]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/cpsw.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[people/ms/u-boot.git] / drivers / net / cpsw.c
1 /*
2 * CPSW Ethernet Switch Driver
3 *
4 * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <common.h>
17 #include <command.h>
18 #include <net.h>
19 #include <miiphy.h>
20 #include <malloc.h>
21 #include <net.h>
22 #include <netdev.h>
23 #include <cpsw.h>
24 #include <asm/errno.h>
25 #include <asm/io.h>
26 #include <phy.h>
27 #include <asm/arch/cpu.h>
28
29 #define BITMASK(bits) (BIT(bits) - 1)
30 #define PHY_REG_MASK 0x1f
31 #define PHY_ID_MASK 0x1f
32 #define NUM_DESCS (PKTBUFSRX * 2)
33 #define PKT_MIN 60
34 #define PKT_MAX (1500 + 14 + 4 + 4)
35 #define CLEAR_BIT 1
36 #define GIGABITEN BIT(7)
37 #define FULLDUPLEXEN BIT(0)
38 #define MIIEN BIT(15)
39
40 /* DMA Registers */
41 #define CPDMA_TXCONTROL 0x004
42 #define CPDMA_RXCONTROL 0x014
43 #define CPDMA_SOFTRESET 0x01c
44 #define CPDMA_RXFREE 0x0e0
45 #define CPDMA_TXHDP_VER1 0x100
46 #define CPDMA_TXHDP_VER2 0x200
47 #define CPDMA_RXHDP_VER1 0x120
48 #define CPDMA_RXHDP_VER2 0x220
49 #define CPDMA_TXCP_VER1 0x140
50 #define CPDMA_TXCP_VER2 0x240
51 #define CPDMA_RXCP_VER1 0x160
52 #define CPDMA_RXCP_VER2 0x260
53
54 /* Descriptor mode bits */
55 #define CPDMA_DESC_SOP BIT(31)
56 #define CPDMA_DESC_EOP BIT(30)
57 #define CPDMA_DESC_OWNER BIT(29)
58 #define CPDMA_DESC_EOQ BIT(28)
59
60 /*
61 * This timeout definition is a worst-case ultra defensive measure against
62 * unexpected controller lock ups. Ideally, we should never ever hit this
63 * scenario in practice.
64 */
65 #define MDIO_TIMEOUT 100 /* msecs */
66 #define CPDMA_TIMEOUT 100 /* msecs */
67
68 struct cpsw_mdio_regs {
69 u32 version;
70 u32 control;
71 #define CONTROL_IDLE BIT(31)
72 #define CONTROL_ENABLE BIT(30)
73
74 u32 alive;
75 u32 link;
76 u32 linkintraw;
77 u32 linkintmasked;
78 u32 __reserved_0[2];
79 u32 userintraw;
80 u32 userintmasked;
81 u32 userintmaskset;
82 u32 userintmaskclr;
83 u32 __reserved_1[20];
84
85 struct {
86 u32 access;
87 u32 physel;
88 #define USERACCESS_GO BIT(31)
89 #define USERACCESS_WRITE BIT(30)
90 #define USERACCESS_ACK BIT(29)
91 #define USERACCESS_READ (0)
92 #define USERACCESS_DATA (0xffff)
93 } user[0];
94 };
95
96 struct cpsw_regs {
97 u32 id_ver;
98 u32 control;
99 u32 soft_reset;
100 u32 stat_port_en;
101 u32 ptype;
102 };
103
104 struct cpsw_slave_regs {
105 u32 max_blks;
106 u32 blk_cnt;
107 u32 flow_thresh;
108 u32 port_vlan;
109 u32 tx_pri_map;
110 #ifdef CONFIG_AM33XX
111 u32 gap_thresh;
112 #elif defined(CONFIG_TI814X)
113 u32 ts_ctl;
114 u32 ts_seq_ltype;
115 u32 ts_vlan;
116 #endif
117 u32 sa_lo;
118 u32 sa_hi;
119 };
120
121 struct cpsw_host_regs {
122 u32 max_blks;
123 u32 blk_cnt;
124 u32 flow_thresh;
125 u32 port_vlan;
126 u32 tx_pri_map;
127 u32 cpdma_tx_pri_map;
128 u32 cpdma_rx_chan_map;
129 };
130
131 struct cpsw_sliver_regs {
132 u32 id_ver;
133 u32 mac_control;
134 u32 mac_status;
135 u32 soft_reset;
136 u32 rx_maxlen;
137 u32 __reserved_0;
138 u32 rx_pause;
139 u32 tx_pause;
140 u32 __reserved_1;
141 u32 rx_pri_map;
142 };
143
144 #define ALE_ENTRY_BITS 68
145 #define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
146
147 /* ALE Registers */
148 #define ALE_CONTROL 0x08
149 #define ALE_UNKNOWNVLAN 0x18
150 #define ALE_TABLE_CONTROL 0x20
151 #define ALE_TABLE 0x34
152 #define ALE_PORTCTL 0x40
153
154 #define ALE_TABLE_WRITE BIT(31)
155
156 #define ALE_TYPE_FREE 0
157 #define ALE_TYPE_ADDR 1
158 #define ALE_TYPE_VLAN 2
159 #define ALE_TYPE_VLAN_ADDR 3
160
161 #define ALE_UCAST_PERSISTANT 0
162 #define ALE_UCAST_UNTOUCHED 1
163 #define ALE_UCAST_OUI 2
164 #define ALE_UCAST_TOUCHED 3
165
166 #define ALE_MCAST_FWD 0
167 #define ALE_MCAST_BLOCK_LEARN_FWD 1
168 #define ALE_MCAST_FWD_LEARN 2
169 #define ALE_MCAST_FWD_2 3
170
171 enum cpsw_ale_port_state {
172 ALE_PORT_STATE_DISABLE = 0x00,
173 ALE_PORT_STATE_BLOCK = 0x01,
174 ALE_PORT_STATE_LEARN = 0x02,
175 ALE_PORT_STATE_FORWARD = 0x03,
176 };
177
178 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
179 #define ALE_SECURE 1
180 #define ALE_BLOCKED 2
181
182 struct cpsw_slave {
183 struct cpsw_slave_regs *regs;
184 struct cpsw_sliver_regs *sliver;
185 int slave_num;
186 u32 mac_control;
187 struct cpsw_slave_data *data;
188 };
189
190 struct cpdma_desc {
191 /* hardware fields */
192 u32 hw_next;
193 u32 hw_buffer;
194 u32 hw_len;
195 u32 hw_mode;
196 /* software fields */
197 u32 sw_buffer;
198 u32 sw_len;
199 };
200
201 struct cpdma_chan {
202 struct cpdma_desc *head, *tail;
203 void *hdp, *cp, *rxfree;
204 };
205
206 #define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld)
207 #define desc_read(desc, fld) __raw_readl(&(desc)->fld)
208 #define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld))
209
210 #define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld)
211 #define chan_read(chan, fld) __raw_readl((chan)->fld)
212 #define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld))
213
214 #define for_each_slave(slave, priv) \
215 for (slave = (priv)->slaves; slave != (priv)->slaves + \
216 (priv)->data.slaves; slave++)
217
218 struct cpsw_priv {
219 struct eth_device *dev;
220 struct cpsw_platform_data data;
221 int host_port;
222
223 struct cpsw_regs *regs;
224 void *dma_regs;
225 struct cpsw_host_regs *host_port_regs;
226 void *ale_regs;
227
228 struct cpdma_desc *descs;
229 struct cpdma_desc *desc_free;
230 struct cpdma_chan rx_chan, tx_chan;
231
232 struct cpsw_slave *slaves;
233 struct phy_device *phydev;
234 struct mii_dev *bus;
235
236 u32 mdio_link;
237 u32 phy_mask;
238 };
239
240 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
241 {
242 int idx;
243
244 idx = start / 32;
245 start -= idx * 32;
246 idx = 2 - idx; /* flip */
247 return (ale_entry[idx] >> start) & BITMASK(bits);
248 }
249
250 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
251 u32 value)
252 {
253 int idx;
254
255 value &= BITMASK(bits);
256 idx = start / 32;
257 start -= idx * 32;
258 idx = 2 - idx; /* flip */
259 ale_entry[idx] &= ~(BITMASK(bits) << start);
260 ale_entry[idx] |= (value << start);
261 }
262
263 #define DEFINE_ALE_FIELD(name, start, bits) \
264 static inline int cpsw_ale_get_##name(u32 *ale_entry) \
265 { \
266 return cpsw_ale_get_field(ale_entry, start, bits); \
267 } \
268 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
269 { \
270 cpsw_ale_set_field(ale_entry, start, bits, value); \
271 }
272
273 DEFINE_ALE_FIELD(entry_type, 60, 2)
274 DEFINE_ALE_FIELD(mcast_state, 62, 2)
275 DEFINE_ALE_FIELD(port_mask, 66, 3)
276 DEFINE_ALE_FIELD(ucast_type, 62, 2)
277 DEFINE_ALE_FIELD(port_num, 66, 2)
278 DEFINE_ALE_FIELD(blocked, 65, 1)
279 DEFINE_ALE_FIELD(secure, 64, 1)
280 DEFINE_ALE_FIELD(mcast, 40, 1)
281
282 /* The MAC address field in the ALE entry cannot be macroized as above */
283 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
284 {
285 int i;
286
287 for (i = 0; i < 6; i++)
288 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
289 }
290
291 static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
292 {
293 int i;
294
295 for (i = 0; i < 6; i++)
296 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
297 }
298
299 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
300 {
301 int i;
302
303 __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
304
305 for (i = 0; i < ALE_ENTRY_WORDS; i++)
306 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
307
308 return idx;
309 }
310
311 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
312 {
313 int i;
314
315 for (i = 0; i < ALE_ENTRY_WORDS; i++)
316 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
317
318 __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
319
320 return idx;
321 }
322
323 static int cpsw_ale_match_addr(struct cpsw_priv *priv, u8* addr)
324 {
325 u32 ale_entry[ALE_ENTRY_WORDS];
326 int type, idx;
327
328 for (idx = 0; idx < priv->data.ale_entries; idx++) {
329 u8 entry_addr[6];
330
331 cpsw_ale_read(priv, idx, ale_entry);
332 type = cpsw_ale_get_entry_type(ale_entry);
333 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
334 continue;
335 cpsw_ale_get_addr(ale_entry, entry_addr);
336 if (memcmp(entry_addr, addr, 6) == 0)
337 return idx;
338 }
339 return -ENOENT;
340 }
341
342 static int cpsw_ale_match_free(struct cpsw_priv *priv)
343 {
344 u32 ale_entry[ALE_ENTRY_WORDS];
345 int type, idx;
346
347 for (idx = 0; idx < priv->data.ale_entries; idx++) {
348 cpsw_ale_read(priv, idx, ale_entry);
349 type = cpsw_ale_get_entry_type(ale_entry);
350 if (type == ALE_TYPE_FREE)
351 return idx;
352 }
353 return -ENOENT;
354 }
355
356 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
357 {
358 u32 ale_entry[ALE_ENTRY_WORDS];
359 int type, idx;
360
361 for (idx = 0; idx < priv->data.ale_entries; idx++) {
362 cpsw_ale_read(priv, idx, ale_entry);
363 type = cpsw_ale_get_entry_type(ale_entry);
364 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
365 continue;
366 if (cpsw_ale_get_mcast(ale_entry))
367 continue;
368 type = cpsw_ale_get_ucast_type(ale_entry);
369 if (type != ALE_UCAST_PERSISTANT &&
370 type != ALE_UCAST_OUI)
371 return idx;
372 }
373 return -ENOENT;
374 }
375
376 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, u8 *addr,
377 int port, int flags)
378 {
379 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
380 int idx;
381
382 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
383 cpsw_ale_set_addr(ale_entry, addr);
384 cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
385 cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
386 cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
387 cpsw_ale_set_port_num(ale_entry, port);
388
389 idx = cpsw_ale_match_addr(priv, addr);
390 if (idx < 0)
391 idx = cpsw_ale_match_free(priv);
392 if (idx < 0)
393 idx = cpsw_ale_find_ageable(priv);
394 if (idx < 0)
395 return -ENOMEM;
396
397 cpsw_ale_write(priv, idx, ale_entry);
398 return 0;
399 }
400
401 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, u8 *addr, int port_mask)
402 {
403 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
404 int idx, mask;
405
406 idx = cpsw_ale_match_addr(priv, addr);
407 if (idx >= 0)
408 cpsw_ale_read(priv, idx, ale_entry);
409
410 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
411 cpsw_ale_set_addr(ale_entry, addr);
412 cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
413
414 mask = cpsw_ale_get_port_mask(ale_entry);
415 port_mask |= mask;
416 cpsw_ale_set_port_mask(ale_entry, port_mask);
417
418 if (idx < 0)
419 idx = cpsw_ale_match_free(priv);
420 if (idx < 0)
421 idx = cpsw_ale_find_ageable(priv);
422 if (idx < 0)
423 return -ENOMEM;
424
425 cpsw_ale_write(priv, idx, ale_entry);
426 return 0;
427 }
428
429 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
430 {
431 u32 tmp, mask = BIT(bit);
432
433 tmp = __raw_readl(priv->ale_regs + ALE_CONTROL);
434 tmp &= ~mask;
435 tmp |= val ? mask : 0;
436 __raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
437 }
438
439 #define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val)
440 #define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val)
441 #define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val)
442
443 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
444 int val)
445 {
446 int offset = ALE_PORTCTL + 4 * port;
447 u32 tmp, mask = 0x3;
448
449 tmp = __raw_readl(priv->ale_regs + offset);
450 tmp &= ~mask;
451 tmp |= val & mask;
452 __raw_writel(tmp, priv->ale_regs + offset);
453 }
454
455 static struct cpsw_mdio_regs *mdio_regs;
456
457 /* wait until hardware is ready for another user access */
458 static inline u32 wait_for_user_access(void)
459 {
460 u32 reg = 0;
461 int timeout = MDIO_TIMEOUT;
462
463 while (timeout-- &&
464 ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
465 udelay(10);
466
467 if (timeout == -1) {
468 printf("wait_for_user_access Timeout\n");
469 return -ETIMEDOUT;
470 }
471 return reg;
472 }
473
474 /* wait until hardware state machine is idle */
475 static inline void wait_for_idle(void)
476 {
477 int timeout = MDIO_TIMEOUT;
478
479 while (timeout-- &&
480 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
481 udelay(10);
482
483 if (timeout == -1)
484 printf("wait_for_idle Timeout\n");
485 }
486
487 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
488 int dev_addr, int phy_reg)
489 {
490 int data;
491 u32 reg;
492
493 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
494 return -EINVAL;
495
496 wait_for_user_access();
497 reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
498 (phy_id << 16));
499 __raw_writel(reg, &mdio_regs->user[0].access);
500 reg = wait_for_user_access();
501
502 data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
503 return data;
504 }
505
506 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
507 int phy_reg, u16 data)
508 {
509 u32 reg;
510
511 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
512 return -EINVAL;
513
514 wait_for_user_access();
515 reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
516 (phy_id << 16) | (data & USERACCESS_DATA));
517 __raw_writel(reg, &mdio_regs->user[0].access);
518 wait_for_user_access();
519
520 return 0;
521 }
522
523 static void cpsw_mdio_init(char *name, u32 mdio_base, u32 div)
524 {
525 struct mii_dev *bus = mdio_alloc();
526
527 mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
528
529 /* set enable and clock divider */
530 __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
531
532 /*
533 * wait for scan logic to settle:
534 * the scan time consists of (a) a large fixed component, and (b) a
535 * small component that varies with the mii bus frequency. These
536 * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
537 * silicon. Since the effect of (b) was found to be largely
538 * negligible, we keep things simple here.
539 */
540 udelay(1000);
541
542 bus->read = cpsw_mdio_read;
543 bus->write = cpsw_mdio_write;
544 sprintf(bus->name, name);
545
546 mdio_register(bus);
547 }
548
549 /* Set a self-clearing bit in a register, and wait for it to clear */
550 static inline void setbit_and_wait_for_clear32(void *addr)
551 {
552 __raw_writel(CLEAR_BIT, addr);
553 while (__raw_readl(addr) & CLEAR_BIT)
554 ;
555 }
556
557 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
558 ((mac)[2] << 16) | ((mac)[3] << 24))
559 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
560
561 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
562 struct cpsw_priv *priv)
563 {
564 __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
565 __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
566 }
567
568 static void cpsw_slave_update_link(struct cpsw_slave *slave,
569 struct cpsw_priv *priv, int *link)
570 {
571 struct phy_device *phy;
572 u32 mac_control = 0;
573
574 phy = priv->phydev;
575
576 if (!phy)
577 return;
578
579 phy_startup(phy);
580 *link = phy->link;
581
582 if (*link) { /* link up */
583 mac_control = priv->data.mac_control;
584 if (phy->speed == 1000)
585 mac_control |= GIGABITEN;
586 if (phy->duplex == DUPLEX_FULL)
587 mac_control |= FULLDUPLEXEN;
588 if (phy->speed == 100)
589 mac_control |= MIIEN;
590 }
591
592 if (mac_control == slave->mac_control)
593 return;
594
595 if (mac_control) {
596 printf("link up on port %d, speed %d, %s duplex\n",
597 slave->slave_num, phy->speed,
598 (phy->duplex == DUPLEX_FULL) ? "full" : "half");
599 } else {
600 printf("link down on port %d\n", slave->slave_num);
601 }
602
603 __raw_writel(mac_control, &slave->sliver->mac_control);
604 slave->mac_control = mac_control;
605 }
606
607 static int cpsw_update_link(struct cpsw_priv *priv)
608 {
609 int link = 0;
610 struct cpsw_slave *slave;
611
612 for_each_slave(slave, priv)
613 cpsw_slave_update_link(slave, priv, &link);
614 priv->mdio_link = readl(&mdio_regs->link);
615 return link;
616 }
617
618 static int cpsw_check_link(struct cpsw_priv *priv)
619 {
620 u32 link = 0;
621
622 link = __raw_readl(&mdio_regs->link) & priv->phy_mask;
623 if ((link) && (link == priv->mdio_link))
624 return 1;
625
626 return cpsw_update_link(priv);
627 }
628
629 static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
630 {
631 if (priv->host_port == 0)
632 return slave_num + 1;
633 else
634 return slave_num;
635 }
636
637 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
638 {
639 u32 slave_port;
640
641 setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
642
643 /* setup priority mapping */
644 __raw_writel(0x76543210, &slave->sliver->rx_pri_map);
645 __raw_writel(0x33221100, &slave->regs->tx_pri_map);
646
647 /* setup max packet size, and mac address */
648 __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
649 cpsw_set_slave_mac(slave, priv);
650
651 slave->mac_control = 0; /* no link yet */
652
653 /* enable forwarding */
654 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
655 cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
656
657 cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << slave_port);
658
659 priv->phy_mask |= 1 << slave->data->phy_id;
660 }
661
662 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
663 {
664 struct cpdma_desc *desc = priv->desc_free;
665
666 if (desc)
667 priv->desc_free = desc_read_ptr(desc, hw_next);
668 return desc;
669 }
670
671 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
672 {
673 if (desc) {
674 desc_write(desc, hw_next, priv->desc_free);
675 priv->desc_free = desc;
676 }
677 }
678
679 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
680 void *buffer, int len)
681 {
682 struct cpdma_desc *desc, *prev;
683 u32 mode;
684
685 desc = cpdma_desc_alloc(priv);
686 if (!desc)
687 return -ENOMEM;
688
689 if (len < PKT_MIN)
690 len = PKT_MIN;
691
692 mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
693
694 desc_write(desc, hw_next, 0);
695 desc_write(desc, hw_buffer, buffer);
696 desc_write(desc, hw_len, len);
697 desc_write(desc, hw_mode, mode | len);
698 desc_write(desc, sw_buffer, buffer);
699 desc_write(desc, sw_len, len);
700
701 if (!chan->head) {
702 /* simple case - first packet enqueued */
703 chan->head = desc;
704 chan->tail = desc;
705 chan_write(chan, hdp, desc);
706 goto done;
707 }
708
709 /* not the first packet - enqueue at the tail */
710 prev = chan->tail;
711 desc_write(prev, hw_next, desc);
712 chan->tail = desc;
713
714 /* next check if EOQ has been triggered already */
715 if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
716 chan_write(chan, hdp, desc);
717
718 done:
719 if (chan->rxfree)
720 chan_write(chan, rxfree, 1);
721 return 0;
722 }
723
724 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
725 void **buffer, int *len)
726 {
727 struct cpdma_desc *desc = chan->head;
728 u32 status;
729
730 if (!desc)
731 return -ENOENT;
732
733 status = desc_read(desc, hw_mode);
734
735 if (len)
736 *len = status & 0x7ff;
737
738 if (buffer)
739 *buffer = desc_read_ptr(desc, sw_buffer);
740
741 if (status & CPDMA_DESC_OWNER) {
742 if (chan_read(chan, hdp) == 0) {
743 if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
744 chan_write(chan, hdp, desc);
745 }
746
747 return -EBUSY;
748 }
749
750 chan->head = desc_read_ptr(desc, hw_next);
751 chan_write(chan, cp, desc);
752
753 cpdma_desc_free(priv, desc);
754 return 0;
755 }
756
757 static int cpsw_init(struct eth_device *dev, bd_t *bis)
758 {
759 struct cpsw_priv *priv = dev->priv;
760 struct cpsw_slave *slave;
761 int i, ret;
762
763 /* soft reset the controller and initialize priv */
764 setbit_and_wait_for_clear32(&priv->regs->soft_reset);
765
766 /* initialize and reset the address lookup engine */
767 cpsw_ale_enable(priv, 1);
768 cpsw_ale_clear(priv, 1);
769 cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
770
771 /* setup host port priority mapping */
772 __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
773 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
774
775 /* disable priority elevation and enable statistics on all ports */
776 __raw_writel(0, &priv->regs->ptype);
777
778 /* enable statistics collection only on the host port */
779 __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
780 __raw_writel(0x7, &priv->regs->stat_port_en);
781
782 cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
783
784 cpsw_ale_add_ucast(priv, priv->dev->enetaddr, priv->host_port,
785 ALE_SECURE);
786 cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << priv->host_port);
787
788 for_each_slave(slave, priv)
789 cpsw_slave_init(slave, priv);
790
791 cpsw_update_link(priv);
792
793 /* init descriptor pool */
794 for (i = 0; i < NUM_DESCS; i++) {
795 desc_write(&priv->descs[i], hw_next,
796 (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
797 }
798 priv->desc_free = &priv->descs[0];
799
800 /* initialize channels */
801 if (priv->data.version == CPSW_CTRL_VERSION_2) {
802 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
803 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2;
804 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2;
805 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
806
807 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
808 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2;
809 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2;
810 } else {
811 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
812 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1;
813 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1;
814 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
815
816 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
817 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1;
818 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1;
819 }
820
821 /* clear dma state */
822 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
823
824 if (priv->data.version == CPSW_CTRL_VERSION_2) {
825 for (i = 0; i < priv->data.channels; i++) {
826 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
827 * i);
828 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
829 * i);
830 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
831 * i);
832 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
833 * i);
834 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
835 * i);
836 }
837 } else {
838 for (i = 0; i < priv->data.channels; i++) {
839 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
840 * i);
841 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
842 * i);
843 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
844 * i);
845 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
846 * i);
847 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
848 * i);
849
850 }
851 }
852
853 __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
854 __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
855
856 /* submit rx descs */
857 for (i = 0; i < PKTBUFSRX; i++) {
858 ret = cpdma_submit(priv, &priv->rx_chan, NetRxPackets[i],
859 PKTSIZE);
860 if (ret < 0) {
861 printf("error %d submitting rx desc\n", ret);
862 break;
863 }
864 }
865
866 return 0;
867 }
868
869 static void cpsw_halt(struct eth_device *dev)
870 {
871 struct cpsw_priv *priv = dev->priv;
872
873 writel(0, priv->dma_regs + CPDMA_TXCONTROL);
874 writel(0, priv->dma_regs + CPDMA_RXCONTROL);
875
876 /* soft reset the controller and initialize priv */
877 setbit_and_wait_for_clear32(&priv->regs->soft_reset);
878
879 /* clear dma state */
880 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
881
882 priv->data.control(0);
883 }
884
885 static int cpsw_send(struct eth_device *dev, void *packet, int length)
886 {
887 struct cpsw_priv *priv = dev->priv;
888 void *buffer;
889 int len;
890 int timeout = CPDMA_TIMEOUT;
891
892 if (!cpsw_check_link(priv))
893 return -EIO;
894
895 flush_dcache_range((unsigned long)packet,
896 (unsigned long)packet + length);
897
898 /* first reap completed packets */
899 while (timeout-- &&
900 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
901 ;
902
903 if (timeout == -1) {
904 printf("cpdma_process timeout\n");
905 return -ETIMEDOUT;
906 }
907
908 return cpdma_submit(priv, &priv->tx_chan, packet, length);
909 }
910
911 static int cpsw_recv(struct eth_device *dev)
912 {
913 struct cpsw_priv *priv = dev->priv;
914 void *buffer;
915 int len;
916
917 cpsw_check_link(priv);
918
919 while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) {
920 invalidate_dcache_range((unsigned long)buffer,
921 (unsigned long)buffer + PKTSIZE_ALIGN);
922 NetReceive(buffer, len);
923 cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE);
924 }
925
926 return 0;
927 }
928
929 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
930 struct cpsw_priv *priv)
931 {
932 void *regs = priv->regs;
933 struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
934 slave->slave_num = slave_num;
935 slave->data = data;
936 slave->regs = regs + data->slave_reg_ofs;
937 slave->sliver = regs + data->sliver_reg_ofs;
938 }
939
940 static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave)
941 {
942 struct cpsw_priv *priv = (struct cpsw_priv *)dev->priv;
943 struct phy_device *phydev;
944 u32 supported = (SUPPORTED_10baseT_Half |
945 SUPPORTED_10baseT_Full |
946 SUPPORTED_100baseT_Half |
947 SUPPORTED_100baseT_Full |
948 SUPPORTED_1000baseT_Full);
949
950 phydev = phy_connect(priv->bus,
951 CONFIG_PHY_ADDR,
952 dev,
953 slave->data->phy_if);
954
955 if (!phydev)
956 return -1;
957
958 phydev->supported &= supported;
959 phydev->advertising = phydev->supported;
960
961 priv->phydev = phydev;
962 phy_config(phydev);
963
964 return 1;
965 }
966
967 int cpsw_register(struct cpsw_platform_data *data)
968 {
969 struct cpsw_priv *priv;
970 struct cpsw_slave *slave;
971 void *regs = (void *)data->cpsw_base;
972 struct eth_device *dev;
973
974 dev = calloc(sizeof(*dev), 1);
975 if (!dev)
976 return -ENOMEM;
977
978 priv = calloc(sizeof(*priv), 1);
979 if (!priv) {
980 free(dev);
981 return -ENOMEM;
982 }
983
984 priv->data = *data;
985 priv->dev = dev;
986
987 priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
988 if (!priv->slaves) {
989 free(dev);
990 free(priv);
991 return -ENOMEM;
992 }
993
994 priv->host_port = data->host_port_num;
995 priv->regs = regs;
996 priv->host_port_regs = regs + data->host_port_reg_ofs;
997 priv->dma_regs = regs + data->cpdma_reg_ofs;
998 priv->ale_regs = regs + data->ale_reg_ofs;
999 priv->descs = (void *)regs + data->bd_ram_ofs;
1000
1001 int idx = 0;
1002
1003 for_each_slave(slave, priv) {
1004 cpsw_slave_setup(slave, idx, priv);
1005 idx = idx + 1;
1006 }
1007
1008 strcpy(dev->name, "cpsw");
1009 dev->iobase = 0;
1010 dev->init = cpsw_init;
1011 dev->halt = cpsw_halt;
1012 dev->send = cpsw_send;
1013 dev->recv = cpsw_recv;
1014 dev->priv = priv;
1015
1016 eth_register(dev);
1017
1018 cpsw_mdio_init(dev->name, data->mdio_base, data->mdio_div);
1019 priv->bus = miiphy_get_dev_by_name(dev->name);
1020 for_each_slave(slave, priv)
1021 cpsw_phy_init(dev, slave);
1022
1023 return 1;
1024 }