]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/eepro100.c
Merge branch 'master' of git://www.denx.de/git/u-boot-cfi-flash
[people/ms/u-boot.git] / drivers / net / eepro100.c
1 /*
2 * (C) Copyright 2002
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 #include <common.h>
9 #include <malloc.h>
10 #include <net.h>
11 #include <netdev.h>
12 #include <asm/io.h>
13 #include <pci.h>
14 #include <miiphy.h>
15
16 #undef DEBUG
17
18 /* Ethernet chip registers.
19 */
20 #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
21 #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
22 #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
23 #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
24 #define SCBPointer 4 /* General purpose pointer. */
25 #define SCBPort 8 /* Misc. commands and operands. */
26 #define SCBflash 12 /* Flash memory control. */
27 #define SCBeeprom 14 /* EEPROM memory control. */
28 #define SCBCtrlMDI 16 /* MDI interface control. */
29 #define SCBEarlyRx 20 /* Early receive byte count. */
30 #define SCBGenControl 28 /* 82559 General Control Register */
31 #define SCBGenStatus 29 /* 82559 General Status register */
32
33 /* 82559 SCB status word defnitions
34 */
35 #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
36 #define SCB_STATUS_FR 0x4000 /* frame received */
37 #define SCB_STATUS_CNA 0x2000 /* CU left active state */
38 #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
39 #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
40 #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
41 #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
42
43 #define SCB_INTACK_MASK 0xFD00 /* all the above */
44
45 #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
46 #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
47
48 /* System control block commands
49 */
50 /* CU Commands */
51 #define CU_NOP 0x0000
52 #define CU_START 0x0010
53 #define CU_RESUME 0x0020
54 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
55 #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
56 #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
57 #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
58
59 /* RUC Commands */
60 #define RUC_NOP 0x0000
61 #define RUC_START 0x0001
62 #define RUC_RESUME 0x0002
63 #define RUC_ABORT 0x0004
64 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
65 #define RUC_RESUMENR 0x0007
66
67 #define CU_CMD_MASK 0x00f0
68 #define RU_CMD_MASK 0x0007
69
70 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
71 #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
72
73 #define CU_STATUS_MASK 0x00C0
74 #define RU_STATUS_MASK 0x003C
75
76 #define RU_STATUS_IDLE (0<<2)
77 #define RU_STATUS_SUS (1<<2)
78 #define RU_STATUS_NORES (2<<2)
79 #define RU_STATUS_READY (4<<2)
80 #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
81 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
82 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
83
84 /* 82559 Port interface commands.
85 */
86 #define I82559_RESET 0x00000000 /* Software reset */
87 #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
88 #define I82559_SELECTIVE_RESET 0x00000002
89 #define I82559_DUMP 0x00000003
90 #define I82559_DUMP_WAKEUP 0x00000007
91
92 /* 82559 Eeprom interface.
93 */
94 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
95 #define EE_CS 0x02 /* EEPROM chip select. */
96 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
97 #define EE_WRITE_0 0x01
98 #define EE_WRITE_1 0x05
99 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
100 #define EE_ENB (0x4800 | EE_CS)
101 #define EE_CMD_BITS 3
102 #define EE_DATA_BITS 16
103
104 /* The EEPROM commands include the alway-set leading bit.
105 */
106 #define EE_EWENB_CMD (4 << addr_len)
107 #define EE_WRITE_CMD (5 << addr_len)
108 #define EE_READ_CMD (6 << addr_len)
109 #define EE_ERASE_CMD (7 << addr_len)
110
111 /* Receive frame descriptors.
112 */
113 struct RxFD {
114 volatile u16 status;
115 volatile u16 control;
116 volatile u32 link; /* struct RxFD * */
117 volatile u32 rx_buf_addr; /* void * */
118 volatile u32 count;
119
120 volatile u8 data[PKTSIZE_ALIGN];
121 };
122
123 #define RFD_STATUS_C 0x8000 /* completion of received frame */
124 #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
125
126 #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
127 #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
128 #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
129 #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
130
131 #define RFD_COUNT_MASK 0x3fff
132 #define RFD_COUNT_F 0x4000
133 #define RFD_COUNT_EOF 0x8000
134
135 #define RFD_RX_CRC 0x0800 /* crc error */
136 #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
137 #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
138 #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
139 #define RFD_RX_SHORT 0x0080 /* short frame error */
140 #define RFD_RX_LENGTH 0x0020
141 #define RFD_RX_ERROR 0x0010 /* receive error */
142 #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
143 #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
144 #define RFD_RX_TCO 0x0001 /* TCO indication */
145
146 /* Transmit frame descriptors
147 */
148 struct TxFD { /* Transmit frame descriptor set. */
149 volatile u16 status;
150 volatile u16 command;
151 volatile u32 link; /* void * */
152 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
153 volatile s32 count;
154
155 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
156 volatile s32 tx_buf_size0; /* Length of Tx frame. */
157 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
158 volatile s32 tx_buf_size1; /* Length of Tx frame. */
159 };
160
161 #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
162 #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
163 #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
164 #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
165 #define TxCB_CMD_S 0x4000 /* suspend on completion */
166 #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
167
168 #define TxCB_COUNT_MASK 0x3fff
169 #define TxCB_COUNT_EOF 0x8000
170
171 /* The Speedo3 Rx and Tx frame/buffer descriptors.
172 */
173 struct descriptor { /* A generic descriptor. */
174 volatile u16 status;
175 volatile u16 command;
176 volatile u32 link; /* struct descriptor * */
177
178 unsigned char params[0];
179 };
180
181 #define CONFIG_SYS_CMD_EL 0x8000
182 #define CONFIG_SYS_CMD_SUSPEND 0x4000
183 #define CONFIG_SYS_CMD_INT 0x2000
184 #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
185 #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
186
187 #define CONFIG_SYS_STATUS_C 0x8000
188 #define CONFIG_SYS_STATUS_OK 0x2000
189
190 /* Misc.
191 */
192 #define NUM_RX_DESC PKTBUFSRX
193 #define NUM_TX_DESC 1 /* Number of TX descriptors */
194
195 #define TOUT_LOOP 1000000
196
197 #define ETH_ALEN 6
198
199 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
200 static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
201 static int rx_next; /* RX descriptor ring pointer */
202 static int tx_next; /* TX descriptor ring pointer */
203 static int tx_threshold;
204
205 /*
206 * The parameters for a CmdConfigure operation.
207 * There are so many options that it would be difficult to document
208 * each bit. We mostly use the default or recommended settings.
209 */
210 static const char i82557_config_cmd[] = {
211 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
212 0, 0x2E, 0, 0x60, 0,
213 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
214 0x3f, 0x05,
215 };
216 static const char i82558_config_cmd[] = {
217 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
218 0, 0x2E, 0, 0x60, 0x08, 0x88,
219 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
220 0x31, 0x05,
221 };
222
223 static void init_rx_ring (struct eth_device *dev);
224 static void purge_tx_ring (struct eth_device *dev);
225
226 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
227
228 static int eepro100_init (struct eth_device *dev, bd_t * bis);
229 static int eepro100_send(struct eth_device *dev, void *packet, int length);
230 static int eepro100_recv (struct eth_device *dev);
231 static void eepro100_halt (struct eth_device *dev);
232
233 #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
234 #define bus_to_phys(a) (a)
235 #define phys_to_bus(a) (a)
236 #else
237 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
238 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
239 #endif
240
241 static inline int INW (struct eth_device *dev, u_long addr)
242 {
243 return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
244 }
245
246 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
247 {
248 *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
249 }
250
251 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
252 {
253 *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
254 }
255
256 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
257 static inline int INL (struct eth_device *dev, u_long addr)
258 {
259 return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
260 }
261
262 static int get_phyreg (struct eth_device *dev, unsigned char addr,
263 unsigned char reg, unsigned short *value)
264 {
265 int cmd;
266 int timeout = 50;
267
268 /* read requested data */
269 cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
270 OUTL (dev, cmd, SCBCtrlMDI);
271
272 do {
273 udelay(1000);
274 cmd = INL (dev, SCBCtrlMDI);
275 } while (!(cmd & (1 << 28)) && (--timeout));
276
277 if (timeout == 0)
278 return -1;
279
280 *value = (unsigned short) (cmd & 0xffff);
281
282 return 0;
283 }
284
285 static int set_phyreg (struct eth_device *dev, unsigned char addr,
286 unsigned char reg, unsigned short value)
287 {
288 int cmd;
289 int timeout = 50;
290
291 /* write requested data */
292 cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
293 OUTL (dev, cmd | value, SCBCtrlMDI);
294
295 while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
296 udelay(1000);
297
298 if (timeout == 0)
299 return -1;
300
301 return 0;
302 }
303
304 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
305 * Do this by checking model value field from ID2 register.
306 */
307 static struct eth_device* verify_phyaddr (const char *devname,
308 unsigned char addr)
309 {
310 struct eth_device *dev;
311 unsigned short value;
312 unsigned char model;
313
314 dev = eth_get_dev_by_name(devname);
315 if (dev == NULL) {
316 printf("%s: no such device\n", devname);
317 return NULL;
318 }
319
320 /* read id2 register */
321 if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
322 printf("%s: mii read timeout!\n", devname);
323 return NULL;
324 }
325
326 /* get model */
327 model = (unsigned char)((value >> 4) & 0x003f);
328
329 if (model == 0) {
330 printf("%s: no PHY at address %d\n", devname, addr);
331 return NULL;
332 }
333
334 return dev;
335 }
336
337 static int eepro100_miiphy_read(const char *devname, unsigned char addr,
338 unsigned char reg, unsigned short *value)
339 {
340 struct eth_device *dev;
341
342 dev = verify_phyaddr(devname, addr);
343 if (dev == NULL)
344 return -1;
345
346 if (get_phyreg(dev, addr, reg, value) != 0) {
347 printf("%s: mii read timeout!\n", devname);
348 return -1;
349 }
350
351 return 0;
352 }
353
354 static int eepro100_miiphy_write(const char *devname, unsigned char addr,
355 unsigned char reg, unsigned short value)
356 {
357 struct eth_device *dev;
358
359 dev = verify_phyaddr(devname, addr);
360 if (dev == NULL)
361 return -1;
362
363 if (set_phyreg(dev, addr, reg, value) != 0) {
364 printf("%s: mii write timeout!\n", devname);
365 return -1;
366 }
367
368 return 0;
369 }
370
371 #endif
372
373 /* Wait for the chip get the command.
374 */
375 static int wait_for_eepro100 (struct eth_device *dev)
376 {
377 int i;
378
379 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
380 if (i >= TOUT_LOOP) {
381 return 0;
382 }
383 }
384
385 return 1;
386 }
387
388 static struct pci_device_id supported[] = {
389 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
390 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
391 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
392 {}
393 };
394
395 int eepro100_initialize (bd_t * bis)
396 {
397 pci_dev_t devno;
398 int card_number = 0;
399 struct eth_device *dev;
400 u32 iobase, status;
401 int idx = 0;
402
403 while (1) {
404 /* Find PCI device
405 */
406 if ((devno = pci_find_devices (supported, idx++)) < 0) {
407 break;
408 }
409
410 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
411 iobase &= ~0xf;
412
413 #ifdef DEBUG
414 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
415 iobase);
416 #endif
417
418 pci_write_config_dword (devno,
419 PCI_COMMAND,
420 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
421
422 /* Check if I/O accesses and Bus Mastering are enabled.
423 */
424 pci_read_config_dword (devno, PCI_COMMAND, &status);
425 if (!(status & PCI_COMMAND_MEMORY)) {
426 printf ("Error: Can not enable MEM access.\n");
427 continue;
428 }
429
430 if (!(status & PCI_COMMAND_MASTER)) {
431 printf ("Error: Can not enable Bus Mastering.\n");
432 continue;
433 }
434
435 dev = (struct eth_device *) malloc (sizeof *dev);
436 if (!dev) {
437 printf("eepro100: Can not allocate memory\n");
438 break;
439 }
440 memset(dev, 0, sizeof(*dev));
441
442 sprintf (dev->name, "i82559#%d", card_number);
443 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
444 dev->iobase = bus_to_phys (iobase);
445 dev->init = eepro100_init;
446 dev->halt = eepro100_halt;
447 dev->send = eepro100_send;
448 dev->recv = eepro100_recv;
449
450 eth_register (dev);
451
452 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
453 /* register mii command access routines */
454 miiphy_register(dev->name,
455 eepro100_miiphy_read, eepro100_miiphy_write);
456 #endif
457
458 card_number++;
459
460 /* Set the latency timer for value.
461 */
462 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
463
464 udelay (10 * 1000);
465
466 read_hw_addr (dev, bis);
467 }
468
469 return card_number;
470 }
471
472
473 static int eepro100_init (struct eth_device *dev, bd_t * bis)
474 {
475 int i, status = -1;
476 int tx_cur;
477 struct descriptor *ias_cmd, *cfg_cmd;
478
479 /* Reset the ethernet controller
480 */
481 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
482 udelay (20);
483
484 OUTL (dev, I82559_RESET, SCBPort);
485 udelay (20);
486
487 if (!wait_for_eepro100 (dev)) {
488 printf ("Error: Can not reset ethernet controller.\n");
489 goto Done;
490 }
491 OUTL (dev, 0, SCBPointer);
492 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
493
494 if (!wait_for_eepro100 (dev)) {
495 printf ("Error: Can not reset ethernet controller.\n");
496 goto Done;
497 }
498 OUTL (dev, 0, SCBPointer);
499 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
500
501 /* Initialize Rx and Tx rings.
502 */
503 init_rx_ring (dev);
504 purge_tx_ring (dev);
505
506 /* Tell the adapter where the RX ring is located.
507 */
508 if (!wait_for_eepro100 (dev)) {
509 printf ("Error: Can not reset ethernet controller.\n");
510 goto Done;
511 }
512
513 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
514 OUTW (dev, SCB_M | RUC_START, SCBCmd);
515
516 /* Send the Configure frame */
517 tx_cur = tx_next;
518 tx_next = ((tx_next + 1) % NUM_TX_DESC);
519
520 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
521 cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
522 cfg_cmd->status = 0;
523 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
524
525 memcpy (cfg_cmd->params, i82558_config_cmd,
526 sizeof (i82558_config_cmd));
527
528 if (!wait_for_eepro100 (dev)) {
529 printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
530 goto Done;
531 }
532
533 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
534 OUTW (dev, SCB_M | CU_START, SCBCmd);
535
536 for (i = 0;
537 !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
538 i++) {
539 if (i >= TOUT_LOOP) {
540 printf ("%s: Tx error buffer not ready\n", dev->name);
541 goto Done;
542 }
543 }
544
545 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
546 printf ("TX error status = 0x%08X\n",
547 le16_to_cpu (tx_ring[tx_cur].status));
548 goto Done;
549 }
550
551 /* Send the Individual Address Setup frame
552 */
553 tx_cur = tx_next;
554 tx_next = ((tx_next + 1) % NUM_TX_DESC);
555
556 ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
557 ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
558 ias_cmd->status = 0;
559 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
560
561 memcpy (ias_cmd->params, dev->enetaddr, 6);
562
563 /* Tell the adapter where the TX ring is located.
564 */
565 if (!wait_for_eepro100 (dev)) {
566 printf ("Error: Can not reset ethernet controller.\n");
567 goto Done;
568 }
569
570 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
571 OUTW (dev, SCB_M | CU_START, SCBCmd);
572
573 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
574 i++) {
575 if (i >= TOUT_LOOP) {
576 printf ("%s: Tx error buffer not ready\n",
577 dev->name);
578 goto Done;
579 }
580 }
581
582 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
583 printf ("TX error status = 0x%08X\n",
584 le16_to_cpu (tx_ring[tx_cur].status));
585 goto Done;
586 }
587
588 status = 0;
589
590 Done:
591 return status;
592 }
593
594 static int eepro100_send(struct eth_device *dev, void *packet, int length)
595 {
596 int i, status = -1;
597 int tx_cur;
598
599 if (length <= 0) {
600 printf ("%s: bad packet size: %d\n", dev->name, length);
601 goto Done;
602 }
603
604 tx_cur = tx_next;
605 tx_next = (tx_next + 1) % NUM_TX_DESC;
606
607 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
608 TxCB_CMD_SF |
609 TxCB_CMD_S |
610 TxCB_CMD_EL );
611 tx_ring[tx_cur].status = 0;
612 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
613 tx_ring[tx_cur].link =
614 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
615 tx_ring[tx_cur].tx_desc_addr =
616 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
617 tx_ring[tx_cur].tx_buf_addr0 =
618 cpu_to_le32 (phys_to_bus ((u_long) packet));
619 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
620
621 if (!wait_for_eepro100 (dev)) {
622 printf ("%s: Tx error ethernet controller not ready.\n",
623 dev->name);
624 goto Done;
625 }
626
627 /* Send the packet.
628 */
629 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
630 OUTW (dev, SCB_M | CU_START, SCBCmd);
631
632 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
633 i++) {
634 if (i >= TOUT_LOOP) {
635 printf ("%s: Tx error buffer not ready\n", dev->name);
636 goto Done;
637 }
638 }
639
640 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
641 printf ("TX error status = 0x%08X\n",
642 le16_to_cpu (tx_ring[tx_cur].status));
643 goto Done;
644 }
645
646 status = length;
647
648 Done:
649 return status;
650 }
651
652 static int eepro100_recv (struct eth_device *dev)
653 {
654 u16 status, stat;
655 int rx_prev, length = 0;
656
657 stat = INW (dev, SCBStatus);
658 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
659
660 for (;;) {
661 status = le16_to_cpu (rx_ring[rx_next].status);
662
663 if (!(status & RFD_STATUS_C)) {
664 break;
665 }
666
667 /* Valid frame status.
668 */
669 if ((status & RFD_STATUS_OK)) {
670 /* A valid frame received.
671 */
672 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
673
674 /* Pass the packet up to the protocol
675 * layers.
676 */
677 NetReceive((u8 *)rx_ring[rx_next].data, length);
678 } else {
679 /* There was an error.
680 */
681 printf ("RX error status = 0x%08X\n", status);
682 }
683
684 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
685 rx_ring[rx_next].status = 0;
686 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
687
688 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
689 rx_ring[rx_prev].control = 0;
690
691 /* Update entry information.
692 */
693 rx_next = (rx_next + 1) % NUM_RX_DESC;
694 }
695
696 if (stat & SCB_STATUS_RNR) {
697
698 printf ("%s: Receiver is not ready, restart it !\n", dev->name);
699
700 /* Reinitialize Rx ring.
701 */
702 init_rx_ring (dev);
703
704 if (!wait_for_eepro100 (dev)) {
705 printf ("Error: Can not restart ethernet controller.\n");
706 goto Done;
707 }
708
709 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
710 OUTW (dev, SCB_M | RUC_START, SCBCmd);
711 }
712
713 Done:
714 return length;
715 }
716
717 static void eepro100_halt (struct eth_device *dev)
718 {
719 /* Reset the ethernet controller
720 */
721 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
722 udelay (20);
723
724 OUTL (dev, I82559_RESET, SCBPort);
725 udelay (20);
726
727 if (!wait_for_eepro100 (dev)) {
728 printf ("Error: Can not reset ethernet controller.\n");
729 goto Done;
730 }
731 OUTL (dev, 0, SCBPointer);
732 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
733
734 if (!wait_for_eepro100 (dev)) {
735 printf ("Error: Can not reset ethernet controller.\n");
736 goto Done;
737 }
738 OUTL (dev, 0, SCBPointer);
739 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
740
741 Done:
742 return;
743 }
744
745 /* SROM Read.
746 */
747 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
748 {
749 unsigned short retval = 0;
750 int read_cmd = location | EE_READ_CMD;
751 int i;
752
753 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
754 OUTW (dev, EE_ENB, SCBeeprom);
755
756 /* Shift the read command bits out. */
757 for (i = 12; i >= 0; i--) {
758 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
759
760 OUTW (dev, EE_ENB | dataval, SCBeeprom);
761 udelay (1);
762 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
763 udelay (1);
764 }
765 OUTW (dev, EE_ENB, SCBeeprom);
766
767 for (i = 15; i >= 0; i--) {
768 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
769 udelay (1);
770 retval = (retval << 1) |
771 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
772 OUTW (dev, EE_ENB, SCBeeprom);
773 udelay (1);
774 }
775
776 /* Terminate the EEPROM access. */
777 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
778 return retval;
779 }
780
781 #ifdef CONFIG_EEPRO100_SROM_WRITE
782 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
783 {
784 unsigned short dataval;
785 int enable_cmd = 0x3f | EE_EWENB_CMD;
786 int write_cmd = location | EE_WRITE_CMD;
787 int i;
788 unsigned long datalong, tmplong;
789
790 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
791 udelay(1);
792 OUTW(dev, EE_ENB, SCBeeprom);
793
794 /* Shift the enable command bits out. */
795 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
796 {
797 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
798 OUTW(dev, EE_ENB | dataval, SCBeeprom);
799 udelay(1);
800 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
801 udelay(1);
802 }
803
804 OUTW(dev, EE_ENB, SCBeeprom);
805 udelay(1);
806 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
807 udelay(1);
808 OUTW(dev, EE_ENB, SCBeeprom);
809
810
811 /* Shift the write command bits out. */
812 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
813 {
814 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
815 OUTW(dev, EE_ENB | dataval, SCBeeprom);
816 udelay(1);
817 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
818 udelay(1);
819 }
820
821 /* Write the data */
822 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
823
824 for (i = 0; i< EE_DATA_BITS; i++)
825 {
826 /* Extract and move data bit to bit DI */
827 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
828
829 OUTW(dev, EE_ENB | dataval, SCBeeprom);
830 udelay(1);
831 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
832 udelay(1);
833 OUTW(dev, EE_ENB | dataval, SCBeeprom);
834 udelay(1);
835
836 datalong = datalong << 1; /* Adjust significant data bit*/
837 }
838
839 /* Finish up command (toggle CS) */
840 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
841 udelay(1); /* delay for more than 250 ns */
842 OUTW(dev, EE_ENB, SCBeeprom);
843
844 /* Wait for programming ready (D0 = 1) */
845 tmplong = 10;
846 do
847 {
848 dataval = INW(dev, SCBeeprom);
849 if (dataval & EE_DATA_READ)
850 break;
851 udelay(10000);
852 }
853 while (-- tmplong);
854
855 if (tmplong == 0)
856 {
857 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
858 return -1;
859 }
860
861 /* Terminate the EEPROM access. */
862 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
863
864 return 0;
865 }
866 #endif
867
868 static void init_rx_ring (struct eth_device *dev)
869 {
870 int i;
871
872 for (i = 0; i < NUM_RX_DESC; i++) {
873 rx_ring[i].status = 0;
874 rx_ring[i].control =
875 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
876 rx_ring[i].link =
877 cpu_to_le32 (phys_to_bus
878 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
879 rx_ring[i].rx_buf_addr = 0xffffffff;
880 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
881 }
882
883 rx_next = 0;
884 }
885
886 static void purge_tx_ring (struct eth_device *dev)
887 {
888 int i;
889
890 tx_next = 0;
891 tx_threshold = 0x01208000;
892
893 for (i = 0; i < NUM_TX_DESC; i++) {
894 tx_ring[i].status = 0;
895 tx_ring[i].command = 0;
896 tx_ring[i].link = 0;
897 tx_ring[i].tx_desc_addr = 0;
898 tx_ring[i].count = 0;
899
900 tx_ring[i].tx_buf_addr0 = 0;
901 tx_ring[i].tx_buf_size0 = 0;
902 tx_ring[i].tx_buf_addr1 = 0;
903 tx_ring[i].tx_buf_size1 = 0;
904 }
905 }
906
907 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
908 {
909 u16 sum = 0;
910 int i, j;
911 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
912
913 for (j = 0, i = 0; i < 0x40; i++) {
914 u16 value = read_eeprom (dev, i, addr_len);
915
916 sum += value;
917 if (i < 3) {
918 dev->enetaddr[j++] = value;
919 dev->enetaddr[j++] = value >> 8;
920 }
921 }
922
923 if (sum != 0xBABA) {
924 memset (dev->enetaddr, 0, ETH_ALEN);
925 #ifdef DEBUG
926 printf ("%s: Invalid EEPROM checksum %#4.4x, "
927 "check settings before activating this device!\n",
928 dev->name, sum);
929 #endif
930 }
931 }