]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/e1000.c
Coding Style cleanup; update CHANGELOG
[people/ms/u-boot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
15 any later version.
16
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 more details.
21
22 You should have received a copy of the GNU General Public License along with
23 this program; if not, write to the Free Software Foundation, Inc., 59
24 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
28
29 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33 *******************************************************************************/
34 /*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
43 */
44
45 #include "e1000.h"
46
47 #if defined(CONFIG_CMD_NET) \
48 && defined(CONFIG_NET_MULTI) && defined(CONFIG_E1000)
49
50 #define TOUT_LOOP 100000
51
52 #undef virt_to_bus
53 #define virt_to_bus(x) ((unsigned long)x)
54 #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
55 #define mdelay(n) udelay((n)*1000)
56
57 #define E1000_DEFAULT_PBA 0x00000030
58
59 /* NIC specific static variables go here */
60
61 static char tx_pool[128 + 16];
62 static char rx_pool[128 + 16];
63 static char packet[2096];
64
65 static struct e1000_tx_desc *tx_base;
66 static struct e1000_rx_desc *rx_base;
67
68 static int tx_tail;
69 static int rx_tail, rx_last;
70
71 static struct pci_device_id supported[] = {
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
86 };
87
88 /* Function forward declarations */
89 static int e1000_setup_link(struct eth_device *nic);
90 static int e1000_setup_fiber_link(struct eth_device *nic);
91 static int e1000_setup_copper_link(struct eth_device *nic);
92 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
93 static void e1000_config_collision_dist(struct e1000_hw *hw);
94 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
95 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
96 static int e1000_check_for_link(struct eth_device *nic);
97 static int e1000_wait_autoneg(struct e1000_hw *hw);
98 static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
99 uint16_t * duplex);
100 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
101 uint16_t * phy_data);
102 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
103 uint16_t phy_data);
104 static void e1000_phy_hw_reset(struct e1000_hw *hw);
105 static int e1000_phy_reset(struct e1000_hw *hw);
106 static int e1000_detect_gig_phy(struct e1000_hw *hw);
107
108 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
109 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
110 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
111 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
112 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
113 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
114 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
115
116 #ifndef CONFIG_AP1000 /* remove for warnings */
117 /******************************************************************************
118 * Raises the EEPROM's clock input.
119 *
120 * hw - Struct containing variables accessed by shared code
121 * eecd - EECD's current value
122 *****************************************************************************/
123 static void
124 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
125 {
126 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
127 * wait 50 microseconds.
128 */
129 *eecd = *eecd | E1000_EECD_SK;
130 E1000_WRITE_REG(hw, EECD, *eecd);
131 E1000_WRITE_FLUSH(hw);
132 udelay(50);
133 }
134
135 /******************************************************************************
136 * Lowers the EEPROM's clock input.
137 *
138 * hw - Struct containing variables accessed by shared code
139 * eecd - EECD's current value
140 *****************************************************************************/
141 static void
142 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
143 {
144 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
145 * wait 50 microseconds.
146 */
147 *eecd = *eecd & ~E1000_EECD_SK;
148 E1000_WRITE_REG(hw, EECD, *eecd);
149 E1000_WRITE_FLUSH(hw);
150 udelay(50);
151 }
152
153 /******************************************************************************
154 * Shift data bits out to the EEPROM.
155 *
156 * hw - Struct containing variables accessed by shared code
157 * data - data to send to the EEPROM
158 * count - number of bits to shift out
159 *****************************************************************************/
160 static void
161 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
162 {
163 uint32_t eecd;
164 uint32_t mask;
165
166 /* We need to shift "count" bits out to the EEPROM. So, value in the
167 * "data" parameter will be shifted out to the EEPROM one bit at a time.
168 * In order to do this, "data" must be broken down into bits.
169 */
170 mask = 0x01 << (count - 1);
171 eecd = E1000_READ_REG(hw, EECD);
172 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
173 do {
174 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
175 * and then raising and then lowering the clock (the SK bit controls
176 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
177 * by setting "DI" to "0" and then raising and then lowering the clock.
178 */
179 eecd &= ~E1000_EECD_DI;
180
181 if (data & mask)
182 eecd |= E1000_EECD_DI;
183
184 E1000_WRITE_REG(hw, EECD, eecd);
185 E1000_WRITE_FLUSH(hw);
186
187 udelay(50);
188
189 e1000_raise_ee_clk(hw, &eecd);
190 e1000_lower_ee_clk(hw, &eecd);
191
192 mask = mask >> 1;
193
194 } while (mask);
195
196 /* We leave the "DI" bit set to "0" when we leave this routine. */
197 eecd &= ~E1000_EECD_DI;
198 E1000_WRITE_REG(hw, EECD, eecd);
199 }
200
201 /******************************************************************************
202 * Shift data bits in from the EEPROM
203 *
204 * hw - Struct containing variables accessed by shared code
205 *****************************************************************************/
206 static uint16_t
207 e1000_shift_in_ee_bits(struct e1000_hw *hw)
208 {
209 uint32_t eecd;
210 uint32_t i;
211 uint16_t data;
212
213 /* In order to read a register from the EEPROM, we need to shift 16 bits
214 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
215 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
216 * bit. During this "shifting in" process the "DI" bit should always be
217 * clear..
218 */
219
220 eecd = E1000_READ_REG(hw, EECD);
221
222 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
223 data = 0;
224
225 for (i = 0; i < 16; i++) {
226 data = data << 1;
227 e1000_raise_ee_clk(hw, &eecd);
228
229 eecd = E1000_READ_REG(hw, EECD);
230
231 eecd &= ~(E1000_EECD_DI);
232 if (eecd & E1000_EECD_DO)
233 data |= 1;
234
235 e1000_lower_ee_clk(hw, &eecd);
236 }
237
238 return data;
239 }
240
241 /******************************************************************************
242 * Prepares EEPROM for access
243 *
244 * hw - Struct containing variables accessed by shared code
245 *
246 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
247 * function should be called before issuing a command to the EEPROM.
248 *****************************************************************************/
249 static void
250 e1000_setup_eeprom(struct e1000_hw *hw)
251 {
252 uint32_t eecd;
253
254 eecd = E1000_READ_REG(hw, EECD);
255
256 /* Clear SK and DI */
257 eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
258 E1000_WRITE_REG(hw, EECD, eecd);
259
260 /* Set CS */
261 eecd |= E1000_EECD_CS;
262 E1000_WRITE_REG(hw, EECD, eecd);
263 }
264
265 /******************************************************************************
266 * Returns EEPROM to a "standby" state
267 *
268 * hw - Struct containing variables accessed by shared code
269 *****************************************************************************/
270 static void
271 e1000_standby_eeprom(struct e1000_hw *hw)
272 {
273 uint32_t eecd;
274
275 eecd = E1000_READ_REG(hw, EECD);
276
277 /* Deselct EEPROM */
278 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
279 E1000_WRITE_REG(hw, EECD, eecd);
280 E1000_WRITE_FLUSH(hw);
281 udelay(50);
282
283 /* Clock high */
284 eecd |= E1000_EECD_SK;
285 E1000_WRITE_REG(hw, EECD, eecd);
286 E1000_WRITE_FLUSH(hw);
287 udelay(50);
288
289 /* Select EEPROM */
290 eecd |= E1000_EECD_CS;
291 E1000_WRITE_REG(hw, EECD, eecd);
292 E1000_WRITE_FLUSH(hw);
293 udelay(50);
294
295 /* Clock low */
296 eecd &= ~E1000_EECD_SK;
297 E1000_WRITE_REG(hw, EECD, eecd);
298 E1000_WRITE_FLUSH(hw);
299 udelay(50);
300 }
301
302 /******************************************************************************
303 * Reads a 16 bit word from the EEPROM.
304 *
305 * hw - Struct containing variables accessed by shared code
306 * offset - offset of word in the EEPROM to read
307 * data - word read from the EEPROM
308 *****************************************************************************/
309 static int
310 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
311 {
312 uint32_t eecd;
313 uint32_t i = 0;
314 int large_eeprom = FALSE;
315
316 /* Request EEPROM Access */
317 if (hw->mac_type > e1000_82544) {
318 eecd = E1000_READ_REG(hw, EECD);
319 if (eecd & E1000_EECD_SIZE)
320 large_eeprom = TRUE;
321 eecd |= E1000_EECD_REQ;
322 E1000_WRITE_REG(hw, EECD, eecd);
323 eecd = E1000_READ_REG(hw, EECD);
324 while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
325 i++;
326 udelay(10);
327 eecd = E1000_READ_REG(hw, EECD);
328 }
329 if (!(eecd & E1000_EECD_GNT)) {
330 eecd &= ~E1000_EECD_REQ;
331 E1000_WRITE_REG(hw, EECD, eecd);
332 DEBUGOUT("Could not acquire EEPROM grant\n");
333 return -E1000_ERR_EEPROM;
334 }
335 }
336
337 /* Prepare the EEPROM for reading */
338 e1000_setup_eeprom(hw);
339
340 /* Send the READ command (opcode + addr) */
341 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
342 e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
343
344 /* Read the data */
345 *data = e1000_shift_in_ee_bits(hw);
346
347 /* End this read operation */
348 e1000_standby_eeprom(hw);
349
350 /* Stop requesting EEPROM access */
351 if (hw->mac_type > e1000_82544) {
352 eecd = E1000_READ_REG(hw, EECD);
353 eecd &= ~E1000_EECD_REQ;
354 E1000_WRITE_REG(hw, EECD, eecd);
355 }
356
357 return 0;
358 }
359
360 #if 0
361 static void
362 e1000_eeprom_cleanup(struct e1000_hw *hw)
363 {
364 uint32_t eecd;
365
366 eecd = E1000_READ_REG(hw, EECD);
367 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
368 E1000_WRITE_REG(hw, EECD, eecd);
369 e1000_raise_ee_clk(hw, &eecd);
370 e1000_lower_ee_clk(hw, &eecd);
371 }
372
373 static uint16_t
374 e1000_wait_eeprom_done(struct e1000_hw *hw)
375 {
376 uint32_t eecd;
377 uint32_t i;
378
379 e1000_standby_eeprom(hw);
380 for (i = 0; i < 200; i++) {
381 eecd = E1000_READ_REG(hw, EECD);
382 if (eecd & E1000_EECD_DO)
383 return (TRUE);
384 udelay(5);
385 }
386 return (FALSE);
387 }
388
389 static int
390 e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
391 {
392 uint32_t eecd;
393 int large_eeprom = FALSE;
394 int i = 0;
395
396 /* Request EEPROM Access */
397 if (hw->mac_type > e1000_82544) {
398 eecd = E1000_READ_REG(hw, EECD);
399 if (eecd & E1000_EECD_SIZE)
400 large_eeprom = TRUE;
401 eecd |= E1000_EECD_REQ;
402 E1000_WRITE_REG(hw, EECD, eecd);
403 eecd = E1000_READ_REG(hw, EECD);
404 while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
405 i++;
406 udelay(5);
407 eecd = E1000_READ_REG(hw, EECD);
408 }
409 if (!(eecd & E1000_EECD_GNT)) {
410 eecd &= ~E1000_EECD_REQ;
411 E1000_WRITE_REG(hw, EECD, eecd);
412 DEBUGOUT("Could not acquire EEPROM grant\n");
413 return FALSE;
414 }
415 }
416 e1000_setup_eeprom(hw);
417 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
418 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
419 e1000_standby_eeprom(hw);
420 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
421 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
422 e1000_shift_out_ee_bits(hw, Data, 16);
423 if (!e1000_wait_eeprom_done(hw)) {
424 return FALSE;
425 }
426 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
427 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
428 e1000_eeprom_cleanup(hw);
429
430 /* Stop requesting EEPROM access */
431 if (hw->mac_type > e1000_82544) {
432 eecd = E1000_READ_REG(hw, EECD);
433 eecd &= ~E1000_EECD_REQ;
434 E1000_WRITE_REG(hw, EECD, eecd);
435 }
436 i = 0;
437 eecd = E1000_READ_REG(hw, EECD);
438 while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
439 i++;
440 udelay(10);
441 eecd = E1000_READ_REG(hw, EECD);
442 }
443 if ((eecd & E1000_EECD_GNT)) {
444 DEBUGOUT("Could not release EEPROM grant\n");
445 }
446 return TRUE;
447 }
448 #endif
449
450 /******************************************************************************
451 * Verifies that the EEPROM has a valid checksum
452 *
453 * hw - Struct containing variables accessed by shared code
454 *
455 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
456 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
457 * valid.
458 *****************************************************************************/
459 static int
460 e1000_validate_eeprom_checksum(struct eth_device *nic)
461 {
462 struct e1000_hw *hw = nic->priv;
463 uint16_t checksum = 0;
464 uint16_t i, eeprom_data;
465
466 DEBUGFUNC();
467
468 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
469 if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
470 DEBUGOUT("EEPROM Read Error\n");
471 return -E1000_ERR_EEPROM;
472 }
473 checksum += eeprom_data;
474 }
475
476 if (checksum == (uint16_t) EEPROM_SUM) {
477 return 0;
478 } else {
479 DEBUGOUT("EEPROM Checksum Invalid\n");
480 return -E1000_ERR_EEPROM;
481 }
482 }
483 #endif /* #ifndef CONFIG_AP1000 */
484
485 /******************************************************************************
486 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
487 * second function of dual function devices
488 *
489 * nic - Struct containing variables accessed by shared code
490 *****************************************************************************/
491 static int
492 e1000_read_mac_addr(struct eth_device *nic)
493 {
494 #ifndef CONFIG_AP1000
495 struct e1000_hw *hw = nic->priv;
496 uint16_t offset;
497 uint16_t eeprom_data;
498 int i;
499
500 DEBUGFUNC();
501
502 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
503 offset = i >> 1;
504 if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
505 DEBUGOUT("EEPROM Read Error\n");
506 return -E1000_ERR_EEPROM;
507 }
508 nic->enetaddr[i] = eeprom_data & 0xff;
509 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
510 }
511 if ((hw->mac_type == e1000_82546) &&
512 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
513 /* Invert the last bit if this is the second device */
514 nic->enetaddr[5] += 1;
515 }
516 #ifdef CONFIG_E1000_FALLBACK_MAC
517 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 )
518 for ( i=0; i < NODE_ADDRESS_SIZE; i++ )
519 nic->enetaddr[i] = (CONFIG_E1000_FALLBACK_MAC >> (8*(5-i))) & 0xff;
520 #endif
521 #else
522 /*
523 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
524 * environment variables. Currently this does not support the addition
525 * of a PMC e1000 card, which is certainly a possibility, so this should
526 * be updated to properly use the env variable only for the onboard e1000
527 */
528
529 int ii;
530 char *s, *e;
531
532 DEBUGFUNC();
533
534 s = getenv ("ethaddr");
535 if (s == NULL){
536 return -E1000_ERR_EEPROM;
537 }
538 else{
539 for(ii = 0; ii < 6; ii++) {
540 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
541 if (s){
542 s = (*e) ? e + 1 : e;
543 }
544 }
545 }
546 #endif
547 return 0;
548 }
549
550 /******************************************************************************
551 * Initializes receive address filters.
552 *
553 * hw - Struct containing variables accessed by shared code
554 *
555 * Places the MAC address in receive address register 0 and clears the rest
556 * of the receive addresss registers. Clears the multicast table. Assumes
557 * the receiver is in reset when the routine is called.
558 *****************************************************************************/
559 static void
560 e1000_init_rx_addrs(struct eth_device *nic)
561 {
562 struct e1000_hw *hw = nic->priv;
563 uint32_t i;
564 uint32_t addr_low;
565 uint32_t addr_high;
566
567 DEBUGFUNC();
568
569 /* Setup the receive address. */
570 DEBUGOUT("Programming MAC Address into RAR[0]\n");
571 addr_low = (nic->enetaddr[0] |
572 (nic->enetaddr[1] << 8) |
573 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
574
575 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
576
577 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
578 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
579
580 /* Zero out the other 15 receive addresses. */
581 DEBUGOUT("Clearing RAR[1-15]\n");
582 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
583 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
584 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
585 }
586 }
587
588 /******************************************************************************
589 * Clears the VLAN filer table
590 *
591 * hw - Struct containing variables accessed by shared code
592 *****************************************************************************/
593 static void
594 e1000_clear_vfta(struct e1000_hw *hw)
595 {
596 uint32_t offset;
597
598 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
599 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
600 }
601
602 /******************************************************************************
603 * Set the mac type member in the hw struct.
604 *
605 * hw - Struct containing variables accessed by shared code
606 *****************************************************************************/
607 static int
608 e1000_set_mac_type(struct e1000_hw *hw)
609 {
610 DEBUGFUNC();
611
612 switch (hw->device_id) {
613 case E1000_DEV_ID_82542:
614 switch (hw->revision_id) {
615 case E1000_82542_2_0_REV_ID:
616 hw->mac_type = e1000_82542_rev2_0;
617 break;
618 case E1000_82542_2_1_REV_ID:
619 hw->mac_type = e1000_82542_rev2_1;
620 break;
621 default:
622 /* Invalid 82542 revision ID */
623 return -E1000_ERR_MAC_TYPE;
624 }
625 break;
626 case E1000_DEV_ID_82543GC_FIBER:
627 case E1000_DEV_ID_82543GC_COPPER:
628 hw->mac_type = e1000_82543;
629 break;
630 case E1000_DEV_ID_82544EI_COPPER:
631 case E1000_DEV_ID_82544EI_FIBER:
632 case E1000_DEV_ID_82544GC_COPPER:
633 case E1000_DEV_ID_82544GC_LOM:
634 hw->mac_type = e1000_82544;
635 break;
636 case E1000_DEV_ID_82540EM:
637 case E1000_DEV_ID_82540EM_LOM:
638 hw->mac_type = e1000_82540;
639 break;
640 case E1000_DEV_ID_82545EM_COPPER:
641 case E1000_DEV_ID_82545EM_FIBER:
642 hw->mac_type = e1000_82545;
643 break;
644 case E1000_DEV_ID_82546EB_COPPER:
645 case E1000_DEV_ID_82546EB_FIBER:
646 hw->mac_type = e1000_82546;
647 break;
648 case E1000_DEV_ID_82541ER:
649 hw->mac_type = e1000_82541_rev_2;
650 break;
651 default:
652 /* Should never have loaded on this device */
653 return -E1000_ERR_MAC_TYPE;
654 }
655 return E1000_SUCCESS;
656 }
657
658 /******************************************************************************
659 * Reset the transmit and receive units; mask and clear all interrupts.
660 *
661 * hw - Struct containing variables accessed by shared code
662 *****************************************************************************/
663 void
664 e1000_reset_hw(struct e1000_hw *hw)
665 {
666 uint32_t ctrl;
667 uint32_t ctrl_ext;
668 uint32_t icr;
669 uint32_t manc;
670
671 DEBUGFUNC();
672
673 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
674 if (hw->mac_type == e1000_82542_rev2_0) {
675 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
676 pci_write_config_word(hw->pdev, PCI_COMMAND,
677 hw->
678 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
679 }
680
681 /* Clear interrupt mask to stop board from generating interrupts */
682 DEBUGOUT("Masking off all interrupts\n");
683 E1000_WRITE_REG(hw, IMC, 0xffffffff);
684
685 /* Disable the Transmit and Receive units. Then delay to allow
686 * any pending transactions to complete before we hit the MAC with
687 * the global reset.
688 */
689 E1000_WRITE_REG(hw, RCTL, 0);
690 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
691 E1000_WRITE_FLUSH(hw);
692
693 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
694 hw->tbi_compatibility_on = FALSE;
695
696 /* Delay to allow any outstanding PCI transactions to complete before
697 * resetting the device
698 */
699 mdelay(10);
700
701 /* Issue a global reset to the MAC. This will reset the chip's
702 * transmit, receive, DMA, and link units. It will not effect
703 * the current PCI configuration. The global reset bit is self-
704 * clearing, and should clear within a microsecond.
705 */
706 DEBUGOUT("Issuing a global reset to MAC\n");
707 ctrl = E1000_READ_REG(hw, CTRL);
708
709 #if 0
710 if (hw->mac_type > e1000_82543)
711 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
712 else
713 #endif
714 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
715
716 /* Force a reload from the EEPROM if necessary */
717 if (hw->mac_type < e1000_82540) {
718 /* Wait for reset to complete */
719 udelay(10);
720 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
721 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
722 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
723 E1000_WRITE_FLUSH(hw);
724 /* Wait for EEPROM reload */
725 mdelay(2);
726 } else {
727 /* Wait for EEPROM reload (it happens automatically) */
728 mdelay(4);
729 /* Dissable HW ARPs on ASF enabled adapters */
730 manc = E1000_READ_REG(hw, MANC);
731 manc &= ~(E1000_MANC_ARP_EN);
732 E1000_WRITE_REG(hw, MANC, manc);
733 }
734
735 /* Clear interrupt mask to stop board from generating interrupts */
736 DEBUGOUT("Masking off all interrupts\n");
737 E1000_WRITE_REG(hw, IMC, 0xffffffff);
738
739 /* Clear any pending interrupt events. */
740 icr = E1000_READ_REG(hw, ICR);
741
742 /* If MWI was previously enabled, reenable it. */
743 if (hw->mac_type == e1000_82542_rev2_0) {
744 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
745 }
746 }
747
748 /******************************************************************************
749 * Performs basic configuration of the adapter.
750 *
751 * hw - Struct containing variables accessed by shared code
752 *
753 * Assumes that the controller has previously been reset and is in a
754 * post-reset uninitialized state. Initializes the receive address registers,
755 * multicast table, and VLAN filter table. Calls routines to setup link
756 * configuration and flow control settings. Clears all on-chip counters. Leaves
757 * the transmit and receive units disabled and uninitialized.
758 *****************************************************************************/
759 static int
760 e1000_init_hw(struct eth_device *nic)
761 {
762 struct e1000_hw *hw = nic->priv;
763 uint32_t ctrl, status;
764 uint32_t i;
765 int32_t ret_val;
766 uint16_t pcix_cmd_word;
767 uint16_t pcix_stat_hi_word;
768 uint16_t cmd_mmrbc;
769 uint16_t stat_mmrbc;
770 e1000_bus_type bus_type = e1000_bus_type_unknown;
771
772 DEBUGFUNC();
773 #if 0
774 /* Initialize Identification LED */
775 ret_val = e1000_id_led_init(hw);
776 if (ret_val < 0) {
777 DEBUGOUT("Error Initializing Identification LED\n");
778 return ret_val;
779 }
780 #endif
781 /* Set the Media Type and exit with error if it is not valid. */
782 if (hw->mac_type != e1000_82543) {
783 /* tbi_compatibility is only valid on 82543 */
784 hw->tbi_compatibility_en = FALSE;
785 }
786
787 if (hw->mac_type >= e1000_82543) {
788 status = E1000_READ_REG(hw, STATUS);
789 if (status & E1000_STATUS_TBIMODE) {
790 hw->media_type = e1000_media_type_fiber;
791 /* tbi_compatibility not valid on fiber */
792 hw->tbi_compatibility_en = FALSE;
793 } else {
794 hw->media_type = e1000_media_type_copper;
795 }
796 } else {
797 /* This is an 82542 (fiber only) */
798 hw->media_type = e1000_media_type_fiber;
799 }
800
801 /* Disabling VLAN filtering. */
802 DEBUGOUT("Initializing the IEEE VLAN\n");
803 E1000_WRITE_REG(hw, VET, 0);
804
805 e1000_clear_vfta(hw);
806
807 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
808 if (hw->mac_type == e1000_82542_rev2_0) {
809 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
810 pci_write_config_word(hw->pdev, PCI_COMMAND,
811 hw->
812 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
813 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
814 E1000_WRITE_FLUSH(hw);
815 mdelay(5);
816 }
817
818 /* Setup the receive address. This involves initializing all of the Receive
819 * Address Registers (RARs 0 - 15).
820 */
821 e1000_init_rx_addrs(nic);
822
823 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
824 if (hw->mac_type == e1000_82542_rev2_0) {
825 E1000_WRITE_REG(hw, RCTL, 0);
826 E1000_WRITE_FLUSH(hw);
827 mdelay(1);
828 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
829 }
830
831 /* Zero out the Multicast HASH table */
832 DEBUGOUT("Zeroing the MTA\n");
833 for (i = 0; i < E1000_MC_TBL_SIZE; i++)
834 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
835
836 #if 0
837 /* Set the PCI priority bit correctly in the CTRL register. This
838 * determines if the adapter gives priority to receives, or if it
839 * gives equal priority to transmits and receives.
840 */
841 if (hw->dma_fairness) {
842 ctrl = E1000_READ_REG(hw, CTRL);
843 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
844 }
845 #endif
846 if (hw->mac_type >= e1000_82543) {
847 status = E1000_READ_REG(hw, STATUS);
848 bus_type = (status & E1000_STATUS_PCIX_MODE) ?
849 e1000_bus_type_pcix : e1000_bus_type_pci;
850 }
851 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
852 if (bus_type == e1000_bus_type_pcix) {
853 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
854 &pcix_cmd_word);
855 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
856 &pcix_stat_hi_word);
857 cmd_mmrbc =
858 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
859 PCIX_COMMAND_MMRBC_SHIFT;
860 stat_mmrbc =
861 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
862 PCIX_STATUS_HI_MMRBC_SHIFT;
863 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
864 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
865 if (cmd_mmrbc > stat_mmrbc) {
866 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
867 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
868 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
869 pcix_cmd_word);
870 }
871 }
872
873 /* Call a subroutine to configure the link and setup flow control. */
874 ret_val = e1000_setup_link(nic);
875
876 /* Set the transmit descriptor write-back policy */
877 if (hw->mac_type > e1000_82544) {
878 ctrl = E1000_READ_REG(hw, TXDCTL);
879 ctrl =
880 (ctrl & ~E1000_TXDCTL_WTHRESH) |
881 E1000_TXDCTL_FULL_TX_DESC_WB;
882 E1000_WRITE_REG(hw, TXDCTL, ctrl);
883 }
884 #if 0
885 /* Clear all of the statistics registers (clear on read). It is
886 * important that we do this after we have tried to establish link
887 * because the symbol error count will increment wildly if there
888 * is no link.
889 */
890 e1000_clear_hw_cntrs(hw);
891 #endif
892
893 return ret_val;
894 }
895
896 /******************************************************************************
897 * Configures flow control and link settings.
898 *
899 * hw - Struct containing variables accessed by shared code
900 *
901 * Determines which flow control settings to use. Calls the apropriate media-
902 * specific link configuration function. Configures the flow control settings.
903 * Assuming the adapter has a valid link partner, a valid link should be
904 * established. Assumes the hardware has previously been reset and the
905 * transmitter and receiver are not enabled.
906 *****************************************************************************/
907 static int
908 e1000_setup_link(struct eth_device *nic)
909 {
910 struct e1000_hw *hw = nic->priv;
911 uint32_t ctrl_ext;
912 int32_t ret_val;
913 uint16_t eeprom_data;
914
915 DEBUGFUNC();
916
917 #ifndef CONFIG_AP1000
918 /* Read and store word 0x0F of the EEPROM. This word contains bits
919 * that determine the hardware's default PAUSE (flow control) mode,
920 * a bit that determines whether the HW defaults to enabling or
921 * disabling auto-negotiation, and the direction of the
922 * SW defined pins. If there is no SW over-ride of the flow
923 * control setting, then the variable hw->fc will
924 * be initialized based on a value in the EEPROM.
925 */
926 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
927 DEBUGOUT("EEPROM Read Error\n");
928 return -E1000_ERR_EEPROM;
929 }
930 #else
931 /* we have to hardcode the proper value for our hardware. */
932 /* this value is for the 82540EM pci card used for prototyping, and it works. */
933 eeprom_data = 0xb220;
934 #endif
935
936 if (hw->fc == e1000_fc_default) {
937 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
938 hw->fc = e1000_fc_none;
939 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
940 EEPROM_WORD0F_ASM_DIR)
941 hw->fc = e1000_fc_tx_pause;
942 else
943 hw->fc = e1000_fc_full;
944 }
945
946 /* We want to save off the original Flow Control configuration just
947 * in case we get disconnected and then reconnected into a different
948 * hub or switch with different Flow Control capabilities.
949 */
950 if (hw->mac_type == e1000_82542_rev2_0)
951 hw->fc &= (~e1000_fc_tx_pause);
952
953 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
954 hw->fc &= (~e1000_fc_rx_pause);
955
956 hw->original_fc = hw->fc;
957
958 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
959
960 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
961 * polarity value for the SW controlled pins, and setup the
962 * Extended Device Control reg with that info.
963 * This is needed because one of the SW controlled pins is used for
964 * signal detection. So this should be done before e1000_setup_pcs_link()
965 * or e1000_phy_setup() is called.
966 */
967 if (hw->mac_type == e1000_82543) {
968 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
969 SWDPIO__EXT_SHIFT);
970 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
971 }
972
973 /* Call the necessary subroutine to configure the link. */
974 ret_val = (hw->media_type == e1000_media_type_fiber) ?
975 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
976 if (ret_val < 0) {
977 return ret_val;
978 }
979
980 /* Initialize the flow control address, type, and PAUSE timer
981 * registers to their default values. This is done even if flow
982 * control is disabled, because it does not hurt anything to
983 * initialize these registers.
984 */
985 DEBUGOUT
986 ("Initializing the Flow Control address, type and timer regs\n");
987
988 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
989 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
990 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
991 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
992
993 /* Set the flow control receive threshold registers. Normally,
994 * these registers will be set to a default threshold that may be
995 * adjusted later by the driver's runtime code. However, if the
996 * ability to transmit pause frames in not enabled, then these
997 * registers will be set to 0.
998 */
999 if (!(hw->fc & e1000_fc_tx_pause)) {
1000 E1000_WRITE_REG(hw, FCRTL, 0);
1001 E1000_WRITE_REG(hw, FCRTH, 0);
1002 } else {
1003 /* We need to set up the Receive Threshold high and low water marks
1004 * as well as (optionally) enabling the transmission of XON frames.
1005 */
1006 if (hw->fc_send_xon) {
1007 E1000_WRITE_REG(hw, FCRTL,
1008 (hw->fc_low_water | E1000_FCRTL_XONE));
1009 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1010 } else {
1011 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1012 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1013 }
1014 }
1015 return ret_val;
1016 }
1017
1018 /******************************************************************************
1019 * Sets up link for a fiber based adapter
1020 *
1021 * hw - Struct containing variables accessed by shared code
1022 *
1023 * Manipulates Physical Coding Sublayer functions in order to configure
1024 * link. Assumes the hardware has been previously reset and the transmitter
1025 * and receiver are not enabled.
1026 *****************************************************************************/
1027 static int
1028 e1000_setup_fiber_link(struct eth_device *nic)
1029 {
1030 struct e1000_hw *hw = nic->priv;
1031 uint32_t ctrl;
1032 uint32_t status;
1033 uint32_t txcw = 0;
1034 uint32_t i;
1035 uint32_t signal;
1036 int32_t ret_val;
1037
1038 DEBUGFUNC();
1039 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1040 * set when the optics detect a signal. On older adapters, it will be
1041 * cleared when there is a signal
1042 */
1043 ctrl = E1000_READ_REG(hw, CTRL);
1044 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1045 signal = E1000_CTRL_SWDPIN1;
1046 else
1047 signal = 0;
1048
1049 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1050 ctrl);
1051 /* Take the link out of reset */
1052 ctrl &= ~(E1000_CTRL_LRST);
1053
1054 e1000_config_collision_dist(hw);
1055
1056 /* Check for a software override of the flow control settings, and setup
1057 * the device accordingly. If auto-negotiation is enabled, then software
1058 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1059 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1060 * auto-negotiation is disabled, then software will have to manually
1061 * configure the two flow control enable bits in the CTRL register.
1062 *
1063 * The possible values of the "fc" parameter are:
1064 * 0: Flow control is completely disabled
1065 * 1: Rx flow control is enabled (we can receive pause frames, but
1066 * not send pause frames).
1067 * 2: Tx flow control is enabled (we can send pause frames but we do
1068 * not support receiving pause frames).
1069 * 3: Both Rx and TX flow control (symmetric) are enabled.
1070 */
1071 switch (hw->fc) {
1072 case e1000_fc_none:
1073 /* Flow control is completely disabled by a software over-ride. */
1074 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1075 break;
1076 case e1000_fc_rx_pause:
1077 /* RX Flow control is enabled and TX Flow control is disabled by a
1078 * software over-ride. Since there really isn't a way to advertise
1079 * that we are capable of RX Pause ONLY, we will advertise that we
1080 * support both symmetric and asymmetric RX PAUSE. Later, we will
1081 * disable the adapter's ability to send PAUSE frames.
1082 */
1083 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1084 break;
1085 case e1000_fc_tx_pause:
1086 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1087 * software over-ride.
1088 */
1089 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1090 break;
1091 case e1000_fc_full:
1092 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1093 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1094 break;
1095 default:
1096 DEBUGOUT("Flow control param set incorrectly\n");
1097 return -E1000_ERR_CONFIG;
1098 break;
1099 }
1100
1101 /* Since auto-negotiation is enabled, take the link out of reset (the link
1102 * will be in reset, because we previously reset the chip). This will
1103 * restart auto-negotiation. If auto-neogtiation is successful then the
1104 * link-up status bit will be set and the flow control enable bits (RFCE
1105 * and TFCE) will be set according to their negotiated value.
1106 */
1107 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1108
1109 E1000_WRITE_REG(hw, TXCW, txcw);
1110 E1000_WRITE_REG(hw, CTRL, ctrl);
1111 E1000_WRITE_FLUSH(hw);
1112
1113 hw->txcw = txcw;
1114 mdelay(1);
1115
1116 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1117 * indication in the Device Status Register. Time-out if a link isn't
1118 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1119 * less than 500 milliseconds even if the other end is doing it in SW).
1120 */
1121 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1122 DEBUGOUT("Looking for Link\n");
1123 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1124 mdelay(10);
1125 status = E1000_READ_REG(hw, STATUS);
1126 if (status & E1000_STATUS_LU)
1127 break;
1128 }
1129 if (i == (LINK_UP_TIMEOUT / 10)) {
1130 /* AutoNeg failed to achieve a link, so we'll call
1131 * e1000_check_for_link. This routine will force the link up if we
1132 * detect a signal. This will allow us to communicate with
1133 * non-autonegotiating link partners.
1134 */
1135 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1136 hw->autoneg_failed = 1;
1137 ret_val = e1000_check_for_link(nic);
1138 if (ret_val < 0) {
1139 DEBUGOUT("Error while checking for link\n");
1140 return ret_val;
1141 }
1142 hw->autoneg_failed = 0;
1143 } else {
1144 hw->autoneg_failed = 0;
1145 DEBUGOUT("Valid Link Found\n");
1146 }
1147 } else {
1148 DEBUGOUT("No Signal Detected\n");
1149 return -E1000_ERR_NOLINK;
1150 }
1151 return 0;
1152 }
1153
1154 /******************************************************************************
1155 * Detects which PHY is present and the speed and duplex
1156 *
1157 * hw - Struct containing variables accessed by shared code
1158 ******************************************************************************/
1159 static int
1160 e1000_setup_copper_link(struct eth_device *nic)
1161 {
1162 struct e1000_hw *hw = nic->priv;
1163 uint32_t ctrl;
1164 int32_t ret_val;
1165 uint16_t i;
1166 uint16_t phy_data;
1167
1168 DEBUGFUNC();
1169
1170 ctrl = E1000_READ_REG(hw, CTRL);
1171 /* With 82543, we need to force speed and duplex on the MAC equal to what
1172 * the PHY speed and duplex configuration is. In addition, we need to
1173 * perform a hardware reset on the PHY to take it out of reset.
1174 */
1175 if (hw->mac_type > e1000_82543) {
1176 ctrl |= E1000_CTRL_SLU;
1177 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1178 E1000_WRITE_REG(hw, CTRL, ctrl);
1179 } else {
1180 ctrl |=
1181 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1182 E1000_WRITE_REG(hw, CTRL, ctrl);
1183 e1000_phy_hw_reset(hw);
1184 }
1185
1186 /* Make sure we have a valid PHY */
1187 ret_val = e1000_detect_gig_phy(hw);
1188 if (ret_val < 0) {
1189 DEBUGOUT("Error, did not detect valid phy.\n");
1190 return ret_val;
1191 }
1192 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
1193
1194 /* Enable CRS on TX. This must be set for half-duplex operation. */
1195 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
1196 DEBUGOUT("PHY Read Error\n");
1197 return -E1000_ERR_PHY;
1198 }
1199 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1200
1201 #if 0
1202 /* Options:
1203 * MDI/MDI-X = 0 (default)
1204 * 0 - Auto for all speeds
1205 * 1 - MDI mode
1206 * 2 - MDI-X mode
1207 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1208 */
1209 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1210 switch (hw->mdix) {
1211 case 1:
1212 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1213 break;
1214 case 2:
1215 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1216 break;
1217 case 3:
1218 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1219 break;
1220 case 0:
1221 default:
1222 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1223 break;
1224 }
1225 #else
1226 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1227 #endif
1228
1229 #if 0
1230 /* Options:
1231 * disable_polarity_correction = 0 (default)
1232 * Automatic Correction for Reversed Cable Polarity
1233 * 0 - Disabled
1234 * 1 - Enabled
1235 */
1236 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1237 if (hw->disable_polarity_correction == 1)
1238 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1239 #else
1240 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1241 #endif
1242 if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
1243 DEBUGOUT("PHY Write Error\n");
1244 return -E1000_ERR_PHY;
1245 }
1246
1247 /* Force TX_CLK in the Extended PHY Specific Control Register
1248 * to 25MHz clock.
1249 */
1250 if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
1251 DEBUGOUT("PHY Read Error\n");
1252 return -E1000_ERR_PHY;
1253 }
1254 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1255 /* Configure Master and Slave downshift values */
1256 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1257 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1258 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1259 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1260 if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
1261 DEBUGOUT("PHY Write Error\n");
1262 return -E1000_ERR_PHY;
1263 }
1264
1265 /* SW Reset the PHY so all changes take effect */
1266 ret_val = e1000_phy_reset(hw);
1267 if (ret_val < 0) {
1268 DEBUGOUT("Error Resetting the PHY\n");
1269 return ret_val;
1270 }
1271
1272 /* Options:
1273 * autoneg = 1 (default)
1274 * PHY will advertise value(s) parsed from
1275 * autoneg_advertised and fc
1276 * autoneg = 0
1277 * PHY will be set to 10H, 10F, 100H, or 100F
1278 * depending on value parsed from forced_speed_duplex.
1279 */
1280
1281 /* Is autoneg enabled? This is enabled by default or by software override.
1282 * If so, call e1000_phy_setup_autoneg routine to parse the
1283 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
1284 * user should have provided a speed/duplex override. If so, then call
1285 * e1000_phy_force_speed_duplex to parse and set this up.
1286 */
1287 /* Perform some bounds checking on the hw->autoneg_advertised
1288 * parameter. If this variable is zero, then set it to the default.
1289 */
1290 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1291
1292 /* If autoneg_advertised is zero, we assume it was not defaulted
1293 * by the calling code so we set to advertise full capability.
1294 */
1295 if (hw->autoneg_advertised == 0)
1296 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1297
1298 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1299 ret_val = e1000_phy_setup_autoneg(hw);
1300 if (ret_val < 0) {
1301 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1302 return ret_val;
1303 }
1304 DEBUGOUT("Restarting Auto-Neg\n");
1305
1306 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1307 * the Auto Neg Restart bit in the PHY control register.
1308 */
1309 if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
1310 DEBUGOUT("PHY Read Error\n");
1311 return -E1000_ERR_PHY;
1312 }
1313 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1314 if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
1315 DEBUGOUT("PHY Write Error\n");
1316 return -E1000_ERR_PHY;
1317 }
1318 #if 0
1319 /* Does the user want to wait for Auto-Neg to complete here, or
1320 * check at a later time (for example, callback routine).
1321 */
1322 if (hw->wait_autoneg_complete) {
1323 ret_val = e1000_wait_autoneg(hw);
1324 if (ret_val < 0) {
1325 DEBUGOUT
1326 ("Error while waiting for autoneg to complete\n");
1327 return ret_val;
1328 }
1329 }
1330 #else
1331 /* If we do not wait for autonegtation to complete I
1332 * do not see a valid link status.
1333 */
1334 ret_val = e1000_wait_autoneg(hw);
1335 if (ret_val < 0) {
1336 DEBUGOUT("Error while waiting for autoneg to complete\n");
1337 return ret_val;
1338 }
1339 #endif
1340
1341 /* Check link status. Wait up to 100 microseconds for link to become
1342 * valid.
1343 */
1344 for (i = 0; i < 10; i++) {
1345 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1346 DEBUGOUT("PHY Read Error\n");
1347 return -E1000_ERR_PHY;
1348 }
1349 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1350 DEBUGOUT("PHY Read Error\n");
1351 return -E1000_ERR_PHY;
1352 }
1353 if (phy_data & MII_SR_LINK_STATUS) {
1354 /* We have link, so we need to finish the config process:
1355 * 1) Set up the MAC to the current PHY speed/duplex
1356 * if we are on 82543. If we
1357 * are on newer silicon, we only need to configure
1358 * collision distance in the Transmit Control Register.
1359 * 2) Set up flow control on the MAC to that established with
1360 * the link partner.
1361 */
1362 if (hw->mac_type >= e1000_82544) {
1363 e1000_config_collision_dist(hw);
1364 } else {
1365 ret_val = e1000_config_mac_to_phy(hw);
1366 if (ret_val < 0) {
1367 DEBUGOUT
1368 ("Error configuring MAC to PHY settings\n");
1369 return ret_val;
1370 }
1371 }
1372 ret_val = e1000_config_fc_after_link_up(hw);
1373 if (ret_val < 0) {
1374 DEBUGOUT("Error Configuring Flow Control\n");
1375 return ret_val;
1376 }
1377 DEBUGOUT("Valid link established!!!\n");
1378 return 0;
1379 }
1380 udelay(10);
1381 }
1382
1383 DEBUGOUT("Unable to establish link!!!\n");
1384 return -E1000_ERR_NOLINK;
1385 }
1386
1387 /******************************************************************************
1388 * Configures PHY autoneg and flow control advertisement settings
1389 *
1390 * hw - Struct containing variables accessed by shared code
1391 ******************************************************************************/
1392 static int
1393 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1394 {
1395 uint16_t mii_autoneg_adv_reg;
1396 uint16_t mii_1000t_ctrl_reg;
1397
1398 DEBUGFUNC();
1399
1400 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1401 if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
1402 DEBUGOUT("PHY Read Error\n");
1403 return -E1000_ERR_PHY;
1404 }
1405
1406 /* Read the MII 1000Base-T Control Register (Address 9). */
1407 if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
1408 DEBUGOUT("PHY Read Error\n");
1409 return -E1000_ERR_PHY;
1410 }
1411
1412 /* Need to parse both autoneg_advertised and fc and set up
1413 * the appropriate PHY registers. First we will parse for
1414 * autoneg_advertised software override. Since we can advertise
1415 * a plethora of combinations, we need to check each bit
1416 * individually.
1417 */
1418
1419 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1420 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1421 * the 1000Base-T Control Register (Address 9).
1422 */
1423 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1424 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1425
1426 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
1427
1428 /* Do we want to advertise 10 Mb Half Duplex? */
1429 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1430 DEBUGOUT("Advertise 10mb Half duplex\n");
1431 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1432 }
1433
1434 /* Do we want to advertise 10 Mb Full Duplex? */
1435 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1436 DEBUGOUT("Advertise 10mb Full duplex\n");
1437 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1438 }
1439
1440 /* Do we want to advertise 100 Mb Half Duplex? */
1441 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1442 DEBUGOUT("Advertise 100mb Half duplex\n");
1443 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1444 }
1445
1446 /* Do we want to advertise 100 Mb Full Duplex? */
1447 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1448 DEBUGOUT("Advertise 100mb Full duplex\n");
1449 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1450 }
1451
1452 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1453 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1454 DEBUGOUT
1455 ("Advertise 1000mb Half duplex requested, request denied!\n");
1456 }
1457
1458 /* Do we want to advertise 1000 Mb Full Duplex? */
1459 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1460 DEBUGOUT("Advertise 1000mb Full duplex\n");
1461 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1462 }
1463
1464 /* Check for a software override of the flow control settings, and
1465 * setup the PHY advertisement registers accordingly. If
1466 * auto-negotiation is enabled, then software will have to set the
1467 * "PAUSE" bits to the correct value in the Auto-Negotiation
1468 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1469 *
1470 * The possible values of the "fc" parameter are:
1471 * 0: Flow control is completely disabled
1472 * 1: Rx flow control is enabled (we can receive pause frames
1473 * but not send pause frames).
1474 * 2: Tx flow control is enabled (we can send pause frames
1475 * but we do not support receiving pause frames).
1476 * 3: Both Rx and TX flow control (symmetric) are enabled.
1477 * other: No software override. The flow control configuration
1478 * in the EEPROM is used.
1479 */
1480 switch (hw->fc) {
1481 case e1000_fc_none: /* 0 */
1482 /* Flow control (RX & TX) is completely disabled by a
1483 * software over-ride.
1484 */
1485 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1486 break;
1487 case e1000_fc_rx_pause: /* 1 */
1488 /* RX Flow control is enabled, and TX Flow control is
1489 * disabled, by a software over-ride.
1490 */
1491 /* Since there really isn't a way to advertise that we are
1492 * capable of RX Pause ONLY, we will advertise that we
1493 * support both symmetric and asymmetric RX PAUSE. Later
1494 * (in e1000_config_fc_after_link_up) we will disable the
1495 *hw's ability to send PAUSE frames.
1496 */
1497 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1498 break;
1499 case e1000_fc_tx_pause: /* 2 */
1500 /* TX Flow control is enabled, and RX Flow control is
1501 * disabled, by a software over-ride.
1502 */
1503 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1504 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1505 break;
1506 case e1000_fc_full: /* 3 */
1507 /* Flow control (both RX and TX) is enabled by a software
1508 * over-ride.
1509 */
1510 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1511 break;
1512 default:
1513 DEBUGOUT("Flow control param set incorrectly\n");
1514 return -E1000_ERR_CONFIG;
1515 }
1516
1517 if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
1518 DEBUGOUT("PHY Write Error\n");
1519 return -E1000_ERR_PHY;
1520 }
1521
1522 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1523
1524 if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
1525 DEBUGOUT("PHY Write Error\n");
1526 return -E1000_ERR_PHY;
1527 }
1528 return 0;
1529 }
1530
1531 /******************************************************************************
1532 * Sets the collision distance in the Transmit Control register
1533 *
1534 * hw - Struct containing variables accessed by shared code
1535 *
1536 * Link should have been established previously. Reads the speed and duplex
1537 * information from the Device Status register.
1538 ******************************************************************************/
1539 static void
1540 e1000_config_collision_dist(struct e1000_hw *hw)
1541 {
1542 uint32_t tctl;
1543
1544 tctl = E1000_READ_REG(hw, TCTL);
1545
1546 tctl &= ~E1000_TCTL_COLD;
1547 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1548
1549 E1000_WRITE_REG(hw, TCTL, tctl);
1550 E1000_WRITE_FLUSH(hw);
1551 }
1552
1553 /******************************************************************************
1554 * Sets MAC speed and duplex settings to reflect the those in the PHY
1555 *
1556 * hw - Struct containing variables accessed by shared code
1557 * mii_reg - data to write to the MII control register
1558 *
1559 * The contents of the PHY register containing the needed information need to
1560 * be passed in.
1561 ******************************************************************************/
1562 static int
1563 e1000_config_mac_to_phy(struct e1000_hw *hw)
1564 {
1565 uint32_t ctrl;
1566 uint16_t phy_data;
1567
1568 DEBUGFUNC();
1569
1570 /* Read the Device Control Register and set the bits to Force Speed
1571 * and Duplex.
1572 */
1573 ctrl = E1000_READ_REG(hw, CTRL);
1574 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1575 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1576
1577 /* Set up duplex in the Device Control and Transmit Control
1578 * registers depending on negotiated values.
1579 */
1580 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
1581 DEBUGOUT("PHY Read Error\n");
1582 return -E1000_ERR_PHY;
1583 }
1584 if (phy_data & M88E1000_PSSR_DPLX)
1585 ctrl |= E1000_CTRL_FD;
1586 else
1587 ctrl &= ~E1000_CTRL_FD;
1588
1589 e1000_config_collision_dist(hw);
1590
1591 /* Set up speed in the Device Control register depending on
1592 * negotiated values.
1593 */
1594 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1595 ctrl |= E1000_CTRL_SPD_1000;
1596 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1597 ctrl |= E1000_CTRL_SPD_100;
1598 /* Write the configured values back to the Device Control Reg. */
1599 E1000_WRITE_REG(hw, CTRL, ctrl);
1600 return 0;
1601 }
1602
1603 /******************************************************************************
1604 * Forces the MAC's flow control settings.
1605 *
1606 * hw - Struct containing variables accessed by shared code
1607 *
1608 * Sets the TFCE and RFCE bits in the device control register to reflect
1609 * the adapter settings. TFCE and RFCE need to be explicitly set by
1610 * software when a Copper PHY is used because autonegotiation is managed
1611 * by the PHY rather than the MAC. Software must also configure these
1612 * bits when link is forced on a fiber connection.
1613 *****************************************************************************/
1614 static int
1615 e1000_force_mac_fc(struct e1000_hw *hw)
1616 {
1617 uint32_t ctrl;
1618
1619 DEBUGFUNC();
1620
1621 /* Get the current configuration of the Device Control Register */
1622 ctrl = E1000_READ_REG(hw, CTRL);
1623
1624 /* Because we didn't get link via the internal auto-negotiation
1625 * mechanism (we either forced link or we got link via PHY
1626 * auto-neg), we have to manually enable/disable transmit an
1627 * receive flow control.
1628 *
1629 * The "Case" statement below enables/disable flow control
1630 * according to the "hw->fc" parameter.
1631 *
1632 * The possible values of the "fc" parameter are:
1633 * 0: Flow control is completely disabled
1634 * 1: Rx flow control is enabled (we can receive pause
1635 * frames but not send pause frames).
1636 * 2: Tx flow control is enabled (we can send pause frames
1637 * frames but we do not receive pause frames).
1638 * 3: Both Rx and TX flow control (symmetric) is enabled.
1639 * other: No other values should be possible at this point.
1640 */
1641
1642 switch (hw->fc) {
1643 case e1000_fc_none:
1644 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1645 break;
1646 case e1000_fc_rx_pause:
1647 ctrl &= (~E1000_CTRL_TFCE);
1648 ctrl |= E1000_CTRL_RFCE;
1649 break;
1650 case e1000_fc_tx_pause:
1651 ctrl &= (~E1000_CTRL_RFCE);
1652 ctrl |= E1000_CTRL_TFCE;
1653 break;
1654 case e1000_fc_full:
1655 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1656 break;
1657 default:
1658 DEBUGOUT("Flow control param set incorrectly\n");
1659 return -E1000_ERR_CONFIG;
1660 }
1661
1662 /* Disable TX Flow Control for 82542 (rev 2.0) */
1663 if (hw->mac_type == e1000_82542_rev2_0)
1664 ctrl &= (~E1000_CTRL_TFCE);
1665
1666 E1000_WRITE_REG(hw, CTRL, ctrl);
1667 return 0;
1668 }
1669
1670 /******************************************************************************
1671 * Configures flow control settings after link is established
1672 *
1673 * hw - Struct containing variables accessed by shared code
1674 *
1675 * Should be called immediately after a valid link has been established.
1676 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1677 * and autonegotiation is enabled, the MAC flow control settings will be set
1678 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1679 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1680 *****************************************************************************/
1681 static int
1682 e1000_config_fc_after_link_up(struct e1000_hw *hw)
1683 {
1684 int32_t ret_val;
1685 uint16_t mii_status_reg;
1686 uint16_t mii_nway_adv_reg;
1687 uint16_t mii_nway_lp_ability_reg;
1688 uint16_t speed;
1689 uint16_t duplex;
1690
1691 DEBUGFUNC();
1692
1693 /* Check for the case where we have fiber media and auto-neg failed
1694 * so we had to force link. In this case, we need to force the
1695 * configuration of the MAC to match the "fc" parameter.
1696 */
1697 if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
1698 ret_val = e1000_force_mac_fc(hw);
1699 if (ret_val < 0) {
1700 DEBUGOUT("Error forcing flow control settings\n");
1701 return ret_val;
1702 }
1703 }
1704
1705 /* Check for the case where we have copper media and auto-neg is
1706 * enabled. In this case, we need to check and see if Auto-Neg
1707 * has completed, and if so, how the PHY and link partner has
1708 * flow control configured.
1709 */
1710 if (hw->media_type == e1000_media_type_copper) {
1711 /* Read the MII Status Register and check to see if AutoNeg
1712 * has completed. We read this twice because this reg has
1713 * some "sticky" (latched) bits.
1714 */
1715 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1716 DEBUGOUT("PHY Read Error \n");
1717 return -E1000_ERR_PHY;
1718 }
1719 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1720 DEBUGOUT("PHY Read Error \n");
1721 return -E1000_ERR_PHY;
1722 }
1723
1724 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1725 /* The AutoNeg process has completed, so we now need to
1726 * read both the Auto Negotiation Advertisement Register
1727 * (Address 4) and the Auto_Negotiation Base Page Ability
1728 * Register (Address 5) to determine how flow control was
1729 * negotiated.
1730 */
1731 if (e1000_read_phy_reg
1732 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
1733 DEBUGOUT("PHY Read Error\n");
1734 return -E1000_ERR_PHY;
1735 }
1736 if (e1000_read_phy_reg
1737 (hw, PHY_LP_ABILITY,
1738 &mii_nway_lp_ability_reg) < 0) {
1739 DEBUGOUT("PHY Read Error\n");
1740 return -E1000_ERR_PHY;
1741 }
1742
1743 /* Two bits in the Auto Negotiation Advertisement Register
1744 * (Address 4) and two bits in the Auto Negotiation Base
1745 * Page Ability Register (Address 5) determine flow control
1746 * for both the PHY and the link partner. The following
1747 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1748 * 1999, describes these PAUSE resolution bits and how flow
1749 * control is determined based upon these settings.
1750 * NOTE: DC = Don't Care
1751 *
1752 * LOCAL DEVICE | LINK PARTNER
1753 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1754 *-------|---------|-------|---------|--------------------
1755 * 0 | 0 | DC | DC | e1000_fc_none
1756 * 0 | 1 | 0 | DC | e1000_fc_none
1757 * 0 | 1 | 1 | 0 | e1000_fc_none
1758 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1759 * 1 | 0 | 0 | DC | e1000_fc_none
1760 * 1 | DC | 1 | DC | e1000_fc_full
1761 * 1 | 1 | 0 | 0 | e1000_fc_none
1762 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1763 *
1764 */
1765 /* Are both PAUSE bits set to 1? If so, this implies
1766 * Symmetric Flow Control is enabled at both ends. The
1767 * ASM_DIR bits are irrelevant per the spec.
1768 *
1769 * For Symmetric Flow Control:
1770 *
1771 * LOCAL DEVICE | LINK PARTNER
1772 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1773 *-------|---------|-------|---------|--------------------
1774 * 1 | DC | 1 | DC | e1000_fc_full
1775 *
1776 */
1777 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1778 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1779 /* Now we need to check if the user selected RX ONLY
1780 * of pause frames. In this case, we had to advertise
1781 * FULL flow control because we could not advertise RX
1782 * ONLY. Hence, we must now check to see if we need to
1783 * turn OFF the TRANSMISSION of PAUSE frames.
1784 */
1785 if (hw->original_fc == e1000_fc_full) {
1786 hw->fc = e1000_fc_full;
1787 DEBUGOUT("Flow Control = FULL.\r\n");
1788 } else {
1789 hw->fc = e1000_fc_rx_pause;
1790 DEBUGOUT
1791 ("Flow Control = RX PAUSE frames only.\r\n");
1792 }
1793 }
1794 /* For receiving PAUSE frames ONLY.
1795 *
1796 * LOCAL DEVICE | LINK PARTNER
1797 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1798 *-------|---------|-------|---------|--------------------
1799 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1800 *
1801 */
1802 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1803 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1804 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1805 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1806 {
1807 hw->fc = e1000_fc_tx_pause;
1808 DEBUGOUT
1809 ("Flow Control = TX PAUSE frames only.\r\n");
1810 }
1811 /* For transmitting PAUSE frames ONLY.
1812 *
1813 * LOCAL DEVICE | LINK PARTNER
1814 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1815 *-------|---------|-------|---------|--------------------
1816 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1817 *
1818 */
1819 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1820 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1821 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1822 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1823 {
1824 hw->fc = e1000_fc_rx_pause;
1825 DEBUGOUT
1826 ("Flow Control = RX PAUSE frames only.\r\n");
1827 }
1828 /* Per the IEEE spec, at this point flow control should be
1829 * disabled. However, we want to consider that we could
1830 * be connected to a legacy switch that doesn't advertise
1831 * desired flow control, but can be forced on the link
1832 * partner. So if we advertised no flow control, that is
1833 * what we will resolve to. If we advertised some kind of
1834 * receive capability (Rx Pause Only or Full Flow Control)
1835 * and the link partner advertised none, we will configure
1836 * ourselves to enable Rx Flow Control only. We can do
1837 * this safely for two reasons: If the link partner really
1838 * didn't want flow control enabled, and we enable Rx, no
1839 * harm done since we won't be receiving any PAUSE frames
1840 * anyway. If the intent on the link partner was to have
1841 * flow control enabled, then by us enabling RX only, we
1842 * can at least receive pause frames and process them.
1843 * This is a good idea because in most cases, since we are
1844 * predominantly a server NIC, more times than not we will
1845 * be asked to delay transmission of packets than asking
1846 * our link partner to pause transmission of frames.
1847 */
1848 else if (hw->original_fc == e1000_fc_none ||
1849 hw->original_fc == e1000_fc_tx_pause) {
1850 hw->fc = e1000_fc_none;
1851 DEBUGOUT("Flow Control = NONE.\r\n");
1852 } else {
1853 hw->fc = e1000_fc_rx_pause;
1854 DEBUGOUT
1855 ("Flow Control = RX PAUSE frames only.\r\n");
1856 }
1857
1858 /* Now we need to do one last check... If we auto-
1859 * negotiated to HALF DUPLEX, flow control should not be
1860 * enabled per IEEE 802.3 spec.
1861 */
1862 e1000_get_speed_and_duplex(hw, &speed, &duplex);
1863
1864 if (duplex == HALF_DUPLEX)
1865 hw->fc = e1000_fc_none;
1866
1867 /* Now we call a subroutine to actually force the MAC
1868 * controller to use the correct flow control settings.
1869 */
1870 ret_val = e1000_force_mac_fc(hw);
1871 if (ret_val < 0) {
1872 DEBUGOUT
1873 ("Error forcing flow control settings\n");
1874 return ret_val;
1875 }
1876 } else {
1877 DEBUGOUT
1878 ("Copper PHY and Auto Neg has not completed.\r\n");
1879 }
1880 }
1881 return 0;
1882 }
1883
1884 /******************************************************************************
1885 * Checks to see if the link status of the hardware has changed.
1886 *
1887 * hw - Struct containing variables accessed by shared code
1888 *
1889 * Called by any function that needs to check the link status of the adapter.
1890 *****************************************************************************/
1891 static int
1892 e1000_check_for_link(struct eth_device *nic)
1893 {
1894 struct e1000_hw *hw = nic->priv;
1895 uint32_t rxcw;
1896 uint32_t ctrl;
1897 uint32_t status;
1898 uint32_t rctl;
1899 uint32_t signal;
1900 int32_t ret_val;
1901 uint16_t phy_data;
1902 uint16_t lp_capability;
1903
1904 DEBUGFUNC();
1905
1906 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1907 * set when the optics detect a signal. On older adapters, it will be
1908 * cleared when there is a signal
1909 */
1910 ctrl = E1000_READ_REG(hw, CTRL);
1911 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1912 signal = E1000_CTRL_SWDPIN1;
1913 else
1914 signal = 0;
1915
1916 status = E1000_READ_REG(hw, STATUS);
1917 rxcw = E1000_READ_REG(hw, RXCW);
1918 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
1919
1920 /* If we have a copper PHY then we only want to go out to the PHY
1921 * registers to see if Auto-Neg has completed and/or if our link
1922 * status has changed. The get_link_status flag will be set if we
1923 * receive a Link Status Change interrupt or we have Rx Sequence
1924 * Errors.
1925 */
1926 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
1927 /* First we want to see if the MII Status Register reports
1928 * link. If so, then we want to get the current speed/duplex
1929 * of the PHY.
1930 * Read the register twice since the link bit is sticky.
1931 */
1932 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1933 DEBUGOUT("PHY Read Error\n");
1934 return -E1000_ERR_PHY;
1935 }
1936 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1937 DEBUGOUT("PHY Read Error\n");
1938 return -E1000_ERR_PHY;
1939 }
1940
1941 if (phy_data & MII_SR_LINK_STATUS) {
1942 hw->get_link_status = FALSE;
1943 } else {
1944 /* No link detected */
1945 return -E1000_ERR_NOLINK;
1946 }
1947
1948 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
1949 * have Si on board that is 82544 or newer, Auto
1950 * Speed Detection takes care of MAC speed/duplex
1951 * configuration. So we only need to configure Collision
1952 * Distance in the MAC. Otherwise, we need to force
1953 * speed/duplex on the MAC to the current PHY speed/duplex
1954 * settings.
1955 */
1956 if (hw->mac_type >= e1000_82544)
1957 e1000_config_collision_dist(hw);
1958 else {
1959 ret_val = e1000_config_mac_to_phy(hw);
1960 if (ret_val < 0) {
1961 DEBUGOUT
1962 ("Error configuring MAC to PHY settings\n");
1963 return ret_val;
1964 }
1965 }
1966
1967 /* Configure Flow Control now that Auto-Neg has completed. First, we
1968 * need to restore the desired flow control settings because we may
1969 * have had to re-autoneg with a different link partner.
1970 */
1971 ret_val = e1000_config_fc_after_link_up(hw);
1972 if (ret_val < 0) {
1973 DEBUGOUT("Error configuring flow control\n");
1974 return ret_val;
1975 }
1976
1977 /* At this point we know that we are on copper and we have
1978 * auto-negotiated link. These are conditions for checking the link
1979 * parter capability register. We use the link partner capability to
1980 * determine if TBI Compatibility needs to be turned on or off. If
1981 * the link partner advertises any speed in addition to Gigabit, then
1982 * we assume that they are GMII-based, and TBI compatibility is not
1983 * needed. If no other speeds are advertised, we assume the link
1984 * partner is TBI-based, and we turn on TBI Compatibility.
1985 */
1986 if (hw->tbi_compatibility_en) {
1987 if (e1000_read_phy_reg
1988 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
1989 DEBUGOUT("PHY Read Error\n");
1990 return -E1000_ERR_PHY;
1991 }
1992 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
1993 NWAY_LPAR_10T_FD_CAPS |
1994 NWAY_LPAR_100TX_HD_CAPS |
1995 NWAY_LPAR_100TX_FD_CAPS |
1996 NWAY_LPAR_100T4_CAPS)) {
1997 /* If our link partner advertises anything in addition to
1998 * gigabit, we do not need to enable TBI compatibility.
1999 */
2000 if (hw->tbi_compatibility_on) {
2001 /* If we previously were in the mode, turn it off. */
2002 rctl = E1000_READ_REG(hw, RCTL);
2003 rctl &= ~E1000_RCTL_SBP;
2004 E1000_WRITE_REG(hw, RCTL, rctl);
2005 hw->tbi_compatibility_on = FALSE;
2006 }
2007 } else {
2008 /* If TBI compatibility is was previously off, turn it on. For
2009 * compatibility with a TBI link partner, we will store bad
2010 * packets. Some frames have an additional byte on the end and
2011 * will look like CRC errors to to the hardware.
2012 */
2013 if (!hw->tbi_compatibility_on) {
2014 hw->tbi_compatibility_on = TRUE;
2015 rctl = E1000_READ_REG(hw, RCTL);
2016 rctl |= E1000_RCTL_SBP;
2017 E1000_WRITE_REG(hw, RCTL, rctl);
2018 }
2019 }
2020 }
2021 }
2022 /* If we don't have link (auto-negotiation failed or link partner cannot
2023 * auto-negotiate), the cable is plugged in (we have signal), and our
2024 * link partner is not trying to auto-negotiate with us (we are receiving
2025 * idles or data), we need to force link up. We also need to give
2026 * auto-negotiation time to complete, in case the cable was just plugged
2027 * in. The autoneg_failed flag does this.
2028 */
2029 else if ((hw->media_type == e1000_media_type_fiber) &&
2030 (!(status & E1000_STATUS_LU)) &&
2031 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
2032 (!(rxcw & E1000_RXCW_C))) {
2033 if (hw->autoneg_failed == 0) {
2034 hw->autoneg_failed = 1;
2035 return 0;
2036 }
2037 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2038
2039 /* Disable auto-negotiation in the TXCW register */
2040 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2041
2042 /* Force link-up and also force full-duplex. */
2043 ctrl = E1000_READ_REG(hw, CTRL);
2044 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2045 E1000_WRITE_REG(hw, CTRL, ctrl);
2046
2047 /* Configure Flow Control after forcing link up. */
2048 ret_val = e1000_config_fc_after_link_up(hw);
2049 if (ret_val < 0) {
2050 DEBUGOUT("Error configuring flow control\n");
2051 return ret_val;
2052 }
2053 }
2054 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2055 * auto-negotiation in the TXCW register and disable forced link in the
2056 * Device Control register in an attempt to auto-negotiate with our link
2057 * partner.
2058 */
2059 else if ((hw->media_type == e1000_media_type_fiber) &&
2060 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2061 DEBUGOUT
2062 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2063 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2064 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2065 }
2066 return 0;
2067 }
2068
2069 /******************************************************************************
2070 * Detects the current speed and duplex settings of the hardware.
2071 *
2072 * hw - Struct containing variables accessed by shared code
2073 * speed - Speed of the connection
2074 * duplex - Duplex setting of the connection
2075 *****************************************************************************/
2076 static void
2077 e1000_get_speed_and_duplex(struct e1000_hw *hw,
2078 uint16_t * speed, uint16_t * duplex)
2079 {
2080 uint32_t status;
2081
2082 DEBUGFUNC();
2083
2084 if (hw->mac_type >= e1000_82543) {
2085 status = E1000_READ_REG(hw, STATUS);
2086 if (status & E1000_STATUS_SPEED_1000) {
2087 *speed = SPEED_1000;
2088 DEBUGOUT("1000 Mbs, ");
2089 } else if (status & E1000_STATUS_SPEED_100) {
2090 *speed = SPEED_100;
2091 DEBUGOUT("100 Mbs, ");
2092 } else {
2093 *speed = SPEED_10;
2094 DEBUGOUT("10 Mbs, ");
2095 }
2096
2097 if (status & E1000_STATUS_FD) {
2098 *duplex = FULL_DUPLEX;
2099 DEBUGOUT("Full Duplex\r\n");
2100 } else {
2101 *duplex = HALF_DUPLEX;
2102 DEBUGOUT(" Half Duplex\r\n");
2103 }
2104 } else {
2105 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2106 *speed = SPEED_1000;
2107 *duplex = FULL_DUPLEX;
2108 }
2109 }
2110
2111 /******************************************************************************
2112 * Blocks until autoneg completes or times out (~4.5 seconds)
2113 *
2114 * hw - Struct containing variables accessed by shared code
2115 ******************************************************************************/
2116 static int
2117 e1000_wait_autoneg(struct e1000_hw *hw)
2118 {
2119 uint16_t i;
2120 uint16_t phy_data;
2121
2122 DEBUGFUNC();
2123 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2124
2125 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2126 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2127 /* Read the MII Status Register and wait for Auto-Neg
2128 * Complete bit to be set.
2129 */
2130 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2131 DEBUGOUT("PHY Read Error\n");
2132 return -E1000_ERR_PHY;
2133 }
2134 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2135 DEBUGOUT("PHY Read Error\n");
2136 return -E1000_ERR_PHY;
2137 }
2138 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2139 DEBUGOUT("Auto-Neg complete.\n");
2140 return 0;
2141 }
2142 mdelay(100);
2143 }
2144 DEBUGOUT("Auto-Neg timedout.\n");
2145 return -E1000_ERR_TIMEOUT;
2146 }
2147
2148 /******************************************************************************
2149 * Raises the Management Data Clock
2150 *
2151 * hw - Struct containing variables accessed by shared code
2152 * ctrl - Device control register's current value
2153 ******************************************************************************/
2154 static void
2155 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2156 {
2157 /* Raise the clock input to the Management Data Clock (by setting the MDC
2158 * bit), and then delay 2 microseconds.
2159 */
2160 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2161 E1000_WRITE_FLUSH(hw);
2162 udelay(2);
2163 }
2164
2165 /******************************************************************************
2166 * Lowers the Management Data Clock
2167 *
2168 * hw - Struct containing variables accessed by shared code
2169 * ctrl - Device control register's current value
2170 ******************************************************************************/
2171 static void
2172 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2173 {
2174 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2175 * bit), and then delay 2 microseconds.
2176 */
2177 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2178 E1000_WRITE_FLUSH(hw);
2179 udelay(2);
2180 }
2181
2182 /******************************************************************************
2183 * Shifts data bits out to the PHY
2184 *
2185 * hw - Struct containing variables accessed by shared code
2186 * data - Data to send out to the PHY
2187 * count - Number of bits to shift out
2188 *
2189 * Bits are shifted out in MSB to LSB order.
2190 ******************************************************************************/
2191 static void
2192 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
2193 {
2194 uint32_t ctrl;
2195 uint32_t mask;
2196
2197 /* We need to shift "count" number of bits out to the PHY. So, the value
2198 * in the "data" parameter will be shifted out to the PHY one bit at a
2199 * time. In order to do this, "data" must be broken down into bits.
2200 */
2201 mask = 0x01;
2202 mask <<= (count - 1);
2203
2204 ctrl = E1000_READ_REG(hw, CTRL);
2205
2206 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2207 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2208
2209 while (mask) {
2210 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2211 * then raising and lowering the Management Data Clock. A "0" is
2212 * shifted out to the PHY by setting the MDIO bit to "0" and then
2213 * raising and lowering the clock.
2214 */
2215 if (data & mask)
2216 ctrl |= E1000_CTRL_MDIO;
2217 else
2218 ctrl &= ~E1000_CTRL_MDIO;
2219
2220 E1000_WRITE_REG(hw, CTRL, ctrl);
2221 E1000_WRITE_FLUSH(hw);
2222
2223 udelay(2);
2224
2225 e1000_raise_mdi_clk(hw, &ctrl);
2226 e1000_lower_mdi_clk(hw, &ctrl);
2227
2228 mask = mask >> 1;
2229 }
2230 }
2231
2232 /******************************************************************************
2233 * Shifts data bits in from the PHY
2234 *
2235 * hw - Struct containing variables accessed by shared code
2236 *
2237 * Bits are shifted in in MSB to LSB order.
2238 ******************************************************************************/
2239 static uint16_t
2240 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2241 {
2242 uint32_t ctrl;
2243 uint16_t data = 0;
2244 uint8_t i;
2245
2246 /* In order to read a register from the PHY, we need to shift in a total
2247 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2248 * to avoid contention on the MDIO pin when a read operation is performed.
2249 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2250 * by raising the input to the Management Data Clock (setting the MDC bit),
2251 * and then reading the value of the MDIO bit.
2252 */
2253 ctrl = E1000_READ_REG(hw, CTRL);
2254
2255 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2256 ctrl &= ~E1000_CTRL_MDIO_DIR;
2257 ctrl &= ~E1000_CTRL_MDIO;
2258
2259 E1000_WRITE_REG(hw, CTRL, ctrl);
2260 E1000_WRITE_FLUSH(hw);
2261
2262 /* Raise and Lower the clock before reading in the data. This accounts for
2263 * the turnaround bits. The first clock occurred when we clocked out the
2264 * last bit of the Register Address.
2265 */
2266 e1000_raise_mdi_clk(hw, &ctrl);
2267 e1000_lower_mdi_clk(hw, &ctrl);
2268
2269 for (data = 0, i = 0; i < 16; i++) {
2270 data = data << 1;
2271 e1000_raise_mdi_clk(hw, &ctrl);
2272 ctrl = E1000_READ_REG(hw, CTRL);
2273 /* Check to see if we shifted in a "1". */
2274 if (ctrl & E1000_CTRL_MDIO)
2275 data |= 1;
2276 e1000_lower_mdi_clk(hw, &ctrl);
2277 }
2278
2279 e1000_raise_mdi_clk(hw, &ctrl);
2280 e1000_lower_mdi_clk(hw, &ctrl);
2281
2282 return data;
2283 }
2284
2285 /*****************************************************************************
2286 * Reads the value from a PHY register
2287 *
2288 * hw - Struct containing variables accessed by shared code
2289 * reg_addr - address of the PHY register to read
2290 ******************************************************************************/
2291 static int
2292 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
2293 {
2294 uint32_t i;
2295 uint32_t mdic = 0;
2296 const uint32_t phy_addr = 1;
2297
2298 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2299 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2300 return -E1000_ERR_PARAM;
2301 }
2302
2303 if (hw->mac_type > e1000_82543) {
2304 /* Set up Op-code, Phy Address, and register address in the MDI
2305 * Control register. The MAC will take care of interfacing with the
2306 * PHY to retrieve the desired data.
2307 */
2308 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2309 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2310 (E1000_MDIC_OP_READ));
2311
2312 E1000_WRITE_REG(hw, MDIC, mdic);
2313
2314 /* Poll the ready bit to see if the MDI read completed */
2315 for (i = 0; i < 64; i++) {
2316 udelay(10);
2317 mdic = E1000_READ_REG(hw, MDIC);
2318 if (mdic & E1000_MDIC_READY)
2319 break;
2320 }
2321 if (!(mdic & E1000_MDIC_READY)) {
2322 DEBUGOUT("MDI Read did not complete\n");
2323 return -E1000_ERR_PHY;
2324 }
2325 if (mdic & E1000_MDIC_ERROR) {
2326 DEBUGOUT("MDI Error\n");
2327 return -E1000_ERR_PHY;
2328 }
2329 *phy_data = (uint16_t) mdic;
2330 } else {
2331 /* We must first send a preamble through the MDIO pin to signal the
2332 * beginning of an MII instruction. This is done by sending 32
2333 * consecutive "1" bits.
2334 */
2335 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2336
2337 /* Now combine the next few fields that are required for a read
2338 * operation. We use this method instead of calling the
2339 * e1000_shift_out_mdi_bits routine five different times. The format of
2340 * a MII read instruction consists of a shift out of 14 bits and is
2341 * defined as follows:
2342 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2343 * followed by a shift in of 18 bits. This first two bits shifted in
2344 * are TurnAround bits used to avoid contention on the MDIO pin when a
2345 * READ operation is performed. These two bits are thrown away
2346 * followed by a shift in of 16 bits which contains the desired data.
2347 */
2348 mdic = ((reg_addr) | (phy_addr << 5) |
2349 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2350
2351 e1000_shift_out_mdi_bits(hw, mdic, 14);
2352
2353 /* Now that we've shifted out the read command to the MII, we need to
2354 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2355 * register address.
2356 */
2357 *phy_data = e1000_shift_in_mdi_bits(hw);
2358 }
2359 return 0;
2360 }
2361
2362 /******************************************************************************
2363 * Writes a value to a PHY register
2364 *
2365 * hw - Struct containing variables accessed by shared code
2366 * reg_addr - address of the PHY register to write
2367 * data - data to write to the PHY
2368 ******************************************************************************/
2369 static int
2370 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
2371 {
2372 uint32_t i;
2373 uint32_t mdic = 0;
2374 const uint32_t phy_addr = 1;
2375
2376 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2377 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2378 return -E1000_ERR_PARAM;
2379 }
2380
2381 if (hw->mac_type > e1000_82543) {
2382 /* Set up Op-code, Phy Address, register address, and data intended
2383 * for the PHY register in the MDI Control register. The MAC will take
2384 * care of interfacing with the PHY to send the desired data.
2385 */
2386 mdic = (((uint32_t) phy_data) |
2387 (reg_addr << E1000_MDIC_REG_SHIFT) |
2388 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2389 (E1000_MDIC_OP_WRITE));
2390
2391 E1000_WRITE_REG(hw, MDIC, mdic);
2392
2393 /* Poll the ready bit to see if the MDI read completed */
2394 for (i = 0; i < 64; i++) {
2395 udelay(10);
2396 mdic = E1000_READ_REG(hw, MDIC);
2397 if (mdic & E1000_MDIC_READY)
2398 break;
2399 }
2400 if (!(mdic & E1000_MDIC_READY)) {
2401 DEBUGOUT("MDI Write did not complete\n");
2402 return -E1000_ERR_PHY;
2403 }
2404 } else {
2405 /* We'll need to use the SW defined pins to shift the write command
2406 * out to the PHY. We first send a preamble to the PHY to signal the
2407 * beginning of the MII instruction. This is done by sending 32
2408 * consecutive "1" bits.
2409 */
2410 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2411
2412 /* Now combine the remaining required fields that will indicate a
2413 * write operation. We use this method instead of calling the
2414 * e1000_shift_out_mdi_bits routine for each field in the command. The
2415 * format of a MII write instruction is as follows:
2416 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2417 */
2418 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2419 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2420 mdic <<= 16;
2421 mdic |= (uint32_t) phy_data;
2422
2423 e1000_shift_out_mdi_bits(hw, mdic, 32);
2424 }
2425 return 0;
2426 }
2427
2428 /******************************************************************************
2429 * Returns the PHY to the power-on reset state
2430 *
2431 * hw - Struct containing variables accessed by shared code
2432 ******************************************************************************/
2433 static void
2434 e1000_phy_hw_reset(struct e1000_hw *hw)
2435 {
2436 uint32_t ctrl;
2437 uint32_t ctrl_ext;
2438
2439 DEBUGFUNC();
2440
2441 DEBUGOUT("Resetting Phy...\n");
2442
2443 if (hw->mac_type > e1000_82543) {
2444 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2445 * bit. Then, take it out of reset.
2446 */
2447 ctrl = E1000_READ_REG(hw, CTRL);
2448 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2449 E1000_WRITE_FLUSH(hw);
2450 mdelay(10);
2451 E1000_WRITE_REG(hw, CTRL, ctrl);
2452 E1000_WRITE_FLUSH(hw);
2453 } else {
2454 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2455 * bit to put the PHY into reset. Then, take it out of reset.
2456 */
2457 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2458 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2459 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2460 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2461 E1000_WRITE_FLUSH(hw);
2462 mdelay(10);
2463 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2464 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2465 E1000_WRITE_FLUSH(hw);
2466 }
2467 udelay(150);
2468 }
2469
2470 /******************************************************************************
2471 * Resets the PHY
2472 *
2473 * hw - Struct containing variables accessed by shared code
2474 *
2475 * Sets bit 15 of the MII Control regiser
2476 ******************************************************************************/
2477 static int
2478 e1000_phy_reset(struct e1000_hw *hw)
2479 {
2480 uint16_t phy_data;
2481
2482 DEBUGFUNC();
2483
2484 if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
2485 DEBUGOUT("PHY Read Error\n");
2486 return -E1000_ERR_PHY;
2487 }
2488 phy_data |= MII_CR_RESET;
2489 if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
2490 DEBUGOUT("PHY Write Error\n");
2491 return -E1000_ERR_PHY;
2492 }
2493 udelay(1);
2494 return 0;
2495 }
2496
2497 static int e1000_set_phy_type (struct e1000_hw *hw)
2498 {
2499 DEBUGFUNC ();
2500
2501 if (hw->mac_type == e1000_undefined)
2502 return -E1000_ERR_PHY_TYPE;
2503
2504 switch (hw->phy_id) {
2505 case M88E1000_E_PHY_ID:
2506 case M88E1000_I_PHY_ID:
2507 case M88E1011_I_PHY_ID:
2508 hw->phy_type = e1000_phy_m88;
2509 break;
2510 case IGP01E1000_I_PHY_ID:
2511 if (hw->mac_type == e1000_82541 ||
2512 hw->mac_type == e1000_82541_rev_2) {
2513 hw->phy_type = e1000_phy_igp;
2514 break;
2515 }
2516 /* Fall Through */
2517 default:
2518 /* Should never have loaded on this device */
2519 hw->phy_type = e1000_phy_undefined;
2520 return -E1000_ERR_PHY_TYPE;
2521 }
2522
2523 return E1000_SUCCESS;
2524 }
2525
2526 /******************************************************************************
2527 * Probes the expected PHY address for known PHY IDs
2528 *
2529 * hw - Struct containing variables accessed by shared code
2530 ******************************************************************************/
2531 static int
2532 e1000_detect_gig_phy(struct e1000_hw *hw)
2533 {
2534 int32_t phy_init_status;
2535 uint16_t phy_id_high, phy_id_low;
2536 int match = FALSE;
2537
2538 DEBUGFUNC();
2539
2540 /* Read the PHY ID Registers to identify which PHY is onboard. */
2541 if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
2542 DEBUGOUT("PHY Read Error\n");
2543 return -E1000_ERR_PHY;
2544 }
2545 hw->phy_id = (uint32_t) (phy_id_high << 16);
2546 udelay(2);
2547 if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
2548 DEBUGOUT("PHY Read Error\n");
2549 return -E1000_ERR_PHY;
2550 }
2551 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2552
2553 switch (hw->mac_type) {
2554 case e1000_82543:
2555 if (hw->phy_id == M88E1000_E_PHY_ID)
2556 match = TRUE;
2557 break;
2558 case e1000_82544:
2559 if (hw->phy_id == M88E1000_I_PHY_ID)
2560 match = TRUE;
2561 break;
2562 case e1000_82540:
2563 case e1000_82545:
2564 case e1000_82546:
2565 if (hw->phy_id == M88E1011_I_PHY_ID)
2566 match = TRUE;
2567 break;
2568 case e1000_82541_rev_2:
2569 if(hw->phy_id == IGP01E1000_I_PHY_ID)
2570 match = TRUE;
2571
2572 break;
2573 default:
2574 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
2575 return -E1000_ERR_CONFIG;
2576 }
2577
2578 phy_init_status = e1000_set_phy_type(hw);
2579
2580 if ((match) && (phy_init_status == E1000_SUCCESS)) {
2581 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
2582 return 0;
2583 }
2584 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
2585 return -E1000_ERR_PHY;
2586 }
2587
2588 /**
2589 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2590 *
2591 * e1000_sw_init initializes the Adapter private data structure.
2592 * Fields are initialized based on PCI device information and
2593 * OS network device settings (MTU size).
2594 **/
2595
2596 static int
2597 e1000_sw_init(struct eth_device *nic, int cardnum)
2598 {
2599 struct e1000_hw *hw = (typeof(hw)) nic->priv;
2600 int result;
2601
2602 /* PCI config space info */
2603 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
2604 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
2605 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
2606 &hw->subsystem_vendor_id);
2607 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
2608
2609 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
2610 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
2611
2612 /* identify the MAC */
2613 result = e1000_set_mac_type(hw);
2614 if (result) {
2615 E1000_ERR("Unknown MAC Type\n");
2616 return result;
2617 }
2618
2619 /* lan a vs. lan b settings */
2620 if (hw->mac_type == e1000_82546)
2621 /*this also works w/ multiple 82546 cards */
2622 /*but not if they're intermingled /w other e1000s */
2623 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
2624 else
2625 hw->lan_loc = e1000_lan_a;
2626
2627 /* flow control settings */
2628 hw->fc_high_water = E1000_FC_HIGH_THRESH;
2629 hw->fc_low_water = E1000_FC_LOW_THRESH;
2630 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
2631 hw->fc_send_xon = 1;
2632
2633 /* Media type - copper or fiber */
2634
2635 if (hw->mac_type >= e1000_82543) {
2636 uint32_t status = E1000_READ_REG(hw, STATUS);
2637
2638 if (status & E1000_STATUS_TBIMODE) {
2639 DEBUGOUT("fiber interface\n");
2640 hw->media_type = e1000_media_type_fiber;
2641 } else {
2642 DEBUGOUT("copper interface\n");
2643 hw->media_type = e1000_media_type_copper;
2644 }
2645 } else {
2646 hw->media_type = e1000_media_type_fiber;
2647 }
2648
2649 if (hw->mac_type < e1000_82543)
2650 hw->report_tx_early = 0;
2651 else
2652 hw->report_tx_early = 1;
2653
2654 hw->tbi_compatibility_en = TRUE;
2655 #if 0
2656 hw->wait_autoneg_complete = FALSE;
2657 hw->adaptive_ifs = TRUE;
2658
2659 /* Copper options */
2660 if (hw->media_type == e1000_media_type_copper) {
2661 hw->mdix = AUTO_ALL_MODES;
2662 hw->disable_polarity_correction = FALSE;
2663 }
2664 #endif
2665 return E1000_SUCCESS;
2666 }
2667
2668 void
2669 fill_rx(struct e1000_hw *hw)
2670 {
2671 struct e1000_rx_desc *rd;
2672
2673 rx_last = rx_tail;
2674 rd = rx_base + rx_tail;
2675 rx_tail = (rx_tail + 1) % 8;
2676 memset(rd, 0, 16);
2677 rd->buffer_addr = cpu_to_le64((u32) & packet);
2678 E1000_WRITE_REG(hw, RDT, rx_tail);
2679 }
2680
2681 /**
2682 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2683 * @adapter: board private structure
2684 *
2685 * Configure the Tx unit of the MAC after a reset.
2686 **/
2687
2688 static void
2689 e1000_configure_tx(struct e1000_hw *hw)
2690 {
2691 unsigned long ptr;
2692 unsigned long tctl;
2693 unsigned long tipg;
2694
2695 ptr = (u32) tx_pool;
2696 if (ptr & 0xf)
2697 ptr = (ptr + 0x10) & (~0xf);
2698
2699 tx_base = (typeof(tx_base)) ptr;
2700
2701 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
2702 E1000_WRITE_REG(hw, TDBAH, 0);
2703
2704 E1000_WRITE_REG(hw, TDLEN, 128);
2705
2706 /* Setup the HW Tx Head and Tail descriptor pointers */
2707 E1000_WRITE_REG(hw, TDH, 0);
2708 E1000_WRITE_REG(hw, TDT, 0);
2709 tx_tail = 0;
2710
2711 /* Set the default values for the Tx Inter Packet Gap timer */
2712 switch (hw->mac_type) {
2713 case e1000_82542_rev2_0:
2714 case e1000_82542_rev2_1:
2715 tipg = DEFAULT_82542_TIPG_IPGT;
2716 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2717 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2718 break;
2719 default:
2720 if (hw->media_type == e1000_media_type_fiber)
2721 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2722 else
2723 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2724 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2725 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2726 }
2727 E1000_WRITE_REG(hw, TIPG, tipg);
2728 #if 0
2729 /* Set the Tx Interrupt Delay register */
2730 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
2731 if (hw->mac_type >= e1000_82540)
2732 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
2733 #endif
2734 /* Program the Transmit Control Register */
2735 tctl = E1000_READ_REG(hw, TCTL);
2736 tctl &= ~E1000_TCTL_CT;
2737 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
2738 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2739 E1000_WRITE_REG(hw, TCTL, tctl);
2740
2741 e1000_config_collision_dist(hw);
2742 #if 0
2743 /* Setup Transmit Descriptor Settings for this adapter */
2744 adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
2745
2746 if (adapter->hw.report_tx_early == 1)
2747 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2748 else
2749 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
2750 #endif
2751 }
2752
2753 /**
2754 * e1000_setup_rctl - configure the receive control register
2755 * @adapter: Board private structure
2756 **/
2757 static void
2758 e1000_setup_rctl(struct e1000_hw *hw)
2759 {
2760 uint32_t rctl;
2761
2762 rctl = E1000_READ_REG(hw, RCTL);
2763
2764 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2765
2766 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* |
2767 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
2768
2769 if (hw->tbi_compatibility_on == 1)
2770 rctl |= E1000_RCTL_SBP;
2771 else
2772 rctl &= ~E1000_RCTL_SBP;
2773
2774 rctl &= ~(E1000_RCTL_SZ_4096);
2775 #if 0
2776 switch (adapter->rx_buffer_len) {
2777 case E1000_RXBUFFER_2048:
2778 default:
2779 #endif
2780 rctl |= E1000_RCTL_SZ_2048;
2781 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
2782 #if 0
2783 break;
2784 case E1000_RXBUFFER_4096:
2785 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2786 break;
2787 case E1000_RXBUFFER_8192:
2788 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2789 break;
2790 case E1000_RXBUFFER_16384:
2791 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2792 break;
2793 }
2794 #endif
2795 E1000_WRITE_REG(hw, RCTL, rctl);
2796 }
2797
2798 /**
2799 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2800 * @adapter: board private structure
2801 *
2802 * Configure the Rx unit of the MAC after a reset.
2803 **/
2804 static void
2805 e1000_configure_rx(struct e1000_hw *hw)
2806 {
2807 unsigned long ptr;
2808 unsigned long rctl;
2809 #if 0
2810 unsigned long rxcsum;
2811 #endif
2812 rx_tail = 0;
2813 /* make sure receives are disabled while setting up the descriptors */
2814 rctl = E1000_READ_REG(hw, RCTL);
2815 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2816 #if 0
2817 /* set the Receive Delay Timer Register */
2818
2819 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2820 #endif
2821 if (hw->mac_type >= e1000_82540) {
2822 #if 0
2823 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2824 #endif
2825 /* Set the interrupt throttling rate. Value is calculated
2826 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
2827 #define MAX_INTS_PER_SEC 8000
2828 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
2829 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
2830 }
2831
2832 /* Setup the Base and Length of the Rx Descriptor Ring */
2833 ptr = (u32) rx_pool;
2834 if (ptr & 0xf)
2835 ptr = (ptr + 0x10) & (~0xf);
2836 rx_base = (typeof(rx_base)) ptr;
2837 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
2838 E1000_WRITE_REG(hw, RDBAH, 0);
2839
2840 E1000_WRITE_REG(hw, RDLEN, 128);
2841
2842 /* Setup the HW Rx Head and Tail Descriptor Pointers */
2843 E1000_WRITE_REG(hw, RDH, 0);
2844 E1000_WRITE_REG(hw, RDT, 0);
2845 #if 0
2846 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2847 if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
2848 rxcsum = E1000_READ_REG(hw, RXCSUM);
2849 rxcsum |= E1000_RXCSUM_TUOFL;
2850 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2851 }
2852 #endif
2853 /* Enable Receives */
2854
2855 E1000_WRITE_REG(hw, RCTL, rctl);
2856 fill_rx(hw);
2857 }
2858
2859 /**************************************************************************
2860 POLL - Wait for a frame
2861 ***************************************************************************/
2862 static int
2863 e1000_poll(struct eth_device *nic)
2864 {
2865 struct e1000_hw *hw = nic->priv;
2866 struct e1000_rx_desc *rd;
2867 /* return true if there's an ethernet packet ready to read */
2868 rd = rx_base + rx_last;
2869 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
2870 return 0;
2871 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
2872 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
2873 fill_rx(hw);
2874 return 1;
2875 }
2876
2877 /**************************************************************************
2878 TRANSMIT - Transmit a frame
2879 ***************************************************************************/
2880 static int
2881 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
2882 {
2883 struct e1000_hw *hw = nic->priv;
2884 struct e1000_tx_desc *txp;
2885 int i = 0;
2886
2887 txp = tx_base + tx_tail;
2888 tx_tail = (tx_tail + 1) % 8;
2889
2890 txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
2891 txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
2892 E1000_TXD_CMD_IFCS | length);
2893 txp->upper.data = 0;
2894 E1000_WRITE_REG(hw, TDT, tx_tail);
2895
2896 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
2897 if (i++ > TOUT_LOOP) {
2898 DEBUGOUT("e1000: tx timeout\n");
2899 return 0;
2900 }
2901 udelay(10); /* give the nic a chance to write to the register */
2902 }
2903 return 1;
2904 }
2905
2906 /*reset function*/
2907 static inline int
2908 e1000_reset(struct eth_device *nic)
2909 {
2910 struct e1000_hw *hw = nic->priv;
2911
2912 e1000_reset_hw(hw);
2913 if (hw->mac_type >= e1000_82544) {
2914 E1000_WRITE_REG(hw, WUC, 0);
2915 }
2916 return e1000_init_hw(nic);
2917 }
2918
2919 /**************************************************************************
2920 DISABLE - Turn off ethernet interface
2921 ***************************************************************************/
2922 static void
2923 e1000_disable(struct eth_device *nic)
2924 {
2925 struct e1000_hw *hw = nic->priv;
2926
2927 /* Turn off the ethernet interface */
2928 E1000_WRITE_REG(hw, RCTL, 0);
2929 E1000_WRITE_REG(hw, TCTL, 0);
2930
2931 /* Clear the transmit ring */
2932 E1000_WRITE_REG(hw, TDH, 0);
2933 E1000_WRITE_REG(hw, TDT, 0);
2934
2935 /* Clear the receive ring */
2936 E1000_WRITE_REG(hw, RDH, 0);
2937 E1000_WRITE_REG(hw, RDT, 0);
2938
2939 /* put the card in its initial state */
2940 #if 0
2941 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
2942 #endif
2943 mdelay(10);
2944
2945 }
2946
2947 /**************************************************************************
2948 INIT - set up ethernet interface(s)
2949 ***************************************************************************/
2950 static int
2951 e1000_init(struct eth_device *nic, bd_t * bis)
2952 {
2953 struct e1000_hw *hw = nic->priv;
2954 int ret_val = 0;
2955
2956 ret_val = e1000_reset(nic);
2957 if (ret_val < 0) {
2958 if ((ret_val == -E1000_ERR_NOLINK) ||
2959 (ret_val == -E1000_ERR_TIMEOUT)) {
2960 E1000_ERR("Valid Link not detected\n");
2961 } else {
2962 E1000_ERR("Hardware Initialization Failed\n");
2963 }
2964 return 0;
2965 }
2966 e1000_configure_tx(hw);
2967 e1000_setup_rctl(hw);
2968 e1000_configure_rx(hw);
2969 return 1;
2970 }
2971
2972 /**************************************************************************
2973 PROBE - Look for an adapter, this routine's visible to the outside
2974 You should omit the last argument struct pci_device * for a non-PCI NIC
2975 ***************************************************************************/
2976 int
2977 e1000_initialize(bd_t * bis)
2978 {
2979 pci_dev_t devno;
2980 int card_number = 0;
2981 struct eth_device *nic = NULL;
2982 struct e1000_hw *hw = NULL;
2983 u32 iobase;
2984 int idx = 0;
2985 u32 PciCommandWord;
2986
2987 while (1) { /* Find PCI device(s) */
2988 if ((devno = pci_find_devices(supported, idx++)) < 0) {
2989 break;
2990 }
2991
2992 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
2993 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
2994 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
2995
2996 pci_write_config_dword(devno, PCI_COMMAND,
2997 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
2998 /* Check if I/O accesses and Bus Mastering are enabled. */
2999 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
3000 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
3001 printf("Error: Can not enable MEM access.\n");
3002 continue;
3003 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
3004 printf("Error: Can not enable Bus Mastering.\n");
3005 continue;
3006 }
3007
3008 nic = (struct eth_device *) malloc(sizeof (*nic));
3009 hw = (struct e1000_hw *) malloc(sizeof (*hw));
3010 hw->pdev = devno;
3011 nic->priv = hw;
3012 nic->iobase = bus_to_phys(devno, iobase);
3013
3014 sprintf(nic->name, "e1000#%d", card_number);
3015
3016 /* Are these variables needed? */
3017 #if 0
3018 hw->fc = e1000_fc_none;
3019 hw->original_fc = e1000_fc_none;
3020 #else
3021 hw->fc = e1000_fc_default;
3022 hw->original_fc = e1000_fc_default;
3023 #endif
3024 hw->autoneg_failed = 0;
3025 hw->get_link_status = TRUE;
3026 hw->hw_addr = (typeof(hw->hw_addr)) iobase;
3027 hw->mac_type = e1000_undefined;
3028
3029 /* MAC and Phy settings */
3030 if (e1000_sw_init(nic, card_number) < 0) {
3031 free(hw);
3032 free(nic);
3033 return 0;
3034 }
3035 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
3036 if (e1000_validate_eeprom_checksum(nic) < 0) {
3037 printf("The EEPROM Checksum Is Not Valid\n");
3038 free(hw);
3039 free(nic);
3040 return 0;
3041 }
3042 #endif
3043 e1000_read_mac_addr(nic);
3044
3045 E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
3046
3047 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
3048 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
3049 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
3050
3051 nic->init = e1000_init;
3052 nic->recv = e1000_poll;
3053 nic->send = e1000_transmit;
3054 nic->halt = e1000_disable;
3055
3056 eth_register(nic);
3057
3058 card_number++;
3059 }
3060 return 1;
3061 }
3062
3063 #endif