset32 + written;
4291 page_start -= (page_start % bp->flash_info->page_size);
4292 /* Find the page_end addr */
4293 page_end = page_start + bp->flash_info->page_size;
4294 /* Find the data_start addr */
4295 data_start = (written == 0) ? offset32 : page_start;
4296 /* Find the data_end addr */
4297 data_end = (page_end > offset32 + len32) ?
4298 (offset32 + len32) : page_end;
4299
4300 /* Request access to the flash interface. */
4301 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4302 goto nvram_write_end;
4303
4304 /* Enable access to flash interface */
4305 bnx2_enable_nvram_access(bp);
4306
4307 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4308 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4309 int j;
4310
4311 /* Read the whole page into the buffer
4312 * (non-buffer flash only) */
4313 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4314 if (j == (bp->flash_info->page_size - 4)) {
4315 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4316 }
4317 rc = bnx2_nvram_read_dword(bp,
4318 page_start + j,
4319 &flash_buffer[j],
4320 cmd_flags);
4321
4322 if (rc)
4323 goto nvram_write_end;
4324
4325 cmd_flags = 0;
4326 }
4327 }
4328
4329 /* Enable writes to flash interface (unlock write-protect) */
4330 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4331 goto nvram_write_end;
4332
4333 /* Loop to write back the buffer data from page_start to
4334 * data_start */
4335 i = 0;
4336 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4337 /* Erase the page */
4338 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4339 goto nvram_write_end;
4340
4341 /* Re-enable the write again for the actual write */
4342 bnx2_enable_nvram_write(bp);
4343
4344 for (addr = page_start; addr < data_start;
4345 addr += 4, i += 4) {
4346
4347 rc = bnx2_nvram_write_dword(bp, addr,
4348 &flash_buffer[i], cmd_flags);
4349
4350 if (rc != 0)
4351 goto nvram_write_end;
4352
4353 cmd_flags = 0;
4354 }
4355 }
4356
4357 /* Loop to write the new data from data_start to data_end */
4358 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4359 if ((addr == page_end - 4) ||
4360 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4361 (addr == data_end - 4))) {
4362
4363 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4364 }
4365 rc = bnx2_nvram_write_dword(bp, addr, buf,
4366 cmd_flags);
4367
4368 if (rc != 0)
4369 goto nvram_write_end;
4370
4371 cmd_flags = 0;
4372 buf += 4;
4373 }
4374
4375 /* Loop to write back the buffer data from data_end
4376 * to page_end */
4377 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4378 for (addr = data_end; addr < page_end;
4379 addr += 4, i += 4) {
4380
4381 if (addr == page_end-4) {
4382 cmd_flags = BNX2_NVM_COMMAND_LAST;
4383 }
4384 rc = bnx2_nvram_write_dword(bp, addr,
4385 &flash_buffer[i], cmd_flags);
4386
4387 if (rc != 0)
4388 goto nvram_write_end;
4389
4390 cmd_flags = 0;
4391 }
4392 }
4393
4394 /* Disable writes to flash interface (lock write-protect) */
4395 bnx2_disable_nvram_write(bp);
4396
4397 /* Disable access to flash interface */
4398 bnx2_disable_nvram_access(bp);
4399 bnx2_release_nvram_lock(bp);
4400
4401 /* Increment written */
4402 written += data_end - data_start;
4403 }
4404
4405 nvram_write_end:
4406 kfree(flash_buffer);
4407 kfree(align_buf);
4408 return rc;
4409 }
4410
4411 static void
4412 bnx2_init_fw_cap(struct bnx2 *bp)
4413 {
4414 u32 val, sig = 0;
4415
4416 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4417 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4418
4419 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4420 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4421
4422 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4423 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4424 return;
4425
4426 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4427 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4428 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4429 }
4430
4431 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4432 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4433 u32 link;
4434
4435 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4436
4437 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4438 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4439 bp->phy_port = PORT_FIBRE;
4440 else
4441 bp->phy_port = PORT_TP;
4442
4443 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4444 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4445 }
4446
4447 if (netif_running(bp->dev) && sig)
4448 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4449 }
4450
4451 static void
4452 bnx2_setup_msix_tbl(struct bnx2 *bp)
4453 {
4454 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4455
4456 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4457 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4458 }
4459
4460 static int
4461 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4462 {
4463 u32 val;
4464 int i, rc = 0;
4465 u8 old_port;
4466
4467 /* Wait for the current PCI transaction to complete before
4468 * issuing a reset. */
4469 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4470 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4471 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4472 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4473 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4474 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4475 udelay(5);
4476
4477 /* Wait for the firmware to tell us it is ok to issue a reset. */
4478 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4479
4480 /* Deposit a driver reset signature so the firmware knows that
4481 * this is a soft reset. */
4482 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4483 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4484
4485 /* Do a dummy read to force the chip to complete all current transaction
4486 * before we issue a reset. */
4487 val = REG_RD(bp, BNX2_MISC_ID);
4488
4489 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4490 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4491 REG_RD(bp, BNX2_MISC_COMMAND);
4492 udelay(5);
4493
4494 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4495 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4496
4497 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4498
4499 } else {
4500 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4501 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4502 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4503
4504 /* Chip reset. */
4505 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4506
4507 /* Reading back any register after chip reset will hang the
4508 * bus on 5706 A0 and A1. The msleep below provides plenty
4509 * of margin for write posting.
4510 */
4511 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4512 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4513 msleep(20);
4514
4515 /* Reset takes approximate 30 usec */
4516 for (i = 0; i < 10; i++) {
4517 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4518 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4519 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4520 break;
4521 udelay(10);
4522 }
4523
4524 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4525 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4526 printk(KERN_ERR PFX "Chip reset did not complete\n");
4527 return -EBUSY;
4528 }
4529 }
4530
4531 /* Make sure byte swapping is properly configured. */
4532 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4533 if (val != 0x01020304) {
4534 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4535 return -ENODEV;
4536 }
4537
4538 /* Wait for the firmware to finish its initialization. */
4539 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4540 if (rc)
4541 return rc;
4542
4543 spin_lock_bh(&bp->phy_lock);
4544 old_port = bp->phy_port;
4545 bnx2_init_fw_cap(bp);
4546 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4547 old_port != bp->phy_port)
4548 bnx2_set_default_remote_link(bp);
4549 spin_unlock_bh(&bp->phy_lock);
4550
4551 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4552 /* Adjust the voltage regular to two steps lower. The default
4553 * of this register is 0x0000000e. */
4554 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4555
4556 /* Remove bad rbuf memory from the free pool. */
4557 rc = bnx2_alloc_bad_rbuf(bp);
4558 }
4559
4560 if (bp->flags & BNX2_FLAG_USING_MSIX)
4561 bnx2_setup_msix_tbl(bp);
4562
4563 return rc;
4564 }
4565
4566 static int
4567 bnx2_init_chip(struct bnx2 *bp)
4568 {
4569 u32 val, mtu;
4570 int rc, i;
4571
4572 /* Make sure the interrupt is not active. */
4573 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4574
4575 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4576 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4577 #ifdef __BIG_ENDIAN
4578 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4579 #endif
4580 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4581 DMA_READ_CHANS << 12 |
4582 DMA_WRITE_CHANS << 16;
4583
4584 val |= (0x2 << 20) | (1 << 11);
4585
4586 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4587 val |= (1 << 23);
4588
4589 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4590 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4591 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4592
4593 REG_WR(bp, BNX2_DMA_CONFIG, val);
4594
4595 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4596 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4597 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4598 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4599 }
4600
4601 if (bp->flags & BNX2_FLAG_PCIX) {
4602 u16 val16;
4603
4604 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4605 &val16);
4606 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4607 val16 & ~PCI_X_CMD_ERO);
4608 }
4609
4610 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4611 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4612 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4613 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4614
4615 /* Initialize context mapping and zero out the quick contexts. The
4616 * context block must have already been enabled. */
4617 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4618 rc = bnx2_init_5709_context(bp);
4619 if (rc)
4620 return rc;
4621 } else
4622 bnx2_init_context(bp);
4623
4624 if ((rc = bnx2_init_cpus(bp)) != 0)
4625 return rc;
4626
4627 bnx2_init_nvram(bp);
4628
4629 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4630
4631 val = REG_RD(bp, BNX2_MQ_CONFIG);
4632 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4633 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4634 if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
4635 val |= BNX2_MQ_CONFIG_HALT_DIS;
4636
4637 REG_WR(bp, BNX2_MQ_CONFIG, val);
4638
4639 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4640 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4641 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4642
4643 val = (BCM_PAGE_BITS - 8) << 24;
4644 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4645
4646 /* Configure page size. */
4647 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4648 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4649 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4650 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4651
4652 val = bp->mac_addr[0] +
4653 (bp->mac_addr[1] << 8) +
4654 (bp->mac_addr[2] << 16) +
4655 bp->mac_addr[3] +
4656 (bp->mac_addr[4] << 8) +
4657 (bp->mac_addr[5] << 16);
4658 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4659
4660 /* Program the MTU. Also include 4 bytes for CRC32. */
4661 mtu = bp->dev->mtu;
4662 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4663 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4664 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4665 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4666
4667 if (mtu < 1500)
4668 mtu = 1500;
4669
4670 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4671 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4672 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4673
4674 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4675 bp->bnx2_napi[i].last_status_idx = 0;
4676
4677 bp->idle_chk_status_idx = 0xffff;
4678
4679 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4680
4681 /* Set up how to generate a link change interrupt. */
4682 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4683
4684 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4685 (u64) bp->status_blk_mapping & 0xffffffff);
4686 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4687
4688 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4689 (u64) bp->stats_blk_mapping & 0xffffffff);
4690 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4691 (u64) bp->stats_blk_mapping >> 32);
4692
4693 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4694 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4695
4696 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4697 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4698
4699 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4700 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4701
4702 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4703
4704 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4705
4706 REG_WR(bp, BNX2_HC_COM_TICKS,
4707 (bp->com_ticks_int << 16) | bp->com_ticks);
4708
4709 REG_WR(bp, BNX2_HC_CMD_TICKS,
4710 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4711
4712 if (CHIP_NUM(bp) == CHIP_NUM_5708)
4713 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4714 else
4715 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4716 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4717
4718 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4719 val = BNX2_HC_CONFIG_COLLECT_STATS;
4720 else {
4721 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4722 BNX2_HC_CONFIG_COLLECT_STATS;
4723 }
4724
4725 if (bp->irq_nvecs > 1) {
4726 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4727 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4728
4729 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4730 }
4731
4732 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4733 val |= BNX2_HC_CONFIG_ONE_SHOT;
4734
4735 REG_WR(bp, BNX2_HC_CONFIG, val);
4736
4737 for (i = 1; i < bp->irq_nvecs; i++) {
4738 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4739 BNX2_HC_SB_CONFIG_1;
4740
4741 REG_WR(bp, base,
4742 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4743 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4744 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4745
4746 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4747 (bp->tx_quick_cons_trip_int << 16) |
4748 bp->tx_quick_cons_trip);
4749
4750 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4751 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4752
4753 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4754 (bp->rx_quick_cons_trip_int << 16) |
4755 bp->rx_quick_cons_trip);
4756
4757 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4758 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4759 }
4760
4761 /* Clear internal stats counters. */
4762 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4763
4764 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4765
4766 /* Initialize the receive filter. */
4767 bnx2_set_rx_mode(bp->dev);
4768
4769 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4770 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4771 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4772 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4773 }
4774 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4775 1, 0);
4776
4777 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4778 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4779
4780 udelay(20);
4781
4782 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4783
4784 return rc;
4785 }
4786
4787 static void
4788 bnx2_clear_ring_states(struct bnx2 *bp)
4789 {
4790 struct bnx2_napi *bnapi;
4791 struct bnx2_tx_ring_info *txr;
4792 struct bnx2_rx_ring_info *rxr;
4793 int i;
4794
4795 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4796 bnapi = &bp->bnx2_napi[i];
4797 txr = &bnapi->tx_ring;
4798 rxr = &bnapi->rx_ring;
4799
4800 txr->tx_cons = 0;
4801 txr->hw_tx_cons = 0;
4802 rxr->rx_prod_bseq = 0;
4803 rxr->rx_prod = 0;
4804 rxr->rx_cons = 0;
4805 rxr->rx_pg_prod = 0;
4806 rxr->rx_pg_cons = 0;
4807 }
4808 }
4809
4810 static void
4811 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
4812 {
4813 u32 val, offset0, offset1, offset2, offset3;
4814 u32 cid_addr = GET_CID_ADDR(cid);
4815
4816 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4817 offset0 = BNX2_L2CTX_TYPE_XI;
4818 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
4819 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
4820 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
4821 } else {
4822 offset0 = BNX2_L2CTX_TYPE;
4823 offset1 = BNX2_L2CTX_CMD_TYPE;
4824 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
4825 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
4826 }
4827 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
4828 bnx2_ctx_wr(bp, cid_addr, offset0, val);
4829
4830 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4831 bnx2_ctx_wr(bp, cid_addr, offset1, val);
4832
4833 val = (u64) txr->tx_desc_mapping >> 32;
4834 bnx2_ctx_wr(bp, cid_addr, offset2, val);
4835
4836 val = (u64) txr->tx_desc_mapping & 0xffffffff;
4837 bnx2_ctx_wr(bp, cid_addr, offset3, val);
4838 }
4839
4840 static void
4841 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
4842 {
4843 struct tx_bd *txbd;
4844 u32 cid = TX_CID;
4845 struct bnx2_napi *bnapi;
4846 struct bnx2_tx_ring_info *txr;
4847
4848 bnapi = &bp->bnx2_napi[ring_num];
4849 txr = &bnapi->tx_ring;
4850
4851 if (ring_num == 0)
4852 cid = TX_CID;
4853 else
4854 cid = TX_TSS_CID + ring_num - 1;
4855
4856 bp->tx_wake_thresh = bp->tx_ring_size / 2;
4857
4858 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
4859
4860 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
4861 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
4862
4863 txr->tx_prod = 0;
4864 txr->tx_prod_bseq = 0;
4865
4866 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
4867 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
4868
4869 bnx2_init_tx_context(bp, cid, txr);
4870 }
4871
4872 static void
4873 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
4874 int num_rings)
4875 {
4876 int i;
4877 struct rx_bd *rxbd;
4878
4879 for (i = 0; i < num_rings; i++) {
4880 int j;
4881
4882 rxbd = &rx_ring[i][0];
4883 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
4884 rxbd->rx_bd_len = buf_size;
4885 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
4886 }
4887 if (i == (num_rings - 1))
4888 j = 0;
4889 else
4890 j = i + 1;
4891 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
4892 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
4893 }
4894 }
4895
4896 static void
4897 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
4898 {
4899 int i;
4900 u16 prod, ring_prod;
4901 u32 cid, rx_cid_addr, val;
4902 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
4903 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
4904
4905 if (ring_num == 0)
4906 cid = RX_CID;
4907 else
4908 cid = RX_RSS_CID + ring_num - 1;
4909
4910 rx_cid_addr = GET_CID_ADDR(cid);
4911
4912 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
4913 bp->rx_buf_use_size, bp->rx_max_ring);
4914
4915 bnx2_init_rx_context(bp, cid);
4916
4917 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4918 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
4919 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
4920 }
4921
4922 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
4923 if (bp->rx_pg_ring_size) {
4924 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
4925 rxr->rx_pg_desc_mapping,
4926 PAGE_SIZE, bp->rx_max_pg_ring);
4927 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
4928 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
4929 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
4930 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
4931
4932 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
4933 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
4934
4935 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
4936 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
4937
4938 if (CHIP_NUM(bp) == CHIP_NUM_5709)
4939 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
4940 }
4941
4942 val = (u64) rxr->rx_desc_mapping[0] >> 32;
4943 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
4944
4945 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
4946 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
4947
4948 ring_prod = prod = rxr->rx_pg_prod;
4949 for (i = 0; i < bp->rx_pg_ring_size; i++) {
4950 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
4951 break;
4952 prod = NEXT_RX_BD(prod);
4953 ring_prod = RX_PG_RING_IDX(prod);
4954 }
4955 rxr->rx_pg_prod = prod;
4956
4957 ring_prod = prod = rxr->rx_prod;
4958 for (i = 0; i < bp->rx_ring_size; i++) {
4959 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
4960 break;
4961 prod = NEXT_RX_BD(prod);
4962 ring_prod = RX_RING_IDX(prod);
4963 }
4964 rxr->rx_prod = prod;
4965
4966 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
4967 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
4968 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
4969
4970 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
4971 REG_WR16(bp, rxr->rx_bidx_addr, prod);
4972
4973 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
4974 }
4975
4976 static void
4977 bnx2_init_all_rings(struct bnx2 *bp)
4978 {
4979 int i;
4980 u32 val;
4981
4982 bnx2_clear_ring_states(bp);
4983
4984 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
4985 for (i = 0; i < bp->num_tx_rings; i++)
4986 bnx2_init_tx_ring(bp, i);
4987
4988 if (bp->num_tx_rings > 1)
4989 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
4990 (TX_TSS_CID << 7));
4991
4992 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
4993 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
4994
4995 for (i = 0; i < bp->num_rx_rings; i++)
4996 bnx2_init_rx_ring(bp, i);
4997
4998 if (bp->num_rx_rings > 1) {
4999 u32 tbl_32;
5000 u8 *tbl = (u8 *) &tbl_32;
5001
5002 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5003 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5004
5005 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5006 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5007 if ((i % 4) == 3)
5008 bnx2_reg_wr_ind(bp,
5009 BNX2_RXP_SCRATCH_RSS_TBL + i,
5010 cpu_to_be32(tbl_32));
5011 }
5012
5013 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5014 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5015
5016 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5017
5018 }
5019 }
5020
5021 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5022 {
5023 u32 max, num_rings = 1;
5024
5025 while (ring_size > MAX_RX_DESC_CNT) {
5026 ring_size -= MAX_RX_DESC_CNT;
5027 num_rings++;
5028 }
5029 /* round to next power of 2 */
5030 max = max_size;
5031 while ((max & num_rings) == 0)
5032 max >>= 1;
5033
5034 if (num_rings != max)
5035 max <<= 1;
5036
5037 return max;
5038 }
5039
5040 static void
5041 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5042 {
5043 u32 rx_size, rx_space, jumbo_size;
5044
5045 /* 8 for CRC and VLAN */
5046 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5047
5048 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5049 sizeof(struct skb_shared_info);
5050
5051 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5052 bp->rx_pg_ring_size = 0;
5053 bp->rx_max_pg_ring = 0;
5054 bp->rx_max_pg_ring_idx = 0;
5055 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5056 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5057
5058 jumbo_size = size * pages;
5059 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5060 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5061
5062 bp->rx_pg_ring_size = jumbo_size;
5063 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5064 MAX_RX_PG_RINGS);
5065 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5066 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5067 bp->rx_copy_thresh = 0;
5068 }
5069
5070 bp->rx_buf_use_size = rx_size;
5071 /* hw alignment */
5072 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5073 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5074 bp->rx_ring_size = size;
5075 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5076 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5077 }
5078
5079 static void
5080 bnx2_free_tx_skbs(struct bnx2 *bp)
5081 {
5082 int i;
5083
5084 for (i = 0; i < bp->num_tx_rings; i++) {
5085 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5086 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5087 int j;
5088
5089 if (txr->tx_buf_ring == NULL)
5090 continue;
5091
5092 for (j = 0; j < TX_DESC_CNT; ) {
5093 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5094 struct sk_buff *skb = tx_buf->skb;
5095
5096 if (skb == NULL) {
5097 j++;
5098 continue;
5099 }
5100
5101 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5102
5103 tx_buf->skb = NULL;
5104
5105 j += skb_shinfo(skb)->nr_frags + 1;
5106 dev_kfree_skb(skb);
5107 }
5108 }
5109 }
5110
5111 static void
5112 bnx2_free_rx_skbs(struct bnx2 *bp)
5113 {
5114 int i;
5115
5116 for (i = 0; i < bp->num_rx_rings; i++) {
5117 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5118 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5119 int j;
5120
5121 if (rxr->rx_buf_ring == NULL)
5122 return;
5123
5124 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5125 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5126 struct sk_buff *skb = rx_buf->skb;
5127
5128 if (skb == NULL)
5129 continue;
5130
5131 pci_unmap_single(bp->pdev,
5132 pci_unmap_addr(rx_buf, mapping),
5133 bp->rx_buf_use_size,
5134 PCI_DMA_FROMDEVICE);
5135
5136 rx_buf->skb = NULL;
5137
5138 dev_kfree_skb(skb);
5139 }
5140 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5141 bnx2_free_rx_page(bp, rxr, j);
5142 }
5143 }
5144
5145 static void
5146 bnx2_free_skbs(struct bnx2 *bp)
5147 {
5148 bnx2_free_tx_skbs(bp);
5149 bnx2_free_rx_skbs(bp);
5150 }
5151
5152 static int
5153 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5154 {
5155 int rc;
5156
5157 rc = bnx2_reset_chip(bp, reset_code);
5158 bnx2_free_skbs(bp);
5159 if (rc)
5160 return rc;
5161
5162 if ((rc = bnx2_init_chip(bp)) != 0)
5163 return rc;
5164
5165 bnx2_init_all_rings(bp);
5166 return 0;
5167 }
5168
5169 static int
5170 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5171 {
5172 int rc;
5173
5174 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5175 return rc;
5176
5177 spin_lock_bh(&bp->phy_lock);
5178 bnx2_init_phy(bp, reset_phy);
5179 bnx2_set_link(bp);
5180 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5181 bnx2_remote_phy_event(bp);
5182 spin_unlock_bh(&bp->phy_lock);
5183 return 0;
5184 }
5185
5186 static int
5187 bnx2_shutdown_chip(struct bnx2 *bp)
5188 {
5189 u32 reset_code;
5190
5191 if (bp->flags & BNX2_FLAG_NO_WOL)
5192 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5193 else if (bp->wol)
5194 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5195 else
5196 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5197
5198 return bnx2_reset_chip(bp, reset_code);
5199 }
5200
5201 static int
5202 bnx2_test_registers(struct bnx2 *bp)
5203 {
5204 int ret;
5205 int i, is_5709;
5206 static const struct {
5207 u16 offset;
5208 u16 flags;
5209 #define BNX2_FL_NOT_5709 1
5210 u32 rw_mask;
5211 u32 ro_mask;
5212 } reg_tbl[] = {
5213 { 0x006c, 0, 0x00000000, 0x0000003f },
5214 { 0x0090, 0, 0xffffffff, 0x00000000 },
5215 { 0x0094, 0, 0x00000000, 0x00000000 },
5216
5217 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5218 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5219 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5220 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5221 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5222 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5223 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5224 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5225 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5226
5227 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5228 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5229 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5230 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5231 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5232 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5233
5234 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5235 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5236 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5237
5238 { 0x1000, 0, 0x00000000, 0x00000001 },
5239 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5240
5241 { 0x1408, 0, 0x01c00800, 0x00000000 },
5242 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5243 { 0x14a8, 0, 0x00000000, 0x000001ff },
5244 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5245 { 0x14b0, 0, 0x00000002, 0x00000001 },
5246 { 0x14b8, 0, 0x00000000, 0x00000000 },
5247 { 0x14c0, 0, 0x00000000, 0x00000009 },
5248 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5249 { 0x14cc, 0, 0x00000000, 0x00000001 },
5250 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5251
5252 { 0x1800, 0, 0x00000000, 0x00000001 },
5253 { 0x1804, 0, 0x00000000, 0x00000003 },
5254
5255 { 0x2800, 0, 0x00000000, 0x00000001 },
5256 { 0x2804, 0, 0x00000000, 0x00003f01 },
5257 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5258 { 0x2810, 0, 0xffff0000, 0x00000000 },
5259 { 0x2814, 0, 0xffff0000, 0x00000000 },
5260 { 0x2818, 0, 0xffff0000, 0x00000000 },
5261 { 0x281c, 0, 0xffff0000, 0x00000000 },
5262 { 0x2834, 0, 0xffffffff, 0x00000000 },
5263 { 0x2840, 0, 0x00000000, 0xffffffff },
5264 { 0x2844, 0, 0x00000000, 0xffffffff },
5265 { 0x2848, 0, 0xffffffff, 0x00000000 },
5266 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5267
5268 { 0x2c00, 0, 0x00000000, 0x00000011 },
5269 { 0x2c04, 0, 0x00000000, 0x00030007 },
5270
5271 { 0x3c00, 0, 0x00000000, 0x00000001 },
5272 { 0x3c04, 0, 0x00000000, 0x00070000 },
5273 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5274 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5275 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5276 { 0x3c14, 0, 0x00000000, 0xffffffff },
5277 { 0x3c18, 0, 0x00000000, 0xffffffff },
5278 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5279 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5280
5281 { 0x5004, 0, 0x00000000, 0x0000007f },
5282 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5283
5284 { 0x5c00, 0, 0x00000000, 0x00000001 },
5285 { 0x5c04, 0, 0x00000000, 0x0003000f },
5286 { 0x5c08, 0, 0x00000003, 0x00000000 },
5287 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5288 { 0x5c10, 0, 0x00000000, 0xffffffff },
5289 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5290 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5291 { 0x5c88, 0, 0x00000000, 0x00077373 },
5292 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5293
5294 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5295 { 0x680c, 0, 0xffffffff, 0x00000000 },
5296 { 0x6810, 0, 0xffffffff, 0x00000000 },
5297 { 0x6814, 0, 0xffffffff, 0x00000000 },
5298 { 0x6818, 0, 0xffffffff, 0x00000000 },
5299 { 0x681c, 0, 0xffffffff, 0x00000000 },
5300 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5301 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5302 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5303 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5304 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5305 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5306 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5307 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5308 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5309 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5310 { 0x684c, 0, 0xffffffff, 0x00000000 },
5311 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5312 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5313 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5314 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5315 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5316 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5317
5318 { 0xffff, 0, 0x00000000, 0x00000000 },
5319 };
5320
5321 ret = 0;
5322 is_5709 = 0;
5323 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5324 is_5709 = 1;
5325
5326 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5327 u32 offset, rw_mask, ro_mask, save_val, val;
5328 u16 flags = reg_tbl[i].flags;
5329
5330 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5331 continue;
5332
5333 offset = (u32) reg_tbl[i].offset;
5334 rw_mask = reg_tbl[i].rw_mask;
5335 ro_mask = reg_tbl[i].ro_mask;
5336
5337 save_val = readl(bp->regview + offset);
5338
5339 writel(0, bp->regview + offset);
5340
5341 val = readl(bp->regview + offset);
5342 if ((val & rw_mask) != 0) {
5343 goto reg_test_err;
5344 }
5345
5346 if ((val & ro_mask) != (save_val & ro_mask)) {
5347 goto reg_test_err;
5348 }
5349
5350 writel(0xffffffff, bp->regview + offset);
5351
5352 val = readl(bp->regview + offset);
5353 if ((val & rw_mask) != rw_mask) {
5354 goto reg_test_err;
5355 }
5356
5357 if ((val & ro_mask) != (save_val & ro_mask)) {
5358 goto reg_test_err;
5359 }
5360
5361 writel(save_val, bp->regview + offset);
5362 continue;
5363
5364 reg_test_err:
5365 writel(save_val, bp->regview + offset);
5366 ret = -ENODEV;
5367 break;
5368 }
5369 return ret;
5370 }
5371
5372 static int
5373 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5374 {
5375 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5376 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5377 int i;
5378
5379 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5380 u32 offset;
5381
5382 for (offset = 0; offset < size; offset += 4) {
5383
5384 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5385
5386 if (bnx2_reg_rd_ind(bp, start + offset) !=
5387 test_pattern[i]) {
5388 return -ENODEV;
5389 }
5390 }
5391 }
5392 return 0;
5393 }
5394
5395 static int
5396 bnx2_test_memory(struct bnx2 *bp)
5397 {
5398 int ret = 0;
5399 int i;
5400 static struct mem_entry {
5401 u32 offset;
5402 u32 len;
5403 } mem_tbl_5706[] = {
5404 { 0x60000, 0x4000 },
5405 { 0xa0000, 0x3000 },
5406 { 0xe0000, 0x4000 },
5407 { 0x120000, 0x4000 },
5408 { 0x1a0000, 0x4000 },
5409 { 0x160000, 0x4000 },
5410 { 0xffffffff, 0 },
5411 },
5412 mem_tbl_5709[] = {
5413 { 0x60000, 0x4000 },
5414 { 0xa0000, 0x3000 },
5415 { 0xe0000, 0x4000 },
5416 { 0x120000, 0x4000 },
5417 { 0x1a0000, 0x4000 },
5418 { 0xffffffff, 0 },
5419 };
5420 struct mem_entry *mem_tbl;
5421
5422 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5423 mem_tbl = mem_tbl_5709;
5424 else
5425 mem_tbl = mem_tbl_5706;
5426
5427 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5428 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5429 mem_tbl[i].len)) != 0) {
5430 return ret;
5431 }
5432 }
5433
5434 return ret;
5435 }
5436
5437 #define BNX2_MAC_LOOPBACK 0
5438 #define BNX2_PHY_LOOPBACK 1
5439
5440 static int
5441 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5442 {
5443 unsigned int pkt_size, num_pkts, i;
5444 struct sk_buff *skb, *rx_skb;
5445 unsigned char *packet;
5446 u16 rx_start_idx, rx_idx;
5447 dma_addr_t map;
5448 struct tx_bd *txbd;
5449 struct sw_bd *rx_buf;
5450 struct l2_fhdr *rx_hdr;
5451 int ret = -ENODEV;
5452 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5453 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5454 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5455
5456 tx_napi = bnapi;
5457
5458 txr = &tx_napi->tx_ring;
5459 rxr = &bnapi->rx_ring;
5460 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5461 bp->loopback = MAC_LOOPBACK;
5462 bnx2_set_mac_loopback(bp);
5463 }
5464 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5465 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5466 return 0;
5467
5468 bp->loopback = PHY_LOOPBACK;
5469 bnx2_set_phy_loopback(bp);
5470 }
5471 else
5472 return -EINVAL;
5473
5474 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5475 skb = netdev_alloc_skb(bp->dev, pkt_size);
5476 if (!skb)
5477 return -ENOMEM;
5478 packet = skb_put(skb, pkt_size);
5479 memcpy(packet, bp->dev->dev_addr, 6);
5480 memset(packet + 6, 0x0, 8);
5481 for (i = 14; i < pkt_size; i++)
5482 packet[i] = (unsigned char) (i & 0xff);
5483
5484 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5485 dev_kfree_skb(skb);
5486 return -EIO;
5487 }
5488 map = skb_shinfo(skb)->dma_head;
5489
5490 REG_WR(bp, BNX2_HC_COMMAND,
5491 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5492
5493 REG_RD(bp, BNX2_HC_COMMAND);
5494
5495 udelay(5);
5496 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5497
5498 num_pkts = 0;
5499
5500 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5501
5502 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5503 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5504 txbd->tx_bd_mss_nbytes = pkt_size;
5505 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5506
5507 num_pkts++;
5508 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5509 txr->tx_prod_bseq += pkt_size;
5510
5511 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5512 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5513
5514 udelay(100);
5515
5516 REG_WR(bp, BNX2_HC_COMMAND,
5517 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5518
5519 REG_RD(bp, BNX2_HC_COMMAND);
5520
5521 udelay(5);
5522
5523 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5524 dev_kfree_skb(skb);
5525
5526 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5527 goto loopback_test_done;
5528
5529 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5530 if (rx_idx != rx_start_idx + num_pkts) {
5531 goto loopback_test_done;
5532 }
5533
5534 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5535 rx_skb = rx_buf->skb;
5536
5537 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5538 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5539
5540 pci_dma_sync_single_for_cpu(bp->pdev,
5541 pci_unmap_addr(rx_buf, mapping),
5542 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5543
5544 if (rx_hdr->l2_fhdr_status &
5545 (L2_FHDR_ERRORS_BAD_CRC |
5546 L2_FHDR_ERRORS_PHY_DECODE |
5547 L2_FHDR_ERRORS_ALIGNMENT |
5548 L2_FHDR_ERRORS_TOO_SHORT |
5549 L2_FHDR_ERRORS_GIANT_FRAME)) {
5550
5551 goto loopback_test_done;
5552 }
5553
5554 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5555 goto loopback_test_done;
5556 }
5557
5558 for (i = 14; i < pkt_size; i++) {
5559 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5560 goto loopback_test_done;
5561 }
5562 }
5563
5564 ret = 0;
5565
5566 loopback_test_done:
5567 bp->loopback = 0;
5568 return ret;
5569 }
5570
5571 #define BNX2_MAC_LOOPBACK_FAILED 1
5572 #define BNX2_PHY_LOOPBACK_FAILED 2
5573 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5574 BNX2_PHY_LOOPBACK_FAILED)
5575
5576 static int
5577 bnx2_test_loopback(struct bnx2 *bp)
5578 {
5579 int rc = 0;
5580
5581 if (!netif_running(bp->dev))
5582 return BNX2_LOOPBACK_FAILED;
5583
5584 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5585 spin_lock_bh(&bp->phy_lock);
5586 bnx2_init_phy(bp, 1);
5587 spin_unlock_bh(&bp->phy_lock);
5588 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5589 rc |= BNX2_MAC_LOOPBACK_FAILED;
5590 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5591 rc |= BNX2_PHY_LOOPBACK_FAILED;
5592 return rc;
5593 }
5594
5595 #define NVRAM_SIZE 0x200
5596 #define CRC32_RESIDUAL 0xdebb20e3
5597
5598 static int
5599 bnx2_test_nvram(struct bnx2 *bp)
5600 {
5601 __be32 buf[NVRAM_SIZE / 4];
5602 u8 *data = (u8 *) buf;
5603 int rc = 0;
5604 u32 magic, csum;
5605
5606 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5607 goto test_nvram_done;
5608
5609 magic = be32_to_cpu(buf[0]);
5610 if (magic != 0x669955aa) {
5611 rc = -ENODEV;
5612 goto test_nvram_done;
5613 }
5614
5615 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5616 goto test_nvram_done;
5617
5618 csum = ether_crc_le(0x100, data);
5619 if (csum != CRC32_RESIDUAL) {
5620 rc = -ENODEV;
5621 goto test_nvram_done;
5622 }
5623
5624 csum = ether_crc_le(0x100, data + 0x100);
5625 if (csum != CRC32_RESIDUAL) {
5626 rc = -ENODEV;
5627 }
5628
5629 test_nvram_done:
5630 return rc;
5631 }
5632
5633 static int
5634 bnx2_test_link(struct bnx2 *bp)
5635 {
5636 u32 bmsr;
5637
5638 if (!netif_running(bp->dev))
5639 return -ENODEV;
5640
5641 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5642 if (bp->link_up)
5643 return 0;
5644 return -ENODEV;
5645 }
5646 spin_lock_bh(&bp->phy_lock);
5647 bnx2_enable_bmsr1(bp);
5648 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5649 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5650 bnx2_disable_bmsr1(bp);
5651 spin_unlock_bh(&bp->phy_lock);
5652
5653 if (bmsr & BMSR_LSTATUS) {
5654 return 0;
5655 }
5656 return -ENODEV;
5657 }
5658
5659 static int
5660 bnx2_test_intr(struct bnx2 *bp)
5661 {
5662 int i;
5663 u16 status_idx;
5664
5665 if (!netif_running(bp->dev))
5666 return -ENODEV;
5667
5668 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5669
5670 /* This register is not touched during run-time. */
5671 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5672 REG_RD(bp, BNX2_HC_COMMAND);
5673
5674 for (i = 0; i < 10; i++) {
5675 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5676 status_idx) {
5677
5678 break;
5679 }
5680
5681 msleep_interruptible(10);
5682 }
5683 if (i < 10)
5684 return 0;
5685
5686 return -ENODEV;
5687 }
5688
5689 /* Determining link for parallel detection. */
5690 static int
5691 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5692 {
5693 u32 mode_ctl, an_dbg, exp;
5694
5695 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5696 return 0;
5697
5698 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5699 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5700
5701 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5702 return 0;
5703
5704 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5705 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5706 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5707
5708 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5709 return 0;
5710
5711 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5712 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5713 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5714
5715 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5716 return 0;
5717
5718 return 1;
5719 }
5720
5721 static void
5722 bnx2_5706_serdes_timer(struct bnx2 *bp)
5723 {
5724 int check_link = 1;
5725
5726 spin_lock(&bp->phy_lock);
5727 if (bp->serdes_an_pending) {
5728 bp->serdes_an_pending--;
5729 check_link = 0;
5730 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5731 u32 bmcr;
5732
5733 bp->current_interval = BNX2_TIMER_INTERVAL;
5734
5735 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5736
5737 if (bmcr & BMCR_ANENABLE) {
5738 if (bnx2_5706_serdes_has_link(bp)) {
5739 bmcr &= ~BMCR_ANENABLE;
5740 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5741 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5742 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5743 }
5744 }
5745 }
5746 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5747 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5748 u32 phy2;
5749
5750 bnx2_write_phy(bp, 0x17, 0x0f01);
5751 bnx2_read_phy(bp, 0x15, &phy2);
5752 if (phy2 & 0x20) {
5753 u32 bmcr;
5754
5755 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5756 bmcr |= BMCR_ANENABLE;
5757 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5758
5759 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5760 }
5761 } else
5762 bp->current_interval = BNX2_TIMER_INTERVAL;
5763
5764 if (check_link) {
5765 u32 val;
5766
5767 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5768 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5769 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5770
5771 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5772 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5773 bnx2_5706s_force_link_dn(bp, 1);
5774 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5775 } else
5776 bnx2_set_link(bp);
5777 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5778 bnx2_set_link(bp);
5779 }
5780 spin_unlock(&bp->phy_lock);
5781 }
5782
5783 static void
5784 bnx2_5708_serdes_timer(struct bnx2 *bp)
5785 {
5786 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5787 return;
5788
5789 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5790 bp->serdes_an_pending = 0;
5791 return;
5792 }
5793
5794 spin_lock(&bp->phy_lock);
5795 if (bp->serdes_an_pending)
5796 bp->serdes_an_pending--;
5797 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5798 u32 bmcr;
5799
5800 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5801 if (bmcr & BMCR_ANENABLE) {
5802 bnx2_enable_forced_2g5(bp);
5803 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
5804 } else {
5805 bnx2_disable_forced_2g5(bp);
5806 bp->serdes_an_pending = 2;
5807 bp->current_interval = BNX2_TIMER_INTERVAL;
5808 }
5809
5810 } else
5811 bp->current_interval = BNX2_TIMER_INTERVAL;
5812
5813 spin_unlock(&bp->phy_lock);
5814 }
5815
5816 static void
5817 bnx2_timer(unsigned long data)
5818 {
5819 struct bnx2 *bp = (struct bnx2 *) data;
5820
5821 if (!netif_running(bp->dev))
5822 return;
5823
5824 if (atomic_read(&bp->intr_sem) != 0)
5825 goto bnx2_restart_timer;
5826
5827 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
5828 BNX2_FLAG_USING_MSI)
5829 bnx2_chk_missed_msi(bp);
5830
5831 bnx2_send_heart_beat(bp);
5832
5833 bp->stats_blk->stat_FwRxDrop =
5834 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
5835
5836 /* workaround occasional corrupted counters */
5837 if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
5838 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
5839 BNX2_HC_COMMAND_STATS_NOW);
5840
5841 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
5842 if (CHIP_NUM(bp) == CHIP_NUM_5706)
5843 bnx2_5706_serdes_timer(bp);
5844 else
5845 bnx2_5708_serdes_timer(bp);
5846 }
5847
5848 bnx2_restart_timer:
5849 mod_timer(&bp->timer, jiffies + bp->current_interval);
5850 }
5851
5852 static int
5853 bnx2_request_irq(struct bnx2 *bp)
5854 {
5855 unsigned long flags;
5856 struct bnx2_irq *irq;
5857 int rc = 0, i;
5858
5859 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
5860 flags = 0;
5861 else
5862 flags = IRQF_SHARED;
5863
5864 for (i = 0; i < bp->irq_nvecs; i++) {
5865 irq = &bp->irq_tbl[i];
5866 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5867 &bp->bnx2_napi[i]);
5868 if (rc)
5869 break;
5870 irq->requested = 1;
5871 }
5872 return rc;
5873 }
5874
5875 static void
5876 bnx2_free_irq(struct bnx2 *bp)
5877 {
5878 struct bnx2_irq *irq;
5879 int i;
5880
5881 for (i = 0; i < bp->irq_nvecs; i++) {
5882 irq = &bp->irq_tbl[i];
5883 if (irq->requested)
5884 free_irq(irq->vector, &bp->bnx2_napi[i]);
5885 irq->requested = 0;
5886 }
5887 if (bp->flags & BNX2_FLAG_USING_MSI)
5888 pci_disable_msi(bp->pdev);
5889 else if (bp->flags & BNX2_FLAG_USING_MSIX)
5890 pci_disable_msix(bp->pdev);
5891
5892 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
5893 }
5894
5895 static void
5896 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
5897 {
5898 int i, rc;
5899 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
5900 struct net_device *dev = bp->dev;
5901 const int len = sizeof(bp->irq_tbl[0].name);
5902
5903 bnx2_setup_msix_tbl(bp);
5904 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
5905 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
5906 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
5907
5908 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5909 msix_ent[i].entry = i;
5910 msix_ent[i].vector = 0;
5911 }
5912
5913 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
5914 if (rc != 0)
5915 return;
5916
5917 bp->irq_nvecs = msix_vecs;
5918 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
5919 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5920 bp->irq_tbl[i].vector = msix_ent[i].vector;
5921 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
5922 bp->irq_tbl[i].handler = bnx2_msi_1shot;
5923 }
5924 }
5925
5926 static void
5927 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
5928 {
5929 int cpus = num_online_cpus();
5930 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
5931
5932 bp->irq_tbl[0].handler = bnx2_interrupt;
5933 strcpy(bp->irq_tbl[0].name, bp->dev->name);
5934 bp->irq_nvecs = 1;
5935 bp->irq_tbl[0].vector = bp->pdev->irq;
5936
5937 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
5938 bnx2_enable_msix(bp, msix_vecs);
5939
5940 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
5941 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
5942 if (pci_enable_msi(bp->pdev) == 0) {
5943 bp->flags |= BNX2_FLAG_USING_MSI;
5944 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5945 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
5946 bp->irq_tbl[0].handler = bnx2_msi_1shot;
5947 } else
5948 bp->irq_tbl[0].handler = bnx2_msi;
5949
5950 bp->irq_tbl[0].vector = bp->pdev->irq;
5951 }
5952 }
5953
5954 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
5955 bp->dev->real_num_tx_queues = bp->num_tx_rings;
5956
5957 bp->num_rx_rings = bp->irq_nvecs;
5958 }
5959
5960 /* Called with rtnl_lock */
5961 static int
5962 bnx2_open(struct net_device *dev)
5963 {
5964 struct bnx2 *bp = netdev_priv(dev);
5965 int rc;
5966
5967 netif_carrier_off(dev);
5968
5969 bnx2_set_power_state(bp, PCI_D0);
5970 bnx2_disable_int(bp);
5971
5972 bnx2_setup_int_mode(bp, disable_msi);
5973 bnx2_napi_enable(bp);
5974 rc = bnx2_alloc_mem(bp);
5975 if (rc)
5976 goto open_err;
5977
5978 rc = bnx2_request_irq(bp);
5979 if (rc)
5980 goto open_err;
5981
5982 rc = bnx2_init_nic(bp, 1);
5983 if (rc)
5984 goto open_err;
5985
5986 mod_timer(&bp->timer, jiffies + bp->current_interval);
5987
5988 atomic_set(&bp->intr_sem, 0);
5989
5990 bnx2_enable_int(bp);
5991
5992 if (bp->flags & BNX2_FLAG_USING_MSI) {
5993 /* Test MSI to make sure it is working
5994 * If MSI test fails, go back to INTx mode
5995 */
5996 if (bnx2_test_intr(bp) != 0) {
5997 printk(KERN_WARNING PFX "%s: No interrupt was generated"
5998 " using MSI, switching to INTx mode. Please"
5999 " report this failure to the PCI maintainer"
6000 " and include system chipset information.\n",
6001 bp->dev->name);
6002
6003 bnx2_disable_int(bp);
6004 bnx2_free_irq(bp);
6005
6006 bnx2_setup_int_mode(bp, 1);
6007
6008 rc = bnx2_init_nic(bp, 0);
6009
6010 if (!rc)
6011 rc = bnx2_request_irq(bp);
6012
6013 if (rc) {
6014 del_timer_sync(&bp->timer);
6015 goto open_err;
6016 }
6017 bnx2_enable_int(bp);
6018 }
6019 }
6020 if (bp->flags & BNX2_FLAG_USING_MSI)
6021 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6022 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6023 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6024
6025 netif_tx_start_all_queues(dev);
6026
6027 return 0;
6028
6029 open_err:
6030 bnx2_napi_disable(bp);
6031 bnx2_free_skbs(bp);
6032 bnx2_free_irq(bp);
6033 bnx2_free_mem(bp);
6034 return rc;
6035 }
6036
6037 static void
6038 bnx2_reset_task(struct work_struct *work)
6039 {
6040 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6041
6042 if (!netif_running(bp->dev))
6043 return;
6044
6045 bnx2_netif_stop(bp);
6046
6047 bnx2_init_nic(bp, 1);
6048
6049 atomic_set(&bp->intr_sem, 1);
6050 bnx2_netif_start(bp);
6051 }
6052
6053 static void
6054 bnx2_tx_timeout(struct net_device *dev)
6055 {
6056 struct bnx2 *bp = netdev_priv(dev);
6057
6058 /* This allows the netif to be shutdown gracefully before resetting */
6059 schedule_work(&bp->reset_task);
6060 }
6061
6062 #ifdef BCM_VLAN
6063 /* Called with rtnl_lock */
6064 static void
6065 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6066 {
6067 struct bnx2 *bp = netdev_priv(dev);
6068
6069 bnx2_netif_stop(bp);
6070
6071 bp->vlgrp = vlgrp;
6072 bnx2_set_rx_mode(dev);
6073 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6074 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6075
6076 bnx2_netif_start(bp);
6077 }
6078 #endif
6079
6080 /* Called with netif_tx_lock.
6081 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6082 * netif_wake_queue().
6083 */
6084 static int
6085 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6086 {
6087 struct bnx2 *bp = netdev_priv(dev);
6088 dma_addr_t mapping;
6089 struct tx_bd *txbd;
6090 struct sw_tx_bd *tx_buf;
6091 u32 len, vlan_tag_flags, last_frag, mss;
6092 u16 prod, ring_prod;
6093 int i;
6094 struct bnx2_napi *bnapi;
6095 struct bnx2_tx_ring_info *txr;
6096 struct netdev_queue *txq;
6097 struct skb_shared_info *sp;
6098
6099 /* Determine which tx ring we will be placed on */
6100 i = skb_get_queue_mapping(skb);
6101 bnapi = &bp->bnx2_napi[i];
6102 txr = &bnapi->tx_ring;
6103 txq = netdev_get_tx_queue(dev, i);
6104
6105 if (unlikely(bnx2_tx_avail(bp, txr) <
6106 (skb_shinfo(skb)->nr_frags + 1))) {
6107 netif_tx_stop_queue(txq);
6108 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6109 dev->name);
6110
6111 return NETDEV_TX_BUSY;
6112 }
6113 len = skb_headlen(skb);
6114 prod = txr->tx_prod;
6115 ring_prod = TX_RING_IDX(prod);
6116
6117 vlan_tag_flags = 0;
6118 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6119 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6120 }
6121
6122 #ifdef BCM_VLAN
6123 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6124 vlan_tag_flags |=
6125 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6126 }
6127 #endif
6128 if ((mss = skb_shinfo(skb)->gso_size)) {
6129 u32 tcp_opt_len;
6130 struct iphdr *iph;
6131
6132 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6133
6134 tcp_opt_len = tcp_optlen(skb);
6135
6136 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6137 u32 tcp_off = skb_transport_offset(skb) -
6138 sizeof(struct ipv6hdr) - ETH_HLEN;
6139
6140 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6141 TX_BD_FLAGS_SW_FLAGS;
6142 if (likely(tcp_off == 0))
6143 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6144 else {
6145 tcp_off >>= 3;
6146 vlan_tag_flags |= ((tcp_off & 0x3) <<
6147 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6148 ((tcp_off & 0x10) <<
6149 TX_BD_FLAGS_TCP6_OFF4_SHL);
6150 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6151 }
6152 } else {
6153 iph = ip_hdr(skb);
6154 if (tcp_opt_len || (iph->ihl > 5)) {
6155 vlan_tag_flags |= ((iph->ihl - 5) +
6156 (tcp_opt_len >> 2)) << 8;
6157 }
6158 }
6159 } else
6160 mss = 0;
6161
6162 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6163 dev_kfree_skb(skb);
6164 return NETDEV_TX_OK;
6165 }
6166
6167 sp = skb_shinfo(skb);
6168 mapping = sp->dma_head;
6169
6170 tx_buf = &txr->tx_buf_ring[ring_prod];
6171 tx_buf->skb = skb;
6172
6173 txbd = &txr->tx_desc_ring[ring_prod];
6174
6175 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6176 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6177 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6178 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6179
6180 last_frag = skb_shinfo(skb)->nr_frags;
6181 tx_buf->nr_frags = last_frag;
6182 tx_buf->is_gso = skb_is_gso(skb);
6183
6184 for (i = 0; i < last_frag; i++) {
6185 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6186
6187 prod = NEXT_TX_BD(prod);
6188 ring_prod = TX_RING_IDX(prod);
6189 txbd = &txr->tx_desc_ring[ring_prod];
6190
6191 len = frag->size;
6192 mapping = sp->dma_maps[i];
6193
6194 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6195 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6196 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6197 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6198
6199 }
6200 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6201
6202 prod = NEXT_TX_BD(prod);
6203 txr->tx_prod_bseq += skb->len;
6204
6205 REG_WR16(bp, txr->tx_bidx_addr, prod);
6206 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6207
6208 mmiowb();
6209
6210 txr->tx_prod = prod;
6211
6212 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6213 netif_tx_stop_queue(txq);
6214 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6215 netif_tx_wake_queue(txq);
6216 }
6217
6218 return NETDEV_TX_OK;
6219 }
6220
6221 /* Called with rtnl_lock */
6222 static int
6223 bnx2_close(struct net_device *dev)
6224 {
6225 struct bnx2 *bp = netdev_priv(dev);
6226
6227 cancel_work_sync(&bp->reset_task);
6228
6229 bnx2_disable_int_sync(bp);
6230 bnx2_napi_disable(bp);
6231 del_timer_sync(&bp->timer);
6232 bnx2_shutdown_chip(bp);
6233 bnx2_free_irq(bp);
6234 bnx2_free_skbs(bp);
6235 bnx2_free_mem(bp);
6236 bp->link_up = 0;
6237 netif_carrier_off(bp->dev);
6238 bnx2_set_power_state(bp, PCI_D3hot);
6239 return 0;
6240 }
6241
6242 #define GET_NET_STATS64(ctr) \
6243 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6244 (unsigned long) (ctr##_lo)
6245
6246 #define GET_NET_STATS32(ctr) \
6247 (ctr##_lo)
6248
6249 #if (BITS_PER_LONG == 64)
6250 #define GET_NET_STATS GET_NET_STATS64
6251 #else
6252 #define GET_NET_STATS GET_NET_STATS32
6253 #endif
6254
6255 static struct net_device_stats *
6256 bnx2_get_stats(struct net_device *dev)
6257 {
6258 struct bnx2 *bp = netdev_priv(dev);
6259 struct statistics_block *stats_blk = bp->stats_blk;
6260 struct net_device_stats *net_stats = &dev->stats;
6261
6262 if (bp->stats_blk == NULL) {
6263 return net_stats;
6264 }
6265 net_stats->rx_packets =
6266 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6267 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6268 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6269
6270 net_stats->tx_packets =
6271 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6272 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6273 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6274
6275 net_stats->rx_bytes =
6276 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6277
6278 net_stats->tx_bytes =
6279 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6280
6281 net_stats->multicast =
6282 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6283
6284 net_stats->collisions =
6285 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6286
6287 net_stats->rx_length_errors =
6288 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6289 stats_blk->stat_EtherStatsOverrsizePkts);
6290
6291 net_stats->rx_over_errors =
6292 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
6293
6294 net_stats->rx_frame_errors =
6295 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6296
6297 net_stats->rx_crc_errors =
6298 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6299
6300 net_stats->rx_errors = net_stats->rx_length_errors +
6301 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6302 net_stats->rx_crc_errors;
6303
6304 net_stats->tx_aborted_errors =
6305 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6306 stats_blk->stat_Dot3StatsLateCollisions);
6307
6308 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6309 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6310 net_stats->tx_carrier_errors = 0;
6311 else {
6312 net_stats->tx_carrier_errors =
6313 (unsigned long)
6314 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6315 }
6316
6317 net_stats->tx_errors =
6318 (unsigned long)
6319 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6320 +
6321 net_stats->tx_aborted_errors +
6322 net_stats->tx_carrier_errors;
6323
6324 net_stats->rx_missed_errors =
6325 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
6326 stats_blk->stat_FwRxDrop);
6327
6328 return net_stats;
6329 }
6330
6331 /* All ethtool functions called with rtnl_lock */
6332
6333 static int
6334 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6335 {
6336 struct bnx2 *bp = netdev_priv(dev);
6337 int support_serdes = 0, support_copper = 0;
6338
6339 cmd->supported = SUPPORTED_Autoneg;
6340 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6341 support_serdes = 1;
6342 support_copper = 1;
6343 } else if (bp->phy_port == PORT_FIBRE)
6344 support_serdes = 1;
6345 else
6346 support_copper = 1;
6347
6348 if (support_serdes) {
6349 cmd->supported |= SUPPORTED_1000baseT_Full |
6350 SUPPORTED_FIBRE;
6351 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6352 cmd->supported |= SUPPORTED_2500baseX_Full;
6353
6354 }
6355 if (support_copper) {
6356 cmd->supported |= SUPPORTED_10baseT_Half |
6357 SUPPORTED_10baseT_Full |
6358 SUPPORTED_100baseT_Half |
6359 SUPPORTED_100baseT_Full |
6360 SUPPORTED_1000baseT_Full |
6361 SUPPORTED_TP;
6362
6363 }
6364
6365 spin_lock_bh(&bp->phy_lock);
6366 cmd->port = bp->phy_port;
6367 cmd->advertising = bp->advertising;
6368
6369 if (bp->autoneg & AUTONEG_SPEED) {
6370 cmd->autoneg = AUTONEG_ENABLE;
6371 }
6372 else {
6373 cmd->autoneg = AUTONEG_DISABLE;
6374 }
6375
6376 if (netif_carrier_ok(dev)) {
6377 cmd->speed = bp->line_speed;
6378 cmd->duplex = bp->duplex;
6379 }
6380 else {
6381 cmd->speed = -1;
6382 cmd->duplex = -1;
6383 }
6384 spin_unlock_bh(&bp->phy_lock);
6385
6386 cmd->transceiver = XCVR_INTERNAL;
6387 cmd->phy_address = bp->phy_addr;
6388
6389 return 0;
6390 }
6391
6392 static int
6393 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6394 {
6395 struct bnx2 *bp = netdev_priv(dev);
6396 u8 autoneg = bp->autoneg;
6397 u8 req_duplex = bp->req_duplex;
6398 u16 req_line_speed = bp->req_line_speed;
6399 u32 advertising = bp->advertising;
6400 int err = -EINVAL;
6401
6402 spin_lock_bh(&bp->phy_lock);
6403
6404 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6405 goto err_out_unlock;
6406
6407 if (cmd->port != bp->phy_port &&
6408 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6409 goto err_out_unlock;
6410
6411 /* If device is down, we can store the settings only if the user
6412 * is setting the currently active port.
6413 */
6414 if (!netif_running(dev) && cmd->port != bp->phy_port)
6415 goto err_out_unlock;
6416
6417 if (cmd->autoneg == AUTONEG_ENABLE) {
6418 autoneg |= AUTONEG_SPEED;
6419
6420 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6421
6422 /* allow advertising 1 speed */
6423 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6424 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6425 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6426 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6427
6428 if (cmd->port == PORT_FIBRE)
6429 goto err_out_unlock;
6430
6431 advertising = cmd->advertising;
6432
6433 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6434 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6435 (cmd->port == PORT_TP))
6436 goto err_out_unlock;
6437 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6438 advertising = cmd->advertising;
6439 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6440 goto err_out_unlock;
6441 else {
6442 if (cmd->port == PORT_FIBRE)
6443 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6444 else
6445 advertising = ETHTOOL_ALL_COPPER_SPEED;
6446 }
6447 advertising |= ADVERTISED_Autoneg;
6448 }
6449 else {
6450 if (cmd->port == PORT_FIBRE) {
6451 if ((cmd->speed != SPEED_1000 &&
6452 cmd->speed != SPEED_2500) ||
6453 (cmd->duplex != DUPLEX_FULL))
6454 goto err_out_unlock;
6455
6456 if (cmd->speed == SPEED_2500 &&
6457 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6458 goto err_out_unlock;
6459 }
6460 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6461 goto err_out_unlock;
6462
6463 autoneg &= ~AUTONEG_SPEED;
6464 req_line_speed = cmd->speed;
6465 req_duplex = cmd->duplex;
6466 advertising = 0;
6467 }
6468
6469 bp->autoneg = autoneg;
6470 bp->advertising = advertising;
6471 bp->req_line_speed = req_line_speed;
6472 bp->req_duplex = req_duplex;
6473
6474 err = 0;
6475 /* If device is down, the new settings will be picked up when it is
6476 * brought up.
6477 */
6478 if (netif_running(dev))
6479 err = bnx2_setup_phy(bp, cmd->port);
6480
6481 err_out_unlock:
6482 spin_unlock_bh(&bp->phy_lock);
6483
6484 return err;
6485 }
6486
6487 static void
6488 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6489 {
6490 struct bnx2 *bp = netdev_priv(dev);
6491
6492 strcpy(info->driver, DRV_MODULE_NAME);
6493 strcpy(info->version, DRV_MODULE_VERSION);
6494 strcpy(info->bus_info, pci_name(bp->pdev));
6495 strcpy(info->fw_version, bp->fw_version);
6496 }
6497
6498 #define BNX2_REGDUMP_LEN (32 * 1024)
6499
6500 static int
6501 bnx2_get_regs_len(struct net_device *dev)
6502 {
6503 return BNX2_REGDUMP_LEN;
6504 }
6505
6506 static void
6507 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6508 {
6509 u32 *p = _p, i, offset;
6510 u8 *orig_p = _p;
6511 struct bnx2 *bp = netdev_priv(dev);
6512 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6513 0x0800, 0x0880, 0x0c00, 0x0c10,
6514 0x0c30, 0x0d08, 0x1000, 0x101c,
6515 0x1040, 0x1048, 0x1080, 0x10a4,
6516 0x1400, 0x1490, 0x1498, 0x14f0,
6517 0x1500, 0x155c, 0x1580, 0x15dc,
6518 0x1600, 0x1658, 0x1680, 0x16d8,
6519 0x1800, 0x1820, 0x1840, 0x1854,
6520 0x1880, 0x1894, 0x1900, 0x1984,
6521 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6522 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6523 0x2000, 0x2030, 0x23c0, 0x2400,
6524 0x2800, 0x2820, 0x2830, 0x2850,
6525 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6526 0x3c00, 0x3c94, 0x4000, 0x4010,
6527 0x4080, 0x4090, 0x43c0, 0x4458,
6528 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6529 0x4fc0, 0x5010, 0x53c0, 0x5444,
6530 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6531 0x5fc0, 0x6000, 0x6400, 0x6428,
6532 0x6800, 0x6848, 0x684c, 0x6860,
6533 0x6888, 0x6910, 0x8000 };
6534
6535 regs->version = 0;
6536
6537 memset(p, 0, BNX2_REGDUMP_LEN);
6538
6539 if (!netif_running(bp->dev))
6540 return;
6541
6542 i = 0;
6543 offset = reg_boundaries[0];
6544 p += offset;
6545 while (offset < BNX2_REGDUMP_LEN) {
6546 *p++ = REG_RD(bp, offset);
6547 offset += 4;
6548 if (offset == reg_boundaries[i + 1]) {
6549 offset = reg_boundaries[i + 2];
6550 p = (u32 *) (orig_p + offset);
6551 i += 2;
6552 }
6553 }
6554 }
6555
6556 static void
6557 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6558 {
6559 struct bnx2 *bp = netdev_priv(dev);
6560
6561 if (bp->flags & BNX2_FLAG_NO_WOL) {
6562 wol->supported = 0;
6563 wol->wolopts = 0;
6564 }
6565 else {
6566 wol->supported = WAKE_MAGIC;
6567 if (bp->wol)
6568 wol->wolopts = WAKE_MAGIC;
6569 else
6570 wol->wolopts = 0;
6571 }
6572 memset(&wol->sopass, 0, sizeof(wol->sopass));
6573 }
6574
6575 static int
6576 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6577 {
6578 struct bnx2 *bp = netdev_priv(dev);
6579
6580 if (wol->wolopts & ~WAKE_MAGIC)
6581 return -EINVAL;
6582
6583 if (wol->wolopts & WAKE_MAGIC) {
6584 if (bp->flags & BNX2_FLAG_NO_WOL)
6585 return -EINVAL;
6586
6587 bp->wol = 1;
6588 }
6589 else {
6590 bp->wol = 0;
6591 }
6592 return 0;
6593 }
6594
6595 static int
6596 bnx2_nway_reset(struct net_device *dev)
6597 {
6598 struct bnx2 *bp = netdev_priv(dev);
6599 u32 bmcr;
6600
6601 if (!netif_running(dev))
6602 return -EAGAIN;
6603
6604 if (!(bp->autoneg & AUTONEG_SPEED)) {
6605 return -EINVAL;
6606 }
6607
6608 spin_lock_bh(&bp->phy_lock);
6609
6610 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6611 int rc;
6612
6613 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6614 spin_unlock_bh(&bp->phy_lock);
6615 return rc;
6616 }
6617
6618 /* Force a link down visible on the other side */
6619 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6620 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6621 spin_unlock_bh(&bp->phy_lock);
6622
6623 msleep(20);
6624
6625 spin_lock_bh(&bp->phy_lock);
6626
6627 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6628 bp->serdes_an_pending = 1;
6629 mod_timer(&bp->timer, jiffies + bp->current_interval);
6630 }
6631
6632 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6633 bmcr &= ~BMCR_LOOPBACK;
6634 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6635
6636 spin_unlock_bh(&bp->phy_lock);
6637
6638 return 0;
6639 }
6640
6641 static int
6642 bnx2_get_eeprom_len(struct net_device *dev)
6643 {
6644 struct bnx2 *bp = netdev_priv(dev);
6645
6646 if (bp->flash_info == NULL)
6647 return 0;
6648
6649 return (int) bp->flash_size;
6650 }
6651
6652 static int
6653 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6654 u8 *eebuf)
6655 {
6656 struct bnx2 *bp = netdev_priv(dev);
6657 int rc;
6658
6659 if (!netif_running(dev))
6660 return -EAGAIN;
6661
6662 /* parameters already validated in ethtool_get_eeprom */
6663
6664 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6665
6666 return rc;
6667 }
6668
6669 static int
6670 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6671 u8 *eebuf)
6672 {
6673 struct bnx2 *bp = netdev_priv(dev);
6674 int rc;
6675
6676 if (!netif_running(dev))
6677 return -EAGAIN;
6678
6679 /* parameters already validated in ethtool_set_eeprom */
6680
6681 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6682
6683 return rc;
6684 }
6685
6686 static int
6687 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6688 {
6689 struct bnx2 *bp = netdev_priv(dev);
6690
6691 memset(coal, 0, sizeof(struct ethtool_coalesce));
6692
6693 coal->rx_coalesce_usecs = bp->rx_ticks;
6694 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6695 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6696 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6697
6698 coal->tx_coalesce_usecs = bp->tx_ticks;
6699 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6700 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6701 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6702
6703 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6704
6705 return 0;
6706 }
6707
6708 static int
6709 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6710 {
6711 struct bnx2 *bp = netdev_priv(dev);
6712
6713 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6714 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6715
6716 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6717 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6718
6719 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6720 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6721
6722 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6723 if (bp->rx_quick_cons_trip_int > 0xff)
6724 bp->rx_quick_cons_trip_int = 0xff;
6725
6726 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6727 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6728
6729 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6730 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6731
6732 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6733 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6734
6735 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6736 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6737 0xff;
6738
6739 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6740 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
6741 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6742 bp->stats_ticks = USEC_PER_SEC;
6743 }
6744 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6745 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6746 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6747
6748 if (netif_running(bp->dev)) {
6749 bnx2_netif_stop(bp);
6750 bnx2_init_nic(bp, 0);
6751 bnx2_netif_start(bp);
6752 }
6753
6754 return 0;
6755 }
6756
6757 static void
6758 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6759 {
6760 struct bnx2 *bp = netdev_priv(dev);
6761
6762 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6763 ering->rx_mini_max_pending = 0;
6764 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6765
6766 ering->rx_pending = bp->rx_ring_size;
6767 ering->rx_mini_pending = 0;
6768 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6769
6770 ering->tx_max_pending = MAX_TX_DESC_CNT;
6771 ering->tx_pending = bp->tx_ring_size;
6772 }
6773
6774 static int
6775 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6776 {
6777 if (netif_running(bp->dev)) {
6778 bnx2_netif_stop(bp);
6779 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6780 bnx2_free_skbs(bp);
6781 bnx2_free_mem(bp);
6782 }
6783
6784 bnx2_set_rx_ring_size(bp, rx);
6785 bp->tx_ring_size = tx;
6786
6787 if (netif_running(bp->dev)) {
6788 int rc;
6789
6790 rc = bnx2_alloc_mem(bp);
6791 if (rc)
6792 return rc;
6793 bnx2_init_nic(bp, 0);
6794 bnx2_netif_start(bp);
6795 }
6796 return 0;
6797 }
6798
6799 static int
6800 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6801 {
6802 struct bnx2 *bp = netdev_priv(dev);
6803 int rc;
6804
6805 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
6806 (ering->tx_pending > MAX_TX_DESC_CNT) ||
6807 (ering->tx_pending <= MAX_SKB_FRAGS)) {
6808
6809 return -EINVAL;
6810 }
6811 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
6812 return rc;
6813 }
6814
6815 static void
6816 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
6817 {
6818 struct bnx2 *bp = netdev_priv(dev);
6819
6820 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
6821 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
6822 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
6823 }
6824
6825 static int
6826 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
6827 {
6828 struct bnx2 *bp = netdev_priv(dev);
6829
6830 bp->req_flow_ctrl = 0;
6831 if (epause->rx_pause)
6832 bp->req_flow_ctrl |= FLOW_CTRL_RX;
6833 if (epause->tx_pause)
6834 bp->req_flow_ctrl |= FLOW_CTRL_TX;
6835
6836 if (epause->autoneg) {
6837 bp->autoneg |= AUTONEG_FLOW_CTRL;
6838 }
6839 else {
6840 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
6841 }
6842
6843 if (netif_running(dev)) {
6844 spin_lock_bh(&bp->phy_lock);
6845 bnx2_setup_phy(bp, bp->phy_port);
6846 spin_unlock_bh(&bp->phy_lock);
6847 }
6848
6849 return 0;
6850 }
6851
6852 static u32
6853 bnx2_get_rx_csum(struct net_device *dev)
6854 {
6855 struct bnx2 *bp = netdev_priv(dev);
6856
6857 return bp->rx_csum;
6858 }
6859
6860 static int
6861 bnx2_set_rx_csum(struct net_device *dev, u32 data)
6862 {
6863 struct bnx2 *bp = netdev_priv(dev);
6864
6865 bp->rx_csum = data;
6866 return 0;
6867 }
6868
6869 static int
6870 bnx2_set_tso(struct net_device *dev, u32 data)
6871 {
6872 struct bnx2 *bp = netdev_priv(dev);
6873
6874 if (data) {
6875 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
6876 if (CHIP_NUM(bp) == CHIP_NUM_5709)
6877 dev->features |= NETIF_F_TSO6;
6878 } else
6879 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
6880 NETIF_F_TSO_ECN);
6881 return 0;
6882 }
6883
6884 #define BNX2_NUM_STATS 46
6885
6886 static struct {
6887 char string[ETH_GSTRING_LEN];
6888 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
6889 { "rx_bytes" },
6890 { "rx_error_bytes" },
6891 { "tx_bytes" },
6892 { "tx_error_bytes" },
6893 { "rx_ucast_packets" },
6894 { "rx_mcast_packets" },
6895 { "rx_bcast_packets" },
6896 { "tx_ucast_packets" },
6897 { "tx_mcast_packets" },
6898 { "tx_bcast_packets" },
6899 { "tx_mac_errors" },
6900 { "tx_carrier_errors" },
6901 { "rx_crc_errors" },
6902 { "rx_align_errors" },
6903 { "tx_single_collisions" },
6904 { "tx_multi_collisions" },
6905 { "tx_deferred" },
6906 { "tx_excess_collisions" },
6907 { "tx_late_collisions" },
6908 { "tx_total_collisions" },
6909 { "rx_fragments" },
6910 { "rx_jabbers" },
6911 { "rx_undersize_packets" },
6912 { "rx_oversize_packets" },
6913 { "rx_64_byte_packets" },
6914 { "rx_65_to_127_byte_packets" },
6915 { "rx_128_to_255_byte_packets" },
6916 { "rx_256_to_511_byte_packets" },
6917 { "rx_512_to_1023_byte_packets" },
6918 { "rx_1024_to_1522_byte_packets" },
6919 { "rx_1523_to_9022_byte_packets" },
6920 { "tx_64_byte_packets" },
6921 { "tx_65_to_127_byte_packets" },
6922 { "tx_128_to_255_byte_packets" },
6923 { "tx_256_to_511_byte_packets" },
6924 { "tx_512_to_1023_byte_packets" },
6925 { "tx_1024_to_1522_byte_packets" },
6926 { "tx_1523_to_9022_byte_packets" },
6927 { "rx_xon_frames" },
6928 { "rx_xoff_frames" },
6929 { "tx_xon_frames" },
6930 { "tx_xoff_frames" },
6931 { "rx_mac_ctrl_frames" },
6932 { "rx_filtered_packets" },
6933 { "rx_discards" },
6934 { "rx_fw_discards" },
6935 };
6936
6937 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6938
6939 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
6940 STATS_OFFSET32(stat_IfHCInOctets_hi),
6941 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
6942 STATS_OFFSET32(stat_IfHCOutOctets_hi),
6943 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
6944 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
6945 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
6946 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
6947 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
6948 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
6949 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
6950 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
6951 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
6952 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
6953 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
6954 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
6955 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
6956 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
6957 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
6958 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
6959 STATS_OFFSET32(stat_EtherStatsCollisions),
6960 STATS_OFFSET32(stat_EtherStatsFragments),
6961 STATS_OFFSET32(stat_EtherStatsJabbers),
6962 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
6963 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
6964 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
6965 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
6966 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
6967 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
6968 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
6969 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
6970 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
6971 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
6972 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
6973 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
6974 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
6975 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
6976 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
6977 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
6978 STATS_OFFSET32(stat_XonPauseFramesReceived),
6979 STATS_OFFSET32(stat_XoffPauseFramesReceived),
6980 STATS_OFFSET32(stat_OutXonSent),
6981 STATS_OFFSET32(stat_OutXoffSent),
6982 STATS_OFFSET32(stat_MacControlFramesReceived),
6983 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
6984 STATS_OFFSET32(stat_IfInMBUFDiscards),
6985 STATS_OFFSET32(stat_FwRxDrop),
6986 };
6987
6988 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6989 * skipped because of errata.
6990 */
6991 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
6992 8,0,8,8,8,8,8,8,8,8,
6993 4,0,4,4,4,4,4,4,4,4,
6994 4,4,4,4,4,4,4,4,4,4,
6995 4,4,4,4,4,4,4,4,4,4,
6996 4,4,4,4,4,4,
6997 };
6998
6999 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7000 8,0,8,8,8,8,8,8,8,8,
7001 4,4,4,4,4,4,4,4,4,4,
7002 4,4,4,4,4,4,4,4,4,4,
7003 4,4,4,4,4,4,4,4,4,4,
7004 4,4,4,4,4,4,
7005 };
7006
7007 #define BNX2_NUM_TESTS 6
7008
7009 static struct {
7010 char string[ETH_GSTRING_LEN];
7011 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7012 { "register_test (offline)" },
7013 { "memory_test (offline)" },
7014 { "loopback_test (offline)" },
7015 { "nvram_test (online)" },
7016 { "interrupt_test (online)" },
7017 { "link_test (online)" },
7018 };
7019
7020 static int
7021 bnx2_get_sset_count(struct net_device *dev, int sset)
7022 {
7023 switch (sset) {
7024 case ETH_SS_TEST:
7025 return BNX2_NUM_TESTS;
7026 case ETH_SS_STATS:
7027 return BNX2_NUM_STATS;
7028 default:
7029 return -EOPNOTSUPP;
7030 }
7031 }
7032
7033 static void
7034 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7035 {
7036 struct bnx2 *bp = netdev_priv(dev);
7037
7038 bnx2_set_power_state(bp, PCI_D0);
7039
7040 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7041 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7042 int i;
7043
7044 bnx2_netif_stop(bp);
7045 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7046 bnx2_free_skbs(bp);
7047
7048 if (bnx2_test_registers(bp) != 0) {
7049 buf[0] = 1;
7050 etest->flags |= ETH_TEST_FL_FAILED;
7051 }
7052 if (bnx2_test_memory(bp) != 0) {
7053 buf[1] = 1;
7054 etest->flags |= ETH_TEST_FL_FAILED;
7055 }
7056 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7057 etest->flags |= ETH_TEST_FL_FAILED;
7058
7059 if (!netif_running(bp->dev))
7060 bnx2_shutdown_chip(bp);
7061 else {
7062 bnx2_init_nic(bp, 1);
7063 bnx2_netif_start(bp);
7064 }
7065
7066 /* wait for link up */
7067 for (i = 0; i < 7; i++) {
7068 if (bp->link_up)
7069 break;
7070 msleep_interruptible(1000);
7071 }
7072 }
7073
7074 if (bnx2_test_nvram(bp) != 0) {
7075 buf[3] = 1;
7076 etest->flags |= ETH_TEST_FL_FAILED;
7077 }
7078 if (bnx2_test_intr(bp) != 0) {
7079 buf[4] = 1;
7080 etest->flags |= ETH_TEST_FL_FAILED;
7081 }
7082
7083 if (bnx2_test_link(bp) != 0) {
7084 buf[5] = 1;
7085 etest->flags |= ETH_TEST_FL_FAILED;
7086
7087 }
7088 if (!netif_running(bp->dev))
7089 bnx2_set_power_state(bp, PCI_D3hot);
7090 }
7091
7092 static void
7093 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7094 {
7095 switch (stringset) {
7096 case ETH_SS_STATS:
7097 memcpy(buf, bnx2_stats_str_arr,
7098 sizeof(bnx2_stats_str_arr));
7099 break;
7100 case ETH_SS_TEST:
7101 memcpy(buf, bnx2_tests_str_arr,
7102 sizeof(bnx2_tests_str_arr));
7103 break;
7104 }
7105 }
7106
7107 static void
7108 bnx2_get_ethtool_stats(struct net_device *dev,
7109 struct ethtool_stats *stats, u64 *buf)
7110 {
7111 struct bnx2 *bp = netdev_priv(dev);
7112 int i;
7113 u32 *hw_stats = (u32 *) bp->stats_blk;
7114 u8 *stats_len_arr = NULL;
7115
7116 if (hw_stats == NULL) {
7117 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7118 return;
7119 }
7120
7121 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7122 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7123 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7124 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7125 stats_len_arr = bnx2_5706_stats_len_arr;
7126 else
7127 stats_len_arr = bnx2_5708_stats_len_arr;
7128
7129 for (i = 0; i < BNX2_NUM_STATS; i++) {
7130 if (stats_len_arr[i] == 0) {
7131 /* skip this counter */
7132 buf[i] = 0;
7133 continue;
7134 }
7135 if (stats_len_arr[i] == 4) {
7136 /* 4-byte counter */
7137 buf[i] = (u64)
7138 *(hw_stats + bnx2_stats_offset_arr[i]);
7139 continue;
7140 }
7141 /* 8-byte counter */
7142 buf[i] = (((u64) *(hw_stats +
7143 bnx2_stats_offset_arr[i])) << 32) +
7144 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7145 }
7146 }
7147
7148 static int
7149 bnx2_phys_id(struct net_device *dev, u32 data)
7150 {
7151 struct bnx2 *bp = netdev_priv(dev);
7152 int i;
7153 u32 save;
7154
7155 bnx2_set_power_state(bp, PCI_D0);
7156
7157 if (data == 0)
7158 data = 2;
7159
7160 save = REG_RD(bp, BNX2_MISC_CFG);
7161 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7162
7163 for (i = 0; i < (data * 2); i++) {
7164 if ((i % 2) == 0) {
7165 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7166 }
7167 else {
7168 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7169 BNX2_EMAC_LED_1000MB_OVERRIDE |
7170 BNX2_EMAC_LED_100MB_OVERRIDE |
7171 BNX2_EMAC_LED_10MB_OVERRIDE |
7172 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7173 BNX2_EMAC_LED_TRAFFIC);
7174 }
7175 msleep_interruptible(500);
7176 if (signal_pending(current))
7177 break;
7178 }
7179 REG_WR(bp, BNX2_EMAC_LED, 0);
7180 REG_WR(bp, BNX2_MISC_CFG, save);
7181
7182 if (!netif_running(dev))
7183 bnx2_set_power_state(bp, PCI_D3hot);
7184
7185 return 0;
7186 }
7187
7188 static int
7189 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7190 {
7191 struct bnx2 *bp = netdev_priv(dev);
7192
7193 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7194 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7195 else
7196 return (ethtool_op_set_tx_csum(dev, data));
7197 }
7198
7199 static const struct ethtool_ops bnx2_ethtool_ops = {
7200 .get_settings = bnx2_get_settings,
7201 .set_settings = bnx2_set_settings,
7202 .get_drvinfo = bnx2_get_drvinfo,
7203 .get_regs_len = bnx2_get_regs_len,
7204 .get_regs = bnx2_get_regs,
7205 .get_wol = bnx2_get_wol,
7206 .set_wol = bnx2_set_wol,
7207 .nway_reset = bnx2_nway_reset,
7208 .get_link = ethtool_op_get_link,
7209 .get_eeprom_len = bnx2_get_eeprom_len,
7210 .get_eeprom = bnx2_get_eeprom,
7211 .set_eeprom = bnx2_set_eeprom,
7212 .get_coalesce = bnx2_get_coalesce,
7213 .set_coalesce = bnx2_set_coalesce,
7214 .get_ringparam = bnx2_get_ringparam,
7215 .set_ringparam = bnx2_set_ringparam,
7216 .get_pauseparam = bnx2_get_pauseparam,
7217 .set_pauseparam = bnx2_set_pauseparam,
7218 .get_rx_csum = bnx2_get_rx_csum,
7219 .set_rx_csum = bnx2_set_rx_csum,
7220 .set_tx_csum = bnx2_set_tx_csum,
7221 .set_sg = ethtool_op_set_sg,
7222 .set_tso = bnx2_set_tso,
7223 .self_test = bnx2_self_test,
7224 .get_strings = bnx2_get_strings,
7225 .phys_id = bnx2_phys_id,
7226 .get_ethtool_stats = bnx2_get_ethtool_stats,
7227 .get_sset_count = bnx2_get_sset_count,
7228 };
7229
7230 /* Called with rtnl_lock */
7231 static int
7232 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7233 {
7234 struct mii_ioctl_data *data = if_mii(ifr);
7235 struct bnx2 *bp = netdev_priv(dev);
7236 int err;
7237
7238 switch(cmd) {
7239 case SIOCGMIIPHY:
7240 data->phy_id = bp->phy_addr;
7241
7242 /* fallthru */
7243 case SIOCGMIIREG: {
7244 u32 mii_regval;
7245
7246 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7247 return -EOPNOTSUPP;
7248
7249 if (!netif_running(dev))
7250 return -EAGAIN;
7251
7252 spin_lock_bh(&bp->phy_lock);
7253 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7254 spin_unlock_bh(&bp->phy_lock);
7255
7256 data->val_out = mii_regval;
7257
7258 return err;
7259 }
7260
7261 case SIOCSMIIREG:
7262 if (!capable(CAP_NET_ADMIN))
7263 return -EPERM;
7264
7265 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7266 return -EOPNOTSUPP;
7267
7268 if (!netif_running(dev))
7269 return -EAGAIN;
7270
7271 spin_lock_bh(&bp->phy_lock);
7272 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7273 spin_unlock_bh(&bp->phy_lock);
7274
7275 return err;
7276
7277 default:
7278 /* do nothing */
7279 break;
7280 }
7281 return -EOPNOTSUPP;
7282 }
7283
7284 /* Called with rtnl_lock */
7285 static int
7286 bnx2_change_mac_addr(struct net_device *dev, void *p)
7287 {
7288 struct sockaddr *addr = p;
7289 struct bnx2 *bp = netdev_priv(dev);
7290
7291 if (!is_valid_ether_addr(addr->sa_data))
7292 return -EINVAL;
7293
7294 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7295 if (netif_running(dev))
7296 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7297
7298 return 0;
7299 }
7300
7301 /* Called with rtnl_lock */
7302 static int
7303 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7304 {
7305 struct bnx2 *bp = netdev_priv(dev);
7306
7307 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7308 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7309 return -EINVAL;
7310
7311 dev->mtu = new_mtu;
7312 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7313 }
7314
7315 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7316 static void
7317 poll_bnx2(struct net_device *dev)
7318 {
7319 struct bnx2 *bp = netdev_priv(dev);
7320 int i;
7321
7322 for (i = 0; i < bp->irq_nvecs; i++) {
7323 disable_irq(bp->irq_tbl[i].vector);
7324 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7325 enable_irq(bp->irq_tbl[i].vector);
7326 }
7327 }
7328 #endif
7329
7330 static void __devinit
7331 bnx2_get_5709_media(struct bnx2 *bp)
7332 {
7333 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7334 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7335 u32 strap;
7336
7337 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7338 return;
7339 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7340 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7341 return;
7342 }
7343
7344 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7345 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7346 else
7347 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7348
7349 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7350 switch (strap) {
7351 case 0x4:
7352 case 0x5:
7353 case 0x6:
7354 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7355 return;
7356 }
7357 } else {
7358 switch (strap) {
7359 case 0x1:
7360 case 0x2:
7361 case 0x4:
7362 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7363 return;
7364 }
7365 }
7366 }
7367
7368 static void __devinit
7369 bnx2_get_pci_speed(struct bnx2 *bp)
7370 {
7371 u32 reg;
7372
7373 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7374 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7375 u32 clkreg;
7376
7377 bp->flags |= BNX2_FLAG_PCIX;
7378
7379 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7380
7381 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7382 switch (clkreg) {
7383 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7384 bp->bus_speed_mhz = 133;
7385 break;
7386
7387 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7388 bp->bus_speed_mhz = 100;
7389 break;
7390
7391 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7392 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7393 bp->bus_speed_mhz = 66;
7394 break;
7395
7396 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7397 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7398 bp->bus_speed_mhz = 50;
7399 break;
7400
7401 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7402 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7403 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7404 bp->bus_speed_mhz = 33;
7405 break;
7406 }
7407 }
7408 else {
7409 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7410 bp->bus_speed_mhz = 66;
7411 else
7412 bp->bus_speed_mhz = 33;
7413 }
7414
7415 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7416 bp->flags |= BNX2_FLAG_PCI_32BIT;
7417
7418 }
7419
7420 static int __devinit
7421 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7422 {
7423 struct bnx2 *bp;
7424 unsigned long mem_len;
7425 int rc, i, j;
7426 u32 reg;
7427 u64 dma_mask, persist_dma_mask;
7428
7429 SET_NETDEV_DEV(dev, &pdev->dev);
7430 bp = netdev_priv(dev);
7431
7432 bp->flags = 0;
7433 bp->phy_flags = 0;
7434
7435 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7436 rc = pci_enable_device(pdev);
7437 if (rc) {
7438 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7439 goto err_out;
7440 }
7441
7442 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7443 dev_err(&pdev->dev,
7444 "Cannot find PCI device base address, aborting.\n");
7445 rc = -ENODEV;
7446 goto err_out_disable;
7447 }
7448
7449 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7450 if (rc) {
7451 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7452 goto err_out_disable;
7453 }
7454
7455 pci_set_master(pdev);
7456 pci_save_state(pdev);
7457
7458 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7459 if (bp->pm_cap == 0) {
7460 dev_err(&pdev->dev,
7461 "Cannot find power management capability, aborting.\n");
7462 rc = -EIO;
7463 goto err_out_release;
7464 }
7465
7466 bp->dev = dev;
7467 bp->pdev = pdev;
7468
7469 spin_lock_init(&bp->phy_lock);
7470 spin_lock_init(&bp->indirect_lock);
7471 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7472
7473 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7474 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS);
7475 dev->mem_end = dev->mem_start + mem_len;
7476 dev->irq = pdev->irq;
7477
7478 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7479
7480 if (!bp->regview) {
7481 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7482 rc = -ENOMEM;
7483 goto err_out_release;
7484 }
7485
7486 /* Configure byte swap and enable write to the reg_window registers.
7487 * Rely on CPU to do target byte swapping on big endian systems
7488 * The chip's target access swapping will not swap all accesses
7489 */
7490 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7491 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7492 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7493
7494 bnx2_set_power_state(bp, PCI_D0);
7495
7496 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7497
7498 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7499 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7500 dev_err(&pdev->dev,
7501 "Cannot find PCIE capability, aborting.\n");
7502 rc = -EIO;
7503 goto err_out_unmap;
7504 }
7505 bp->flags |= BNX2_FLAG_PCIE;
7506 if (CHIP_REV(bp) == CHIP_REV_Ax)
7507 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7508 } else {
7509 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7510 if (bp->pcix_cap == 0) {
7511 dev_err(&pdev->dev,
7512 "Cannot find PCIX capability, aborting.\n");
7513 rc = -EIO;
7514 goto err_out_unmap;
7515 }
7516 }
7517
7518 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7519 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7520 bp->flags |= BNX2_FLAG_MSIX_CAP;
7521 }
7522
7523 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7524 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7525 bp->flags |= BNX2_FLAG_MSI_CAP;
7526 }
7527
7528 /* 5708 cannot support DMA addresses > 40-bit. */
7529 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7530 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7531 else
7532 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7533
7534 /* Configure DMA attributes. */
7535 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7536 dev->features |= NETIF_F_HIGHDMA;
7537 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7538 if (rc) {
7539 dev_err(&pdev->dev,
7540 "pci_set_consistent_dma_mask failed, aborting.\n");
7541 goto err_out_unmap;
7542 }
7543 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7544 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7545 goto err_out_unmap;
7546 }
7547
7548 if (!(bp->flags & BNX2_FLAG_PCIE))
7549 bnx2_get_pci_speed(bp);
7550
7551 /* 5706A0 may falsely detect SERR and PERR. */
7552 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7553 reg = REG_RD(bp, PCI_COMMAND);
7554 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7555 REG_WR(bp, PCI_COMMAND, reg);
7556 }
7557 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7558 !(bp->flags & BNX2_FLAG_PCIX)) {
7559
7560 dev_err(&pdev->dev,
7561 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7562 goto err_out_unmap;
7563 }
7564
7565 bnx2_init_nvram(bp);
7566
7567 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7568
7569 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7570 BNX2_SHM_HDR_SIGNATURE_SIG) {
7571 u32 off = PCI_FUNC(pdev->devfn) << 2;
7572
7573 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7574 } else
7575 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7576
7577 /* Get the permanent MAC address. First we need to make sure the
7578 * firmware is actually running.
7579 */
7580 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7581
7582 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7583 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7584 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7585 rc = -ENODEV;
7586 goto err_out_unmap;
7587 }
7588
7589 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7590 for (i = 0, j = 0; i < 3; i++) {
7591 u8 num, k, skip0;
7592
7593 num = (u8) (reg >> (24 - (i * 8)));
7594 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7595 if (num >= k || !skip0 || k == 1) {
7596 bp->fw_version[j++] = (num / k) + '0';
7597 skip0 = 0;
7598 }
7599 }
7600 if (i != 2)
7601 bp->fw_version[j++] = '.';
7602 }
7603 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7604 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7605 bp->wol = 1;
7606
7607 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7608 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7609
7610 for (i = 0; i < 30; i++) {
7611 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7612 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7613 break;
7614 msleep(10);
7615 }
7616 }
7617 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7618 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7619 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7620 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7621 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7622
7623 bp->fw_version[j++] = ' ';
7624 for (i = 0; i < 3; i++) {
7625 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7626 reg = swab32(reg);
7627 memcpy(&bp->fw_version[j], &reg, 4);
7628 j += 4;
7629 }
7630 }
7631
7632 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7633 bp->mac_addr[0] = (u8) (reg >> 8);
7634 bp->mac_addr[1] = (u8) reg;
7635
7636 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7637 bp->mac_addr[2] = (u8) (reg >> 24);
7638 bp->mac_addr[3] = (u8) (reg >> 16);
7639 bp->mac_addr[4] = (u8) (reg >> 8);
7640 bp->mac_addr[5] = (u8) reg;
7641
7642 bp->tx_ring_size = MAX_TX_DESC_CNT;
7643 bnx2_set_rx_ring_size(bp, 255);
7644
7645 bp->rx_csum = 1;
7646
7647 bp->tx_quick_cons_trip_int = 20;
7648 bp->tx_quick_cons_trip = 20;
7649 bp->tx_ticks_int = 80;
7650 bp->tx_ticks = 80;
7651
7652 bp->rx_quick_cons_trip_int = 6;
7653 bp->rx_quick_cons_trip = 6;
7654 bp->rx_ticks_int = 18;
7655 bp->rx_ticks = 18;
7656
7657 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7658
7659 bp->current_interval = BNX2_TIMER_INTERVAL;
7660
7661 bp->phy_addr = 1;
7662
7663 /* Disable WOL support if we are running on a SERDES chip. */
7664 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7665 bnx2_get_5709_media(bp);
7666 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7667 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7668
7669 bp->phy_port = PORT_TP;
7670 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7671 bp->phy_port = PORT_FIBRE;
7672 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7673 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7674 bp->flags |= BNX2_FLAG_NO_WOL;
7675 bp->wol = 0;
7676 }
7677 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7678 /* Don't do parallel detect on this board because of
7679 * some board problems. The link will not go down
7680 * if we do parallel detect.
7681 */
7682 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7683 pdev->subsystem_device == 0x310c)
7684 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7685 } else {
7686 bp->phy_addr = 2;
7687 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7688 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7689 }
7690 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7691 CHIP_NUM(bp) == CHIP_NUM_5708)
7692 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7693 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7694 (CHIP_REV(bp) == CHIP_REV_Ax ||
7695 CHIP_REV(bp) == CHIP_REV_Bx))
7696 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7697
7698 bnx2_init_fw_cap(bp);
7699
7700 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7701 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7702 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7703 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7704 bp->flags |= BNX2_FLAG_NO_WOL;
7705 bp->wol = 0;
7706 }
7707
7708 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7709 bp->tx_quick_cons_trip_int =
7710 bp->tx_quick_cons_trip;
7711 bp->tx_ticks_int = bp->tx_ticks;
7712 bp->rx_quick_cons_trip_int =
7713 bp->rx_quick_cons_trip;
7714 bp->rx_ticks_int = bp->rx_ticks;
7715 bp->comp_prod_trip_int = bp->comp_prod_trip;
7716 bp->com_ticks_int = bp->com_ticks;
7717 bp->cmd_ticks_int = bp->cmd_ticks;
7718 }
7719
7720 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7721 *
7722 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7723 * with byte enables disabled on the unused 32-bit word. This is legal
7724 * but causes problems on the AMD 8132 which will eventually stop
7725 * responding after a while.
7726 *
7727 * AMD believes this incompatibility is unique to the 5706, and
7728 * prefers to locally disable MSI rather than globally disabling it.
7729 */
7730 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7731 struct pci_dev *amd_8132 = NULL;
7732
7733 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7734 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7735 amd_8132))) {
7736
7737 if (amd_8132->revision >= 0x10 &&
7738 amd_8132->revision <= 0x13) {
7739 disable_msi = 1;
7740 pci_dev_put(amd_8132);
7741 break;
7742 }
7743 }
7744 }
7745
7746 bnx2_set_default_link(bp);
7747 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7748
7749 init_timer(&bp->timer);
7750 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7751 bp->timer.data = (unsigned long) bp;
7752 bp->timer.function = bnx2_timer;
7753
7754 return 0;
7755
7756 err_out_unmap:
7757 if (bp->regview) {
7758 iounmap(bp->regview);
7759 bp->regview = NULL;
7760 }
7761
7762 err_out_release:
7763 pci_release_regions(pdev);
7764
7765 err_out_disable:
7766 pci_disable_device(pdev);
7767 pci_set_drvdata(pdev, NULL);
7768
7769 err_out:
7770 return rc;
7771 }
7772
7773 static char * __devinit
7774 bnx2_bus_string(struct bnx2 *bp, char *str)
7775 {
7776 char *s = str;
7777
7778 if (bp->flags & BNX2_FLAG_PCIE) {
7779 s += sprintf(s, "PCI Express");
7780 } else {
7781 s += sprintf(s, "PCI");
7782 if (bp->flags & BNX2_FLAG_PCIX)
7783 s += sprintf(s, "-X");
7784 if (bp->flags & BNX2_FLAG_PCI_32BIT)
7785 s += sprintf(s, " 32-bit");
7786 else
7787 s += sprintf(s, " 64-bit");
7788 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
7789 }
7790 return str;
7791 }
7792
7793 static void __devinit
7794 bnx2_init_napi(struct bnx2 *bp)
7795 {
7796 int i;
7797
7798 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
7799 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
7800 int (*poll)(struct napi_struct *, int);
7801
7802 if (i == 0)
7803 poll = bnx2_poll;
7804 else
7805 poll = bnx2_poll_msix;
7806
7807 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
7808 bnapi->bp = bp;
7809 }
7810 }
7811
7812 static const struct net_device_ops bnx2_netdev_ops = {
7813 .ndo_open = bnx2_open,
7814 .ndo_start_xmit = bnx2_start_xmit,
7815 .ndo_stop = bnx2_close,
7816 .ndo_get_stats = bnx2_get_stats,
7817 .ndo_set_rx_mode = bnx2_set_rx_mode,
7818 .ndo_do_ioctl = bnx2_ioctl,
7819 .ndo_validate_addr = eth_validate_addr,
7820 .ndo_set_mac_address = bnx2_change_mac_addr,
7821 .ndo_change_mtu = bnx2_change_mtu,
7822 .ndo_tx_timeout = bnx2_tx_timeout,
7823 #ifdef BCM_VLAN
7824 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
7825 #endif
7826 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7827 .ndo_poll_controller = poll_bnx2,
7828 #endif
7829 };
7830
7831 static int __devinit
7832 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7833 {
7834 static int version_printed = 0;
7835 struct net_device *dev = NULL;
7836 struct bnx2 *bp;
7837 int rc;
7838 char str[40];
7839
7840 if (version_printed++ == 0)
7841 printk(KERN_INFO "%s", version);
7842
7843 /* dev zeroed in init_etherdev */
7844 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
7845
7846 if (!dev)
7847 return -ENOMEM;
7848
7849 rc = bnx2_init_board(pdev, dev);
7850 if (rc < 0) {
7851 free_netdev(dev);
7852 return rc;
7853 }
7854
7855 dev->netdev_ops = &bnx2_netdev_ops;
7856 dev->watchdog_timeo = TX_TIMEOUT;
7857 dev->ethtool_ops = &bnx2_ethtool_ops;
7858
7859 bp = netdev_priv(dev);
7860 bnx2_init_napi(bp);
7861
7862 pci_set_drvdata(pdev, dev);
7863
7864 rc = bnx2_request_firmware(bp);
7865 if (rc)
7866 goto error;
7867
7868 memcpy(dev->dev_addr, bp->mac_addr, 6);
7869 memcpy(dev->perm_addr, bp->mac_addr, 6);
7870
7871 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
7872 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7873 dev->features |= NETIF_F_IPV6_CSUM;
7874
7875 #ifdef BCM_VLAN
7876 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7877 #endif
7878 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7879 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7880 dev->features |= NETIF_F_TSO6;
7881
7882 if ((rc = register_netdev(dev))) {
7883 dev_err(&pdev->dev, "Cannot register net device\n");
7884 goto error;
7885 }
7886
7887 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
7888 "IRQ %d, node addr %pM\n",
7889 dev->name,
7890 board_info[ent->driver_data].name,
7891 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
7892 ((CHIP_ID(bp) & 0x0ff0) >> 4),
7893 bnx2_bus_string(bp, str),
7894 dev->base_addr,
7895 bp->pdev->irq, dev->dev_addr);
7896
7897 return 0;
7898
7899 error:
7900 if (bp->mips_firmware)
7901 release_firmware(bp->mips_firmware);
7902 if (bp->rv2p_firmware)
7903 release_firmware(bp->rv2p_firmware);
7904
7905 if (bp->regview)
7906 iounmap(bp->regview);
7907 pci_release_regions(pdev);
7908 pci_disable_device(pdev);
7909 pci_set_drvdata(pdev, NULL);
7910 free_netdev(dev);
7911 return rc;
7912 }
7913
7914 static void __devexit
7915 bnx2_remove_one(struct pci_dev *pdev)
7916 {
7917 struct net_device *dev = pci_get_drvdata(pdev);
7918 struct bnx2 *bp = netdev_priv(dev);
7919
7920 flush_scheduled_work();
7921
7922 unregister_netdev(dev);
7923
7924 if (bp->mips_firmware)
7925 release_firmware(bp->mips_firmware);
7926 if (bp->rv2p_firmware)
7927 release_firmware(bp->rv2p_firmware);
7928
7929 if (bp->regview)
7930 iounmap(bp->regview);
7931
7932 free_netdev(dev);
7933 pci_release_regions(pdev);
7934 pci_disable_device(pdev);
7935 pci_set_drvdata(pdev, NULL);
7936 }
7937
7938 static int
7939 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
7940 {
7941 struct net_device *dev = pci_get_drvdata(pdev);
7942 struct bnx2 *bp = netdev_priv(dev);
7943
7944 /* PCI register 4 needs to be saved whether netif_running() or not.
7945 * MSI address and data need to be saved if using MSI and
7946 * netif_running().
7947 */
7948 pci_save_state(pdev);
7949 if (!netif_running(dev))
7950 return 0;
7951
7952 flush_scheduled_work();
7953 bnx2_netif_stop(bp);
7954 netif_device_detach(dev);
7955 del_timer_sync(&bp->timer);
7956 bnx2_shutdown_chip(bp);
7957 bnx2_free_skbs(bp);
7958 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
7959 return 0;
7960 }
7961
7962 static int
7963 bnx2_resume(struct pci_dev *pdev)
7964 {
7965 struct net_device *dev = pci_get_drvdata(pdev);
7966 struct bnx2 *bp = netdev_priv(dev);
7967
7968 pci_restore_state(pdev);
7969 if (!netif_running(dev))
7970 return 0;
7971
7972 bnx2_set_power_state(bp, PCI_D0);
7973 netif_device_attach(dev);
7974 bnx2_init_nic(bp, 1);
7975 bnx2_netif_start(bp);
7976 return 0;
7977 }
7978
7979 /**
7980 * bnx2_io_error_detected - called when PCI error is detected
7981 * @pdev: Pointer to PCI device
7982 * @state: The current pci connection state
7983 *
7984 * This function is called after a PCI bus error affecting
7985 * this device has been detected.
7986 */
7987 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
7988 pci_channel_state_t state)
7989 {
7990 struct net_device *dev = pci_get_drvdata(pdev);
7991 struct bnx2 *bp = netdev_priv(dev);
7992
7993 rtnl_lock();
7994 netif_device_detach(dev);
7995
7996 if (netif_running(dev)) {
7997 bnx2_netif_stop(bp);
7998 del_timer_sync(&bp->timer);
7999 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8000 }
8001
8002 pci_disable_device(pdev);
8003 rtnl_unlock();
8004
8005 /* Request a slot slot reset. */
8006 return PCI_ERS_RESULT_NEED_RESET;
8007 }
8008
8009 /**
8010 * bnx2_io_slot_reset - called after the pci bus has been reset.
8011 * @pdev: Pointer to PCI device
8012 *
8013 * Restart the card from scratch, as if from a cold-boot.
8014 */
8015 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8016 {
8017 struct net_device *dev = pci_get_drvdata(pdev);
8018 struct bnx2 *bp = netdev_priv(dev);
8019
8020 rtnl_lock();
8021 if (pci_enable_device(pdev)) {
8022 dev_err(&pdev->dev,
8023 "Cannot re-enable PCI device after reset.\n");
8024 rtnl_unlock();
8025 return PCI_ERS_RESULT_DISCONNECT;
8026 }
8027 pci_set_master(pdev);
8028 pci_restore_state(pdev);
8029
8030 if (netif_running(dev)) {
8031 bnx2_set_power_state(bp, PCI_D0);
8032 bnx2_init_nic(bp, 1);
8033 }
8034
8035 rtnl_unlock();
8036 return PCI_ERS_RESULT_RECOVERED;
8037 }
8038
8039 /**
8040 * bnx2_io_resume - called when traffic can start flowing again.
8041 * @pdev: Pointer to PCI device
8042 *
8043 * This callback is called when the error recovery driver tells us that
8044 * its OK to resume normal operation.
8045 */
8046 static void bnx2_io_resume(struct pci_dev *pdev)
8047 {
8048 struct net_device *dev = pci_get_drvdata(pdev);
8049 struct bnx2 *bp = netdev_priv(dev);
8050
8051 rtnl_lock();
8052 if (netif_running(dev))
8053 bnx2_netif_start(bp);
8054
8055 netif_device_attach(dev);
8056 rtnl_unlock();
8057 }
8058
8059 static struct pci_error_handlers bnx2_err_handler = {
8060 .error_detected = bnx2_io_error_detected,
8061 .slot_reset = bnx2_io_slot_reset,
8062 .resume = bnx2_io_resume,
8063 };
8064
8065 static struct pci_driver bnx2_pci_driver = {
8066 .name = DRV_MODULE_NAME,
8067 .id_table = bnx2_pci_tbl,
8068 .probe = bnx2_init_one,
8069 .remove = __devexit_p(bnx2_remove_one),
8070 .suspend = bnx2_suspend,
8071 .resume = bnx2_resume,
8072 .err_handler = &bnx2_err_handler,
8073 };
8074
8075 static int __init bnx2_init(void)
8076 {
8077 return pci_register_driver(&bnx2_pci_driver);
8078 }
8079
8080 static void __exit bnx2_cleanup(void)
8081 {
8082 pci_unregister_driver(&bnx2_pci_driver);
8083 }
8084
8085 module_init(bnx2_init);
8086 module_exit(bnx2_cleanup);
8087
8088
8089