]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/dc2114x.c
FEC: Properly align address over the buffers for cache ops
[people/ms/u-boot.git] / drivers / net / dc2114x.c
1 /*
2 * See file CREDITS for list of people who contributed to this
3 * project.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21 #include <common.h>
22 #include <malloc.h>
23 #include <net.h>
24 #include <netdev.h>
25 #include <pci.h>
26
27 #undef DEBUG_SROM
28 #undef DEBUG_SROM2
29
30 #undef UPDATE_SROM
31
32 /* PCI Registers.
33 */
34 #define PCI_CFDA_PSM 0x43
35
36 #define CFRV_RN 0x000000f0 /* Revision Number */
37
38 #define WAKEUP 0x00 /* Power Saving Wakeup */
39 #define SLEEP 0x80 /* Power Saving Sleep Mode */
40
41 #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
42
43 /* Ethernet chip registers.
44 */
45 #define DE4X5_BMR 0x000 /* Bus Mode Register */
46 #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
47 #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
48 #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
49 #define DE4X5_STS 0x028 /* Status Register */
50 #define DE4X5_OMR 0x030 /* Operation Mode Register */
51 #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
52 #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
53
54 /* Register bits.
55 */
56 #define BMR_SWR 0x00000001 /* Software Reset */
57 #define STS_TS 0x00700000 /* Transmit Process State */
58 #define STS_RS 0x000e0000 /* Receive Process State */
59 #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
60 #define OMR_SR 0x00000002 /* Start/Stop Receive */
61 #define OMR_PS 0x00040000 /* Port Select */
62 #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
63 #define OMR_PM 0x00000080 /* Pass All Multicast */
64
65 /* Descriptor bits.
66 */
67 #define R_OWN 0x80000000 /* Own Bit */
68 #define RD_RER 0x02000000 /* Receive End Of Ring */
69 #define RD_LS 0x00000100 /* Last Descriptor */
70 #define RD_ES 0x00008000 /* Error Summary */
71 #define TD_TER 0x02000000 /* Transmit End Of Ring */
72 #define T_OWN 0x80000000 /* Own Bit */
73 #define TD_LS 0x40000000 /* Last Segment */
74 #define TD_FS 0x20000000 /* First Segment */
75 #define TD_ES 0x00008000 /* Error Summary */
76 #define TD_SET 0x08000000 /* Setup Packet */
77
78 /* The EEPROM commands include the alway-set leading bit. */
79 #define SROM_WRITE_CMD 5
80 #define SROM_READ_CMD 6
81 #define SROM_ERASE_CMD 7
82
83 #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
84 #define SROM_RD 0x00004000 /* Read from Boot ROM */
85 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
86 #define EE_WRITE_0 0x4801
87 #define EE_WRITE_1 0x4805
88 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
89 #define SROM_SR 0x00000800 /* Select Serial ROM when set */
90
91 #define DT_IN 0x00000004 /* Serial Data In */
92 #define DT_CLK 0x00000002 /* Serial ROM Clock */
93 #define DT_CS 0x00000001 /* Serial ROM Chip Select */
94
95 #define POLL_DEMAND 1
96
97 #ifdef CONFIG_TULIP_FIX_DAVICOM
98 #define RESET_DM9102(dev) {\
99 unsigned long i;\
100 i=INL(dev, 0x0);\
101 udelay(1000);\
102 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
103 udelay(1000);\
104 }
105 #else
106 #define RESET_DE4X5(dev) {\
107 int i;\
108 i=INL(dev, DE4X5_BMR);\
109 udelay(1000);\
110 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
111 udelay(1000);\
112 OUTL(dev, i, DE4X5_BMR);\
113 udelay(1000);\
114 for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
115 udelay(1000);\
116 }
117 #endif
118
119 #define START_DE4X5(dev) {\
120 s32 omr; \
121 omr = INL(dev, DE4X5_OMR);\
122 omr |= OMR_ST | OMR_SR;\
123 OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
124 }
125
126 #define STOP_DE4X5(dev) {\
127 s32 omr; \
128 omr = INL(dev, DE4X5_OMR);\
129 omr &= ~(OMR_ST|OMR_SR);\
130 OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
131 }
132
133 #define NUM_RX_DESC PKTBUFSRX
134 #ifndef CONFIG_TULIP_FIX_DAVICOM
135 #define NUM_TX_DESC 1 /* Number of TX descriptors */
136 #else
137 #define NUM_TX_DESC 4
138 #endif
139 #define RX_BUFF_SZ PKTSIZE_ALIGN
140
141 #define TOUT_LOOP 1000000
142
143 #define SETUP_FRAME_LEN 192
144 #define ETH_ALEN 6
145
146 struct de4x5_desc {
147 volatile s32 status;
148 u32 des1;
149 u32 buf;
150 u32 next;
151 };
152
153 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
154 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
155 static int rx_new; /* RX descriptor ring pointer */
156 static int tx_new; /* TX descriptor ring pointer */
157
158 static char rxRingSize;
159 static char txRingSize;
160
161 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
162 static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
163 static int getfrom_srom(struct eth_device* dev, u_long addr);
164 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
165 static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
166 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
167 #ifdef UPDATE_SROM
168 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
169 static void update_srom(struct eth_device *dev, bd_t *bis);
170 #endif
171 #ifndef CONFIG_TULIP_FIX_DAVICOM
172 static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
173 static void read_hw_addr(struct eth_device* dev, bd_t * bis);
174 #endif /* CONFIG_TULIP_FIX_DAVICOM */
175 static void send_setup_frame(struct eth_device* dev, bd_t * bis);
176
177 static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
178 static int dc21x4x_send(struct eth_device *dev, void *packet, int length);
179 static int dc21x4x_recv(struct eth_device* dev);
180 static void dc21x4x_halt(struct eth_device* dev);
181 #ifdef CONFIG_TULIP_SELECT_MEDIA
182 extern void dc21x4x_select_media(struct eth_device* dev);
183 #endif
184
185 #if defined(CONFIG_E500)
186 #define phys_to_bus(a) (a)
187 #else
188 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
189 #endif
190
191 static int INL(struct eth_device* dev, u_long addr)
192 {
193 return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
194 }
195
196 static void OUTL(struct eth_device* dev, int command, u_long addr)
197 {
198 *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
199 }
200
201 static struct pci_device_id supported[] = {
202 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
203 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
204 #ifdef CONFIG_TULIP_FIX_DAVICOM
205 { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
206 #endif
207 { }
208 };
209
210 int dc21x4x_initialize(bd_t *bis)
211 {
212 int idx=0;
213 int card_number = 0;
214 unsigned int cfrv;
215 unsigned char timer;
216 pci_dev_t devbusfn;
217 unsigned int iobase;
218 unsigned short status;
219 struct eth_device* dev;
220
221 while(1) {
222 devbusfn = pci_find_devices(supported, idx++);
223 if (devbusfn == -1) {
224 break;
225 }
226
227 /* Get the chip configuration revision register. */
228 pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
229
230 #ifndef CONFIG_TULIP_FIX_DAVICOM
231 if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
232 printf("Error: The chip is not DC21143.\n");
233 continue;
234 }
235 #endif
236
237 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
238 status |=
239 #ifdef CONFIG_TULIP_USE_IO
240 PCI_COMMAND_IO |
241 #else
242 PCI_COMMAND_MEMORY |
243 #endif
244 PCI_COMMAND_MASTER;
245 pci_write_config_word(devbusfn, PCI_COMMAND, status);
246
247 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
248 #ifdef CONFIG_TULIP_USE_IO
249 if (!(status & PCI_COMMAND_IO)) {
250 printf("Error: Can not enable I/O access.\n");
251 continue;
252 }
253 #else
254 if (!(status & PCI_COMMAND_MEMORY)) {
255 printf("Error: Can not enable MEMORY access.\n");
256 continue;
257 }
258 #endif
259
260 if (!(status & PCI_COMMAND_MASTER)) {
261 printf("Error: Can not enable Bus Mastering.\n");
262 continue;
263 }
264
265 /* Check the latency timer for values >= 0x60. */
266 pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
267
268 if (timer < 0x60) {
269 pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
270 }
271
272 #ifdef CONFIG_TULIP_USE_IO
273 /* read BAR for memory space access */
274 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
275 iobase &= PCI_BASE_ADDRESS_IO_MASK;
276 #else
277 /* read BAR for memory space access */
278 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
279 iobase &= PCI_BASE_ADDRESS_MEM_MASK;
280 #endif
281 debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
282
283 dev = (struct eth_device*) malloc(sizeof *dev);
284
285 if (!dev) {
286 printf("Can not allocalte memory of dc21x4x\n");
287 break;
288 }
289 memset(dev, 0, sizeof(*dev));
290
291 #ifdef CONFIG_TULIP_FIX_DAVICOM
292 sprintf(dev->name, "Davicom#%d", card_number);
293 #else
294 sprintf(dev->name, "dc21x4x#%d", card_number);
295 #endif
296
297 #ifdef CONFIG_TULIP_USE_IO
298 dev->iobase = pci_io_to_phys(devbusfn, iobase);
299 #else
300 dev->iobase = pci_mem_to_phys(devbusfn, iobase);
301 #endif
302 dev->priv = (void*) devbusfn;
303 dev->init = dc21x4x_init;
304 dev->halt = dc21x4x_halt;
305 dev->send = dc21x4x_send;
306 dev->recv = dc21x4x_recv;
307
308 /* Ensure we're not sleeping. */
309 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
310
311 udelay(10 * 1000);
312
313 #ifndef CONFIG_TULIP_FIX_DAVICOM
314 read_hw_addr(dev, bis);
315 #endif
316 eth_register(dev);
317
318 card_number++;
319 }
320
321 return card_number;
322 }
323
324 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
325 {
326 int i;
327 int devbusfn = (int) dev->priv;
328
329 /* Ensure we're not sleeping. */
330 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
331
332 #ifdef CONFIG_TULIP_FIX_DAVICOM
333 RESET_DM9102(dev);
334 #else
335 RESET_DE4X5(dev);
336 #endif
337
338 if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
339 printf("Error: Cannot reset ethernet controller.\n");
340 return -1;
341 }
342
343 #ifdef CONFIG_TULIP_SELECT_MEDIA
344 dc21x4x_select_media(dev);
345 #else
346 OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
347 #endif
348
349 for (i = 0; i < NUM_RX_DESC; i++) {
350 rx_ring[i].status = cpu_to_le32(R_OWN);
351 rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
352 rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
353 #ifdef CONFIG_TULIP_FIX_DAVICOM
354 rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
355 #else
356 rx_ring[i].next = 0;
357 #endif
358 }
359
360 for (i=0; i < NUM_TX_DESC; i++) {
361 tx_ring[i].status = 0;
362 tx_ring[i].des1 = 0;
363 tx_ring[i].buf = 0;
364
365 #ifdef CONFIG_TULIP_FIX_DAVICOM
366 tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
367 #else
368 tx_ring[i].next = 0;
369 #endif
370 }
371
372 rxRingSize = NUM_RX_DESC;
373 txRingSize = NUM_TX_DESC;
374
375 /* Write the end of list marker to the descriptor lists. */
376 rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
377 tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
378
379 /* Tell the adapter where the TX/RX rings are located. */
380 OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
381 OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
382
383 START_DE4X5(dev);
384
385 tx_new = 0;
386 rx_new = 0;
387
388 send_setup_frame(dev, bis);
389
390 return 0;
391 }
392
393 static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
394 {
395 int status = -1;
396 int i;
397
398 if (length <= 0) {
399 printf("%s: bad packet size: %d\n", dev->name, length);
400 goto Done;
401 }
402
403 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
404 if (i >= TOUT_LOOP) {
405 printf("%s: tx error buffer not ready\n", dev->name);
406 goto Done;
407 }
408 }
409
410 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
411 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
412 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
413
414 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
415
416 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
417 if (i >= TOUT_LOOP) {
418 printf(".%s: tx buffer not ready\n", dev->name);
419 goto Done;
420 }
421 }
422
423 if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
424 #if 0 /* test-only */
425 printf("TX error status = 0x%08X\n",
426 le32_to_cpu(tx_ring[tx_new].status));
427 #endif
428 tx_ring[tx_new].status = 0x0;
429 goto Done;
430 }
431
432 status = length;
433
434 Done:
435 tx_new = (tx_new+1) % NUM_TX_DESC;
436 return status;
437 }
438
439 static int dc21x4x_recv(struct eth_device* dev)
440 {
441 s32 status;
442 int length = 0;
443
444 for ( ; ; ) {
445 status = (s32)le32_to_cpu(rx_ring[rx_new].status);
446
447 if (status & R_OWN) {
448 break;
449 }
450
451 if (status & RD_LS) {
452 /* Valid frame status.
453 */
454 if (status & RD_ES) {
455
456 /* There was an error.
457 */
458 printf("RX error status = 0x%08X\n", status);
459 } else {
460 /* A valid frame received.
461 */
462 length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
463
464 /* Pass the packet up to the protocol
465 * layers.
466 */
467 NetReceive(NetRxPackets[rx_new], length - 4);
468 }
469
470 /* Change buffer ownership for this frame, back
471 * to the adapter.
472 */
473 rx_ring[rx_new].status = cpu_to_le32(R_OWN);
474 }
475
476 /* Update entry information.
477 */
478 rx_new = (rx_new + 1) % rxRingSize;
479 }
480
481 return length;
482 }
483
484 static void dc21x4x_halt(struct eth_device* dev)
485 {
486 int devbusfn = (int) dev->priv;
487
488 STOP_DE4X5(dev);
489 OUTL(dev, 0, DE4X5_SICR);
490
491 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
492 }
493
494 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
495 {
496 int i;
497 char setup_frame[SETUP_FRAME_LEN];
498 char *pa = &setup_frame[0];
499
500 memset(pa, 0xff, SETUP_FRAME_LEN);
501
502 for (i = 0; i < ETH_ALEN; i++) {
503 *(pa + (i & 1)) = dev->enetaddr[i];
504 if (i & 0x01) {
505 pa += 4;
506 }
507 }
508
509 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
510 if (i >= TOUT_LOOP) {
511 printf("%s: tx error buffer not ready\n", dev->name);
512 goto Done;
513 }
514 }
515
516 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
517 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
518 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
519
520 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
521
522 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
523 if (i >= TOUT_LOOP) {
524 printf("%s: tx buffer not ready\n", dev->name);
525 goto Done;
526 }
527 }
528
529 if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
530 printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
531 }
532 tx_new = (tx_new+1) % NUM_TX_DESC;
533
534 Done:
535 return;
536 }
537
538 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
539 /* SROM Read and write routines.
540 */
541 static void
542 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
543 {
544 OUTL(dev, command, addr);
545 udelay(1);
546 }
547
548 static int
549 getfrom_srom(struct eth_device* dev, u_long addr)
550 {
551 s32 tmp;
552
553 tmp = INL(dev, addr);
554 udelay(1);
555
556 return tmp;
557 }
558
559 /* Note: this routine returns extra data bits for size detection. */
560 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
561 {
562 int i;
563 unsigned retval = 0;
564 int read_cmd = location | (SROM_READ_CMD << addr_len);
565
566 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
567 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
568
569 #ifdef DEBUG_SROM
570 printf(" EEPROM read at %d ", location);
571 #endif
572
573 /* Shift the read command bits out. */
574 for (i = 4 + addr_len; i >= 0; i--) {
575 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
576 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
577 udelay(10);
578 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
579 udelay(10);
580 #ifdef DEBUG_SROM2
581 printf("%X", getfrom_srom(dev, ioaddr) & 15);
582 #endif
583 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
584 }
585
586 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
587
588 #ifdef DEBUG_SROM2
589 printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
590 #endif
591
592 for (i = 16; i > 0; i--) {
593 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
594 udelay(10);
595 #ifdef DEBUG_SROM2
596 printf("%X", getfrom_srom(dev, ioaddr) & 15);
597 #endif
598 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
599 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
600 udelay(10);
601 }
602
603 /* Terminate the EEPROM access. */
604 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
605
606 #ifdef DEBUG_SROM2
607 printf(" EEPROM value at %d is %5.5x.\n", location, retval);
608 #endif
609
610 return retval;
611 }
612 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
613
614 /* This executes a generic EEPROM command, typically a write or write
615 * enable. It returns the data output from the EEPROM, and thus may
616 * also be used for reads.
617 */
618 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
619 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
620 {
621 unsigned retval = 0;
622
623 #ifdef DEBUG_SROM
624 printf(" EEPROM op 0x%x: ", cmd);
625 #endif
626
627 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
628
629 /* Shift the command bits out. */
630 do {
631 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
632 sendto_srom(dev,dataval, ioaddr);
633 udelay(10);
634
635 #ifdef DEBUG_SROM2
636 printf("%X", getfrom_srom(dev,ioaddr) & 15);
637 #endif
638
639 sendto_srom(dev,dataval | DT_CLK, ioaddr);
640 udelay(10);
641 retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
642 } while (--cmd_len >= 0);
643 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
644
645 /* Terminate the EEPROM access. */
646 sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
647
648 #ifdef DEBUG_SROM
649 printf(" EEPROM result is 0x%5.5x.\n", retval);
650 #endif
651
652 return retval;
653 }
654 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
655
656 #ifndef CONFIG_TULIP_FIX_DAVICOM
657 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
658 {
659 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
660
661 return do_eeprom_cmd(dev, ioaddr,
662 (((SROM_READ_CMD << ee_addr_size) | index) << 16)
663 | 0xffff, 3 + ee_addr_size + 16);
664 }
665 #endif /* CONFIG_TULIP_FIX_DAVICOM */
666
667 #ifdef UPDATE_SROM
668 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
669 {
670 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
671 int i;
672 unsigned short newval;
673
674 udelay(10*1000); /* test-only */
675
676 #ifdef DEBUG_SROM
677 printf("ee_addr_size=%d.\n", ee_addr_size);
678 printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
679 #endif
680
681 /* Enable programming modes. */
682 do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
683
684 /* Do the actual write. */
685 do_eeprom_cmd(dev, ioaddr,
686 (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
687 3 + ee_addr_size + 16);
688
689 /* Poll for write finished. */
690 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
691 for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
692 if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
693 break;
694
695 #ifdef DEBUG_SROM
696 printf(" Write finished after %d ticks.\n", i);
697 #endif
698
699 /* Disable programming. */
700 do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
701
702 /* And read the result. */
703 newval = do_eeprom_cmd(dev, ioaddr,
704 (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
705 | 0xffff, 3 + ee_addr_size + 16);
706 #ifdef DEBUG_SROM
707 printf(" New value at offset %d is %4.4x.\n", index, newval);
708 #endif
709 return 1;
710 }
711 #endif
712
713 #ifndef CONFIG_TULIP_FIX_DAVICOM
714 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
715 {
716 u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
717 int i, j = 0;
718
719 for (i = 0; i < (ETH_ALEN >> 1); i++) {
720 tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
721 *p = le16_to_cpu(tmp);
722 j += *p++;
723 }
724
725 if ((j == 0) || (j == 0x2fffd)) {
726 memset (dev->enetaddr, 0, ETH_ALEN);
727 debug ("Warning: can't read HW address from SROM.\n");
728 goto Done;
729 }
730
731 return;
732
733 Done:
734 #ifdef UPDATE_SROM
735 update_srom(dev, bis);
736 #endif
737 return;
738 }
739 #endif /* CONFIG_TULIP_FIX_DAVICOM */
740
741 #ifdef UPDATE_SROM
742 static void update_srom(struct eth_device *dev, bd_t *bis)
743 {
744 int i;
745 static unsigned short eeprom[0x40] = {
746 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
747 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
748 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
749 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
750 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
751 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
752 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
753 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
754 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
755 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
756 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
757 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
758 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
759 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
760 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
761 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
762 };
763 uchar enetaddr[6];
764
765 /* Ethernet Addr... */
766 if (!eth_getenv_enetaddr("ethaddr", enetaddr))
767 return;
768 eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
769 eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
770 eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
771
772 for (i=0; i<0x40; i++) {
773 write_srom(dev, DE4X5_APROM, i, eeprom[i]);
774 }
775 }
776 #endif /* UPDATE_SROM */