]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/amazon/ena/ena_netdev.c
Merge tag 'kvm-x86-mmu-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / drivers / net / ethernet / amazon / ena / ena_netdev.c
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #ifdef CONFIG_RFS_ACCEL
9 #include <linux/cpu_rmap.h>
10 #endif /* CONFIG_RFS_ACCEL */
11 #include <linux/ethtool.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/numa.h>
15 #include <linux/pci.h>
16 #include <linux/utsname.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <net/ip.h>
20
21 #include "ena_netdev.h"
22 #include <linux/bpf_trace.h>
23 #include "ena_pci_id_tbl.h"
24
25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
26 MODULE_DESCRIPTION(DEVICE_NAME);
27 MODULE_LICENSE("GPL");
28
29 /* Time in jiffies before concluding the transmitter is hung. */
30 #define TX_TIMEOUT (5 * HZ)
31
32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus())
33
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
35 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
36
37 static struct ena_aenq_handlers aenq_handlers;
38
39 static struct workqueue_struct *ena_wq;
40
41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
42
43 static int ena_rss_init_default(struct ena_adapter *adapter);
44 static void check_for_admin_com_state(struct ena_adapter *adapter);
45 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
46 static int ena_restore_device(struct ena_adapter *adapter);
47
48 static void ena_init_io_rings(struct ena_adapter *adapter,
49 int first_index, int count);
50 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index,
51 int count);
52 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index,
53 int count);
54 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid);
55 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
56 int first_index,
57 int count);
58 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid);
59 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid);
60 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget);
61 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter);
62 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter);
63 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
64 int first_index, int count);
65 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
66 int first_index, int count);
67 static int ena_up(struct ena_adapter *adapter);
68 static void ena_down(struct ena_adapter *adapter);
69 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
70 struct ena_ring *rx_ring);
71 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
72 struct ena_ring *rx_ring);
73 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
74 struct ena_tx_buffer *tx_info);
75 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
76 int first_index, int count);
77
78 /* Increase a stat by cnt while holding syncp seqlock on 32bit machines */
79 static void ena_increase_stat(u64 *statp, u64 cnt,
80 struct u64_stats_sync *syncp)
81 {
82 u64_stats_update_begin(syncp);
83 (*statp) += cnt;
84 u64_stats_update_end(syncp);
85 }
86
87 static void ena_ring_tx_doorbell(struct ena_ring *tx_ring)
88 {
89 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
90 ena_increase_stat(&tx_ring->tx_stats.doorbells, 1, &tx_ring->syncp);
91 }
92
93 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
94 {
95 struct ena_adapter *adapter = netdev_priv(dev);
96
97 /* Change the state of the device to trigger reset
98 * Check that we are not in the middle or a trigger already
99 */
100
101 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
102 return;
103
104 ena_reset_device(adapter, ENA_REGS_RESET_OS_NETDEV_WD);
105 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp);
106
107 netif_err(adapter, tx_err, dev, "Transmit time out\n");
108 }
109
110 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
111 {
112 int i;
113
114 for (i = 0; i < adapter->num_io_queues; i++)
115 adapter->rx_ring[i].mtu = mtu;
116 }
117
118 static int ena_change_mtu(struct net_device *dev, int new_mtu)
119 {
120 struct ena_adapter *adapter = netdev_priv(dev);
121 int ret;
122
123 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
124 if (!ret) {
125 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu);
126 update_rx_ring_mtu(adapter, new_mtu);
127 dev->mtu = new_mtu;
128 } else {
129 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
130 new_mtu);
131 }
132
133 return ret;
134 }
135
136 static int ena_xmit_common(struct net_device *dev,
137 struct ena_ring *ring,
138 struct ena_tx_buffer *tx_info,
139 struct ena_com_tx_ctx *ena_tx_ctx,
140 u16 next_to_use,
141 u32 bytes)
142 {
143 struct ena_adapter *adapter = netdev_priv(dev);
144 int rc, nb_hw_desc;
145
146 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
147 ena_tx_ctx))) {
148 netif_dbg(adapter, tx_queued, dev,
149 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
150 ring->qid);
151 ena_ring_tx_doorbell(ring);
152 }
153
154 /* prepare the packet's descriptors to dma engine */
155 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
156 &nb_hw_desc);
157
158 /* In case there isn't enough space in the queue for the packet,
159 * we simply drop it. All other failure reasons of
160 * ena_com_prepare_tx() are fatal and therefore require a device reset.
161 */
162 if (unlikely(rc)) {
163 netif_err(adapter, tx_queued, dev,
164 "Failed to prepare tx bufs\n");
165 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1,
166 &ring->syncp);
167 if (rc != -ENOMEM)
168 ena_reset_device(adapter,
169 ENA_REGS_RESET_DRIVER_INVALID_STATE);
170 return rc;
171 }
172
173 u64_stats_update_begin(&ring->syncp);
174 ring->tx_stats.cnt++;
175 ring->tx_stats.bytes += bytes;
176 u64_stats_update_end(&ring->syncp);
177
178 tx_info->tx_descs = nb_hw_desc;
179 tx_info->last_jiffies = jiffies;
180 tx_info->print_once = 0;
181
182 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
183 ring->ring_size);
184 return 0;
185 }
186
187 /* This is the XDP napi callback. XDP queues use a separate napi callback
188 * than Rx/Tx queues.
189 */
190 static int ena_xdp_io_poll(struct napi_struct *napi, int budget)
191 {
192 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
193 u32 xdp_work_done, xdp_budget;
194 struct ena_ring *xdp_ring;
195 int napi_comp_call = 0;
196 int ret;
197
198 xdp_ring = ena_napi->xdp_ring;
199
200 xdp_budget = budget;
201
202 if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) ||
203 test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) {
204 napi_complete_done(napi, 0);
205 return 0;
206 }
207
208 xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget);
209
210 /* If the device is about to reset or down, avoid unmask
211 * the interrupt and return 0 so NAPI won't reschedule
212 */
213 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) {
214 napi_complete_done(napi, 0);
215 ret = 0;
216 } else if (xdp_budget > xdp_work_done) {
217 napi_comp_call = 1;
218 if (napi_complete_done(napi, xdp_work_done))
219 ena_unmask_interrupt(xdp_ring, NULL);
220 ena_update_ring_numa_node(xdp_ring, NULL);
221 ret = xdp_work_done;
222 } else {
223 ret = xdp_budget;
224 }
225
226 u64_stats_update_begin(&xdp_ring->syncp);
227 xdp_ring->tx_stats.napi_comp += napi_comp_call;
228 xdp_ring->tx_stats.tx_poll++;
229 u64_stats_update_end(&xdp_ring->syncp);
230 xdp_ring->tx_stats.last_napi_jiffies = jiffies;
231
232 return ret;
233 }
234
235 static int ena_xdp_tx_map_frame(struct ena_ring *xdp_ring,
236 struct ena_tx_buffer *tx_info,
237 struct xdp_frame *xdpf,
238 struct ena_com_tx_ctx *ena_tx_ctx)
239 {
240 struct ena_adapter *adapter = xdp_ring->adapter;
241 struct ena_com_buf *ena_buf;
242 int push_len = 0;
243 dma_addr_t dma;
244 void *data;
245 u32 size;
246
247 tx_info->xdpf = xdpf;
248 data = tx_info->xdpf->data;
249 size = tx_info->xdpf->len;
250
251 if (xdp_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
252 /* Designate part of the packet for LLQ */
253 push_len = min_t(u32, size, xdp_ring->tx_max_header_size);
254
255 ena_tx_ctx->push_header = data;
256
257 size -= push_len;
258 data += push_len;
259 }
260
261 ena_tx_ctx->header_len = push_len;
262
263 if (size > 0) {
264 dma = dma_map_single(xdp_ring->dev,
265 data,
266 size,
267 DMA_TO_DEVICE);
268 if (unlikely(dma_mapping_error(xdp_ring->dev, dma)))
269 goto error_report_dma_error;
270
271 tx_info->map_linear_data = 0;
272
273 ena_buf = tx_info->bufs;
274 ena_buf->paddr = dma;
275 ena_buf->len = size;
276
277 ena_tx_ctx->ena_bufs = ena_buf;
278 ena_tx_ctx->num_bufs = tx_info->num_of_bufs = 1;
279 }
280
281 return 0;
282
283 error_report_dma_error:
284 ena_increase_stat(&xdp_ring->tx_stats.dma_mapping_err, 1,
285 &xdp_ring->syncp);
286 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map xdp buff\n");
287
288 return -EINVAL;
289 }
290
291 static int ena_xdp_xmit_frame(struct ena_ring *xdp_ring,
292 struct net_device *dev,
293 struct xdp_frame *xdpf,
294 int flags)
295 {
296 struct ena_com_tx_ctx ena_tx_ctx = {};
297 struct ena_tx_buffer *tx_info;
298 u16 next_to_use, req_id;
299 int rc;
300
301 next_to_use = xdp_ring->next_to_use;
302 req_id = xdp_ring->free_ids[next_to_use];
303 tx_info = &xdp_ring->tx_buffer_info[req_id];
304 tx_info->num_of_bufs = 0;
305
306 rc = ena_xdp_tx_map_frame(xdp_ring, tx_info, xdpf, &ena_tx_ctx);
307 if (unlikely(rc))
308 return rc;
309
310 ena_tx_ctx.req_id = req_id;
311
312 rc = ena_xmit_common(dev,
313 xdp_ring,
314 tx_info,
315 &ena_tx_ctx,
316 next_to_use,
317 xdpf->len);
318 if (rc)
319 goto error_unmap_dma;
320
321 /* trigger the dma engine. ena_ring_tx_doorbell()
322 * calls a memory barrier inside it.
323 */
324 if (flags & XDP_XMIT_FLUSH)
325 ena_ring_tx_doorbell(xdp_ring);
326
327 return rc;
328
329 error_unmap_dma:
330 ena_unmap_tx_buff(xdp_ring, tx_info);
331 tx_info->xdpf = NULL;
332 return rc;
333 }
334
335 static int ena_xdp_xmit(struct net_device *dev, int n,
336 struct xdp_frame **frames, u32 flags)
337 {
338 struct ena_adapter *adapter = netdev_priv(dev);
339 struct ena_ring *xdp_ring;
340 int qid, i, nxmit = 0;
341
342 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
343 return -EINVAL;
344
345 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
346 return -ENETDOWN;
347
348 /* We assume that all rings have the same XDP program */
349 if (!READ_ONCE(adapter->rx_ring->xdp_bpf_prog))
350 return -ENXIO;
351
352 qid = smp_processor_id() % adapter->xdp_num_queues;
353 qid += adapter->xdp_first_ring;
354 xdp_ring = &adapter->tx_ring[qid];
355
356 /* Other CPU ids might try to send thorugh this queue */
357 spin_lock(&xdp_ring->xdp_tx_lock);
358
359 for (i = 0; i < n; i++) {
360 if (ena_xdp_xmit_frame(xdp_ring, dev, frames[i], 0))
361 break;
362 nxmit++;
363 }
364
365 /* Ring doorbell to make device aware of the packets */
366 if (flags & XDP_XMIT_FLUSH)
367 ena_ring_tx_doorbell(xdp_ring);
368
369 spin_unlock(&xdp_ring->xdp_tx_lock);
370
371 /* Return number of packets sent */
372 return nxmit;
373 }
374
375 static int ena_xdp_execute(struct ena_ring *rx_ring, struct xdp_buff *xdp)
376 {
377 u32 verdict = ENA_XDP_PASS;
378 struct bpf_prog *xdp_prog;
379 struct ena_ring *xdp_ring;
380 struct xdp_frame *xdpf;
381 u64 *xdp_stat;
382
383 xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog);
384
385 if (!xdp_prog)
386 goto out;
387
388 verdict = bpf_prog_run_xdp(xdp_prog, xdp);
389
390 switch (verdict) {
391 case XDP_TX:
392 xdpf = xdp_convert_buff_to_frame(xdp);
393 if (unlikely(!xdpf)) {
394 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
395 xdp_stat = &rx_ring->rx_stats.xdp_aborted;
396 verdict = ENA_XDP_DROP;
397 break;
398 }
399
400 /* Find xmit queue */
401 xdp_ring = rx_ring->xdp_ring;
402
403 /* The XDP queues are shared between XDP_TX and XDP_REDIRECT */
404 spin_lock(&xdp_ring->xdp_tx_lock);
405
406 if (ena_xdp_xmit_frame(xdp_ring, rx_ring->netdev, xdpf,
407 XDP_XMIT_FLUSH))
408 xdp_return_frame(xdpf);
409
410 spin_unlock(&xdp_ring->xdp_tx_lock);
411 xdp_stat = &rx_ring->rx_stats.xdp_tx;
412 verdict = ENA_XDP_TX;
413 break;
414 case XDP_REDIRECT:
415 if (likely(!xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))) {
416 xdp_stat = &rx_ring->rx_stats.xdp_redirect;
417 verdict = ENA_XDP_REDIRECT;
418 break;
419 }
420 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
421 xdp_stat = &rx_ring->rx_stats.xdp_aborted;
422 verdict = ENA_XDP_DROP;
423 break;
424 case XDP_ABORTED:
425 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
426 xdp_stat = &rx_ring->rx_stats.xdp_aborted;
427 verdict = ENA_XDP_DROP;
428 break;
429 case XDP_DROP:
430 xdp_stat = &rx_ring->rx_stats.xdp_drop;
431 verdict = ENA_XDP_DROP;
432 break;
433 case XDP_PASS:
434 xdp_stat = &rx_ring->rx_stats.xdp_pass;
435 verdict = ENA_XDP_PASS;
436 break;
437 default:
438 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, verdict);
439 xdp_stat = &rx_ring->rx_stats.xdp_invalid;
440 verdict = ENA_XDP_DROP;
441 }
442
443 ena_increase_stat(xdp_stat, 1, &rx_ring->syncp);
444 out:
445 return verdict;
446 }
447
448 static void ena_init_all_xdp_queues(struct ena_adapter *adapter)
449 {
450 adapter->xdp_first_ring = adapter->num_io_queues;
451 adapter->xdp_num_queues = adapter->num_io_queues;
452
453 ena_init_io_rings(adapter,
454 adapter->xdp_first_ring,
455 adapter->xdp_num_queues);
456 }
457
458 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)
459 {
460 int rc = 0;
461
462 rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring,
463 adapter->xdp_num_queues);
464 if (rc)
465 goto setup_err;
466
467 rc = ena_create_io_tx_queues_in_range(adapter,
468 adapter->xdp_first_ring,
469 adapter->xdp_num_queues);
470 if (rc)
471 goto create_err;
472
473 return 0;
474
475 create_err:
476 ena_free_all_io_tx_resources(adapter);
477 setup_err:
478 return rc;
479 }
480
481 /* Provides a way for both kernel and bpf-prog to know
482 * more about the RX-queue a given XDP frame arrived on.
483 */
484 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring)
485 {
486 int rc;
487
488 rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid, 0);
489
490 if (rc) {
491 netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
492 "Failed to register xdp rx queue info. RX queue num %d rc: %d\n",
493 rx_ring->qid, rc);
494 goto err;
495 }
496
497 rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED,
498 NULL);
499
500 if (rc) {
501 netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
502 "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n",
503 rx_ring->qid, rc);
504 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
505 }
506
507 err:
508 return rc;
509 }
510
511 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)
512 {
513 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq);
514 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
515 }
516
517 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter,
518 struct bpf_prog *prog,
519 int first, int count)
520 {
521 struct bpf_prog *old_bpf_prog;
522 struct ena_ring *rx_ring;
523 int i = 0;
524
525 for (i = first; i < count; i++) {
526 rx_ring = &adapter->rx_ring[i];
527 old_bpf_prog = xchg(&rx_ring->xdp_bpf_prog, prog);
528
529 if (!old_bpf_prog && prog) {
530 ena_xdp_register_rxq_info(rx_ring);
531 rx_ring->rx_headroom = XDP_PACKET_HEADROOM;
532 } else if (old_bpf_prog && !prog) {
533 ena_xdp_unregister_rxq_info(rx_ring);
534 rx_ring->rx_headroom = NET_SKB_PAD;
535 }
536 }
537 }
538
539 static void ena_xdp_exchange_program(struct ena_adapter *adapter,
540 struct bpf_prog *prog)
541 {
542 struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog);
543
544 ena_xdp_exchange_program_rx_in_range(adapter,
545 prog,
546 0,
547 adapter->num_io_queues);
548
549 if (old_bpf_prog)
550 bpf_prog_put(old_bpf_prog);
551 }
552
553 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)
554 {
555 bool was_up;
556 int rc;
557
558 was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
559
560 if (was_up)
561 ena_down(adapter);
562
563 adapter->xdp_first_ring = 0;
564 adapter->xdp_num_queues = 0;
565 ena_xdp_exchange_program(adapter, NULL);
566 if (was_up) {
567 rc = ena_up(adapter);
568 if (rc)
569 return rc;
570 }
571 return 0;
572 }
573
574 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)
575 {
576 struct ena_adapter *adapter = netdev_priv(netdev);
577 struct bpf_prog *prog = bpf->prog;
578 struct bpf_prog *old_bpf_prog;
579 int rc, prev_mtu;
580 bool is_up;
581
582 is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
583 rc = ena_xdp_allowed(adapter);
584 if (rc == ENA_XDP_ALLOWED) {
585 old_bpf_prog = adapter->xdp_bpf_prog;
586 if (prog) {
587 if (!is_up) {
588 ena_init_all_xdp_queues(adapter);
589 } else if (!old_bpf_prog) {
590 ena_down(adapter);
591 ena_init_all_xdp_queues(adapter);
592 }
593 ena_xdp_exchange_program(adapter, prog);
594
595 if (is_up && !old_bpf_prog) {
596 rc = ena_up(adapter);
597 if (rc)
598 return rc;
599 }
600 xdp_features_set_redirect_target(netdev, false);
601 } else if (old_bpf_prog) {
602 xdp_features_clear_redirect_target(netdev);
603 rc = ena_destroy_and_free_all_xdp_queues(adapter);
604 if (rc)
605 return rc;
606 }
607
608 prev_mtu = netdev->max_mtu;
609 netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu;
610
611 if (!old_bpf_prog)
612 netif_info(adapter, drv, adapter->netdev,
613 "XDP program is set, changing the max_mtu from %d to %d",
614 prev_mtu, netdev->max_mtu);
615
616 } else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) {
617 netif_err(adapter, drv, adapter->netdev,
618 "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on",
619 netdev->mtu, ENA_XDP_MAX_MTU);
620 NL_SET_ERR_MSG_MOD(bpf->extack,
621 "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info");
622 return -EINVAL;
623 } else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) {
624 netif_err(adapter, drv, adapter->netdev,
625 "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n",
626 adapter->num_io_queues, adapter->max_num_io_queues);
627 NL_SET_ERR_MSG_MOD(bpf->extack,
628 "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info");
629 return -EINVAL;
630 }
631
632 return 0;
633 }
634
635 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp
636 * program as well as to query the current xdp program id.
637 */
638 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)
639 {
640 switch (bpf->command) {
641 case XDP_SETUP_PROG:
642 return ena_xdp_set(netdev, bpf);
643 default:
644 return -EINVAL;
645 }
646 return 0;
647 }
648
649 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
650 {
651 #ifdef CONFIG_RFS_ACCEL
652 u32 i;
653 int rc;
654
655 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
656 if (!adapter->netdev->rx_cpu_rmap)
657 return -ENOMEM;
658 for (i = 0; i < adapter->num_io_queues; i++) {
659 int irq_idx = ENA_IO_IRQ_IDX(i);
660
661 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
662 pci_irq_vector(adapter->pdev, irq_idx));
663 if (rc) {
664 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
665 adapter->netdev->rx_cpu_rmap = NULL;
666 return rc;
667 }
668 }
669 #endif /* CONFIG_RFS_ACCEL */
670 return 0;
671 }
672
673 static void ena_init_io_rings_common(struct ena_adapter *adapter,
674 struct ena_ring *ring, u16 qid)
675 {
676 ring->qid = qid;
677 ring->pdev = adapter->pdev;
678 ring->dev = &adapter->pdev->dev;
679 ring->netdev = adapter->netdev;
680 ring->napi = &adapter->ena_napi[qid].napi;
681 ring->adapter = adapter;
682 ring->ena_dev = adapter->ena_dev;
683 ring->per_napi_packets = 0;
684 ring->cpu = 0;
685 ring->numa_node = 0;
686 ring->no_interrupt_event_cnt = 0;
687 u64_stats_init(&ring->syncp);
688 }
689
690 static void ena_init_io_rings(struct ena_adapter *adapter,
691 int first_index, int count)
692 {
693 struct ena_com_dev *ena_dev;
694 struct ena_ring *txr, *rxr;
695 int i;
696
697 ena_dev = adapter->ena_dev;
698
699 for (i = first_index; i < first_index + count; i++) {
700 txr = &adapter->tx_ring[i];
701 rxr = &adapter->rx_ring[i];
702
703 /* TX common ring state */
704 ena_init_io_rings_common(adapter, txr, i);
705
706 /* TX specific ring state */
707 txr->ring_size = adapter->requested_tx_ring_size;
708 txr->tx_max_header_size = ena_dev->tx_max_header_size;
709 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
710 txr->sgl_size = adapter->max_tx_sgl_size;
711 txr->smoothed_interval =
712 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
713 txr->disable_meta_caching = adapter->disable_meta_caching;
714 spin_lock_init(&txr->xdp_tx_lock);
715
716 /* Don't init RX queues for xdp queues */
717 if (!ENA_IS_XDP_INDEX(adapter, i)) {
718 /* RX common ring state */
719 ena_init_io_rings_common(adapter, rxr, i);
720
721 /* RX specific ring state */
722 rxr->ring_size = adapter->requested_rx_ring_size;
723 rxr->rx_copybreak = adapter->rx_copybreak;
724 rxr->sgl_size = adapter->max_rx_sgl_size;
725 rxr->smoothed_interval =
726 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
727 rxr->empty_rx_queue = 0;
728 rxr->rx_headroom = NET_SKB_PAD;
729 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
730 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues];
731 }
732 }
733 }
734
735 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
736 * @adapter: network interface device structure
737 * @qid: queue index
738 *
739 * Return 0 on success, negative on failure
740 */
741 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
742 {
743 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
744 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
745 int size, i, node;
746
747 if (tx_ring->tx_buffer_info) {
748 netif_err(adapter, ifup,
749 adapter->netdev, "tx_buffer_info info is not NULL");
750 return -EEXIST;
751 }
752
753 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
754 node = cpu_to_node(ena_irq->cpu);
755
756 tx_ring->tx_buffer_info = vzalloc_node(size, node);
757 if (!tx_ring->tx_buffer_info) {
758 tx_ring->tx_buffer_info = vzalloc(size);
759 if (!tx_ring->tx_buffer_info)
760 goto err_tx_buffer_info;
761 }
762
763 size = sizeof(u16) * tx_ring->ring_size;
764 tx_ring->free_ids = vzalloc_node(size, node);
765 if (!tx_ring->free_ids) {
766 tx_ring->free_ids = vzalloc(size);
767 if (!tx_ring->free_ids)
768 goto err_tx_free_ids;
769 }
770
771 size = tx_ring->tx_max_header_size;
772 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
773 if (!tx_ring->push_buf_intermediate_buf) {
774 tx_ring->push_buf_intermediate_buf = vzalloc(size);
775 if (!tx_ring->push_buf_intermediate_buf)
776 goto err_push_buf_intermediate_buf;
777 }
778
779 /* Req id ring for TX out of order completions */
780 for (i = 0; i < tx_ring->ring_size; i++)
781 tx_ring->free_ids[i] = i;
782
783 /* Reset tx statistics */
784 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
785
786 tx_ring->next_to_use = 0;
787 tx_ring->next_to_clean = 0;
788 tx_ring->cpu = ena_irq->cpu;
789 tx_ring->numa_node = node;
790 return 0;
791
792 err_push_buf_intermediate_buf:
793 vfree(tx_ring->free_ids);
794 tx_ring->free_ids = NULL;
795 err_tx_free_ids:
796 vfree(tx_ring->tx_buffer_info);
797 tx_ring->tx_buffer_info = NULL;
798 err_tx_buffer_info:
799 return -ENOMEM;
800 }
801
802 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
803 * @adapter: network interface device structure
804 * @qid: queue index
805 *
806 * Free all transmit software resources
807 */
808 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
809 {
810 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
811
812 vfree(tx_ring->tx_buffer_info);
813 tx_ring->tx_buffer_info = NULL;
814
815 vfree(tx_ring->free_ids);
816 tx_ring->free_ids = NULL;
817
818 vfree(tx_ring->push_buf_intermediate_buf);
819 tx_ring->push_buf_intermediate_buf = NULL;
820 }
821
822 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
823 int first_index,
824 int count)
825 {
826 int i, rc = 0;
827
828 for (i = first_index; i < first_index + count; i++) {
829 rc = ena_setup_tx_resources(adapter, i);
830 if (rc)
831 goto err_setup_tx;
832 }
833
834 return 0;
835
836 err_setup_tx:
837
838 netif_err(adapter, ifup, adapter->netdev,
839 "Tx queue %d: allocation failed\n", i);
840
841 /* rewind the index freeing the rings as we go */
842 while (first_index < i--)
843 ena_free_tx_resources(adapter, i);
844 return rc;
845 }
846
847 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
848 int first_index, int count)
849 {
850 int i;
851
852 for (i = first_index; i < first_index + count; i++)
853 ena_free_tx_resources(adapter, i);
854 }
855
856 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
857 * @adapter: board private structure
858 *
859 * Free all transmit software resources
860 */
861 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
862 {
863 ena_free_all_io_tx_resources_in_range(adapter,
864 0,
865 adapter->xdp_num_queues +
866 adapter->num_io_queues);
867 }
868
869 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
870 * @adapter: network interface device structure
871 * @qid: queue index
872 *
873 * Returns 0 on success, negative on failure
874 */
875 static int ena_setup_rx_resources(struct ena_adapter *adapter,
876 u32 qid)
877 {
878 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
879 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
880 int size, node, i;
881
882 if (rx_ring->rx_buffer_info) {
883 netif_err(adapter, ifup, adapter->netdev,
884 "rx_buffer_info is not NULL");
885 return -EEXIST;
886 }
887
888 /* alloc extra element so in rx path
889 * we can always prefetch rx_info + 1
890 */
891 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
892 node = cpu_to_node(ena_irq->cpu);
893
894 rx_ring->rx_buffer_info = vzalloc_node(size, node);
895 if (!rx_ring->rx_buffer_info) {
896 rx_ring->rx_buffer_info = vzalloc(size);
897 if (!rx_ring->rx_buffer_info)
898 return -ENOMEM;
899 }
900
901 size = sizeof(u16) * rx_ring->ring_size;
902 rx_ring->free_ids = vzalloc_node(size, node);
903 if (!rx_ring->free_ids) {
904 rx_ring->free_ids = vzalloc(size);
905 if (!rx_ring->free_ids) {
906 vfree(rx_ring->rx_buffer_info);
907 rx_ring->rx_buffer_info = NULL;
908 return -ENOMEM;
909 }
910 }
911
912 /* Req id ring for receiving RX pkts out of order */
913 for (i = 0; i < rx_ring->ring_size; i++)
914 rx_ring->free_ids[i] = i;
915
916 /* Reset rx statistics */
917 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
918
919 rx_ring->next_to_clean = 0;
920 rx_ring->next_to_use = 0;
921 rx_ring->cpu = ena_irq->cpu;
922 rx_ring->numa_node = node;
923
924 return 0;
925 }
926
927 /* ena_free_rx_resources - Free I/O Rx Resources
928 * @adapter: network interface device structure
929 * @qid: queue index
930 *
931 * Free all receive software resources
932 */
933 static void ena_free_rx_resources(struct ena_adapter *adapter,
934 u32 qid)
935 {
936 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
937
938 vfree(rx_ring->rx_buffer_info);
939 rx_ring->rx_buffer_info = NULL;
940
941 vfree(rx_ring->free_ids);
942 rx_ring->free_ids = NULL;
943 }
944
945 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
946 * @adapter: board private structure
947 *
948 * Return 0 on success, negative on failure
949 */
950 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
951 {
952 int i, rc = 0;
953
954 for (i = 0; i < adapter->num_io_queues; i++) {
955 rc = ena_setup_rx_resources(adapter, i);
956 if (rc)
957 goto err_setup_rx;
958 }
959
960 return 0;
961
962 err_setup_rx:
963
964 netif_err(adapter, ifup, adapter->netdev,
965 "Rx queue %d: allocation failed\n", i);
966
967 /* rewind the index freeing the rings as we go */
968 while (i--)
969 ena_free_rx_resources(adapter, i);
970 return rc;
971 }
972
973 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
974 * @adapter: board private structure
975 *
976 * Free all receive software resources
977 */
978 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
979 {
980 int i;
981
982 for (i = 0; i < adapter->num_io_queues; i++)
983 ena_free_rx_resources(adapter, i);
984 }
985
986 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring,
987 dma_addr_t *dma)
988 {
989 struct page *page;
990
991 /* This would allocate the page on the same NUMA node the executing code
992 * is running on.
993 */
994 page = dev_alloc_page();
995 if (!page) {
996 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1,
997 &rx_ring->syncp);
998 return ERR_PTR(-ENOSPC);
999 }
1000
1001 /* To enable NIC-side port-mirroring, AKA SPAN port,
1002 * we make the buffer readable from the nic as well
1003 */
1004 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
1005 DMA_BIDIRECTIONAL);
1006 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) {
1007 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1,
1008 &rx_ring->syncp);
1009 __free_page(page);
1010 return ERR_PTR(-EIO);
1011 }
1012
1013 return page;
1014 }
1015
1016 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring,
1017 struct ena_rx_buffer *rx_info)
1018 {
1019 int headroom = rx_ring->rx_headroom;
1020 struct ena_com_buf *ena_buf;
1021 struct page *page;
1022 dma_addr_t dma;
1023 int tailroom;
1024
1025 /* restore page offset value in case it has been changed by device */
1026 rx_info->buf_offset = headroom;
1027
1028 /* if previous allocated page is not used */
1029 if (unlikely(rx_info->page))
1030 return 0;
1031
1032 /* We handle DMA here */
1033 page = ena_alloc_map_page(rx_ring, &dma);
1034 if (unlikely(IS_ERR(page)))
1035 return PTR_ERR(page);
1036
1037 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1038 "Allocate page %p, rx_info %p\n", page, rx_info);
1039
1040 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1041
1042 rx_info->page = page;
1043 rx_info->dma_addr = dma;
1044 rx_info->page_offset = 0;
1045 ena_buf = &rx_info->ena_buf;
1046 ena_buf->paddr = dma + headroom;
1047 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom;
1048
1049 return 0;
1050 }
1051
1052 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring,
1053 struct ena_rx_buffer *rx_info,
1054 unsigned long attrs)
1055 {
1056 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE,
1057 DMA_BIDIRECTIONAL, attrs);
1058 }
1059
1060 static void ena_free_rx_page(struct ena_ring *rx_ring,
1061 struct ena_rx_buffer *rx_info)
1062 {
1063 struct page *page = rx_info->page;
1064
1065 if (unlikely(!page)) {
1066 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1067 "Trying to free unallocated buffer\n");
1068 return;
1069 }
1070
1071 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0);
1072
1073 __free_page(page);
1074 rx_info->page = NULL;
1075 }
1076
1077 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
1078 {
1079 u16 next_to_use, req_id;
1080 u32 i;
1081 int rc;
1082
1083 next_to_use = rx_ring->next_to_use;
1084
1085 for (i = 0; i < num; i++) {
1086 struct ena_rx_buffer *rx_info;
1087
1088 req_id = rx_ring->free_ids[next_to_use];
1089
1090 rx_info = &rx_ring->rx_buffer_info[req_id];
1091
1092 rc = ena_alloc_rx_buffer(rx_ring, rx_info);
1093 if (unlikely(rc < 0)) {
1094 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1095 "Failed to allocate buffer for rx queue %d\n",
1096 rx_ring->qid);
1097 break;
1098 }
1099 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1100 &rx_info->ena_buf,
1101 req_id);
1102 if (unlikely(rc)) {
1103 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1104 "Failed to add buffer for rx queue %d\n",
1105 rx_ring->qid);
1106 break;
1107 }
1108 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1109 rx_ring->ring_size);
1110 }
1111
1112 if (unlikely(i < num)) {
1113 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1,
1114 &rx_ring->syncp);
1115 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1116 "Refilled rx qid %d with only %d buffers (from %d)\n",
1117 rx_ring->qid, i, num);
1118 }
1119
1120 /* ena_com_write_sq_doorbell issues a wmb() */
1121 if (likely(i))
1122 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1123
1124 rx_ring->next_to_use = next_to_use;
1125
1126 return i;
1127 }
1128
1129 static void ena_free_rx_bufs(struct ena_adapter *adapter,
1130 u32 qid)
1131 {
1132 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1133 u32 i;
1134
1135 for (i = 0; i < rx_ring->ring_size; i++) {
1136 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1137
1138 if (rx_info->page)
1139 ena_free_rx_page(rx_ring, rx_info);
1140 }
1141 }
1142
1143 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
1144 * @adapter: board private structure
1145 */
1146 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1147 {
1148 struct ena_ring *rx_ring;
1149 int i, rc, bufs_num;
1150
1151 for (i = 0; i < adapter->num_io_queues; i++) {
1152 rx_ring = &adapter->rx_ring[i];
1153 bufs_num = rx_ring->ring_size - 1;
1154 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1155
1156 if (unlikely(rc != bufs_num))
1157 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1158 "Refilling Queue %d failed. allocated %d buffers from: %d\n",
1159 i, rc, bufs_num);
1160 }
1161 }
1162
1163 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
1164 {
1165 int i;
1166
1167 for (i = 0; i < adapter->num_io_queues; i++)
1168 ena_free_rx_bufs(adapter, i);
1169 }
1170
1171 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
1172 struct ena_tx_buffer *tx_info)
1173 {
1174 struct ena_com_buf *ena_buf;
1175 u32 cnt;
1176 int i;
1177
1178 ena_buf = tx_info->bufs;
1179 cnt = tx_info->num_of_bufs;
1180
1181 if (unlikely(!cnt))
1182 return;
1183
1184 if (tx_info->map_linear_data) {
1185 dma_unmap_single(tx_ring->dev,
1186 dma_unmap_addr(ena_buf, paddr),
1187 dma_unmap_len(ena_buf, len),
1188 DMA_TO_DEVICE);
1189 ena_buf++;
1190 cnt--;
1191 }
1192
1193 /* unmap remaining mapped pages */
1194 for (i = 0; i < cnt; i++) {
1195 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
1196 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
1197 ena_buf++;
1198 }
1199 }
1200
1201 /* ena_free_tx_bufs - Free Tx Buffers per Queue
1202 * @tx_ring: TX ring for which buffers be freed
1203 */
1204 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
1205 {
1206 bool print_once = true;
1207 u32 i;
1208
1209 for (i = 0; i < tx_ring->ring_size; i++) {
1210 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1211
1212 if (!tx_info->skb)
1213 continue;
1214
1215 if (print_once) {
1216 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev,
1217 "Free uncompleted tx skb qid %d idx 0x%x\n",
1218 tx_ring->qid, i);
1219 print_once = false;
1220 } else {
1221 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev,
1222 "Free uncompleted tx skb qid %d idx 0x%x\n",
1223 tx_ring->qid, i);
1224 }
1225
1226 ena_unmap_tx_buff(tx_ring, tx_info);
1227
1228 dev_kfree_skb_any(tx_info->skb);
1229 }
1230 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
1231 tx_ring->qid));
1232 }
1233
1234 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
1235 {
1236 struct ena_ring *tx_ring;
1237 int i;
1238
1239 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1240 tx_ring = &adapter->tx_ring[i];
1241 ena_free_tx_bufs(tx_ring);
1242 }
1243 }
1244
1245 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1246 {
1247 u16 ena_qid;
1248 int i;
1249
1250 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1251 ena_qid = ENA_IO_TXQ_IDX(i);
1252 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1253 }
1254 }
1255
1256 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1257 {
1258 u16 ena_qid;
1259 int i;
1260
1261 for (i = 0; i < adapter->num_io_queues; i++) {
1262 ena_qid = ENA_IO_RXQ_IDX(i);
1263 cancel_work_sync(&adapter->ena_napi[i].dim.work);
1264 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1265 }
1266 }
1267
1268 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
1269 {
1270 ena_destroy_all_tx_queues(adapter);
1271 ena_destroy_all_rx_queues(adapter);
1272 }
1273
1274 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
1275 struct ena_tx_buffer *tx_info, bool is_xdp)
1276 {
1277 if (tx_info)
1278 netif_err(ring->adapter,
1279 tx_done,
1280 ring->netdev,
1281 "tx_info doesn't have valid %s. qid %u req_id %u",
1282 is_xdp ? "xdp frame" : "skb", ring->qid, req_id);
1283 else
1284 netif_err(ring->adapter,
1285 tx_done,
1286 ring->netdev,
1287 "Invalid req_id %u in qid %u\n",
1288 req_id, ring->qid);
1289
1290 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp);
1291 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
1292
1293 return -EFAULT;
1294 }
1295
1296 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
1297 {
1298 struct ena_tx_buffer *tx_info;
1299
1300 tx_info = &tx_ring->tx_buffer_info[req_id];
1301 if (likely(tx_info->skb))
1302 return 0;
1303
1304 return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
1305 }
1306
1307 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)
1308 {
1309 struct ena_tx_buffer *tx_info;
1310
1311 tx_info = &xdp_ring->tx_buffer_info[req_id];
1312 if (likely(tx_info->xdpf))
1313 return 0;
1314
1315 return handle_invalid_req_id(xdp_ring, req_id, tx_info, true);
1316 }
1317
1318 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
1319 {
1320 struct netdev_queue *txq;
1321 bool above_thresh;
1322 u32 tx_bytes = 0;
1323 u32 total_done = 0;
1324 u16 next_to_clean;
1325 u16 req_id;
1326 int tx_pkts = 0;
1327 int rc;
1328
1329 next_to_clean = tx_ring->next_to_clean;
1330 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
1331
1332 while (tx_pkts < budget) {
1333 struct ena_tx_buffer *tx_info;
1334 struct sk_buff *skb;
1335
1336 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
1337 &req_id);
1338 if (rc) {
1339 if (unlikely(rc == -EINVAL))
1340 handle_invalid_req_id(tx_ring, req_id, NULL,
1341 false);
1342 break;
1343 }
1344
1345 /* validate that the request id points to a valid skb */
1346 rc = validate_tx_req_id(tx_ring, req_id);
1347 if (rc)
1348 break;
1349
1350 tx_info = &tx_ring->tx_buffer_info[req_id];
1351 skb = tx_info->skb;
1352
1353 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
1354 prefetch(&skb->end);
1355
1356 tx_info->skb = NULL;
1357 tx_info->last_jiffies = 0;
1358
1359 ena_unmap_tx_buff(tx_ring, tx_info);
1360
1361 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1362 "tx_poll: q %d skb %p completed\n", tx_ring->qid,
1363 skb);
1364
1365 tx_bytes += skb->len;
1366 dev_kfree_skb(skb);
1367 tx_pkts++;
1368 total_done += tx_info->tx_descs;
1369
1370 tx_ring->free_ids[next_to_clean] = req_id;
1371 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1372 tx_ring->ring_size);
1373 }
1374
1375 tx_ring->next_to_clean = next_to_clean;
1376 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
1377 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
1378
1379 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1380
1381 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1382 "tx_poll: q %d done. total pkts: %d\n",
1383 tx_ring->qid, tx_pkts);
1384
1385 /* need to make the rings circular update visible to
1386 * ena_start_xmit() before checking for netif_queue_stopped().
1387 */
1388 smp_mb();
1389
1390 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1391 ENA_TX_WAKEUP_THRESH);
1392 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
1393 __netif_tx_lock(txq, smp_processor_id());
1394 above_thresh =
1395 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1396 ENA_TX_WAKEUP_THRESH);
1397 if (netif_tx_queue_stopped(txq) && above_thresh &&
1398 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1399 netif_tx_wake_queue(txq);
1400 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
1401 &tx_ring->syncp);
1402 }
1403 __netif_tx_unlock(txq);
1404 }
1405
1406 return tx_pkts;
1407 }
1408
1409 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len)
1410 {
1411 struct sk_buff *skb;
1412
1413 if (!first_frag)
1414 skb = napi_alloc_skb(rx_ring->napi, len);
1415 else
1416 skb = napi_build_skb(first_frag, len);
1417
1418 if (unlikely(!skb)) {
1419 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1,
1420 &rx_ring->syncp);
1421
1422 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1423 "Failed to allocate skb. first_frag %s\n",
1424 first_frag ? "provided" : "not provided");
1425 }
1426
1427 return skb;
1428 }
1429
1430 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len,
1431 u16 len, int pkt_offset)
1432 {
1433 struct ena_com_buf *ena_buf = &rx_info->ena_buf;
1434
1435 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer
1436 * for data + headroom + tailroom.
1437 */
1438 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) {
1439 page_ref_inc(rx_info->page);
1440 rx_info->page_offset += buf_len;
1441 ena_buf->paddr += buf_len;
1442 ena_buf->len -= buf_len;
1443 return true;
1444 }
1445
1446 return false;
1447 }
1448
1449 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
1450 struct ena_com_rx_buf_info *ena_bufs,
1451 u32 descs,
1452 u16 *next_to_clean)
1453 {
1454 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1455 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring);
1456 struct ena_rx_buffer *rx_info;
1457 struct ena_adapter *adapter;
1458 int page_offset, pkt_offset;
1459 dma_addr_t pre_reuse_paddr;
1460 u16 len, req_id, buf = 0;
1461 bool reuse_rx_buf_page;
1462 struct sk_buff *skb;
1463 void *buf_addr;
1464 int buf_offset;
1465 u16 buf_len;
1466
1467 len = ena_bufs[buf].len;
1468 req_id = ena_bufs[buf].req_id;
1469
1470 rx_info = &rx_ring->rx_buffer_info[req_id];
1471
1472 if (unlikely(!rx_info->page)) {
1473 adapter = rx_ring->adapter;
1474 netif_err(adapter, rx_err, rx_ring->netdev,
1475 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id);
1476 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp);
1477 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1478 return NULL;
1479 }
1480
1481 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1482 "rx_info %p page %p\n",
1483 rx_info, rx_info->page);
1484
1485 buf_offset = rx_info->buf_offset;
1486 pkt_offset = buf_offset - rx_ring->rx_headroom;
1487 page_offset = rx_info->page_offset;
1488 buf_addr = page_address(rx_info->page) + page_offset;
1489
1490 if (len <= rx_ring->rx_copybreak) {
1491 skb = ena_alloc_skb(rx_ring, NULL, len);
1492 if (unlikely(!skb))
1493 return NULL;
1494
1495 /* sync this buffer for CPU use */
1496 dma_sync_single_for_cpu(rx_ring->dev,
1497 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1498 len,
1499 DMA_FROM_DEVICE);
1500 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len);
1501 dma_sync_single_for_device(rx_ring->dev,
1502 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1503 len,
1504 DMA_FROM_DEVICE);
1505
1506 skb_put(skb, len);
1507 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1508 "RX allocated small packet. len %d.\n", skb->len);
1509 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1510 rx_ring->free_ids[*next_to_clean] = req_id;
1511 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1512 rx_ring->ring_size);
1513 return skb;
1514 }
1515
1516 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1517
1518 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr);
1519
1520 /* If XDP isn't loaded try to reuse part of the RX buffer */
1521 reuse_rx_buf_page = !is_xdp_loaded &&
1522 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1523
1524 dma_sync_single_for_cpu(rx_ring->dev,
1525 pre_reuse_paddr + pkt_offset,
1526 len,
1527 DMA_FROM_DEVICE);
1528
1529 if (!reuse_rx_buf_page)
1530 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC);
1531
1532 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len);
1533 if (unlikely(!skb))
1534 return NULL;
1535
1536 /* Populate skb's linear part */
1537 skb_reserve(skb, buf_offset);
1538 skb_put(skb, len);
1539 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1540
1541 do {
1542 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1543 "RX skb updated. len %d. data_len %d\n",
1544 skb->len, skb->data_len);
1545
1546 if (!reuse_rx_buf_page)
1547 rx_info->page = NULL;
1548
1549 rx_ring->free_ids[*next_to_clean] = req_id;
1550 *next_to_clean =
1551 ENA_RX_RING_IDX_NEXT(*next_to_clean,
1552 rx_ring->ring_size);
1553 if (likely(--descs == 0))
1554 break;
1555
1556 buf++;
1557 len = ena_bufs[buf].len;
1558 req_id = ena_bufs[buf].req_id;
1559
1560 rx_info = &rx_ring->rx_buffer_info[req_id];
1561
1562 /* rx_info->buf_offset includes rx_ring->rx_headroom */
1563 buf_offset = rx_info->buf_offset;
1564 pkt_offset = buf_offset - rx_ring->rx_headroom;
1565 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1566 page_offset = rx_info->page_offset;
1567
1568 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr);
1569
1570 reuse_rx_buf_page = !is_xdp_loaded &&
1571 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1572
1573 dma_sync_single_for_cpu(rx_ring->dev,
1574 pre_reuse_paddr + pkt_offset,
1575 len,
1576 DMA_FROM_DEVICE);
1577
1578 if (!reuse_rx_buf_page)
1579 ena_unmap_rx_buff_attrs(rx_ring, rx_info,
1580 DMA_ATTR_SKIP_CPU_SYNC);
1581
1582 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1583 page_offset + buf_offset, len, buf_len);
1584
1585 } while (1);
1586
1587 return skb;
1588 }
1589
1590 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1591 * @adapter: structure containing adapter specific data
1592 * @ena_rx_ctx: received packet context/metadata
1593 * @skb: skb currently being received and modified
1594 */
1595 static void ena_rx_checksum(struct ena_ring *rx_ring,
1596 struct ena_com_rx_ctx *ena_rx_ctx,
1597 struct sk_buff *skb)
1598 {
1599 /* Rx csum disabled */
1600 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1601 skb->ip_summed = CHECKSUM_NONE;
1602 return;
1603 }
1604
1605 /* For fragmented packets the checksum isn't valid */
1606 if (ena_rx_ctx->frag) {
1607 skb->ip_summed = CHECKSUM_NONE;
1608 return;
1609 }
1610
1611 /* if IP and error */
1612 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1613 (ena_rx_ctx->l3_csum_err))) {
1614 /* ipv4 checksum error */
1615 skb->ip_summed = CHECKSUM_NONE;
1616 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1617 &rx_ring->syncp);
1618 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1619 "RX IPv4 header checksum error\n");
1620 return;
1621 }
1622
1623 /* if TCP/UDP */
1624 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1625 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1626 if (unlikely(ena_rx_ctx->l4_csum_err)) {
1627 /* TCP/UDP checksum error */
1628 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1629 &rx_ring->syncp);
1630 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1631 "RX L4 checksum error\n");
1632 skb->ip_summed = CHECKSUM_NONE;
1633 return;
1634 }
1635
1636 if (likely(ena_rx_ctx->l4_csum_checked)) {
1637 skb->ip_summed = CHECKSUM_UNNECESSARY;
1638 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1,
1639 &rx_ring->syncp);
1640 } else {
1641 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1,
1642 &rx_ring->syncp);
1643 skb->ip_summed = CHECKSUM_NONE;
1644 }
1645 } else {
1646 skb->ip_summed = CHECKSUM_NONE;
1647 return;
1648 }
1649
1650 }
1651
1652 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1653 struct ena_com_rx_ctx *ena_rx_ctx,
1654 struct sk_buff *skb)
1655 {
1656 enum pkt_hash_types hash_type;
1657
1658 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1659 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1660 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1661
1662 hash_type = PKT_HASH_TYPE_L4;
1663 else
1664 hash_type = PKT_HASH_TYPE_NONE;
1665
1666 /* Override hash type if the packet is fragmented */
1667 if (ena_rx_ctx->frag)
1668 hash_type = PKT_HASH_TYPE_NONE;
1669
1670 skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1671 }
1672 }
1673
1674 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp)
1675 {
1676 struct ena_rx_buffer *rx_info;
1677 int ret;
1678
1679 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1680 xdp_prepare_buff(xdp, page_address(rx_info->page),
1681 rx_info->buf_offset,
1682 rx_ring->ena_bufs[0].len, false);
1683 /* If for some reason we received a bigger packet than
1684 * we expect, then we simply drop it
1685 */
1686 if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU))
1687 return ENA_XDP_DROP;
1688
1689 ret = ena_xdp_execute(rx_ring, xdp);
1690
1691 /* The xdp program might expand the headers */
1692 if (ret == ENA_XDP_PASS) {
1693 rx_info->buf_offset = xdp->data - xdp->data_hard_start;
1694 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1695 }
1696
1697 return ret;
1698 }
1699 /* ena_clean_rx_irq - Cleanup RX irq
1700 * @rx_ring: RX ring to clean
1701 * @napi: napi handler
1702 * @budget: how many packets driver is allowed to clean
1703 *
1704 * Returns the number of cleaned buffers.
1705 */
1706 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1707 u32 budget)
1708 {
1709 u16 next_to_clean = rx_ring->next_to_clean;
1710 struct ena_com_rx_ctx ena_rx_ctx;
1711 struct ena_rx_buffer *rx_info;
1712 struct ena_adapter *adapter;
1713 u32 res_budget, work_done;
1714 int rx_copybreak_pkt = 0;
1715 int refill_threshold;
1716 struct sk_buff *skb;
1717 int refill_required;
1718 struct xdp_buff xdp;
1719 int xdp_flags = 0;
1720 int total_len = 0;
1721 int xdp_verdict;
1722 int rc = 0;
1723 int i;
1724
1725 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1726 "%s qid %d\n", __func__, rx_ring->qid);
1727 res_budget = budget;
1728 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq);
1729
1730 do {
1731 xdp_verdict = ENA_XDP_PASS;
1732 skb = NULL;
1733 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1734 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1735 ena_rx_ctx.descs = 0;
1736 ena_rx_ctx.pkt_offset = 0;
1737 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1738 rx_ring->ena_com_io_sq,
1739 &ena_rx_ctx);
1740 if (unlikely(rc))
1741 goto error;
1742
1743 if (unlikely(ena_rx_ctx.descs == 0))
1744 break;
1745
1746 /* First descriptor might have an offset set by the device */
1747 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1748 rx_info->buf_offset += ena_rx_ctx.pkt_offset;
1749
1750 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1751 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1752 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1753 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1754
1755 if (ena_xdp_present_ring(rx_ring))
1756 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp);
1757
1758 /* allocate skb and fill it */
1759 if (xdp_verdict == ENA_XDP_PASS)
1760 skb = ena_rx_skb(rx_ring,
1761 rx_ring->ena_bufs,
1762 ena_rx_ctx.descs,
1763 &next_to_clean);
1764
1765 if (unlikely(!skb)) {
1766 for (i = 0; i < ena_rx_ctx.descs; i++) {
1767 int req_id = rx_ring->ena_bufs[i].req_id;
1768
1769 rx_ring->free_ids[next_to_clean] = req_id;
1770 next_to_clean =
1771 ENA_RX_RING_IDX_NEXT(next_to_clean,
1772 rx_ring->ring_size);
1773
1774 /* Packets was passed for transmission, unmap it
1775 * from RX side.
1776 */
1777 if (xdp_verdict & ENA_XDP_FORWARDED) {
1778 ena_unmap_rx_buff_attrs(rx_ring,
1779 &rx_ring->rx_buffer_info[req_id],
1780 0);
1781 rx_ring->rx_buffer_info[req_id].page = NULL;
1782 }
1783 }
1784 if (xdp_verdict != ENA_XDP_PASS) {
1785 xdp_flags |= xdp_verdict;
1786 total_len += ena_rx_ctx.ena_bufs[0].len;
1787 res_budget--;
1788 continue;
1789 }
1790 break;
1791 }
1792
1793 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1794
1795 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1796
1797 skb_record_rx_queue(skb, rx_ring->qid);
1798
1799 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak)
1800 rx_copybreak_pkt++;
1801
1802 total_len += skb->len;
1803
1804 napi_gro_receive(napi, skb);
1805
1806 res_budget--;
1807 } while (likely(res_budget));
1808
1809 work_done = budget - res_budget;
1810 rx_ring->per_napi_packets += work_done;
1811 u64_stats_update_begin(&rx_ring->syncp);
1812 rx_ring->rx_stats.bytes += total_len;
1813 rx_ring->rx_stats.cnt += work_done;
1814 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1815 u64_stats_update_end(&rx_ring->syncp);
1816
1817 rx_ring->next_to_clean = next_to_clean;
1818
1819 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1820 refill_threshold =
1821 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1822 ENA_RX_REFILL_THRESH_PACKET);
1823
1824 /* Optimization, try to batch new rx buffers */
1825 if (refill_required > refill_threshold) {
1826 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1827 ena_refill_rx_bufs(rx_ring, refill_required);
1828 }
1829
1830 if (xdp_flags & ENA_XDP_REDIRECT)
1831 xdp_do_flush_map();
1832
1833 return work_done;
1834
1835 error:
1836 if (xdp_flags & ENA_XDP_REDIRECT)
1837 xdp_do_flush();
1838
1839 adapter = netdev_priv(rx_ring->netdev);
1840
1841 if (rc == -ENOSPC) {
1842 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1,
1843 &rx_ring->syncp);
1844 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
1845 } else {
1846 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1,
1847 &rx_ring->syncp);
1848 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1849 }
1850 return 0;
1851 }
1852
1853 static void ena_dim_work(struct work_struct *w)
1854 {
1855 struct dim *dim = container_of(w, struct dim, work);
1856 struct dim_cq_moder cur_moder =
1857 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1858 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1859
1860 ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1861 dim->state = DIM_START_MEASURE;
1862 }
1863
1864 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1865 {
1866 struct dim_sample dim_sample;
1867 struct ena_ring *rx_ring = ena_napi->rx_ring;
1868
1869 if (!rx_ring->per_napi_packets)
1870 return;
1871
1872 rx_ring->non_empty_napi_events++;
1873
1874 dim_update_sample(rx_ring->non_empty_napi_events,
1875 rx_ring->rx_stats.cnt,
1876 rx_ring->rx_stats.bytes,
1877 &dim_sample);
1878
1879 net_dim(&ena_napi->dim, dim_sample);
1880
1881 rx_ring->per_napi_packets = 0;
1882 }
1883
1884 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1885 struct ena_ring *rx_ring)
1886 {
1887 u32 rx_interval = tx_ring->smoothed_interval;
1888 struct ena_eth_io_intr_reg intr_reg;
1889
1890 /* Rx ring can be NULL when for XDP tx queues which don't have an
1891 * accompanying rx_ring pair.
1892 */
1893 if (rx_ring)
1894 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1895 rx_ring->smoothed_interval :
1896 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1897
1898 /* Update intr register: rx intr delay,
1899 * tx intr delay and interrupt unmask
1900 */
1901 ena_com_update_intr_reg(&intr_reg,
1902 rx_interval,
1903 tx_ring->smoothed_interval,
1904 true);
1905
1906 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1,
1907 &tx_ring->syncp);
1908
1909 /* It is a shared MSI-X.
1910 * Tx and Rx CQ have pointer to it.
1911 * So we use one of them to reach the intr reg
1912 * The Tx ring is used because the rx_ring is NULL for XDP queues
1913 */
1914 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1915 }
1916
1917 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1918 struct ena_ring *rx_ring)
1919 {
1920 int cpu = get_cpu();
1921 int numa_node;
1922
1923 /* Check only one ring since the 2 rings are running on the same cpu */
1924 if (likely(tx_ring->cpu == cpu))
1925 goto out;
1926
1927 tx_ring->cpu = cpu;
1928 if (rx_ring)
1929 rx_ring->cpu = cpu;
1930
1931 numa_node = cpu_to_node(cpu);
1932
1933 if (likely(tx_ring->numa_node == numa_node))
1934 goto out;
1935
1936 put_cpu();
1937
1938 if (numa_node != NUMA_NO_NODE) {
1939 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1940 tx_ring->numa_node = numa_node;
1941 if (rx_ring) {
1942 rx_ring->numa_node = numa_node;
1943 ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1944 numa_node);
1945 }
1946 }
1947
1948 return;
1949 out:
1950 put_cpu();
1951 }
1952
1953 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)
1954 {
1955 u32 total_done = 0;
1956 u16 next_to_clean;
1957 int tx_pkts = 0;
1958 u16 req_id;
1959 int rc;
1960
1961 if (unlikely(!xdp_ring))
1962 return 0;
1963 next_to_clean = xdp_ring->next_to_clean;
1964
1965 while (tx_pkts < budget) {
1966 struct ena_tx_buffer *tx_info;
1967 struct xdp_frame *xdpf;
1968
1969 rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq,
1970 &req_id);
1971 if (rc) {
1972 if (unlikely(rc == -EINVAL))
1973 handle_invalid_req_id(xdp_ring, req_id, NULL,
1974 true);
1975 break;
1976 }
1977
1978 /* validate that the request id points to a valid xdp_frame */
1979 rc = validate_xdp_req_id(xdp_ring, req_id);
1980 if (rc)
1981 break;
1982
1983 tx_info = &xdp_ring->tx_buffer_info[req_id];
1984 xdpf = tx_info->xdpf;
1985
1986 tx_info->xdpf = NULL;
1987 tx_info->last_jiffies = 0;
1988 ena_unmap_tx_buff(xdp_ring, tx_info);
1989
1990 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1991 "tx_poll: q %d skb %p completed\n", xdp_ring->qid,
1992 xdpf);
1993
1994 tx_pkts++;
1995 total_done += tx_info->tx_descs;
1996
1997 xdp_return_frame(xdpf);
1998 xdp_ring->free_ids[next_to_clean] = req_id;
1999 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
2000 xdp_ring->ring_size);
2001 }
2002
2003 xdp_ring->next_to_clean = next_to_clean;
2004 ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done);
2005 ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq);
2006
2007 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
2008 "tx_poll: q %d done. total pkts: %d\n",
2009 xdp_ring->qid, tx_pkts);
2010
2011 return tx_pkts;
2012 }
2013
2014 static int ena_io_poll(struct napi_struct *napi, int budget)
2015 {
2016 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
2017 struct ena_ring *tx_ring, *rx_ring;
2018 int tx_work_done;
2019 int rx_work_done = 0;
2020 int tx_budget;
2021 int napi_comp_call = 0;
2022 int ret;
2023
2024 tx_ring = ena_napi->tx_ring;
2025 rx_ring = ena_napi->rx_ring;
2026
2027 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
2028
2029 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
2030 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
2031 napi_complete_done(napi, 0);
2032 return 0;
2033 }
2034
2035 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
2036 /* On netpoll the budget is zero and the handler should only clean the
2037 * tx completions.
2038 */
2039 if (likely(budget))
2040 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
2041
2042 /* If the device is about to reset or down, avoid unmask
2043 * the interrupt and return 0 so NAPI won't reschedule
2044 */
2045 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
2046 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
2047 napi_complete_done(napi, 0);
2048 ret = 0;
2049
2050 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
2051 napi_comp_call = 1;
2052
2053 /* Update numa and unmask the interrupt only when schedule
2054 * from the interrupt context (vs from sk_busy_loop)
2055 */
2056 if (napi_complete_done(napi, rx_work_done) &&
2057 READ_ONCE(ena_napi->interrupts_masked)) {
2058 smp_rmb(); /* make sure interrupts_masked is read */
2059 WRITE_ONCE(ena_napi->interrupts_masked, false);
2060 /* We apply adaptive moderation on Rx path only.
2061 * Tx uses static interrupt moderation.
2062 */
2063 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
2064 ena_adjust_adaptive_rx_intr_moderation(ena_napi);
2065
2066 ena_update_ring_numa_node(tx_ring, rx_ring);
2067 ena_unmask_interrupt(tx_ring, rx_ring);
2068 }
2069
2070 ret = rx_work_done;
2071 } else {
2072 ret = budget;
2073 }
2074
2075 u64_stats_update_begin(&tx_ring->syncp);
2076 tx_ring->tx_stats.napi_comp += napi_comp_call;
2077 tx_ring->tx_stats.tx_poll++;
2078 u64_stats_update_end(&tx_ring->syncp);
2079
2080 tx_ring->tx_stats.last_napi_jiffies = jiffies;
2081
2082 return ret;
2083 }
2084
2085 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
2086 {
2087 struct ena_adapter *adapter = (struct ena_adapter *)data;
2088
2089 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
2090
2091 /* Don't call the aenq handler before probe is done */
2092 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
2093 ena_com_aenq_intr_handler(adapter->ena_dev, data);
2094
2095 return IRQ_HANDLED;
2096 }
2097
2098 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
2099 * @irq: interrupt number
2100 * @data: pointer to a network interface private napi device structure
2101 */
2102 static irqreturn_t ena_intr_msix_io(int irq, void *data)
2103 {
2104 struct ena_napi *ena_napi = data;
2105
2106 /* Used to check HW health */
2107 WRITE_ONCE(ena_napi->first_interrupt, true);
2108
2109 WRITE_ONCE(ena_napi->interrupts_masked, true);
2110 smp_wmb(); /* write interrupts_masked before calling napi */
2111
2112 napi_schedule_irqoff(&ena_napi->napi);
2113
2114 return IRQ_HANDLED;
2115 }
2116
2117 /* Reserve a single MSI-X vector for management (admin + aenq).
2118 * plus reserve one vector for each potential io queue.
2119 * the number of potential io queues is the minimum of what the device
2120 * supports and the number of vCPUs.
2121 */
2122 static int ena_enable_msix(struct ena_adapter *adapter)
2123 {
2124 int msix_vecs, irq_cnt;
2125
2126 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2127 netif_err(adapter, probe, adapter->netdev,
2128 "Error, MSI-X is already enabled\n");
2129 return -EPERM;
2130 }
2131
2132 /* Reserved the max msix vectors we might need */
2133 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
2134 netif_dbg(adapter, probe, adapter->netdev,
2135 "Trying to enable MSI-X, vectors %d\n", msix_vecs);
2136
2137 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
2138 msix_vecs, PCI_IRQ_MSIX);
2139
2140 if (irq_cnt < 0) {
2141 netif_err(adapter, probe, adapter->netdev,
2142 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
2143 return -ENOSPC;
2144 }
2145
2146 if (irq_cnt != msix_vecs) {
2147 netif_notice(adapter, probe, adapter->netdev,
2148 "Enable only %d MSI-X (out of %d), reduce the number of queues\n",
2149 irq_cnt, msix_vecs);
2150 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
2151 }
2152
2153 if (ena_init_rx_cpu_rmap(adapter))
2154 netif_warn(adapter, probe, adapter->netdev,
2155 "Failed to map IRQs to CPUs\n");
2156
2157 adapter->msix_vecs = irq_cnt;
2158 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
2159
2160 return 0;
2161 }
2162
2163 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
2164 {
2165 u32 cpu;
2166
2167 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
2168 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
2169 pci_name(adapter->pdev));
2170 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
2171 ena_intr_msix_mgmnt;
2172 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
2173 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
2174 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
2175 cpu = cpumask_first(cpu_online_mask);
2176 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
2177 cpumask_set_cpu(cpu,
2178 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
2179 }
2180
2181 static void ena_setup_io_intr(struct ena_adapter *adapter)
2182 {
2183 struct net_device *netdev;
2184 int irq_idx, i, cpu;
2185 int io_queue_count;
2186
2187 netdev = adapter->netdev;
2188 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2189
2190 for (i = 0; i < io_queue_count; i++) {
2191 irq_idx = ENA_IO_IRQ_IDX(i);
2192 cpu = i % num_online_cpus();
2193
2194 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2195 "%s-Tx-Rx-%d", netdev->name, i);
2196 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
2197 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
2198 adapter->irq_tbl[irq_idx].vector =
2199 pci_irq_vector(adapter->pdev, irq_idx);
2200 adapter->irq_tbl[irq_idx].cpu = cpu;
2201
2202 cpumask_set_cpu(cpu,
2203 &adapter->irq_tbl[irq_idx].affinity_hint_mask);
2204 }
2205 }
2206
2207 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
2208 {
2209 unsigned long flags = 0;
2210 struct ena_irq *irq;
2211 int rc;
2212
2213 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2214 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2215 irq->data);
2216 if (rc) {
2217 netif_err(adapter, probe, adapter->netdev,
2218 "Failed to request admin irq\n");
2219 return rc;
2220 }
2221
2222 netif_dbg(adapter, probe, adapter->netdev,
2223 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
2224 irq->affinity_hint_mask.bits[0], irq->vector);
2225
2226 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2227
2228 return rc;
2229 }
2230
2231 static int ena_request_io_irq(struct ena_adapter *adapter)
2232 {
2233 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2234 unsigned long flags = 0;
2235 struct ena_irq *irq;
2236 int rc = 0, i, k;
2237
2238 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2239 netif_err(adapter, ifup, adapter->netdev,
2240 "Failed to request I/O IRQ: MSI-X is not enabled\n");
2241 return -EINVAL;
2242 }
2243
2244 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2245 irq = &adapter->irq_tbl[i];
2246 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2247 irq->data);
2248 if (rc) {
2249 netif_err(adapter, ifup, adapter->netdev,
2250 "Failed to request I/O IRQ. index %d rc %d\n",
2251 i, rc);
2252 goto err;
2253 }
2254
2255 netif_dbg(adapter, ifup, adapter->netdev,
2256 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
2257 i, irq->affinity_hint_mask.bits[0], irq->vector);
2258
2259 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2260 }
2261
2262 return rc;
2263
2264 err:
2265 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
2266 irq = &adapter->irq_tbl[k];
2267 free_irq(irq->vector, irq->data);
2268 }
2269
2270 return rc;
2271 }
2272
2273 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
2274 {
2275 struct ena_irq *irq;
2276
2277 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2278 synchronize_irq(irq->vector);
2279 irq_set_affinity_hint(irq->vector, NULL);
2280 free_irq(irq->vector, irq->data);
2281 }
2282
2283 static void ena_free_io_irq(struct ena_adapter *adapter)
2284 {
2285 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2286 struct ena_irq *irq;
2287 int i;
2288
2289 #ifdef CONFIG_RFS_ACCEL
2290 if (adapter->msix_vecs >= 1) {
2291 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2292 adapter->netdev->rx_cpu_rmap = NULL;
2293 }
2294 #endif /* CONFIG_RFS_ACCEL */
2295
2296 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2297 irq = &adapter->irq_tbl[i];
2298 irq_set_affinity_hint(irq->vector, NULL);
2299 free_irq(irq->vector, irq->data);
2300 }
2301 }
2302
2303 static void ena_disable_msix(struct ena_adapter *adapter)
2304 {
2305 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
2306 pci_free_irq_vectors(adapter->pdev);
2307 }
2308
2309 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
2310 {
2311 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2312 int i;
2313
2314 if (!netif_running(adapter->netdev))
2315 return;
2316
2317 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
2318 synchronize_irq(adapter->irq_tbl[i].vector);
2319 }
2320
2321 static void ena_del_napi_in_range(struct ena_adapter *adapter,
2322 int first_index,
2323 int count)
2324 {
2325 int i;
2326
2327 for (i = first_index; i < first_index + count; i++) {
2328 netif_napi_del(&adapter->ena_napi[i].napi);
2329
2330 WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) &&
2331 adapter->ena_napi[i].xdp_ring);
2332 }
2333 }
2334
2335 static void ena_init_napi_in_range(struct ena_adapter *adapter,
2336 int first_index, int count)
2337 {
2338 int i;
2339
2340 for (i = first_index; i < first_index + count; i++) {
2341 struct ena_napi *napi = &adapter->ena_napi[i];
2342
2343 netif_napi_add(adapter->netdev, &napi->napi,
2344 ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll);
2345
2346 if (!ENA_IS_XDP_INDEX(adapter, i)) {
2347 napi->rx_ring = &adapter->rx_ring[i];
2348 napi->tx_ring = &adapter->tx_ring[i];
2349 } else {
2350 napi->xdp_ring = &adapter->tx_ring[i];
2351 }
2352 napi->qid = i;
2353 }
2354 }
2355
2356 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
2357 int first_index,
2358 int count)
2359 {
2360 int i;
2361
2362 for (i = first_index; i < first_index + count; i++)
2363 napi_disable(&adapter->ena_napi[i].napi);
2364 }
2365
2366 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
2367 int first_index,
2368 int count)
2369 {
2370 int i;
2371
2372 for (i = first_index; i < first_index + count; i++)
2373 napi_enable(&adapter->ena_napi[i].napi);
2374 }
2375
2376 /* Configure the Rx forwarding */
2377 static int ena_rss_configure(struct ena_adapter *adapter)
2378 {
2379 struct ena_com_dev *ena_dev = adapter->ena_dev;
2380 int rc;
2381
2382 /* In case the RSS table wasn't initialized by probe */
2383 if (!ena_dev->rss.tbl_log_size) {
2384 rc = ena_rss_init_default(adapter);
2385 if (rc && (rc != -EOPNOTSUPP)) {
2386 netif_err(adapter, ifup, adapter->netdev,
2387 "Failed to init RSS rc: %d\n", rc);
2388 return rc;
2389 }
2390 }
2391
2392 /* Set indirect table */
2393 rc = ena_com_indirect_table_set(ena_dev);
2394 if (unlikely(rc && rc != -EOPNOTSUPP))
2395 return rc;
2396
2397 /* Configure hash function (if supported) */
2398 rc = ena_com_set_hash_function(ena_dev);
2399 if (unlikely(rc && (rc != -EOPNOTSUPP)))
2400 return rc;
2401
2402 /* Configure hash inputs (if supported) */
2403 rc = ena_com_set_hash_ctrl(ena_dev);
2404 if (unlikely(rc && (rc != -EOPNOTSUPP)))
2405 return rc;
2406
2407 return 0;
2408 }
2409
2410 static int ena_up_complete(struct ena_adapter *adapter)
2411 {
2412 int rc;
2413
2414 rc = ena_rss_configure(adapter);
2415 if (rc)
2416 return rc;
2417
2418 ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
2419
2420 ena_refill_all_rx_bufs(adapter);
2421
2422 /* enable transmits */
2423 netif_tx_start_all_queues(adapter->netdev);
2424
2425 ena_napi_enable_in_range(adapter,
2426 0,
2427 adapter->xdp_num_queues + adapter->num_io_queues);
2428
2429 return 0;
2430 }
2431
2432 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
2433 {
2434 struct ena_com_create_io_ctx ctx;
2435 struct ena_com_dev *ena_dev;
2436 struct ena_ring *tx_ring;
2437 u32 msix_vector;
2438 u16 ena_qid;
2439 int rc;
2440
2441 ena_dev = adapter->ena_dev;
2442
2443 tx_ring = &adapter->tx_ring[qid];
2444 msix_vector = ENA_IO_IRQ_IDX(qid);
2445 ena_qid = ENA_IO_TXQ_IDX(qid);
2446
2447 memset(&ctx, 0x0, sizeof(ctx));
2448
2449 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
2450 ctx.qid = ena_qid;
2451 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
2452 ctx.msix_vector = msix_vector;
2453 ctx.queue_size = tx_ring->ring_size;
2454 ctx.numa_node = tx_ring->numa_node;
2455
2456 rc = ena_com_create_io_queue(ena_dev, &ctx);
2457 if (rc) {
2458 netif_err(adapter, ifup, adapter->netdev,
2459 "Failed to create I/O TX queue num %d rc: %d\n",
2460 qid, rc);
2461 return rc;
2462 }
2463
2464 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2465 &tx_ring->ena_com_io_sq,
2466 &tx_ring->ena_com_io_cq);
2467 if (rc) {
2468 netif_err(adapter, ifup, adapter->netdev,
2469 "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
2470 qid, rc);
2471 ena_com_destroy_io_queue(ena_dev, ena_qid);
2472 return rc;
2473 }
2474
2475 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
2476 return rc;
2477 }
2478
2479 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
2480 int first_index, int count)
2481 {
2482 struct ena_com_dev *ena_dev = adapter->ena_dev;
2483 int rc, i;
2484
2485 for (i = first_index; i < first_index + count; i++) {
2486 rc = ena_create_io_tx_queue(adapter, i);
2487 if (rc)
2488 goto create_err;
2489 }
2490
2491 return 0;
2492
2493 create_err:
2494 while (i-- > first_index)
2495 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
2496
2497 return rc;
2498 }
2499
2500 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
2501 {
2502 struct ena_com_dev *ena_dev;
2503 struct ena_com_create_io_ctx ctx;
2504 struct ena_ring *rx_ring;
2505 u32 msix_vector;
2506 u16 ena_qid;
2507 int rc;
2508
2509 ena_dev = adapter->ena_dev;
2510
2511 rx_ring = &adapter->rx_ring[qid];
2512 msix_vector = ENA_IO_IRQ_IDX(qid);
2513 ena_qid = ENA_IO_RXQ_IDX(qid);
2514
2515 memset(&ctx, 0x0, sizeof(ctx));
2516
2517 ctx.qid = ena_qid;
2518 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
2519 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2520 ctx.msix_vector = msix_vector;
2521 ctx.queue_size = rx_ring->ring_size;
2522 ctx.numa_node = rx_ring->numa_node;
2523
2524 rc = ena_com_create_io_queue(ena_dev, &ctx);
2525 if (rc) {
2526 netif_err(adapter, ifup, adapter->netdev,
2527 "Failed to create I/O RX queue num %d rc: %d\n",
2528 qid, rc);
2529 return rc;
2530 }
2531
2532 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2533 &rx_ring->ena_com_io_sq,
2534 &rx_ring->ena_com_io_cq);
2535 if (rc) {
2536 netif_err(adapter, ifup, adapter->netdev,
2537 "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
2538 qid, rc);
2539 goto err;
2540 }
2541
2542 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
2543
2544 return rc;
2545 err:
2546 ena_com_destroy_io_queue(ena_dev, ena_qid);
2547 return rc;
2548 }
2549
2550 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2551 {
2552 struct ena_com_dev *ena_dev = adapter->ena_dev;
2553 int rc, i;
2554
2555 for (i = 0; i < adapter->num_io_queues; i++) {
2556 rc = ena_create_io_rx_queue(adapter, i);
2557 if (rc)
2558 goto create_err;
2559 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2560 }
2561
2562 return 0;
2563
2564 create_err:
2565 while (i--) {
2566 cancel_work_sync(&adapter->ena_napi[i].dim.work);
2567 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2568 }
2569
2570 return rc;
2571 }
2572
2573 static void set_io_rings_size(struct ena_adapter *adapter,
2574 int new_tx_size,
2575 int new_rx_size)
2576 {
2577 int i;
2578
2579 for (i = 0; i < adapter->num_io_queues; i++) {
2580 adapter->tx_ring[i].ring_size = new_tx_size;
2581 adapter->rx_ring[i].ring_size = new_rx_size;
2582 }
2583 }
2584
2585 /* This function allows queue allocation to backoff when the system is
2586 * low on memory. If there is not enough memory to allocate io queues
2587 * the driver will try to allocate smaller queues.
2588 *
2589 * The backoff algorithm is as follows:
2590 * 1. Try to allocate TX and RX and if successful.
2591 * 1.1. return success
2592 *
2593 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2594 *
2595 * 3. If TX or RX is smaller than 256
2596 * 3.1. return failure.
2597 * 4. else
2598 * 4.1. go back to 1.
2599 */
2600 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2601 {
2602 int rc, cur_rx_ring_size, cur_tx_ring_size;
2603 int new_rx_ring_size, new_tx_ring_size;
2604
2605 /* current queue sizes might be set to smaller than the requested
2606 * ones due to past queue allocation failures.
2607 */
2608 set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2609 adapter->requested_rx_ring_size);
2610
2611 while (1) {
2612 if (ena_xdp_present(adapter)) {
2613 rc = ena_setup_and_create_all_xdp_queues(adapter);
2614
2615 if (rc)
2616 goto err_setup_tx;
2617 }
2618 rc = ena_setup_tx_resources_in_range(adapter,
2619 0,
2620 adapter->num_io_queues);
2621 if (rc)
2622 goto err_setup_tx;
2623
2624 rc = ena_create_io_tx_queues_in_range(adapter,
2625 0,
2626 adapter->num_io_queues);
2627 if (rc)
2628 goto err_create_tx_queues;
2629
2630 rc = ena_setup_all_rx_resources(adapter);
2631 if (rc)
2632 goto err_setup_rx;
2633
2634 rc = ena_create_all_io_rx_queues(adapter);
2635 if (rc)
2636 goto err_create_rx_queues;
2637
2638 return 0;
2639
2640 err_create_rx_queues:
2641 ena_free_all_io_rx_resources(adapter);
2642 err_setup_rx:
2643 ena_destroy_all_tx_queues(adapter);
2644 err_create_tx_queues:
2645 ena_free_all_io_tx_resources(adapter);
2646 err_setup_tx:
2647 if (rc != -ENOMEM) {
2648 netif_err(adapter, ifup, adapter->netdev,
2649 "Queue creation failed with error code %d\n",
2650 rc);
2651 return rc;
2652 }
2653
2654 cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2655 cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2656
2657 netif_err(adapter, ifup, adapter->netdev,
2658 "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2659 cur_tx_ring_size, cur_rx_ring_size);
2660
2661 new_tx_ring_size = cur_tx_ring_size;
2662 new_rx_ring_size = cur_rx_ring_size;
2663
2664 /* Decrease the size of the larger queue, or
2665 * decrease both if they are the same size.
2666 */
2667 if (cur_rx_ring_size <= cur_tx_ring_size)
2668 new_tx_ring_size = cur_tx_ring_size / 2;
2669 if (cur_rx_ring_size >= cur_tx_ring_size)
2670 new_rx_ring_size = cur_rx_ring_size / 2;
2671
2672 if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2673 new_rx_ring_size < ENA_MIN_RING_SIZE) {
2674 netif_err(adapter, ifup, adapter->netdev,
2675 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2676 ENA_MIN_RING_SIZE);
2677 return rc;
2678 }
2679
2680 netif_err(adapter, ifup, adapter->netdev,
2681 "Retrying queue creation with sizes TX=%d, RX=%d\n",
2682 new_tx_ring_size,
2683 new_rx_ring_size);
2684
2685 set_io_rings_size(adapter, new_tx_ring_size,
2686 new_rx_ring_size);
2687 }
2688 }
2689
2690 static int ena_up(struct ena_adapter *adapter)
2691 {
2692 int io_queue_count, rc, i;
2693
2694 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
2695
2696 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2697 ena_setup_io_intr(adapter);
2698
2699 /* napi poll functions should be initialized before running
2700 * request_irq(), to handle a rare condition where there is a pending
2701 * interrupt, causing the ISR to fire immediately while the poll
2702 * function wasn't set yet, causing a null dereference
2703 */
2704 ena_init_napi_in_range(adapter, 0, io_queue_count);
2705
2706 rc = ena_request_io_irq(adapter);
2707 if (rc)
2708 goto err_req_irq;
2709
2710 rc = create_queues_with_size_backoff(adapter);
2711 if (rc)
2712 goto err_create_queues_with_backoff;
2713
2714 rc = ena_up_complete(adapter);
2715 if (rc)
2716 goto err_up;
2717
2718 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2719 netif_carrier_on(adapter->netdev);
2720
2721 ena_increase_stat(&adapter->dev_stats.interface_up, 1,
2722 &adapter->syncp);
2723
2724 set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2725
2726 /* Enable completion queues interrupt */
2727 for (i = 0; i < adapter->num_io_queues; i++)
2728 ena_unmask_interrupt(&adapter->tx_ring[i],
2729 &adapter->rx_ring[i]);
2730
2731 /* schedule napi in case we had pending packets
2732 * from the last time we disable napi
2733 */
2734 for (i = 0; i < io_queue_count; i++)
2735 napi_schedule(&adapter->ena_napi[i].napi);
2736
2737 return rc;
2738
2739 err_up:
2740 ena_destroy_all_tx_queues(adapter);
2741 ena_free_all_io_tx_resources(adapter);
2742 ena_destroy_all_rx_queues(adapter);
2743 ena_free_all_io_rx_resources(adapter);
2744 err_create_queues_with_backoff:
2745 ena_free_io_irq(adapter);
2746 err_req_irq:
2747 ena_del_napi_in_range(adapter, 0, io_queue_count);
2748
2749 return rc;
2750 }
2751
2752 static void ena_down(struct ena_adapter *adapter)
2753 {
2754 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2755
2756 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2757
2758 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2759
2760 ena_increase_stat(&adapter->dev_stats.interface_down, 1,
2761 &adapter->syncp);
2762
2763 netif_carrier_off(adapter->netdev);
2764 netif_tx_disable(adapter->netdev);
2765
2766 /* After this point the napi handler won't enable the tx queue */
2767 ena_napi_disable_in_range(adapter, 0, io_queue_count);
2768
2769 /* After destroy the queue there won't be any new interrupts */
2770
2771 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2772 int rc;
2773
2774 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2775 if (rc)
2776 netif_err(adapter, ifdown, adapter->netdev,
2777 "Device reset failed\n");
2778 /* stop submitting admin commands on a device that was reset */
2779 ena_com_set_admin_running_state(adapter->ena_dev, false);
2780 }
2781
2782 ena_destroy_all_io_queues(adapter);
2783
2784 ena_disable_io_intr_sync(adapter);
2785 ena_free_io_irq(adapter);
2786 ena_del_napi_in_range(adapter, 0, io_queue_count);
2787
2788 ena_free_all_tx_bufs(adapter);
2789 ena_free_all_rx_bufs(adapter);
2790 ena_free_all_io_tx_resources(adapter);
2791 ena_free_all_io_rx_resources(adapter);
2792 }
2793
2794 /* ena_open - Called when a network interface is made active
2795 * @netdev: network interface device structure
2796 *
2797 * Returns 0 on success, negative value on failure
2798 *
2799 * The open entry point is called when a network interface is made
2800 * active by the system (IFF_UP). At this point all resources needed
2801 * for transmit and receive operations are allocated, the interrupt
2802 * handler is registered with the OS, the watchdog timer is started,
2803 * and the stack is notified that the interface is ready.
2804 */
2805 static int ena_open(struct net_device *netdev)
2806 {
2807 struct ena_adapter *adapter = netdev_priv(netdev);
2808 int rc;
2809
2810 /* Notify the stack of the actual queue counts. */
2811 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2812 if (rc) {
2813 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2814 return rc;
2815 }
2816
2817 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2818 if (rc) {
2819 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2820 return rc;
2821 }
2822
2823 rc = ena_up(adapter);
2824 if (rc)
2825 return rc;
2826
2827 return rc;
2828 }
2829
2830 /* ena_close - Disables a network interface
2831 * @netdev: network interface device structure
2832 *
2833 * Returns 0, this is not allowed to fail
2834 *
2835 * The close entry point is called when an interface is de-activated
2836 * by the OS. The hardware is still under the drivers control, but
2837 * needs to be disabled. A global MAC reset is issued to stop the
2838 * hardware, and all transmit and receive resources are freed.
2839 */
2840 static int ena_close(struct net_device *netdev)
2841 {
2842 struct ena_adapter *adapter = netdev_priv(netdev);
2843
2844 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2845
2846 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2847 return 0;
2848
2849 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2850 ena_down(adapter);
2851
2852 /* Check for device status and issue reset if needed*/
2853 check_for_admin_com_state(adapter);
2854 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2855 netif_err(adapter, ifdown, adapter->netdev,
2856 "Destroy failure, restarting device\n");
2857 ena_dump_stats_to_dmesg(adapter);
2858 /* rtnl lock already obtained in dev_ioctl() layer */
2859 ena_destroy_device(adapter, false);
2860 ena_restore_device(adapter);
2861 }
2862
2863 return 0;
2864 }
2865
2866 int ena_update_queue_params(struct ena_adapter *adapter,
2867 u32 new_tx_size,
2868 u32 new_rx_size,
2869 u32 new_llq_header_len)
2870 {
2871 bool dev_was_up, large_llq_changed = false;
2872 int rc = 0;
2873
2874 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2875 ena_close(adapter->netdev);
2876 adapter->requested_tx_ring_size = new_tx_size;
2877 adapter->requested_rx_ring_size = new_rx_size;
2878 ena_init_io_rings(adapter,
2879 0,
2880 adapter->xdp_num_queues +
2881 adapter->num_io_queues);
2882
2883 large_llq_changed = adapter->ena_dev->tx_mem_queue_type ==
2884 ENA_ADMIN_PLACEMENT_POLICY_DEV;
2885 large_llq_changed &=
2886 new_llq_header_len != adapter->ena_dev->tx_max_header_size;
2887
2888 /* a check that the configuration is valid is done by caller */
2889 if (large_llq_changed) {
2890 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled;
2891
2892 ena_destroy_device(adapter, false);
2893 rc = ena_restore_device(adapter);
2894 }
2895
2896 return dev_was_up && !rc ? ena_up(adapter) : rc;
2897 }
2898
2899 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak)
2900 {
2901 struct ena_ring *rx_ring;
2902 int i;
2903
2904 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE))
2905 return -EINVAL;
2906
2907 adapter->rx_copybreak = rx_copybreak;
2908
2909 for (i = 0; i < adapter->num_io_queues; i++) {
2910 rx_ring = &adapter->rx_ring[i];
2911 rx_ring->rx_copybreak = rx_copybreak;
2912 }
2913
2914 return 0;
2915 }
2916
2917 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2918 {
2919 struct ena_com_dev *ena_dev = adapter->ena_dev;
2920 int prev_channel_count;
2921 bool dev_was_up;
2922
2923 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2924 ena_close(adapter->netdev);
2925 prev_channel_count = adapter->num_io_queues;
2926 adapter->num_io_queues = new_channel_count;
2927 if (ena_xdp_present(adapter) &&
2928 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2929 adapter->xdp_first_ring = new_channel_count;
2930 adapter->xdp_num_queues = new_channel_count;
2931 if (prev_channel_count > new_channel_count)
2932 ena_xdp_exchange_program_rx_in_range(adapter,
2933 NULL,
2934 new_channel_count,
2935 prev_channel_count);
2936 else
2937 ena_xdp_exchange_program_rx_in_range(adapter,
2938 adapter->xdp_bpf_prog,
2939 prev_channel_count,
2940 new_channel_count);
2941 }
2942
2943 /* We need to destroy the rss table so that the indirection
2944 * table will be reinitialized by ena_up()
2945 */
2946 ena_com_rss_destroy(ena_dev);
2947 ena_init_io_rings(adapter,
2948 0,
2949 adapter->xdp_num_queues +
2950 adapter->num_io_queues);
2951 return dev_was_up ? ena_open(adapter->netdev) : 0;
2952 }
2953
2954 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2955 struct sk_buff *skb,
2956 bool disable_meta_caching)
2957 {
2958 u32 mss = skb_shinfo(skb)->gso_size;
2959 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2960 u8 l4_protocol = 0;
2961
2962 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2963 ena_tx_ctx->l4_csum_enable = 1;
2964 if (mss) {
2965 ena_tx_ctx->tso_enable = 1;
2966 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2967 ena_tx_ctx->l4_csum_partial = 0;
2968 } else {
2969 ena_tx_ctx->tso_enable = 0;
2970 ena_meta->l4_hdr_len = 0;
2971 ena_tx_ctx->l4_csum_partial = 1;
2972 }
2973
2974 switch (ip_hdr(skb)->version) {
2975 case IPVERSION:
2976 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2977 if (ip_hdr(skb)->frag_off & htons(IP_DF))
2978 ena_tx_ctx->df = 1;
2979 if (mss)
2980 ena_tx_ctx->l3_csum_enable = 1;
2981 l4_protocol = ip_hdr(skb)->protocol;
2982 break;
2983 case 6:
2984 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2985 l4_protocol = ipv6_hdr(skb)->nexthdr;
2986 break;
2987 default:
2988 break;
2989 }
2990
2991 if (l4_protocol == IPPROTO_TCP)
2992 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2993 else
2994 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2995
2996 ena_meta->mss = mss;
2997 ena_meta->l3_hdr_len = skb_network_header_len(skb);
2998 ena_meta->l3_hdr_offset = skb_network_offset(skb);
2999 ena_tx_ctx->meta_valid = 1;
3000 } else if (disable_meta_caching) {
3001 memset(ena_meta, 0, sizeof(*ena_meta));
3002 ena_tx_ctx->meta_valid = 1;
3003 } else {
3004 ena_tx_ctx->meta_valid = 0;
3005 }
3006 }
3007
3008 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
3009 struct sk_buff *skb)
3010 {
3011 int num_frags, header_len, rc;
3012
3013 num_frags = skb_shinfo(skb)->nr_frags;
3014 header_len = skb_headlen(skb);
3015
3016 if (num_frags < tx_ring->sgl_size)
3017 return 0;
3018
3019 if ((num_frags == tx_ring->sgl_size) &&
3020 (header_len < tx_ring->tx_max_header_size))
3021 return 0;
3022
3023 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp);
3024
3025 rc = skb_linearize(skb);
3026 if (unlikely(rc)) {
3027 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1,
3028 &tx_ring->syncp);
3029 }
3030
3031 return rc;
3032 }
3033
3034 static int ena_tx_map_skb(struct ena_ring *tx_ring,
3035 struct ena_tx_buffer *tx_info,
3036 struct sk_buff *skb,
3037 void **push_hdr,
3038 u16 *header_len)
3039 {
3040 struct ena_adapter *adapter = tx_ring->adapter;
3041 struct ena_com_buf *ena_buf;
3042 dma_addr_t dma;
3043 u32 skb_head_len, frag_len, last_frag;
3044 u16 push_len = 0;
3045 u16 delta = 0;
3046 int i = 0;
3047
3048 skb_head_len = skb_headlen(skb);
3049 tx_info->skb = skb;
3050 ena_buf = tx_info->bufs;
3051
3052 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3053 /* When the device is LLQ mode, the driver will copy
3054 * the header into the device memory space.
3055 * the ena_com layer assume the header is in a linear
3056 * memory space.
3057 * This assumption might be wrong since part of the header
3058 * can be in the fragmented buffers.
3059 * Use skb_header_pointer to make sure the header is in a
3060 * linear memory space.
3061 */
3062
3063 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
3064 *push_hdr = skb_header_pointer(skb, 0, push_len,
3065 tx_ring->push_buf_intermediate_buf);
3066 *header_len = push_len;
3067 if (unlikely(skb->data != *push_hdr)) {
3068 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1,
3069 &tx_ring->syncp);
3070
3071 delta = push_len - skb_head_len;
3072 }
3073 } else {
3074 *push_hdr = NULL;
3075 *header_len = min_t(u32, skb_head_len,
3076 tx_ring->tx_max_header_size);
3077 }
3078
3079 netif_dbg(adapter, tx_queued, adapter->netdev,
3080 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
3081 *push_hdr, push_len);
3082
3083 if (skb_head_len > push_len) {
3084 dma = dma_map_single(tx_ring->dev, skb->data + push_len,
3085 skb_head_len - push_len, DMA_TO_DEVICE);
3086 if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
3087 goto error_report_dma_error;
3088
3089 ena_buf->paddr = dma;
3090 ena_buf->len = skb_head_len - push_len;
3091
3092 ena_buf++;
3093 tx_info->num_of_bufs++;
3094 tx_info->map_linear_data = 1;
3095 } else {
3096 tx_info->map_linear_data = 0;
3097 }
3098
3099 last_frag = skb_shinfo(skb)->nr_frags;
3100
3101 for (i = 0; i < last_frag; i++) {
3102 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3103
3104 frag_len = skb_frag_size(frag);
3105
3106 if (unlikely(delta >= frag_len)) {
3107 delta -= frag_len;
3108 continue;
3109 }
3110
3111 dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
3112 frag_len - delta, DMA_TO_DEVICE);
3113 if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
3114 goto error_report_dma_error;
3115
3116 ena_buf->paddr = dma;
3117 ena_buf->len = frag_len - delta;
3118 ena_buf++;
3119 tx_info->num_of_bufs++;
3120 delta = 0;
3121 }
3122
3123 return 0;
3124
3125 error_report_dma_error:
3126 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1,
3127 &tx_ring->syncp);
3128 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n");
3129
3130 tx_info->skb = NULL;
3131
3132 tx_info->num_of_bufs += i;
3133 ena_unmap_tx_buff(tx_ring, tx_info);
3134
3135 return -EINVAL;
3136 }
3137
3138 /* Called with netif_tx_lock. */
3139 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
3140 {
3141 struct ena_adapter *adapter = netdev_priv(dev);
3142 struct ena_tx_buffer *tx_info;
3143 struct ena_com_tx_ctx ena_tx_ctx;
3144 struct ena_ring *tx_ring;
3145 struct netdev_queue *txq;
3146 void *push_hdr;
3147 u16 next_to_use, req_id, header_len;
3148 int qid, rc;
3149
3150 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
3151 /* Determine which tx ring we will be placed on */
3152 qid = skb_get_queue_mapping(skb);
3153 tx_ring = &adapter->tx_ring[qid];
3154 txq = netdev_get_tx_queue(dev, qid);
3155
3156 rc = ena_check_and_linearize_skb(tx_ring, skb);
3157 if (unlikely(rc))
3158 goto error_drop_packet;
3159
3160 skb_tx_timestamp(skb);
3161
3162 next_to_use = tx_ring->next_to_use;
3163 req_id = tx_ring->free_ids[next_to_use];
3164 tx_info = &tx_ring->tx_buffer_info[req_id];
3165 tx_info->num_of_bufs = 0;
3166
3167 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
3168
3169 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
3170 if (unlikely(rc))
3171 goto error_drop_packet;
3172
3173 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
3174 ena_tx_ctx.ena_bufs = tx_info->bufs;
3175 ena_tx_ctx.push_header = push_hdr;
3176 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3177 ena_tx_ctx.req_id = req_id;
3178 ena_tx_ctx.header_len = header_len;
3179
3180 /* set flags and meta data */
3181 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
3182
3183 rc = ena_xmit_common(dev,
3184 tx_ring,
3185 tx_info,
3186 &ena_tx_ctx,
3187 next_to_use,
3188 skb->len);
3189 if (rc)
3190 goto error_unmap_dma;
3191
3192 netdev_tx_sent_queue(txq, skb->len);
3193
3194 /* stop the queue when no more space available, the packet can have up
3195 * to sgl_size + 2. one for the meta descriptor and one for header
3196 * (if the header is larger than tx_max_header_size).
3197 */
3198 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3199 tx_ring->sgl_size + 2))) {
3200 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
3201 __func__, qid);
3202
3203 netif_tx_stop_queue(txq);
3204 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1,
3205 &tx_ring->syncp);
3206
3207 /* There is a rare condition where this function decide to
3208 * stop the queue but meanwhile clean_tx_irq updates
3209 * next_to_completion and terminates.
3210 * The queue will remain stopped forever.
3211 * To solve this issue add a mb() to make sure that
3212 * netif_tx_stop_queue() write is vissible before checking if
3213 * there is additional space in the queue.
3214 */
3215 smp_mb();
3216
3217 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3218 ENA_TX_WAKEUP_THRESH)) {
3219 netif_tx_wake_queue(txq);
3220 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
3221 &tx_ring->syncp);
3222 }
3223 }
3224
3225 if (netif_xmit_stopped(txq) || !netdev_xmit_more())
3226 /* trigger the dma engine. ena_ring_tx_doorbell()
3227 * calls a memory barrier inside it.
3228 */
3229 ena_ring_tx_doorbell(tx_ring);
3230
3231 return NETDEV_TX_OK;
3232
3233 error_unmap_dma:
3234 ena_unmap_tx_buff(tx_ring, tx_info);
3235 tx_info->skb = NULL;
3236
3237 error_drop_packet:
3238 dev_kfree_skb(skb);
3239 return NETDEV_TX_OK;
3240 }
3241
3242 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
3243 struct net_device *sb_dev)
3244 {
3245 u16 qid;
3246 /* we suspect that this is good for in--kernel network services that
3247 * want to loop incoming skb rx to tx in normal user generated traffic,
3248 * most probably we will not get to this
3249 */
3250 if (skb_rx_queue_recorded(skb))
3251 qid = skb_get_rx_queue(skb);
3252 else
3253 qid = netdev_pick_tx(dev, skb, NULL);
3254
3255 return qid;
3256 }
3257
3258 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3259 {
3260 struct device *dev = &pdev->dev;
3261 struct ena_admin_host_info *host_info;
3262 int rc;
3263
3264 /* Allocate only the host info */
3265 rc = ena_com_allocate_host_info(ena_dev);
3266 if (rc) {
3267 dev_err(dev, "Cannot allocate host info\n");
3268 return;
3269 }
3270
3271 host_info = ena_dev->host_attr.host_info;
3272
3273 host_info->bdf = pci_dev_id(pdev);
3274 host_info->os_type = ENA_ADMIN_OS_LINUX;
3275 host_info->kernel_ver = LINUX_VERSION_CODE;
3276 strscpy(host_info->kernel_ver_str, utsname()->version,
3277 sizeof(host_info->kernel_ver_str) - 1);
3278 host_info->os_dist = 0;
3279 strncpy(host_info->os_dist_str, utsname()->release,
3280 sizeof(host_info->os_dist_str) - 1);
3281 host_info->driver_version =
3282 (DRV_MODULE_GEN_MAJOR) |
3283 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3284 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
3285 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
3286 host_info->num_cpus = num_online_cpus();
3287
3288 host_info->driver_supported_features =
3289 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
3290 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
3291 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
3292 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK |
3293 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK;
3294
3295 rc = ena_com_set_host_attributes(ena_dev);
3296 if (rc) {
3297 if (rc == -EOPNOTSUPP)
3298 dev_warn(dev, "Cannot set host attributes\n");
3299 else
3300 dev_err(dev, "Cannot set host attributes\n");
3301
3302 goto err;
3303 }
3304
3305 return;
3306
3307 err:
3308 ena_com_delete_host_info(ena_dev);
3309 }
3310
3311 static void ena_config_debug_area(struct ena_adapter *adapter)
3312 {
3313 u32 debug_area_size;
3314 int rc, ss_count;
3315
3316 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
3317 if (ss_count <= 0) {
3318 netif_err(adapter, drv, adapter->netdev,
3319 "SS count is negative\n");
3320 return;
3321 }
3322
3323 /* allocate 32 bytes for each string and 64bit for the value */
3324 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
3325
3326 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
3327 if (rc) {
3328 netif_err(adapter, drv, adapter->netdev,
3329 "Cannot allocate debug area\n");
3330 return;
3331 }
3332
3333 rc = ena_com_set_host_attributes(adapter->ena_dev);
3334 if (rc) {
3335 if (rc == -EOPNOTSUPP)
3336 netif_warn(adapter, drv, adapter->netdev,
3337 "Cannot set host attributes\n");
3338 else
3339 netif_err(adapter, drv, adapter->netdev,
3340 "Cannot set host attributes\n");
3341 goto err;
3342 }
3343
3344 return;
3345 err:
3346 ena_com_delete_debug_area(adapter->ena_dev);
3347 }
3348
3349 int ena_update_hw_stats(struct ena_adapter *adapter)
3350 {
3351 int rc;
3352
3353 rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats);
3354 if (rc) {
3355 netdev_err(adapter->netdev, "Failed to get ENI stats\n");
3356 return rc;
3357 }
3358
3359 return 0;
3360 }
3361
3362 static void ena_get_stats64(struct net_device *netdev,
3363 struct rtnl_link_stats64 *stats)
3364 {
3365 struct ena_adapter *adapter = netdev_priv(netdev);
3366 struct ena_ring *rx_ring, *tx_ring;
3367 unsigned int start;
3368 u64 rx_drops;
3369 u64 tx_drops;
3370 int i;
3371
3372 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3373 return;
3374
3375 for (i = 0; i < adapter->num_io_queues; i++) {
3376 u64 bytes, packets;
3377
3378 tx_ring = &adapter->tx_ring[i];
3379
3380 do {
3381 start = u64_stats_fetch_begin(&tx_ring->syncp);
3382 packets = tx_ring->tx_stats.cnt;
3383 bytes = tx_ring->tx_stats.bytes;
3384 } while (u64_stats_fetch_retry(&tx_ring->syncp, start));
3385
3386 stats->tx_packets += packets;
3387 stats->tx_bytes += bytes;
3388
3389 rx_ring = &adapter->rx_ring[i];
3390
3391 do {
3392 start = u64_stats_fetch_begin(&rx_ring->syncp);
3393 packets = rx_ring->rx_stats.cnt;
3394 bytes = rx_ring->rx_stats.bytes;
3395 } while (u64_stats_fetch_retry(&rx_ring->syncp, start));
3396
3397 stats->rx_packets += packets;
3398 stats->rx_bytes += bytes;
3399 }
3400
3401 do {
3402 start = u64_stats_fetch_begin(&adapter->syncp);
3403 rx_drops = adapter->dev_stats.rx_drops;
3404 tx_drops = adapter->dev_stats.tx_drops;
3405 } while (u64_stats_fetch_retry(&adapter->syncp, start));
3406
3407 stats->rx_dropped = rx_drops;
3408 stats->tx_dropped = tx_drops;
3409
3410 stats->multicast = 0;
3411 stats->collisions = 0;
3412
3413 stats->rx_length_errors = 0;
3414 stats->rx_crc_errors = 0;
3415 stats->rx_frame_errors = 0;
3416 stats->rx_fifo_errors = 0;
3417 stats->rx_missed_errors = 0;
3418 stats->tx_window_errors = 0;
3419
3420 stats->rx_errors = 0;
3421 stats->tx_errors = 0;
3422 }
3423
3424 static const struct net_device_ops ena_netdev_ops = {
3425 .ndo_open = ena_open,
3426 .ndo_stop = ena_close,
3427 .ndo_start_xmit = ena_start_xmit,
3428 .ndo_select_queue = ena_select_queue,
3429 .ndo_get_stats64 = ena_get_stats64,
3430 .ndo_tx_timeout = ena_tx_timeout,
3431 .ndo_change_mtu = ena_change_mtu,
3432 .ndo_set_mac_address = NULL,
3433 .ndo_validate_addr = eth_validate_addr,
3434 .ndo_bpf = ena_xdp,
3435 .ndo_xdp_xmit = ena_xdp_xmit,
3436 };
3437
3438 static void ena_calc_io_queue_size(struct ena_adapter *adapter,
3439 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3440 {
3441 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq;
3442 struct ena_com_dev *ena_dev = adapter->ena_dev;
3443 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
3444 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
3445 u32 max_tx_queue_size;
3446 u32 max_rx_queue_size;
3447
3448 /* If this function is called after driver load, the ring sizes have already
3449 * been configured. Take it into account when recalculating ring size.
3450 */
3451 if (adapter->tx_ring->ring_size)
3452 tx_queue_size = adapter->tx_ring->ring_size;
3453
3454 if (adapter->rx_ring->ring_size)
3455 rx_queue_size = adapter->rx_ring->ring_size;
3456
3457 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3458 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3459 &get_feat_ctx->max_queue_ext.max_queue_ext;
3460 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
3461 max_queue_ext->max_rx_sq_depth);
3462 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
3463
3464 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3465 max_tx_queue_size = min_t(u32, max_tx_queue_size,
3466 llq->max_llq_depth);
3467 else
3468 max_tx_queue_size = min_t(u32, max_tx_queue_size,
3469 max_queue_ext->max_tx_sq_depth);
3470
3471 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3472 max_queue_ext->max_per_packet_tx_descs);
3473 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3474 max_queue_ext->max_per_packet_rx_descs);
3475 } else {
3476 struct ena_admin_queue_feature_desc *max_queues =
3477 &get_feat_ctx->max_queues;
3478 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
3479 max_queues->max_sq_depth);
3480 max_tx_queue_size = max_queues->max_cq_depth;
3481
3482 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3483 max_tx_queue_size = min_t(u32, max_tx_queue_size,
3484 llq->max_llq_depth);
3485 else
3486 max_tx_queue_size = min_t(u32, max_tx_queue_size,
3487 max_queues->max_sq_depth);
3488
3489 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3490 max_queues->max_packet_tx_descs);
3491 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3492 max_queues->max_packet_rx_descs);
3493 }
3494
3495 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
3496 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
3497
3498 /* When forcing large headers, we multiply the entry size by 2, and therefore divide
3499 * the queue size by 2, leaving the amount of memory used by the queues unchanged.
3500 */
3501 if (adapter->large_llq_header_enabled) {
3502 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
3503 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3504 max_tx_queue_size /= 2;
3505 dev_info(&adapter->pdev->dev,
3506 "Forcing large headers and decreasing maximum TX queue size to %d\n",
3507 max_tx_queue_size);
3508 } else {
3509 dev_err(&adapter->pdev->dev,
3510 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
3511
3512 adapter->large_llq_header_enabled = false;
3513 }
3514 }
3515
3516 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
3517 max_tx_queue_size);
3518 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
3519 max_rx_queue_size);
3520
3521 tx_queue_size = rounddown_pow_of_two(tx_queue_size);
3522 rx_queue_size = rounddown_pow_of_two(rx_queue_size);
3523
3524 adapter->max_tx_ring_size = max_tx_queue_size;
3525 adapter->max_rx_ring_size = max_rx_queue_size;
3526 adapter->requested_tx_ring_size = tx_queue_size;
3527 adapter->requested_rx_ring_size = rx_queue_size;
3528 }
3529
3530 static int ena_device_validate_params(struct ena_adapter *adapter,
3531 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3532 {
3533 struct net_device *netdev = adapter->netdev;
3534 int rc;
3535
3536 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
3537 adapter->mac_addr);
3538 if (!rc) {
3539 netif_err(adapter, drv, netdev,
3540 "Error, mac address are different\n");
3541 return -EINVAL;
3542 }
3543
3544 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3545 netif_err(adapter, drv, netdev,
3546 "Error, device max mtu is smaller than netdev MTU\n");
3547 return -EINVAL;
3548 }
3549
3550 return 0;
3551 }
3552
3553 static void set_default_llq_configurations(struct ena_adapter *adapter,
3554 struct ena_llq_configurations *llq_config,
3555 struct ena_admin_feature_llq_desc *llq)
3556 {
3557 struct ena_com_dev *ena_dev = adapter->ena_dev;
3558
3559 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3560 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3561 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3562
3563 adapter->large_llq_header_supported =
3564 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ));
3565 adapter->large_llq_header_supported &=
3566 !!(llq->entry_size_ctrl_supported &
3567 ENA_ADMIN_LIST_ENTRY_SIZE_256B);
3568
3569 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
3570 adapter->large_llq_header_enabled) {
3571 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B;
3572 llq_config->llq_ring_entry_size_value = 256;
3573 } else {
3574 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3575 llq_config->llq_ring_entry_size_value = 128;
3576 }
3577 }
3578
3579 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3580 struct ena_com_dev *ena_dev,
3581 struct ena_admin_feature_llq_desc *llq,
3582 struct ena_llq_configurations *llq_default_configurations)
3583 {
3584 int rc;
3585 u32 llq_feature_mask;
3586
3587 llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3588 if (!(ena_dev->supported_features & llq_feature_mask)) {
3589 dev_warn(&pdev->dev,
3590 "LLQ is not supported Fallback to host mode policy.\n");
3591 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3592 return 0;
3593 }
3594
3595 if (!ena_dev->mem_bar) {
3596 netdev_err(ena_dev->net_device,
3597 "LLQ is advertised as supported but device doesn't expose mem bar\n");
3598 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3599 return 0;
3600 }
3601
3602 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3603 if (unlikely(rc)) {
3604 dev_err(&pdev->dev,
3605 "Failed to configure the device mode. Fallback to host mode policy.\n");
3606 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3607 }
3608
3609 return 0;
3610 }
3611
3612 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3613 int bars)
3614 {
3615 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3616
3617 if (!has_mem_bar)
3618 return 0;
3619
3620 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3621 pci_resource_start(pdev, ENA_MEM_BAR),
3622 pci_resource_len(pdev, ENA_MEM_BAR));
3623
3624 if (!ena_dev->mem_bar)
3625 return -EFAULT;
3626
3627 return 0;
3628 }
3629
3630 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev,
3631 struct ena_com_dev_get_features_ctx *get_feat_ctx,
3632 bool *wd_state)
3633 {
3634 struct ena_com_dev *ena_dev = adapter->ena_dev;
3635 struct ena_llq_configurations llq_config;
3636 struct device *dev = &pdev->dev;
3637 bool readless_supported;
3638 u32 aenq_groups;
3639 int dma_width;
3640 int rc;
3641
3642 rc = ena_com_mmio_reg_read_request_init(ena_dev);
3643 if (rc) {
3644 dev_err(dev, "Failed to init mmio read less\n");
3645 return rc;
3646 }
3647
3648 /* The PCIe configuration space revision id indicate if mmio reg
3649 * read is disabled
3650 */
3651 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3652 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3653
3654 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3655 if (rc) {
3656 dev_err(dev, "Can not reset device\n");
3657 goto err_mmio_read_less;
3658 }
3659
3660 rc = ena_com_validate_version(ena_dev);
3661 if (rc) {
3662 dev_err(dev, "Device version is too low\n");
3663 goto err_mmio_read_less;
3664 }
3665
3666 dma_width = ena_com_get_dma_width(ena_dev);
3667 if (dma_width < 0) {
3668 dev_err(dev, "Invalid dma width value %d", dma_width);
3669 rc = dma_width;
3670 goto err_mmio_read_less;
3671 }
3672
3673 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width));
3674 if (rc) {
3675 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc);
3676 goto err_mmio_read_less;
3677 }
3678
3679 /* ENA admin level init */
3680 rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3681 if (rc) {
3682 dev_err(dev,
3683 "Can not initialize ena admin queue with device\n");
3684 goto err_mmio_read_less;
3685 }
3686
3687 /* To enable the msix interrupts the driver needs to know the number
3688 * of queues. So the driver uses polling mode to retrieve this
3689 * information
3690 */
3691 ena_com_set_admin_polling_mode(ena_dev, true);
3692
3693 ena_config_host_info(ena_dev, pdev);
3694
3695 /* Get Device Attributes*/
3696 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3697 if (rc) {
3698 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3699 goto err_admin_init;
3700 }
3701
3702 /* Try to turn all the available aenq groups */
3703 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3704 BIT(ENA_ADMIN_FATAL_ERROR) |
3705 BIT(ENA_ADMIN_WARNING) |
3706 BIT(ENA_ADMIN_NOTIFICATION) |
3707 BIT(ENA_ADMIN_KEEP_ALIVE);
3708
3709 aenq_groups &= get_feat_ctx->aenq.supported_groups;
3710
3711 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3712 if (rc) {
3713 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3714 goto err_admin_init;
3715 }
3716
3717 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3718
3719 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq);
3720
3721 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3722 &llq_config);
3723 if (rc) {
3724 dev_err(dev, "ENA device init failed\n");
3725 goto err_admin_init;
3726 }
3727
3728 ena_calc_io_queue_size(adapter, get_feat_ctx);
3729
3730 return 0;
3731
3732 err_admin_init:
3733 ena_com_delete_host_info(ena_dev);
3734 ena_com_admin_destroy(ena_dev);
3735 err_mmio_read_less:
3736 ena_com_mmio_reg_read_request_destroy(ena_dev);
3737
3738 return rc;
3739 }
3740
3741 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3742 {
3743 struct ena_com_dev *ena_dev = adapter->ena_dev;
3744 struct device *dev = &adapter->pdev->dev;
3745 int rc;
3746
3747 rc = ena_enable_msix(adapter);
3748 if (rc) {
3749 dev_err(dev, "Can not reserve msix vectors\n");
3750 return rc;
3751 }
3752
3753 ena_setup_mgmnt_intr(adapter);
3754
3755 rc = ena_request_mgmnt_irq(adapter);
3756 if (rc) {
3757 dev_err(dev, "Can not setup management interrupts\n");
3758 goto err_disable_msix;
3759 }
3760
3761 ena_com_set_admin_polling_mode(ena_dev, false);
3762
3763 ena_com_admin_aenq_enable(ena_dev);
3764
3765 return 0;
3766
3767 err_disable_msix:
3768 ena_disable_msix(adapter);
3769
3770 return rc;
3771 }
3772
3773 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3774 {
3775 struct net_device *netdev = adapter->netdev;
3776 struct ena_com_dev *ena_dev = adapter->ena_dev;
3777 bool dev_up;
3778
3779 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3780 return;
3781
3782 netif_carrier_off(netdev);
3783
3784 del_timer_sync(&adapter->timer_service);
3785
3786 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3787 adapter->dev_up_before_reset = dev_up;
3788 if (!graceful)
3789 ena_com_set_admin_running_state(ena_dev, false);
3790
3791 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3792 ena_down(adapter);
3793
3794 /* Stop the device from sending AENQ events (in case reset flag is set
3795 * and device is up, ena_down() already reset the device.
3796 */
3797 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3798 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3799
3800 ena_free_mgmnt_irq(adapter);
3801
3802 ena_disable_msix(adapter);
3803
3804 ena_com_abort_admin_commands(ena_dev);
3805
3806 ena_com_wait_for_abort_completion(ena_dev);
3807
3808 ena_com_admin_destroy(ena_dev);
3809
3810 ena_com_mmio_reg_read_request_destroy(ena_dev);
3811
3812 /* return reset reason to default value */
3813 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3814
3815 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3816 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3817 }
3818
3819 static int ena_restore_device(struct ena_adapter *adapter)
3820 {
3821 struct ena_com_dev_get_features_ctx get_feat_ctx;
3822 struct ena_com_dev *ena_dev = adapter->ena_dev;
3823 struct pci_dev *pdev = adapter->pdev;
3824 struct ena_ring *txr;
3825 int rc, count, i;
3826 bool wd_state;
3827
3828 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3829 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state);
3830 if (rc) {
3831 dev_err(&pdev->dev, "Can not initialize device\n");
3832 goto err;
3833 }
3834 adapter->wd_state = wd_state;
3835
3836 count = adapter->xdp_num_queues + adapter->num_io_queues;
3837 for (i = 0 ; i < count; i++) {
3838 txr = &adapter->tx_ring[i];
3839 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
3840 txr->tx_max_header_size = ena_dev->tx_max_header_size;
3841 }
3842
3843 rc = ena_device_validate_params(adapter, &get_feat_ctx);
3844 if (rc) {
3845 dev_err(&pdev->dev, "Validation of device parameters failed\n");
3846 goto err_device_destroy;
3847 }
3848
3849 rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3850 if (rc) {
3851 dev_err(&pdev->dev, "Enable MSI-X failed\n");
3852 goto err_device_destroy;
3853 }
3854 /* If the interface was up before the reset bring it up */
3855 if (adapter->dev_up_before_reset) {
3856 rc = ena_up(adapter);
3857 if (rc) {
3858 dev_err(&pdev->dev, "Failed to create I/O queues\n");
3859 goto err_disable_msix;
3860 }
3861 }
3862
3863 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3864
3865 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3866 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3867 netif_carrier_on(adapter->netdev);
3868
3869 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3870 adapter->last_keep_alive_jiffies = jiffies;
3871
3872 return rc;
3873 err_disable_msix:
3874 ena_free_mgmnt_irq(adapter);
3875 ena_disable_msix(adapter);
3876 err_device_destroy:
3877 ena_com_abort_admin_commands(ena_dev);
3878 ena_com_wait_for_abort_completion(ena_dev);
3879 ena_com_admin_destroy(ena_dev);
3880 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3881 ena_com_mmio_reg_read_request_destroy(ena_dev);
3882 err:
3883 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3884 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3885 dev_err(&pdev->dev,
3886 "Reset attempt failed. Can not reset the device\n");
3887
3888 return rc;
3889 }
3890
3891 static void ena_fw_reset_device(struct work_struct *work)
3892 {
3893 struct ena_adapter *adapter =
3894 container_of(work, struct ena_adapter, reset_task);
3895
3896 rtnl_lock();
3897
3898 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3899 ena_destroy_device(adapter, false);
3900 ena_restore_device(adapter);
3901
3902 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n");
3903 }
3904
3905 rtnl_unlock();
3906 }
3907
3908 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3909 struct ena_ring *rx_ring)
3910 {
3911 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi);
3912
3913 if (likely(READ_ONCE(ena_napi->first_interrupt)))
3914 return 0;
3915
3916 if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3917 return 0;
3918
3919 rx_ring->no_interrupt_event_cnt++;
3920
3921 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3922 netif_err(adapter, rx_err, adapter->netdev,
3923 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3924 rx_ring->qid);
3925
3926 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3927 return -EIO;
3928 }
3929
3930 return 0;
3931 }
3932
3933 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3934 struct ena_ring *tx_ring)
3935 {
3936 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi);
3937 unsigned int time_since_last_napi;
3938 unsigned int missing_tx_comp_to;
3939 bool is_tx_comp_time_expired;
3940 struct ena_tx_buffer *tx_buf;
3941 unsigned long last_jiffies;
3942 u32 missed_tx = 0;
3943 int i, rc = 0;
3944
3945 for (i = 0; i < tx_ring->ring_size; i++) {
3946 tx_buf = &tx_ring->tx_buffer_info[i];
3947 last_jiffies = tx_buf->last_jiffies;
3948
3949 if (last_jiffies == 0)
3950 /* no pending Tx at this location */
3951 continue;
3952
3953 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3954 2 * adapter->missing_tx_completion_to);
3955
3956 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) {
3957 /* If after graceful period interrupt is still not
3958 * received, we schedule a reset
3959 */
3960 netif_err(adapter, tx_err, adapter->netdev,
3961 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3962 tx_ring->qid);
3963 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3964 return -EIO;
3965 }
3966
3967 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3968 adapter->missing_tx_completion_to);
3969
3970 if (unlikely(is_tx_comp_time_expired)) {
3971 if (!tx_buf->print_once) {
3972 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies);
3973 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to);
3974 netif_notice(adapter, tx_err, adapter->netdev,
3975 "Found a Tx that wasn't completed on time, qid %d, index %d. %u usecs have passed since last napi execution. Missing Tx timeout value %u msecs\n",
3976 tx_ring->qid, i, time_since_last_napi, missing_tx_comp_to);
3977 }
3978
3979 tx_buf->print_once = 1;
3980 missed_tx++;
3981 }
3982 }
3983
3984 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3985 netif_err(adapter, tx_err, adapter->netdev,
3986 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3987 missed_tx,
3988 adapter->missing_tx_completion_threshold);
3989 ena_reset_device(adapter, ENA_REGS_RESET_MISS_TX_CMPL);
3990 rc = -EIO;
3991 }
3992
3993 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx,
3994 &tx_ring->syncp);
3995
3996 return rc;
3997 }
3998
3999 static void check_for_missing_completions(struct ena_adapter *adapter)
4000 {
4001 struct ena_ring *tx_ring;
4002 struct ena_ring *rx_ring;
4003 int i, budget, rc;
4004 int io_queue_count;
4005
4006 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
4007 /* Make sure the driver doesn't turn the device in other process */
4008 smp_rmb();
4009
4010 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
4011 return;
4012
4013 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
4014 return;
4015
4016 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
4017 return;
4018
4019 budget = ENA_MONITORED_TX_QUEUES;
4020
4021 for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) {
4022 tx_ring = &adapter->tx_ring[i];
4023 rx_ring = &adapter->rx_ring[i];
4024
4025 rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
4026 if (unlikely(rc))
4027 return;
4028
4029 rc = !ENA_IS_XDP_INDEX(adapter, i) ?
4030 check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
4031 if (unlikely(rc))
4032 return;
4033
4034 budget--;
4035 if (!budget)
4036 break;
4037 }
4038
4039 adapter->last_monitored_tx_qid = i % io_queue_count;
4040 }
4041
4042 /* trigger napi schedule after 2 consecutive detections */
4043 #define EMPTY_RX_REFILL 2
4044 /* For the rare case where the device runs out of Rx descriptors and the
4045 * napi handler failed to refill new Rx descriptors (due to a lack of memory
4046 * for example).
4047 * This case will lead to a deadlock:
4048 * The device won't send interrupts since all the new Rx packets will be dropped
4049 * The napi handler won't allocate new Rx descriptors so the device will be
4050 * able to send new packets.
4051 *
4052 * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
4053 * It is recommended to have at least 512MB, with a minimum of 128MB for
4054 * constrained environment).
4055 *
4056 * When such a situation is detected - Reschedule napi
4057 */
4058 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
4059 {
4060 struct ena_ring *rx_ring;
4061 int i, refill_required;
4062
4063 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
4064 return;
4065
4066 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
4067 return;
4068
4069 for (i = 0; i < adapter->num_io_queues; i++) {
4070 rx_ring = &adapter->rx_ring[i];
4071
4072 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
4073 if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
4074 rx_ring->empty_rx_queue++;
4075
4076 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
4077 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1,
4078 &rx_ring->syncp);
4079
4080 netif_err(adapter, drv, adapter->netdev,
4081 "Trigger refill for ring %d\n", i);
4082
4083 napi_schedule(rx_ring->napi);
4084 rx_ring->empty_rx_queue = 0;
4085 }
4086 } else {
4087 rx_ring->empty_rx_queue = 0;
4088 }
4089 }
4090 }
4091
4092 /* Check for keep alive expiration */
4093 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
4094 {
4095 unsigned long keep_alive_expired;
4096
4097 if (!adapter->wd_state)
4098 return;
4099
4100 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4101 return;
4102
4103 keep_alive_expired = adapter->last_keep_alive_jiffies +
4104 adapter->keep_alive_timeout;
4105 if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
4106 netif_err(adapter, drv, adapter->netdev,
4107 "Keep alive watchdog timeout.\n");
4108 ena_increase_stat(&adapter->dev_stats.wd_expired, 1,
4109 &adapter->syncp);
4110 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
4111 }
4112 }
4113
4114 static void check_for_admin_com_state(struct ena_adapter *adapter)
4115 {
4116 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
4117 netif_err(adapter, drv, adapter->netdev,
4118 "ENA admin queue is not in running state!\n");
4119 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1,
4120 &adapter->syncp);
4121 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO);
4122 }
4123 }
4124
4125 static void ena_update_hints(struct ena_adapter *adapter,
4126 struct ena_admin_ena_hw_hints *hints)
4127 {
4128 struct net_device *netdev = adapter->netdev;
4129
4130 if (hints->admin_completion_tx_timeout)
4131 adapter->ena_dev->admin_queue.completion_timeout =
4132 hints->admin_completion_tx_timeout * 1000;
4133
4134 if (hints->mmio_read_timeout)
4135 /* convert to usec */
4136 adapter->ena_dev->mmio_read.reg_read_to =
4137 hints->mmio_read_timeout * 1000;
4138
4139 if (hints->missed_tx_completion_count_threshold_to_reset)
4140 adapter->missing_tx_completion_threshold =
4141 hints->missed_tx_completion_count_threshold_to_reset;
4142
4143 if (hints->missing_tx_completion_timeout) {
4144 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4145 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
4146 else
4147 adapter->missing_tx_completion_to =
4148 msecs_to_jiffies(hints->missing_tx_completion_timeout);
4149 }
4150
4151 if (hints->netdev_wd_timeout)
4152 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
4153
4154 if (hints->driver_watchdog_timeout) {
4155 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4156 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
4157 else
4158 adapter->keep_alive_timeout =
4159 msecs_to_jiffies(hints->driver_watchdog_timeout);
4160 }
4161 }
4162
4163 static void ena_update_host_info(struct ena_admin_host_info *host_info,
4164 struct net_device *netdev)
4165 {
4166 host_info->supported_network_features[0] =
4167 netdev->features & GENMASK_ULL(31, 0);
4168 host_info->supported_network_features[1] =
4169 (netdev->features & GENMASK_ULL(63, 32)) >> 32;
4170 }
4171
4172 static void ena_timer_service(struct timer_list *t)
4173 {
4174 struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
4175 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
4176 struct ena_admin_host_info *host_info =
4177 adapter->ena_dev->host_attr.host_info;
4178
4179 check_for_missing_keep_alive(adapter);
4180
4181 check_for_admin_com_state(adapter);
4182
4183 check_for_missing_completions(adapter);
4184
4185 check_for_empty_rx_ring(adapter);
4186
4187 if (debug_area)
4188 ena_dump_stats_to_buf(adapter, debug_area);
4189
4190 if (host_info)
4191 ena_update_host_info(host_info, adapter->netdev);
4192
4193 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4194 netif_err(adapter, drv, adapter->netdev,
4195 "Trigger reset is on\n");
4196 ena_dump_stats_to_dmesg(adapter);
4197 queue_work(ena_wq, &adapter->reset_task);
4198 return;
4199 }
4200
4201 /* Reset the timer */
4202 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4203 }
4204
4205 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
4206 struct ena_com_dev *ena_dev,
4207 struct ena_com_dev_get_features_ctx *get_feat_ctx)
4208 {
4209 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
4210
4211 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
4212 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
4213 &get_feat_ctx->max_queue_ext.max_queue_ext;
4214 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
4215 max_queue_ext->max_rx_cq_num);
4216
4217 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
4218 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
4219 } else {
4220 struct ena_admin_queue_feature_desc *max_queues =
4221 &get_feat_ctx->max_queues;
4222 io_tx_sq_num = max_queues->max_sq_num;
4223 io_tx_cq_num = max_queues->max_cq_num;
4224 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
4225 }
4226
4227 /* In case of LLQ use the llq fields for the tx SQ/CQ */
4228 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4229 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
4230
4231 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
4232 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
4233 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
4234 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
4235 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */
4236 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
4237
4238 return max_num_io_queues;
4239 }
4240
4241 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
4242 struct net_device *netdev)
4243 {
4244 netdev_features_t dev_features = 0;
4245
4246 /* Set offload features */
4247 if (feat->offload.tx &
4248 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
4249 dev_features |= NETIF_F_IP_CSUM;
4250
4251 if (feat->offload.tx &
4252 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
4253 dev_features |= NETIF_F_IPV6_CSUM;
4254
4255 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
4256 dev_features |= NETIF_F_TSO;
4257
4258 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
4259 dev_features |= NETIF_F_TSO6;
4260
4261 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
4262 dev_features |= NETIF_F_TSO_ECN;
4263
4264 if (feat->offload.rx_supported &
4265 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
4266 dev_features |= NETIF_F_RXCSUM;
4267
4268 if (feat->offload.rx_supported &
4269 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
4270 dev_features |= NETIF_F_RXCSUM;
4271
4272 netdev->features =
4273 dev_features |
4274 NETIF_F_SG |
4275 NETIF_F_RXHASH |
4276 NETIF_F_HIGHDMA;
4277
4278 netdev->hw_features |= netdev->features;
4279 netdev->vlan_features |= netdev->features;
4280 }
4281
4282 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
4283 struct ena_com_dev_get_features_ctx *feat)
4284 {
4285 struct net_device *netdev = adapter->netdev;
4286
4287 /* Copy mac address */
4288 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
4289 eth_hw_addr_random(netdev);
4290 ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
4291 } else {
4292 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
4293 eth_hw_addr_set(netdev, adapter->mac_addr);
4294 }
4295
4296 /* Set offload features */
4297 ena_set_dev_offloads(feat, netdev);
4298
4299 adapter->max_mtu = feat->dev_attr.max_mtu;
4300 netdev->max_mtu = adapter->max_mtu;
4301 netdev->min_mtu = ENA_MIN_MTU;
4302 }
4303
4304 static int ena_rss_init_default(struct ena_adapter *adapter)
4305 {
4306 struct ena_com_dev *ena_dev = adapter->ena_dev;
4307 struct device *dev = &adapter->pdev->dev;
4308 int rc, i;
4309 u32 val;
4310
4311 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
4312 if (unlikely(rc)) {
4313 dev_err(dev, "Cannot init indirect table\n");
4314 goto err_rss_init;
4315 }
4316
4317 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
4318 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
4319 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
4320 ENA_IO_RXQ_IDX(val));
4321 if (unlikely(rc)) {
4322 dev_err(dev, "Cannot fill indirect table\n");
4323 goto err_fill_indir;
4324 }
4325 }
4326
4327 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL,
4328 ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
4329 if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4330 dev_err(dev, "Cannot fill hash function\n");
4331 goto err_fill_indir;
4332 }
4333
4334 rc = ena_com_set_default_hash_ctrl(ena_dev);
4335 if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4336 dev_err(dev, "Cannot fill hash control\n");
4337 goto err_fill_indir;
4338 }
4339
4340 return 0;
4341
4342 err_fill_indir:
4343 ena_com_rss_destroy(ena_dev);
4344 err_rss_init:
4345
4346 return rc;
4347 }
4348
4349 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
4350 {
4351 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4352
4353 pci_release_selected_regions(pdev, release_bars);
4354 }
4355
4356 /* ena_probe - Device Initialization Routine
4357 * @pdev: PCI device information struct
4358 * @ent: entry in ena_pci_tbl
4359 *
4360 * Returns 0 on success, negative on failure
4361 *
4362 * ena_probe initializes an adapter identified by a pci_dev structure.
4363 * The OS initialization, configuring of the adapter private structure,
4364 * and a hardware reset occur.
4365 */
4366 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4367 {
4368 struct ena_com_dev_get_features_ctx get_feat_ctx;
4369 struct ena_com_dev *ena_dev = NULL;
4370 struct ena_adapter *adapter;
4371 struct net_device *netdev;
4372 static int adapters_found;
4373 u32 max_num_io_queues;
4374 bool wd_state;
4375 int bars, rc;
4376
4377 dev_dbg(&pdev->dev, "%s\n", __func__);
4378
4379 rc = pci_enable_device_mem(pdev);
4380 if (rc) {
4381 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
4382 return rc;
4383 }
4384
4385 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS));
4386 if (rc) {
4387 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc);
4388 goto err_disable_device;
4389 }
4390
4391 pci_set_master(pdev);
4392
4393 ena_dev = vzalloc(sizeof(*ena_dev));
4394 if (!ena_dev) {
4395 rc = -ENOMEM;
4396 goto err_disable_device;
4397 }
4398
4399 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4400 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
4401 if (rc) {
4402 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
4403 rc);
4404 goto err_free_ena_dev;
4405 }
4406
4407 ena_dev->reg_bar = devm_ioremap(&pdev->dev,
4408 pci_resource_start(pdev, ENA_REG_BAR),
4409 pci_resource_len(pdev, ENA_REG_BAR));
4410 if (!ena_dev->reg_bar) {
4411 dev_err(&pdev->dev, "Failed to remap regs bar\n");
4412 rc = -EFAULT;
4413 goto err_free_region;
4414 }
4415
4416 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
4417
4418 ena_dev->dmadev = &pdev->dev;
4419
4420 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS);
4421 if (!netdev) {
4422 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
4423 rc = -ENOMEM;
4424 goto err_free_region;
4425 }
4426
4427 SET_NETDEV_DEV(netdev, &pdev->dev);
4428 adapter = netdev_priv(netdev);
4429 adapter->ena_dev = ena_dev;
4430 adapter->netdev = netdev;
4431 adapter->pdev = pdev;
4432 adapter->msg_enable = DEFAULT_MSG_ENABLE;
4433
4434 ena_dev->net_device = netdev;
4435
4436 pci_set_drvdata(pdev, adapter);
4437
4438 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
4439 if (rc) {
4440 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n");
4441 goto err_netdev_destroy;
4442 }
4443
4444 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state);
4445 if (rc) {
4446 dev_err(&pdev->dev, "ENA device init failed\n");
4447 if (rc == -ETIME)
4448 rc = -EPROBE_DEFER;
4449 goto err_netdev_destroy;
4450 }
4451
4452 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
4453 * Updated during device initialization with the real granularity
4454 */
4455 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
4456 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
4457 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
4458 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
4459 if (unlikely(!max_num_io_queues)) {
4460 rc = -EFAULT;
4461 goto err_device_destroy;
4462 }
4463
4464 ena_set_conf_feat_params(adapter, &get_feat_ctx);
4465
4466 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
4467
4468 adapter->num_io_queues = max_num_io_queues;
4469 adapter->max_num_io_queues = max_num_io_queues;
4470 adapter->last_monitored_tx_qid = 0;
4471
4472 adapter->xdp_first_ring = 0;
4473 adapter->xdp_num_queues = 0;
4474
4475 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
4476 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4477 adapter->disable_meta_caching =
4478 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
4479 BIT(ENA_ADMIN_DISABLE_META_CACHING));
4480
4481 adapter->wd_state = wd_state;
4482
4483 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
4484
4485 rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
4486 if (rc) {
4487 dev_err(&pdev->dev,
4488 "Failed to query interrupt moderation feature\n");
4489 goto err_device_destroy;
4490 }
4491
4492 ena_init_io_rings(adapter,
4493 0,
4494 adapter->xdp_num_queues +
4495 adapter->num_io_queues);
4496
4497 netdev->netdev_ops = &ena_netdev_ops;
4498 netdev->watchdog_timeo = TX_TIMEOUT;
4499 ena_set_ethtool_ops(netdev);
4500
4501 netdev->priv_flags |= IFF_UNICAST_FLT;
4502
4503 u64_stats_init(&adapter->syncp);
4504
4505 rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4506 if (rc) {
4507 dev_err(&pdev->dev,
4508 "Failed to enable and set the admin interrupts\n");
4509 goto err_worker_destroy;
4510 }
4511 rc = ena_rss_init_default(adapter);
4512 if (rc && (rc != -EOPNOTSUPP)) {
4513 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4514 goto err_free_msix;
4515 }
4516
4517 ena_config_debug_area(adapter);
4518
4519 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues))
4520 netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
4521 NETDEV_XDP_ACT_REDIRECT;
4522
4523 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4524
4525 netif_carrier_off(netdev);
4526
4527 rc = register_netdev(netdev);
4528 if (rc) {
4529 dev_err(&pdev->dev, "Cannot register net device\n");
4530 goto err_rss;
4531 }
4532
4533 INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4534
4535 adapter->last_keep_alive_jiffies = jiffies;
4536 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4537 adapter->missing_tx_completion_to = TX_TIMEOUT;
4538 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4539
4540 ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4541
4542 timer_setup(&adapter->timer_service, ena_timer_service, 0);
4543 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4544
4545 dev_info(&pdev->dev,
4546 "%s found at mem %lx, mac addr %pM\n",
4547 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4548 netdev->dev_addr);
4549
4550 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4551
4552 adapters_found++;
4553
4554 return 0;
4555
4556 err_rss:
4557 ena_com_delete_debug_area(ena_dev);
4558 ena_com_rss_destroy(ena_dev);
4559 err_free_msix:
4560 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4561 /* stop submitting admin commands on a device that was reset */
4562 ena_com_set_admin_running_state(ena_dev, false);
4563 ena_free_mgmnt_irq(adapter);
4564 ena_disable_msix(adapter);
4565 err_worker_destroy:
4566 del_timer(&adapter->timer_service);
4567 err_device_destroy:
4568 ena_com_delete_host_info(ena_dev);
4569 ena_com_admin_destroy(ena_dev);
4570 err_netdev_destroy:
4571 free_netdev(netdev);
4572 err_free_region:
4573 ena_release_bars(ena_dev, pdev);
4574 err_free_ena_dev:
4575 vfree(ena_dev);
4576 err_disable_device:
4577 pci_disable_device(pdev);
4578 return rc;
4579 }
4580
4581 /*****************************************************************************/
4582
4583 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4584 * @pdev: PCI device information struct
4585 * @shutdown: Is it a shutdown operation? If false, means it is a removal
4586 *
4587 * __ena_shutoff is a helper routine that does the real work on shutdown and
4588 * removal paths; the difference between those paths is with regards to whether
4589 * dettach or unregister the netdevice.
4590 */
4591 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4592 {
4593 struct ena_adapter *adapter = pci_get_drvdata(pdev);
4594 struct ena_com_dev *ena_dev;
4595 struct net_device *netdev;
4596
4597 ena_dev = adapter->ena_dev;
4598 netdev = adapter->netdev;
4599
4600 #ifdef CONFIG_RFS_ACCEL
4601 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4602 free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4603 netdev->rx_cpu_rmap = NULL;
4604 }
4605 #endif /* CONFIG_RFS_ACCEL */
4606
4607 /* Make sure timer and reset routine won't be called after
4608 * freeing device resources.
4609 */
4610 del_timer_sync(&adapter->timer_service);
4611 cancel_work_sync(&adapter->reset_task);
4612
4613 rtnl_lock(); /* lock released inside the below if-else block */
4614 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4615 ena_destroy_device(adapter, true);
4616
4617 if (shutdown) {
4618 netif_device_detach(netdev);
4619 dev_close(netdev);
4620 rtnl_unlock();
4621 } else {
4622 rtnl_unlock();
4623 unregister_netdev(netdev);
4624 free_netdev(netdev);
4625 }
4626
4627 ena_com_rss_destroy(ena_dev);
4628
4629 ena_com_delete_debug_area(ena_dev);
4630
4631 ena_com_delete_host_info(ena_dev);
4632
4633 ena_release_bars(ena_dev, pdev);
4634
4635 pci_disable_device(pdev);
4636
4637 vfree(ena_dev);
4638 }
4639
4640 /* ena_remove - Device Removal Routine
4641 * @pdev: PCI device information struct
4642 *
4643 * ena_remove is called by the PCI subsystem to alert the driver
4644 * that it should release a PCI device.
4645 */
4646
4647 static void ena_remove(struct pci_dev *pdev)
4648 {
4649 __ena_shutoff(pdev, false);
4650 }
4651
4652 /* ena_shutdown - Device Shutdown Routine
4653 * @pdev: PCI device information struct
4654 *
4655 * ena_shutdown is called by the PCI subsystem to alert the driver that
4656 * a shutdown/reboot (or kexec) is happening and device must be disabled.
4657 */
4658
4659 static void ena_shutdown(struct pci_dev *pdev)
4660 {
4661 __ena_shutoff(pdev, true);
4662 }
4663
4664 /* ena_suspend - PM suspend callback
4665 * @dev_d: Device information struct
4666 */
4667 static int __maybe_unused ena_suspend(struct device *dev_d)
4668 {
4669 struct pci_dev *pdev = to_pci_dev(dev_d);
4670 struct ena_adapter *adapter = pci_get_drvdata(pdev);
4671
4672 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp);
4673
4674 rtnl_lock();
4675 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4676 dev_err(&pdev->dev,
4677 "Ignoring device reset request as the device is being suspended\n");
4678 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4679 }
4680 ena_destroy_device(adapter, true);
4681 rtnl_unlock();
4682 return 0;
4683 }
4684
4685 /* ena_resume - PM resume callback
4686 * @dev_d: Device information struct
4687 */
4688 static int __maybe_unused ena_resume(struct device *dev_d)
4689 {
4690 struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4691 int rc;
4692
4693 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp);
4694
4695 rtnl_lock();
4696 rc = ena_restore_device(adapter);
4697 rtnl_unlock();
4698 return rc;
4699 }
4700
4701 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4702
4703 static struct pci_driver ena_pci_driver = {
4704 .name = DRV_MODULE_NAME,
4705 .id_table = ena_pci_tbl,
4706 .probe = ena_probe,
4707 .remove = ena_remove,
4708 .shutdown = ena_shutdown,
4709 .driver.pm = &ena_pm_ops,
4710 .sriov_configure = pci_sriov_configure_simple,
4711 };
4712
4713 static int __init ena_init(void)
4714 {
4715 int ret;
4716
4717 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4718 if (!ena_wq) {
4719 pr_err("Failed to create workqueue\n");
4720 return -ENOMEM;
4721 }
4722
4723 ret = pci_register_driver(&ena_pci_driver);
4724 if (ret)
4725 destroy_workqueue(ena_wq);
4726
4727 return ret;
4728 }
4729
4730 static void __exit ena_cleanup(void)
4731 {
4732 pci_unregister_driver(&ena_pci_driver);
4733
4734 if (ena_wq) {
4735 destroy_workqueue(ena_wq);
4736 ena_wq = NULL;
4737 }
4738 }
4739
4740 /******************************************************************************
4741 ******************************** AENQ Handlers *******************************
4742 *****************************************************************************/
4743 /* ena_update_on_link_change:
4744 * Notify the network interface about the change in link status
4745 */
4746 static void ena_update_on_link_change(void *adapter_data,
4747 struct ena_admin_aenq_entry *aenq_e)
4748 {
4749 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4750 struct ena_admin_aenq_link_change_desc *aenq_desc =
4751 (struct ena_admin_aenq_link_change_desc *)aenq_e;
4752 int status = aenq_desc->flags &
4753 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4754
4755 if (status) {
4756 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
4757 set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4758 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4759 netif_carrier_on(adapter->netdev);
4760 } else {
4761 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4762 netif_carrier_off(adapter->netdev);
4763 }
4764 }
4765
4766 static void ena_keep_alive_wd(void *adapter_data,
4767 struct ena_admin_aenq_entry *aenq_e)
4768 {
4769 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4770 struct ena_admin_aenq_keep_alive_desc *desc;
4771 u64 rx_drops;
4772 u64 tx_drops;
4773
4774 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4775 adapter->last_keep_alive_jiffies = jiffies;
4776
4777 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4778 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4779
4780 u64_stats_update_begin(&adapter->syncp);
4781 /* These stats are accumulated by the device, so the counters indicate
4782 * all drops since last reset.
4783 */
4784 adapter->dev_stats.rx_drops = rx_drops;
4785 adapter->dev_stats.tx_drops = tx_drops;
4786 u64_stats_update_end(&adapter->syncp);
4787 }
4788
4789 static void ena_notification(void *adapter_data,
4790 struct ena_admin_aenq_entry *aenq_e)
4791 {
4792 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4793 struct ena_admin_ena_hw_hints *hints;
4794
4795 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4796 "Invalid group(%x) expected %x\n",
4797 aenq_e->aenq_common_desc.group,
4798 ENA_ADMIN_NOTIFICATION);
4799
4800 switch (aenq_e->aenq_common_desc.syndrome) {
4801 case ENA_ADMIN_UPDATE_HINTS:
4802 hints = (struct ena_admin_ena_hw_hints *)
4803 (&aenq_e->inline_data_w4);
4804 ena_update_hints(adapter, hints);
4805 break;
4806 default:
4807 netif_err(adapter, drv, adapter->netdev,
4808 "Invalid aenq notification link state %d\n",
4809 aenq_e->aenq_common_desc.syndrome);
4810 }
4811 }
4812
4813 /* This handler will called for unknown event group or unimplemented handlers*/
4814 static void unimplemented_aenq_handler(void *data,
4815 struct ena_admin_aenq_entry *aenq_e)
4816 {
4817 struct ena_adapter *adapter = (struct ena_adapter *)data;
4818
4819 netif_err(adapter, drv, adapter->netdev,
4820 "Unknown event was received or event with unimplemented handler\n");
4821 }
4822
4823 static struct ena_aenq_handlers aenq_handlers = {
4824 .handlers = {
4825 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4826 [ENA_ADMIN_NOTIFICATION] = ena_notification,
4827 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4828 },
4829 .unimplemented_handler = unimplemented_aenq_handler
4830 };
4831
4832 module_init(ena_init);
4833 module_exit(ena_cleanup);