]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/eepro100.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[people/ms/u-boot.git] / drivers / net / eepro100.c
1 /*
2 * (C) Copyright 2002
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <netdev.h>
28 #include <asm/io.h>
29 #include <pci.h>
30 #include <miiphy.h>
31
32 #undef DEBUG
33
34 /* Ethernet chip registers.
35 */
36 #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
37 #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
38 #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
39 #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
40 #define SCBPointer 4 /* General purpose pointer. */
41 #define SCBPort 8 /* Misc. commands and operands. */
42 #define SCBflash 12 /* Flash memory control. */
43 #define SCBeeprom 14 /* EEPROM memory control. */
44 #define SCBCtrlMDI 16 /* MDI interface control. */
45 #define SCBEarlyRx 20 /* Early receive byte count. */
46 #define SCBGenControl 28 /* 82559 General Control Register */
47 #define SCBGenStatus 29 /* 82559 General Status register */
48
49 /* 82559 SCB status word defnitions
50 */
51 #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
52 #define SCB_STATUS_FR 0x4000 /* frame received */
53 #define SCB_STATUS_CNA 0x2000 /* CU left active state */
54 #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
55 #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
56 #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
57 #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
58
59 #define SCB_INTACK_MASK 0xFD00 /* all the above */
60
61 #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
62 #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
63
64 /* System control block commands
65 */
66 /* CU Commands */
67 #define CU_NOP 0x0000
68 #define CU_START 0x0010
69 #define CU_RESUME 0x0020
70 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
71 #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
72 #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
73 #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
74
75 /* RUC Commands */
76 #define RUC_NOP 0x0000
77 #define RUC_START 0x0001
78 #define RUC_RESUME 0x0002
79 #define RUC_ABORT 0x0004
80 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
81 #define RUC_RESUMENR 0x0007
82
83 #define CU_CMD_MASK 0x00f0
84 #define RU_CMD_MASK 0x0007
85
86 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
87 #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
88
89 #define CU_STATUS_MASK 0x00C0
90 #define RU_STATUS_MASK 0x003C
91
92 #define RU_STATUS_IDLE (0<<2)
93 #define RU_STATUS_SUS (1<<2)
94 #define RU_STATUS_NORES (2<<2)
95 #define RU_STATUS_READY (4<<2)
96 #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
97 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
98 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
99
100 /* 82559 Port interface commands.
101 */
102 #define I82559_RESET 0x00000000 /* Software reset */
103 #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
104 #define I82559_SELECTIVE_RESET 0x00000002
105 #define I82559_DUMP 0x00000003
106 #define I82559_DUMP_WAKEUP 0x00000007
107
108 /* 82559 Eeprom interface.
109 */
110 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
111 #define EE_CS 0x02 /* EEPROM chip select. */
112 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
113 #define EE_WRITE_0 0x01
114 #define EE_WRITE_1 0x05
115 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
116 #define EE_ENB (0x4800 | EE_CS)
117 #define EE_CMD_BITS 3
118 #define EE_DATA_BITS 16
119
120 /* The EEPROM commands include the alway-set leading bit.
121 */
122 #define EE_EWENB_CMD (4 << addr_len)
123 #define EE_WRITE_CMD (5 << addr_len)
124 #define EE_READ_CMD (6 << addr_len)
125 #define EE_ERASE_CMD (7 << addr_len)
126
127 /* Receive frame descriptors.
128 */
129 struct RxFD {
130 volatile u16 status;
131 volatile u16 control;
132 volatile u32 link; /* struct RxFD * */
133 volatile u32 rx_buf_addr; /* void * */
134 volatile u32 count;
135
136 volatile u8 data[PKTSIZE_ALIGN];
137 };
138
139 #define RFD_STATUS_C 0x8000 /* completion of received frame */
140 #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
141
142 #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
143 #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
144 #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
145 #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
146
147 #define RFD_COUNT_MASK 0x3fff
148 #define RFD_COUNT_F 0x4000
149 #define RFD_COUNT_EOF 0x8000
150
151 #define RFD_RX_CRC 0x0800 /* crc error */
152 #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
153 #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
154 #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
155 #define RFD_RX_SHORT 0x0080 /* short frame error */
156 #define RFD_RX_LENGTH 0x0020
157 #define RFD_RX_ERROR 0x0010 /* receive error */
158 #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
159 #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
160 #define RFD_RX_TCO 0x0001 /* TCO indication */
161
162 /* Transmit frame descriptors
163 */
164 struct TxFD { /* Transmit frame descriptor set. */
165 volatile u16 status;
166 volatile u16 command;
167 volatile u32 link; /* void * */
168 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
169 volatile s32 count;
170
171 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
172 volatile s32 tx_buf_size0; /* Length of Tx frame. */
173 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
174 volatile s32 tx_buf_size1; /* Length of Tx frame. */
175 };
176
177 #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
178 #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
179 #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
180 #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
181 #define TxCB_CMD_S 0x4000 /* suspend on completion */
182 #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
183
184 #define TxCB_COUNT_MASK 0x3fff
185 #define TxCB_COUNT_EOF 0x8000
186
187 /* The Speedo3 Rx and Tx frame/buffer descriptors.
188 */
189 struct descriptor { /* A generic descriptor. */
190 volatile u16 status;
191 volatile u16 command;
192 volatile u32 link; /* struct descriptor * */
193
194 unsigned char params[0];
195 };
196
197 #define CONFIG_SYS_CMD_EL 0x8000
198 #define CONFIG_SYS_CMD_SUSPEND 0x4000
199 #define CONFIG_SYS_CMD_INT 0x2000
200 #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
201 #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
202
203 #define CONFIG_SYS_STATUS_C 0x8000
204 #define CONFIG_SYS_STATUS_OK 0x2000
205
206 /* Misc.
207 */
208 #define NUM_RX_DESC PKTBUFSRX
209 #define NUM_TX_DESC 1 /* Number of TX descriptors */
210
211 #define TOUT_LOOP 1000000
212
213 #define ETH_ALEN 6
214
215 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
216 static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
217 static int rx_next; /* RX descriptor ring pointer */
218 static int tx_next; /* TX descriptor ring pointer */
219 static int tx_threshold;
220
221 /*
222 * The parameters for a CmdConfigure operation.
223 * There are so many options that it would be difficult to document
224 * each bit. We mostly use the default or recommended settings.
225 */
226 static const char i82557_config_cmd[] = {
227 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
228 0, 0x2E, 0, 0x60, 0,
229 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
230 0x3f, 0x05,
231 };
232 static const char i82558_config_cmd[] = {
233 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
234 0, 0x2E, 0, 0x60, 0x08, 0x88,
235 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
236 0x31, 0x05,
237 };
238
239 static void init_rx_ring (struct eth_device *dev);
240 static void purge_tx_ring (struct eth_device *dev);
241
242 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
243
244 static int eepro100_init (struct eth_device *dev, bd_t * bis);
245 static int eepro100_send (struct eth_device *dev, volatile void *packet,
246 int length);
247 static int eepro100_recv (struct eth_device *dev);
248 static void eepro100_halt (struct eth_device *dev);
249
250 #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
251 #define bus_to_phys(a) (a)
252 #define phys_to_bus(a) (a)
253 #else
254 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
255 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
256 #endif
257
258 static inline int INW (struct eth_device *dev, u_long addr)
259 {
260 return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
261 }
262
263 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
264 {
265 *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
266 }
267
268 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
269 {
270 *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
271 }
272
273 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
274 static inline int INL (struct eth_device *dev, u_long addr)
275 {
276 return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
277 }
278
279 static int get_phyreg (struct eth_device *dev, unsigned char addr,
280 unsigned char reg, unsigned short *value)
281 {
282 int cmd;
283 int timeout = 50;
284
285 /* read requested data */
286 cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
287 OUTL (dev, cmd, SCBCtrlMDI);
288
289 do {
290 udelay(1000);
291 cmd = INL (dev, SCBCtrlMDI);
292 } while (!(cmd & (1 << 28)) && (--timeout));
293
294 if (timeout == 0)
295 return -1;
296
297 *value = (unsigned short) (cmd & 0xffff);
298
299 return 0;
300 }
301
302 static int set_phyreg (struct eth_device *dev, unsigned char addr,
303 unsigned char reg, unsigned short value)
304 {
305 int cmd;
306 int timeout = 50;
307
308 /* write requested data */
309 cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
310 OUTL (dev, cmd | value, SCBCtrlMDI);
311
312 while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
313 udelay(1000);
314
315 if (timeout == 0)
316 return -1;
317
318 return 0;
319 }
320
321 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
322 * Do this by checking model value field from ID2 register.
323 */
324 static struct eth_device* verify_phyaddr (const char *devname,
325 unsigned char addr)
326 {
327 struct eth_device *dev;
328 unsigned short value;
329 unsigned char model;
330
331 dev = eth_get_dev_by_name(devname);
332 if (dev == NULL) {
333 printf("%s: no such device\n", devname);
334 return NULL;
335 }
336
337 /* read id2 register */
338 if (get_phyreg(dev, addr, PHY_PHYIDR2, &value) != 0) {
339 printf("%s: mii read timeout!\n", devname);
340 return NULL;
341 }
342
343 /* get model */
344 model = (unsigned char)((value >> 4) & 0x003f);
345
346 if (model == 0) {
347 printf("%s: no PHY at address %d\n", devname, addr);
348 return NULL;
349 }
350
351 return dev;
352 }
353
354 static int eepro100_miiphy_read(const char *devname, unsigned char addr,
355 unsigned char reg, unsigned short *value)
356 {
357 struct eth_device *dev;
358
359 dev = verify_phyaddr(devname, addr);
360 if (dev == NULL)
361 return -1;
362
363 if (get_phyreg(dev, addr, reg, value) != 0) {
364 printf("%s: mii read timeout!\n", devname);
365 return -1;
366 }
367
368 return 0;
369 }
370
371 static int eepro100_miiphy_write(const char *devname, unsigned char addr,
372 unsigned char reg, unsigned short value)
373 {
374 struct eth_device *dev;
375
376 dev = verify_phyaddr(devname, addr);
377 if (dev == NULL)
378 return -1;
379
380 if (set_phyreg(dev, addr, reg, value) != 0) {
381 printf("%s: mii write timeout!\n", devname);
382 return -1;
383 }
384
385 return 0;
386 }
387
388 #endif
389
390 /* Wait for the chip get the command.
391 */
392 static int wait_for_eepro100 (struct eth_device *dev)
393 {
394 int i;
395
396 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
397 if (i >= TOUT_LOOP) {
398 return 0;
399 }
400 }
401
402 return 1;
403 }
404
405 static struct pci_device_id supported[] = {
406 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
407 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
408 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
409 {}
410 };
411
412 int eepro100_initialize (bd_t * bis)
413 {
414 pci_dev_t devno;
415 int card_number = 0;
416 struct eth_device *dev;
417 u32 iobase, status;
418 int idx = 0;
419
420 while (1) {
421 /* Find PCI device
422 */
423 if ((devno = pci_find_devices (supported, idx++)) < 0) {
424 break;
425 }
426
427 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
428 iobase &= ~0xf;
429
430 #ifdef DEBUG
431 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
432 iobase);
433 #endif
434
435 pci_write_config_dword (devno,
436 PCI_COMMAND,
437 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
438
439 /* Check if I/O accesses and Bus Mastering are enabled.
440 */
441 pci_read_config_dword (devno, PCI_COMMAND, &status);
442 if (!(status & PCI_COMMAND_MEMORY)) {
443 printf ("Error: Can not enable MEM access.\n");
444 continue;
445 }
446
447 if (!(status & PCI_COMMAND_MASTER)) {
448 printf ("Error: Can not enable Bus Mastering.\n");
449 continue;
450 }
451
452 dev = (struct eth_device *) malloc (sizeof *dev);
453 if (!dev) {
454 printf("eepro100: Can not allocate memory\n");
455 break;
456 }
457 memset(dev, 0, sizeof(*dev));
458
459 sprintf (dev->name, "i82559#%d", card_number);
460 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
461 dev->iobase = bus_to_phys (iobase);
462 dev->init = eepro100_init;
463 dev->halt = eepro100_halt;
464 dev->send = eepro100_send;
465 dev->recv = eepro100_recv;
466
467 eth_register (dev);
468
469 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
470 /* register mii command access routines */
471 miiphy_register(dev->name,
472 eepro100_miiphy_read, eepro100_miiphy_write);
473 #endif
474
475 card_number++;
476
477 /* Set the latency timer for value.
478 */
479 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
480
481 udelay (10 * 1000);
482
483 read_hw_addr (dev, bis);
484 }
485
486 return card_number;
487 }
488
489
490 static int eepro100_init (struct eth_device *dev, bd_t * bis)
491 {
492 int i, status = -1;
493 int tx_cur;
494 struct descriptor *ias_cmd, *cfg_cmd;
495
496 /* Reset the ethernet controller
497 */
498 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
499 udelay (20);
500
501 OUTL (dev, I82559_RESET, SCBPort);
502 udelay (20);
503
504 if (!wait_for_eepro100 (dev)) {
505 printf ("Error: Can not reset ethernet controller.\n");
506 goto Done;
507 }
508 OUTL (dev, 0, SCBPointer);
509 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
510
511 if (!wait_for_eepro100 (dev)) {
512 printf ("Error: Can not reset ethernet controller.\n");
513 goto Done;
514 }
515 OUTL (dev, 0, SCBPointer);
516 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
517
518 /* Initialize Rx and Tx rings.
519 */
520 init_rx_ring (dev);
521 purge_tx_ring (dev);
522
523 /* Tell the adapter where the RX ring is located.
524 */
525 if (!wait_for_eepro100 (dev)) {
526 printf ("Error: Can not reset ethernet controller.\n");
527 goto Done;
528 }
529
530 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
531 OUTW (dev, SCB_M | RUC_START, SCBCmd);
532
533 /* Send the Configure frame */
534 tx_cur = tx_next;
535 tx_next = ((tx_next + 1) % NUM_TX_DESC);
536
537 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
538 cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
539 cfg_cmd->status = 0;
540 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
541
542 memcpy (cfg_cmd->params, i82558_config_cmd,
543 sizeof (i82558_config_cmd));
544
545 if (!wait_for_eepro100 (dev)) {
546 printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
547 goto Done;
548 }
549
550 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
551 OUTW (dev, SCB_M | CU_START, SCBCmd);
552
553 for (i = 0;
554 !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
555 i++) {
556 if (i >= TOUT_LOOP) {
557 printf ("%s: Tx error buffer not ready\n", dev->name);
558 goto Done;
559 }
560 }
561
562 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
563 printf ("TX error status = 0x%08X\n",
564 le16_to_cpu (tx_ring[tx_cur].status));
565 goto Done;
566 }
567
568 /* Send the Individual Address Setup frame
569 */
570 tx_cur = tx_next;
571 tx_next = ((tx_next + 1) % NUM_TX_DESC);
572
573 ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
574 ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
575 ias_cmd->status = 0;
576 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
577
578 memcpy (ias_cmd->params, dev->enetaddr, 6);
579
580 /* Tell the adapter where the TX ring is located.
581 */
582 if (!wait_for_eepro100 (dev)) {
583 printf ("Error: Can not reset ethernet controller.\n");
584 goto Done;
585 }
586
587 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
588 OUTW (dev, SCB_M | CU_START, SCBCmd);
589
590 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
591 i++) {
592 if (i >= TOUT_LOOP) {
593 printf ("%s: Tx error buffer not ready\n",
594 dev->name);
595 goto Done;
596 }
597 }
598
599 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
600 printf ("TX error status = 0x%08X\n",
601 le16_to_cpu (tx_ring[tx_cur].status));
602 goto Done;
603 }
604
605 status = 0;
606
607 Done:
608 return status;
609 }
610
611 static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
612 {
613 int i, status = -1;
614 int tx_cur;
615
616 if (length <= 0) {
617 printf ("%s: bad packet size: %d\n", dev->name, length);
618 goto Done;
619 }
620
621 tx_cur = tx_next;
622 tx_next = (tx_next + 1) % NUM_TX_DESC;
623
624 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
625 TxCB_CMD_SF |
626 TxCB_CMD_S |
627 TxCB_CMD_EL );
628 tx_ring[tx_cur].status = 0;
629 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
630 tx_ring[tx_cur].link =
631 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
632 tx_ring[tx_cur].tx_desc_addr =
633 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
634 tx_ring[tx_cur].tx_buf_addr0 =
635 cpu_to_le32 (phys_to_bus ((u_long) packet));
636 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
637
638 if (!wait_for_eepro100 (dev)) {
639 printf ("%s: Tx error ethernet controller not ready.\n",
640 dev->name);
641 goto Done;
642 }
643
644 /* Send the packet.
645 */
646 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
647 OUTW (dev, SCB_M | CU_START, SCBCmd);
648
649 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
650 i++) {
651 if (i >= TOUT_LOOP) {
652 printf ("%s: Tx error buffer not ready\n", dev->name);
653 goto Done;
654 }
655 }
656
657 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
658 printf ("TX error status = 0x%08X\n",
659 le16_to_cpu (tx_ring[tx_cur].status));
660 goto Done;
661 }
662
663 status = length;
664
665 Done:
666 return status;
667 }
668
669 static int eepro100_recv (struct eth_device *dev)
670 {
671 u16 status, stat;
672 int rx_prev, length = 0;
673
674 stat = INW (dev, SCBStatus);
675 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
676
677 for (;;) {
678 status = le16_to_cpu (rx_ring[rx_next].status);
679
680 if (!(status & RFD_STATUS_C)) {
681 break;
682 }
683
684 /* Valid frame status.
685 */
686 if ((status & RFD_STATUS_OK)) {
687 /* A valid frame received.
688 */
689 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
690
691 /* Pass the packet up to the protocol
692 * layers.
693 */
694 NetReceive (rx_ring[rx_next].data, length);
695 } else {
696 /* There was an error.
697 */
698 printf ("RX error status = 0x%08X\n", status);
699 }
700
701 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
702 rx_ring[rx_next].status = 0;
703 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
704
705 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
706 rx_ring[rx_prev].control = 0;
707
708 /* Update entry information.
709 */
710 rx_next = (rx_next + 1) % NUM_RX_DESC;
711 }
712
713 if (stat & SCB_STATUS_RNR) {
714
715 printf ("%s: Receiver is not ready, restart it !\n", dev->name);
716
717 /* Reinitialize Rx ring.
718 */
719 init_rx_ring (dev);
720
721 if (!wait_for_eepro100 (dev)) {
722 printf ("Error: Can not restart ethernet controller.\n");
723 goto Done;
724 }
725
726 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
727 OUTW (dev, SCB_M | RUC_START, SCBCmd);
728 }
729
730 Done:
731 return length;
732 }
733
734 static void eepro100_halt (struct eth_device *dev)
735 {
736 /* Reset the ethernet controller
737 */
738 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
739 udelay (20);
740
741 OUTL (dev, I82559_RESET, SCBPort);
742 udelay (20);
743
744 if (!wait_for_eepro100 (dev)) {
745 printf ("Error: Can not reset ethernet controller.\n");
746 goto Done;
747 }
748 OUTL (dev, 0, SCBPointer);
749 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
750
751 if (!wait_for_eepro100 (dev)) {
752 printf ("Error: Can not reset ethernet controller.\n");
753 goto Done;
754 }
755 OUTL (dev, 0, SCBPointer);
756 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
757
758 Done:
759 return;
760 }
761
762 /* SROM Read.
763 */
764 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
765 {
766 unsigned short retval = 0;
767 int read_cmd = location | EE_READ_CMD;
768 int i;
769
770 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
771 OUTW (dev, EE_ENB, SCBeeprom);
772
773 /* Shift the read command bits out. */
774 for (i = 12; i >= 0; i--) {
775 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
776
777 OUTW (dev, EE_ENB | dataval, SCBeeprom);
778 udelay (1);
779 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
780 udelay (1);
781 }
782 OUTW (dev, EE_ENB, SCBeeprom);
783
784 for (i = 15; i >= 0; i--) {
785 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
786 udelay (1);
787 retval = (retval << 1) |
788 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
789 OUTW (dev, EE_ENB, SCBeeprom);
790 udelay (1);
791 }
792
793 /* Terminate the EEPROM access. */
794 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
795 return retval;
796 }
797
798 #ifdef CONFIG_EEPRO100_SROM_WRITE
799 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
800 {
801 unsigned short dataval;
802 int enable_cmd = 0x3f | EE_EWENB_CMD;
803 int write_cmd = location | EE_WRITE_CMD;
804 int i;
805 unsigned long datalong, tmplong;
806
807 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
808 udelay(1);
809 OUTW(dev, EE_ENB, SCBeeprom);
810
811 /* Shift the enable command bits out. */
812 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
813 {
814 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
815 OUTW(dev, EE_ENB | dataval, SCBeeprom);
816 udelay(1);
817 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
818 udelay(1);
819 }
820
821 OUTW(dev, EE_ENB, SCBeeprom);
822 udelay(1);
823 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
824 udelay(1);
825 OUTW(dev, EE_ENB, SCBeeprom);
826
827
828 /* Shift the write command bits out. */
829 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
830 {
831 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
832 OUTW(dev, EE_ENB | dataval, SCBeeprom);
833 udelay(1);
834 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
835 udelay(1);
836 }
837
838 /* Write the data */
839 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
840
841 for (i = 0; i< EE_DATA_BITS; i++)
842 {
843 /* Extract and move data bit to bit DI */
844 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
845
846 OUTW(dev, EE_ENB | dataval, SCBeeprom);
847 udelay(1);
848 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
849 udelay(1);
850 OUTW(dev, EE_ENB | dataval, SCBeeprom);
851 udelay(1);
852
853 datalong = datalong << 1; /* Adjust significant data bit*/
854 }
855
856 /* Finish up command (toggle CS) */
857 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
858 udelay(1); /* delay for more than 250 ns */
859 OUTW(dev, EE_ENB, SCBeeprom);
860
861 /* Wait for programming ready (D0 = 1) */
862 tmplong = 10;
863 do
864 {
865 dataval = INW(dev, SCBeeprom);
866 if (dataval & EE_DATA_READ)
867 break;
868 udelay(10000);
869 }
870 while (-- tmplong);
871
872 if (tmplong == 0)
873 {
874 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
875 return -1;
876 }
877
878 /* Terminate the EEPROM access. */
879 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
880
881 return 0;
882 }
883 #endif
884
885 static void init_rx_ring (struct eth_device *dev)
886 {
887 int i;
888
889 for (i = 0; i < NUM_RX_DESC; i++) {
890 rx_ring[i].status = 0;
891 rx_ring[i].control =
892 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
893 rx_ring[i].link =
894 cpu_to_le32 (phys_to_bus
895 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
896 rx_ring[i].rx_buf_addr = 0xffffffff;
897 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
898 }
899
900 rx_next = 0;
901 }
902
903 static void purge_tx_ring (struct eth_device *dev)
904 {
905 int i;
906
907 tx_next = 0;
908 tx_threshold = 0x01208000;
909
910 for (i = 0; i < NUM_TX_DESC; i++) {
911 tx_ring[i].status = 0;
912 tx_ring[i].command = 0;
913 tx_ring[i].link = 0;
914 tx_ring[i].tx_desc_addr = 0;
915 tx_ring[i].count = 0;
916
917 tx_ring[i].tx_buf_addr0 = 0;
918 tx_ring[i].tx_buf_size0 = 0;
919 tx_ring[i].tx_buf_addr1 = 0;
920 tx_ring[i].tx_buf_size1 = 0;
921 }
922 }
923
924 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
925 {
926 u16 eeprom[0x40];
927 u16 sum = 0;
928 int i, j;
929 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
930
931 for (j = 0, i = 0; i < 0x40; i++) {
932 u16 value = read_eeprom (dev, i, addr_len);
933
934 eeprom[i] = value;
935 sum += value;
936 if (i < 3) {
937 dev->enetaddr[j++] = value;
938 dev->enetaddr[j++] = value >> 8;
939 }
940 }
941
942 if (sum != 0xBABA) {
943 memset (dev->enetaddr, 0, ETH_ALEN);
944 #ifdef DEBUG
945 printf ("%s: Invalid EEPROM checksum %#4.4x, "
946 "check settings before activating this device!\n",
947 dev->name, sum);
948 #endif
949 }
950 }