]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/apple/bmac.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / drivers / net / ethernet / apple / bmac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Network device driver for the BMAC ethernet controller on
4 * Apple Powermacs. Assumes it's under a DBDMA controller.
5 *
6 * Copyright (C) 1998 Randy Gobbel.
7 *
8 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
9 * dynamic procfs inode.
10 */
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/delay.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/proc_fs.h>
20 #include <linux/init.h>
21 #include <linux/spinlock.h>
22 #include <linux/crc32.h>
23 #include <linux/crc32poly.h>
24 #include <linux/bitrev.h>
25 #include <linux/ethtool.h>
26 #include <linux/slab.h>
27 #include <asm/prom.h>
28 #include <asm/dbdma.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/machdep.h>
33 #include <asm/pmac_feature.h>
34 #include <asm/macio.h>
35 #include <asm/irq.h>
36
37 #include "bmac.h"
38
39 #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
40 #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
41
42 /* switch to use multicast code lifted from sunhme driver */
43 #define SUNHME_MULTICAST
44
45 #define N_RX_RING 64
46 #define N_TX_RING 32
47 #define MAX_TX_ACTIVE 1
48 #define ETHERCRC 4
49 #define ETHERMINPACKET 64
50 #define ETHERMTU 1500
51 #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
52 #define TX_TIMEOUT HZ /* 1 second */
53
54 /* Bits in transmit DMA status */
55 #define TX_DMA_ERR 0x80
56
57 #define XXDEBUG(args)
58
59 struct bmac_data {
60 /* volatile struct bmac *bmac; */
61 struct sk_buff_head *queue;
62 volatile struct dbdma_regs __iomem *tx_dma;
63 int tx_dma_intr;
64 volatile struct dbdma_regs __iomem *rx_dma;
65 int rx_dma_intr;
66 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
67 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
68 struct macio_dev *mdev;
69 int is_bmac_plus;
70 struct sk_buff *rx_bufs[N_RX_RING];
71 int rx_fill;
72 int rx_empty;
73 struct sk_buff *tx_bufs[N_TX_RING];
74 int tx_fill;
75 int tx_empty;
76 unsigned char tx_fullup;
77 struct timer_list tx_timeout;
78 int timeout_active;
79 int sleeping;
80 int opened;
81 unsigned short hash_use_count[64];
82 unsigned short hash_table_mask[4];
83 spinlock_t lock;
84 };
85
86 #if 0 /* Move that to ethtool */
87
88 typedef struct bmac_reg_entry {
89 char *name;
90 unsigned short reg_offset;
91 } bmac_reg_entry_t;
92
93 #define N_REG_ENTRIES 31
94
95 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
96 {"MEMADD", MEMADD},
97 {"MEMDATAHI", MEMDATAHI},
98 {"MEMDATALO", MEMDATALO},
99 {"TXPNTR", TXPNTR},
100 {"RXPNTR", RXPNTR},
101 {"IPG1", IPG1},
102 {"IPG2", IPG2},
103 {"ALIMIT", ALIMIT},
104 {"SLOT", SLOT},
105 {"PALEN", PALEN},
106 {"PAPAT", PAPAT},
107 {"TXSFD", TXSFD},
108 {"JAM", JAM},
109 {"TXCFG", TXCFG},
110 {"TXMAX", TXMAX},
111 {"TXMIN", TXMIN},
112 {"PAREG", PAREG},
113 {"DCNT", DCNT},
114 {"NCCNT", NCCNT},
115 {"NTCNT", NTCNT},
116 {"EXCNT", EXCNT},
117 {"LTCNT", LTCNT},
118 {"TXSM", TXSM},
119 {"RXCFG", RXCFG},
120 {"RXMAX", RXMAX},
121 {"RXMIN", RXMIN},
122 {"FRCNT", FRCNT},
123 {"AECNT", AECNT},
124 {"FECNT", FECNT},
125 {"RXSM", RXSM},
126 {"RXCV", RXCV}
127 };
128
129 #endif
130
131 static unsigned char *bmac_emergency_rxbuf;
132
133 /*
134 * Number of bytes of private data per BMAC: allow enough for
135 * the rx and tx dma commands plus a branch dma command each,
136 * and another 16 bytes to allow us to align the dma command
137 * buffers on a 16 byte boundary.
138 */
139 #define PRIV_BYTES (sizeof(struct bmac_data) \
140 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
141 + sizeof(struct sk_buff_head))
142
143 static int bmac_open(struct net_device *dev);
144 static int bmac_close(struct net_device *dev);
145 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
146 static void bmac_set_multicast(struct net_device *dev);
147 static void bmac_reset_and_enable(struct net_device *dev);
148 static void bmac_start_chip(struct net_device *dev);
149 static void bmac_init_chip(struct net_device *dev);
150 static void bmac_init_registers(struct net_device *dev);
151 static void bmac_enable_and_reset_chip(struct net_device *dev);
152 static int bmac_set_address(struct net_device *dev, void *addr);
153 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
154 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
155 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
156 static void bmac_set_timeout(struct net_device *dev);
157 static void bmac_tx_timeout(struct timer_list *t);
158 static netdev_tx_t bmac_output(struct sk_buff *skb, struct net_device *dev);
159 static void bmac_start(struct net_device *dev);
160
161 #define DBDMA_SET(x) ( ((x) | (x) << 16) )
162 #define DBDMA_CLEAR(x) ( (x) << 16)
163
164 static inline void
165 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
166 {
167 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
168 }
169
170 static inline unsigned long
171 dbdma_ld32(volatile __u32 __iomem *a)
172 {
173 __u32 swap;
174 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
175 return swap;
176 }
177
178 static void
179 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
180 {
181 dbdma_st32(&dmap->control,
182 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
183 eieio();
184 }
185
186 static void
187 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
188 {
189 dbdma_st32(&dmap->control,
190 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
191 eieio();
192 while (dbdma_ld32(&dmap->status) & RUN)
193 eieio();
194 }
195
196 static void
197 dbdma_setcmd(volatile struct dbdma_cmd *cp,
198 unsigned short cmd, unsigned count, unsigned long addr,
199 unsigned long cmd_dep)
200 {
201 out_le16(&cp->command, cmd);
202 out_le16(&cp->req_count, count);
203 out_le32(&cp->phy_addr, addr);
204 out_le32(&cp->cmd_dep, cmd_dep);
205 out_le16(&cp->xfer_status, 0);
206 out_le16(&cp->res_count, 0);
207 }
208
209 static inline
210 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
211 {
212 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
213 }
214
215
216 static inline
217 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
218 {
219 return in_le16((void __iomem *)dev->base_addr + reg_offset);
220 }
221
222 static void
223 bmac_enable_and_reset_chip(struct net_device *dev)
224 {
225 struct bmac_data *bp = netdev_priv(dev);
226 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
227 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
228
229 if (rd)
230 dbdma_reset(rd);
231 if (td)
232 dbdma_reset(td);
233
234 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
235 }
236
237 #define MIFDELAY udelay(10)
238
239 static unsigned int
240 bmac_mif_readbits(struct net_device *dev, int nb)
241 {
242 unsigned int val = 0;
243
244 while (--nb >= 0) {
245 bmwrite(dev, MIFCSR, 0);
246 MIFDELAY;
247 if (bmread(dev, MIFCSR) & 8)
248 val |= 1 << nb;
249 bmwrite(dev, MIFCSR, 1);
250 MIFDELAY;
251 }
252 bmwrite(dev, MIFCSR, 0);
253 MIFDELAY;
254 bmwrite(dev, MIFCSR, 1);
255 MIFDELAY;
256 return val;
257 }
258
259 static void
260 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
261 {
262 int b;
263
264 while (--nb >= 0) {
265 b = (val & (1 << nb))? 6: 4;
266 bmwrite(dev, MIFCSR, b);
267 MIFDELAY;
268 bmwrite(dev, MIFCSR, b|1);
269 MIFDELAY;
270 }
271 }
272
273 static unsigned int
274 bmac_mif_read(struct net_device *dev, unsigned int addr)
275 {
276 unsigned int val;
277
278 bmwrite(dev, MIFCSR, 4);
279 MIFDELAY;
280 bmac_mif_writebits(dev, ~0U, 32);
281 bmac_mif_writebits(dev, 6, 4);
282 bmac_mif_writebits(dev, addr, 10);
283 bmwrite(dev, MIFCSR, 2);
284 MIFDELAY;
285 bmwrite(dev, MIFCSR, 1);
286 MIFDELAY;
287 val = bmac_mif_readbits(dev, 17);
288 bmwrite(dev, MIFCSR, 4);
289 MIFDELAY;
290 return val;
291 }
292
293 static void
294 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
295 {
296 bmwrite(dev, MIFCSR, 4);
297 MIFDELAY;
298 bmac_mif_writebits(dev, ~0U, 32);
299 bmac_mif_writebits(dev, 5, 4);
300 bmac_mif_writebits(dev, addr, 10);
301 bmac_mif_writebits(dev, 2, 2);
302 bmac_mif_writebits(dev, val, 16);
303 bmac_mif_writebits(dev, 3, 2);
304 }
305
306 static void
307 bmac_init_registers(struct net_device *dev)
308 {
309 struct bmac_data *bp = netdev_priv(dev);
310 volatile unsigned short regValue;
311 unsigned short *pWord16;
312 int i;
313
314 /* XXDEBUG(("bmac: enter init_registers\n")); */
315
316 bmwrite(dev, RXRST, RxResetValue);
317 bmwrite(dev, TXRST, TxResetBit);
318
319 i = 100;
320 do {
321 --i;
322 udelay(10000);
323 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
324 } while ((regValue & TxResetBit) && i > 0);
325
326 if (!bp->is_bmac_plus) {
327 regValue = bmread(dev, XCVRIF);
328 regValue |= ClkBit | SerialMode | COLActiveLow;
329 bmwrite(dev, XCVRIF, regValue);
330 udelay(10000);
331 }
332
333 bmwrite(dev, RSEED, (unsigned short)0x1968);
334
335 regValue = bmread(dev, XIFC);
336 regValue |= TxOutputEnable;
337 bmwrite(dev, XIFC, regValue);
338
339 bmread(dev, PAREG);
340
341 /* set collision counters to 0 */
342 bmwrite(dev, NCCNT, 0);
343 bmwrite(dev, NTCNT, 0);
344 bmwrite(dev, EXCNT, 0);
345 bmwrite(dev, LTCNT, 0);
346
347 /* set rx counters to 0 */
348 bmwrite(dev, FRCNT, 0);
349 bmwrite(dev, LECNT, 0);
350 bmwrite(dev, AECNT, 0);
351 bmwrite(dev, FECNT, 0);
352 bmwrite(dev, RXCV, 0);
353
354 /* set tx fifo information */
355 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
356
357 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
358 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
359
360 /* set rx fifo information */
361 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
362 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
363
364 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
365 bmread(dev, STATUS); /* read it just to clear it */
366
367 /* zero out the chip Hash Filter registers */
368 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
369 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
370 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
371 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
372 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
373
374 pWord16 = (unsigned short *)dev->dev_addr;
375 bmwrite(dev, MADD0, *pWord16++);
376 bmwrite(dev, MADD1, *pWord16++);
377 bmwrite(dev, MADD2, *pWord16);
378
379 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
380
381 bmwrite(dev, INTDISABLE, EnableNormal);
382 }
383
384 #if 0
385 static void
386 bmac_disable_interrupts(struct net_device *dev)
387 {
388 bmwrite(dev, INTDISABLE, DisableAll);
389 }
390
391 static void
392 bmac_enable_interrupts(struct net_device *dev)
393 {
394 bmwrite(dev, INTDISABLE, EnableNormal);
395 }
396 #endif
397
398
399 static void
400 bmac_start_chip(struct net_device *dev)
401 {
402 struct bmac_data *bp = netdev_priv(dev);
403 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
404 unsigned short oldConfig;
405
406 /* enable rx dma channel */
407 dbdma_continue(rd);
408
409 oldConfig = bmread(dev, TXCFG);
410 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
411
412 /* turn on rx plus any other bits already on (promiscuous possibly) */
413 oldConfig = bmread(dev, RXCFG);
414 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
415 udelay(20000);
416 }
417
418 static void
419 bmac_init_phy(struct net_device *dev)
420 {
421 unsigned int addr;
422 struct bmac_data *bp = netdev_priv(dev);
423
424 printk(KERN_DEBUG "phy registers:");
425 for (addr = 0; addr < 32; ++addr) {
426 if ((addr & 7) == 0)
427 printk(KERN_DEBUG);
428 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
429 }
430 printk(KERN_CONT "\n");
431
432 if (bp->is_bmac_plus) {
433 unsigned int capable, ctrl;
434
435 ctrl = bmac_mif_read(dev, 0);
436 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
437 if (bmac_mif_read(dev, 4) != capable ||
438 (ctrl & 0x1000) == 0) {
439 bmac_mif_write(dev, 4, capable);
440 bmac_mif_write(dev, 0, 0x1200);
441 } else
442 bmac_mif_write(dev, 0, 0x1000);
443 }
444 }
445
446 static void bmac_init_chip(struct net_device *dev)
447 {
448 bmac_init_phy(dev);
449 bmac_init_registers(dev);
450 }
451
452 #ifdef CONFIG_PM
453 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
454 {
455 struct net_device* dev = macio_get_drvdata(mdev);
456 struct bmac_data *bp = netdev_priv(dev);
457 unsigned long flags;
458 unsigned short config;
459 int i;
460
461 netif_device_detach(dev);
462 /* prolly should wait for dma to finish & turn off the chip */
463 spin_lock_irqsave(&bp->lock, flags);
464 if (bp->timeout_active) {
465 del_timer(&bp->tx_timeout);
466 bp->timeout_active = 0;
467 }
468 disable_irq(dev->irq);
469 disable_irq(bp->tx_dma_intr);
470 disable_irq(bp->rx_dma_intr);
471 bp->sleeping = 1;
472 spin_unlock_irqrestore(&bp->lock, flags);
473 if (bp->opened) {
474 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
475 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
476
477 config = bmread(dev, RXCFG);
478 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
479 config = bmread(dev, TXCFG);
480 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
481 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
482 /* disable rx and tx dma */
483 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
484 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
485 /* free some skb's */
486 for (i=0; i<N_RX_RING; i++) {
487 if (bp->rx_bufs[i] != NULL) {
488 dev_kfree_skb(bp->rx_bufs[i]);
489 bp->rx_bufs[i] = NULL;
490 }
491 }
492 for (i = 0; i<N_TX_RING; i++) {
493 if (bp->tx_bufs[i] != NULL) {
494 dev_kfree_skb(bp->tx_bufs[i]);
495 bp->tx_bufs[i] = NULL;
496 }
497 }
498 }
499 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
500 return 0;
501 }
502
503 static int bmac_resume(struct macio_dev *mdev)
504 {
505 struct net_device* dev = macio_get_drvdata(mdev);
506 struct bmac_data *bp = netdev_priv(dev);
507
508 /* see if this is enough */
509 if (bp->opened)
510 bmac_reset_and_enable(dev);
511
512 enable_irq(dev->irq);
513 enable_irq(bp->tx_dma_intr);
514 enable_irq(bp->rx_dma_intr);
515 netif_device_attach(dev);
516
517 return 0;
518 }
519 #endif /* CONFIG_PM */
520
521 static int bmac_set_address(struct net_device *dev, void *addr)
522 {
523 struct bmac_data *bp = netdev_priv(dev);
524 unsigned char *p = addr;
525 unsigned short *pWord16;
526 unsigned long flags;
527 int i;
528
529 XXDEBUG(("bmac: enter set_address\n"));
530 spin_lock_irqsave(&bp->lock, flags);
531
532 for (i = 0; i < 6; ++i) {
533 dev->dev_addr[i] = p[i];
534 }
535 /* load up the hardware address */
536 pWord16 = (unsigned short *)dev->dev_addr;
537 bmwrite(dev, MADD0, *pWord16++);
538 bmwrite(dev, MADD1, *pWord16++);
539 bmwrite(dev, MADD2, *pWord16);
540
541 spin_unlock_irqrestore(&bp->lock, flags);
542 XXDEBUG(("bmac: exit set_address\n"));
543 return 0;
544 }
545
546 static inline void bmac_set_timeout(struct net_device *dev)
547 {
548 struct bmac_data *bp = netdev_priv(dev);
549 unsigned long flags;
550
551 spin_lock_irqsave(&bp->lock, flags);
552 if (bp->timeout_active)
553 del_timer(&bp->tx_timeout);
554 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
555 add_timer(&bp->tx_timeout);
556 bp->timeout_active = 1;
557 spin_unlock_irqrestore(&bp->lock, flags);
558 }
559
560 static void
561 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
562 {
563 void *vaddr;
564 unsigned long baddr;
565 unsigned long len;
566
567 len = skb->len;
568 vaddr = skb->data;
569 baddr = virt_to_bus(vaddr);
570
571 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
572 }
573
574 static void
575 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
576 {
577 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
578
579 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
580 virt_to_bus(addr), 0);
581 }
582
583 static void
584 bmac_init_tx_ring(struct bmac_data *bp)
585 {
586 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
587
588 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
589
590 bp->tx_empty = 0;
591 bp->tx_fill = 0;
592 bp->tx_fullup = 0;
593
594 /* put a branch at the end of the tx command list */
595 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
596 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
597
598 /* reset tx dma */
599 dbdma_reset(td);
600 out_le32(&td->wait_sel, 0x00200020);
601 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
602 }
603
604 static int
605 bmac_init_rx_ring(struct net_device *dev)
606 {
607 struct bmac_data *bp = netdev_priv(dev);
608 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
609 int i;
610 struct sk_buff *skb;
611
612 /* initialize list of sk_buffs for receiving and set up recv dma */
613 memset((char *)bp->rx_cmds, 0,
614 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
615 for (i = 0; i < N_RX_RING; i++) {
616 if ((skb = bp->rx_bufs[i]) == NULL) {
617 bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
618 if (skb != NULL)
619 skb_reserve(skb, 2);
620 }
621 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
622 }
623
624 bp->rx_empty = 0;
625 bp->rx_fill = i;
626
627 /* Put a branch back to the beginning of the receive command list */
628 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
629 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
630
631 /* start rx dma */
632 dbdma_reset(rd);
633 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
634
635 return 1;
636 }
637
638
639 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
640 {
641 struct bmac_data *bp = netdev_priv(dev);
642 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
643 int i;
644
645 /* see if there's a free slot in the tx ring */
646 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
647 /* bp->tx_empty, bp->tx_fill)); */
648 i = bp->tx_fill + 1;
649 if (i >= N_TX_RING)
650 i = 0;
651 if (i == bp->tx_empty) {
652 netif_stop_queue(dev);
653 bp->tx_fullup = 1;
654 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
655 return -1; /* can't take it at the moment */
656 }
657
658 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
659
660 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
661
662 bp->tx_bufs[bp->tx_fill] = skb;
663 bp->tx_fill = i;
664
665 dev->stats.tx_bytes += skb->len;
666
667 dbdma_continue(td);
668
669 return 0;
670 }
671
672 static int rxintcount;
673
674 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
675 {
676 struct net_device *dev = (struct net_device *) dev_id;
677 struct bmac_data *bp = netdev_priv(dev);
678 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
679 volatile struct dbdma_cmd *cp;
680 int i, nb, stat;
681 struct sk_buff *skb;
682 unsigned int residual;
683 int last;
684 unsigned long flags;
685
686 spin_lock_irqsave(&bp->lock, flags);
687
688 if (++rxintcount < 10) {
689 XXDEBUG(("bmac_rxdma_intr\n"));
690 }
691
692 last = -1;
693 i = bp->rx_empty;
694
695 while (1) {
696 cp = &bp->rx_cmds[i];
697 stat = le16_to_cpu(cp->xfer_status);
698 residual = le16_to_cpu(cp->res_count);
699 if ((stat & ACTIVE) == 0)
700 break;
701 nb = RX_BUFLEN - residual - 2;
702 if (nb < (ETHERMINPACKET - ETHERCRC)) {
703 skb = NULL;
704 dev->stats.rx_length_errors++;
705 dev->stats.rx_errors++;
706 } else {
707 skb = bp->rx_bufs[i];
708 bp->rx_bufs[i] = NULL;
709 }
710 if (skb != NULL) {
711 nb -= ETHERCRC;
712 skb_put(skb, nb);
713 skb->protocol = eth_type_trans(skb, dev);
714 netif_rx(skb);
715 ++dev->stats.rx_packets;
716 dev->stats.rx_bytes += nb;
717 } else {
718 ++dev->stats.rx_dropped;
719 }
720 if ((skb = bp->rx_bufs[i]) == NULL) {
721 bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
722 if (skb != NULL)
723 skb_reserve(bp->rx_bufs[i], 2);
724 }
725 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
726 cp->res_count = cpu_to_le16(0);
727 cp->xfer_status = cpu_to_le16(0);
728 last = i;
729 if (++i >= N_RX_RING) i = 0;
730 }
731
732 if (last != -1) {
733 bp->rx_fill = last;
734 bp->rx_empty = i;
735 }
736
737 dbdma_continue(rd);
738 spin_unlock_irqrestore(&bp->lock, flags);
739
740 if (rxintcount < 10) {
741 XXDEBUG(("bmac_rxdma_intr done\n"));
742 }
743 return IRQ_HANDLED;
744 }
745
746 static int txintcount;
747
748 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
749 {
750 struct net_device *dev = (struct net_device *) dev_id;
751 struct bmac_data *bp = netdev_priv(dev);
752 volatile struct dbdma_cmd *cp;
753 int stat;
754 unsigned long flags;
755
756 spin_lock_irqsave(&bp->lock, flags);
757
758 if (txintcount++ < 10) {
759 XXDEBUG(("bmac_txdma_intr\n"));
760 }
761
762 /* del_timer(&bp->tx_timeout); */
763 /* bp->timeout_active = 0; */
764
765 while (1) {
766 cp = &bp->tx_cmds[bp->tx_empty];
767 stat = le16_to_cpu(cp->xfer_status);
768 if (txintcount < 10) {
769 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
770 }
771 if (!(stat & ACTIVE)) {
772 /*
773 * status field might not have been filled by DBDMA
774 */
775 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
776 break;
777 }
778
779 if (bp->tx_bufs[bp->tx_empty]) {
780 ++dev->stats.tx_packets;
781 dev_consume_skb_irq(bp->tx_bufs[bp->tx_empty]);
782 }
783 bp->tx_bufs[bp->tx_empty] = NULL;
784 bp->tx_fullup = 0;
785 netif_wake_queue(dev);
786 if (++bp->tx_empty >= N_TX_RING)
787 bp->tx_empty = 0;
788 if (bp->tx_empty == bp->tx_fill)
789 break;
790 }
791
792 spin_unlock_irqrestore(&bp->lock, flags);
793
794 if (txintcount < 10) {
795 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
796 }
797
798 bmac_start(dev);
799 return IRQ_HANDLED;
800 }
801
802 #ifndef SUNHME_MULTICAST
803 /* Real fast bit-reversal algorithm, 6-bit values */
804 static int reverse6[64] = {
805 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
806 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
807 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
808 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
809 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
810 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
811 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
812 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
813 };
814
815 static unsigned int
816 crc416(unsigned int curval, unsigned short nxtval)
817 {
818 unsigned int counter, cur = curval, next = nxtval;
819 int high_crc_set, low_data_set;
820
821 /* Swap bytes */
822 next = ((next & 0x00FF) << 8) | (next >> 8);
823
824 /* Compute bit-by-bit */
825 for (counter = 0; counter < 16; ++counter) {
826 /* is high CRC bit set? */
827 if ((cur & 0x80000000) == 0) high_crc_set = 0;
828 else high_crc_set = 1;
829
830 cur = cur << 1;
831
832 if ((next & 0x0001) == 0) low_data_set = 0;
833 else low_data_set = 1;
834
835 next = next >> 1;
836
837 /* do the XOR */
838 if (high_crc_set ^ low_data_set) cur = cur ^ CRC32_POLY_BE;
839 }
840 return cur;
841 }
842
843 static unsigned int
844 bmac_crc(unsigned short *address)
845 {
846 unsigned int newcrc;
847
848 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
849 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
850 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
851 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
852
853 return(newcrc);
854 }
855
856 /*
857 * Add requested mcast addr to BMac's hash table filter.
858 *
859 */
860
861 static void
862 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
863 {
864 unsigned int crc;
865 unsigned short mask;
866
867 if (!(*addr)) return;
868 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
869 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
870 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
871 mask = crc % 16;
872 mask = (unsigned char)1 << mask;
873 bp->hash_use_count[crc/16] |= mask;
874 }
875
876 static void
877 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
878 {
879 unsigned int crc;
880 unsigned char mask;
881
882 /* Now, delete the address from the filter copy, as indicated */
883 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
884 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
885 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
886 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
887 mask = crc % 16;
888 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
889 bp->hash_table_mask[crc/16] &= mask;
890 }
891
892 /*
893 * Sync the adapter with the software copy of the multicast mask
894 * (logical address filter).
895 */
896
897 static void
898 bmac_rx_off(struct net_device *dev)
899 {
900 unsigned short rx_cfg;
901
902 rx_cfg = bmread(dev, RXCFG);
903 rx_cfg &= ~RxMACEnable;
904 bmwrite(dev, RXCFG, rx_cfg);
905 do {
906 rx_cfg = bmread(dev, RXCFG);
907 } while (rx_cfg & RxMACEnable);
908 }
909
910 unsigned short
911 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
912 {
913 unsigned short rx_cfg;
914
915 rx_cfg = bmread(dev, RXCFG);
916 rx_cfg |= RxMACEnable;
917 if (hash_enable) rx_cfg |= RxHashFilterEnable;
918 else rx_cfg &= ~RxHashFilterEnable;
919 if (promisc_enable) rx_cfg |= RxPromiscEnable;
920 else rx_cfg &= ~RxPromiscEnable;
921 bmwrite(dev, RXRST, RxResetValue);
922 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
923 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
924 bmwrite(dev, RXCFG, rx_cfg );
925 return rx_cfg;
926 }
927
928 static void
929 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
930 {
931 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
932 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
933 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
934 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
935 }
936
937 #if 0
938 static void
939 bmac_add_multi(struct net_device *dev,
940 struct bmac_data *bp, unsigned char *addr)
941 {
942 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
943 bmac_addhash(bp, addr);
944 bmac_rx_off(dev);
945 bmac_update_hash_table_mask(dev, bp);
946 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
947 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
948 }
949
950 static void
951 bmac_remove_multi(struct net_device *dev,
952 struct bmac_data *bp, unsigned char *addr)
953 {
954 bmac_removehash(bp, addr);
955 bmac_rx_off(dev);
956 bmac_update_hash_table_mask(dev, bp);
957 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
958 }
959 #endif
960
961 /* Set or clear the multicast filter for this adaptor.
962 num_addrs == -1 Promiscuous mode, receive all packets
963 num_addrs == 0 Normal mode, clear multicast list
964 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
965 best-effort filtering.
966 */
967 static void bmac_set_multicast(struct net_device *dev)
968 {
969 struct netdev_hw_addr *ha;
970 struct bmac_data *bp = netdev_priv(dev);
971 int num_addrs = netdev_mc_count(dev);
972 unsigned short rx_cfg;
973 int i;
974
975 if (bp->sleeping)
976 return;
977
978 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
979
980 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
981 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
982 bmac_update_hash_table_mask(dev, bp);
983 rx_cfg = bmac_rx_on(dev, 1, 0);
984 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
985 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
986 rx_cfg = bmread(dev, RXCFG);
987 rx_cfg |= RxPromiscEnable;
988 bmwrite(dev, RXCFG, rx_cfg);
989 rx_cfg = bmac_rx_on(dev, 0, 1);
990 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
991 } else {
992 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
993 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
994 if (num_addrs == 0) {
995 rx_cfg = bmac_rx_on(dev, 0, 0);
996 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
997 } else {
998 netdev_for_each_mc_addr(ha, dev)
999 bmac_addhash(bp, ha->addr);
1000 bmac_update_hash_table_mask(dev, bp);
1001 rx_cfg = bmac_rx_on(dev, 1, 0);
1002 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1003 }
1004 }
1005 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1006 }
1007 #else /* ifdef SUNHME_MULTICAST */
1008
1009 /* The version of set_multicast below was lifted from sunhme.c */
1010
1011 static void bmac_set_multicast(struct net_device *dev)
1012 {
1013 struct netdev_hw_addr *ha;
1014 unsigned short rx_cfg;
1015 u32 crc;
1016
1017 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1018 bmwrite(dev, BHASH0, 0xffff);
1019 bmwrite(dev, BHASH1, 0xffff);
1020 bmwrite(dev, BHASH2, 0xffff);
1021 bmwrite(dev, BHASH3, 0xffff);
1022 } else if(dev->flags & IFF_PROMISC) {
1023 rx_cfg = bmread(dev, RXCFG);
1024 rx_cfg |= RxPromiscEnable;
1025 bmwrite(dev, RXCFG, rx_cfg);
1026 } else {
1027 u16 hash_table[4] = { 0 };
1028
1029 rx_cfg = bmread(dev, RXCFG);
1030 rx_cfg &= ~RxPromiscEnable;
1031 bmwrite(dev, RXCFG, rx_cfg);
1032
1033 netdev_for_each_mc_addr(ha, dev) {
1034 crc = ether_crc_le(6, ha->addr);
1035 crc >>= 26;
1036 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1037 }
1038 bmwrite(dev, BHASH0, hash_table[0]);
1039 bmwrite(dev, BHASH1, hash_table[1]);
1040 bmwrite(dev, BHASH2, hash_table[2]);
1041 bmwrite(dev, BHASH3, hash_table[3]);
1042 }
1043 }
1044 #endif /* SUNHME_MULTICAST */
1045
1046 static int miscintcount;
1047
1048 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1049 {
1050 struct net_device *dev = (struct net_device *) dev_id;
1051 unsigned int status = bmread(dev, STATUS);
1052 if (miscintcount++ < 10) {
1053 XXDEBUG(("bmac_misc_intr\n"));
1054 }
1055 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1056 /* bmac_txdma_intr_inner(irq, dev_id); */
1057 /* if (status & FrameReceived) dev->stats.rx_dropped++; */
1058 if (status & RxErrorMask) dev->stats.rx_errors++;
1059 if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1060 if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1061 if (status & RxOverFlow) dev->stats.rx_over_errors++;
1062 if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1063
1064 /* if (status & FrameSent) dev->stats.tx_dropped++; */
1065 if (status & TxErrorMask) dev->stats.tx_errors++;
1066 if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1067 if (status & TxNormalCollExp) dev->stats.collisions++;
1068 return IRQ_HANDLED;
1069 }
1070
1071 /*
1072 * Procedure for reading EEPROM
1073 */
1074 #define SROMAddressLength 5
1075 #define DataInOn 0x0008
1076 #define DataInOff 0x0000
1077 #define Clk 0x0002
1078 #define ChipSelect 0x0001
1079 #define SDIShiftCount 3
1080 #define SD0ShiftCount 2
1081 #define DelayValue 1000 /* number of microseconds */
1082 #define SROMStartOffset 10 /* this is in words */
1083 #define SROMReadCount 3 /* number of words to read from SROM */
1084 #define SROMAddressBits 6
1085 #define EnetAddressOffset 20
1086
1087 static unsigned char
1088 bmac_clock_out_bit(struct net_device *dev)
1089 {
1090 unsigned short data;
1091 unsigned short val;
1092
1093 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1094 udelay(DelayValue);
1095
1096 data = bmread(dev, SROMCSR);
1097 udelay(DelayValue);
1098 val = (data >> SD0ShiftCount) & 1;
1099
1100 bmwrite(dev, SROMCSR, ChipSelect);
1101 udelay(DelayValue);
1102
1103 return val;
1104 }
1105
1106 static void
1107 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1108 {
1109 unsigned short data;
1110
1111 if (val != 0 && val != 1) return;
1112
1113 data = (val << SDIShiftCount);
1114 bmwrite(dev, SROMCSR, data | ChipSelect );
1115 udelay(DelayValue);
1116
1117 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1118 udelay(DelayValue);
1119
1120 bmwrite(dev, SROMCSR, data | ChipSelect);
1121 udelay(DelayValue);
1122 }
1123
1124 static void
1125 reset_and_select_srom(struct net_device *dev)
1126 {
1127 /* first reset */
1128 bmwrite(dev, SROMCSR, 0);
1129 udelay(DelayValue);
1130
1131 /* send it the read command (110) */
1132 bmac_clock_in_bit(dev, 1);
1133 bmac_clock_in_bit(dev, 1);
1134 bmac_clock_in_bit(dev, 0);
1135 }
1136
1137 static unsigned short
1138 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1139 {
1140 unsigned short data, val;
1141 int i;
1142
1143 /* send out the address we want to read from */
1144 for (i = 0; i < addr_len; i++) {
1145 val = addr >> (addr_len-i-1);
1146 bmac_clock_in_bit(dev, val & 1);
1147 }
1148
1149 /* Now read in the 16-bit data */
1150 data = 0;
1151 for (i = 0; i < 16; i++) {
1152 val = bmac_clock_out_bit(dev);
1153 data <<= 1;
1154 data |= val;
1155 }
1156 bmwrite(dev, SROMCSR, 0);
1157
1158 return data;
1159 }
1160
1161 /*
1162 * It looks like Cogent and SMC use different methods for calculating
1163 * checksums. What a pain..
1164 */
1165
1166 static int
1167 bmac_verify_checksum(struct net_device *dev)
1168 {
1169 unsigned short data, storedCS;
1170
1171 reset_and_select_srom(dev);
1172 data = read_srom(dev, 3, SROMAddressBits);
1173 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1174
1175 return 0;
1176 }
1177
1178
1179 static void
1180 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1181 {
1182 int i;
1183 unsigned short data;
1184
1185 for (i = 0; i < 6; i++)
1186 {
1187 reset_and_select_srom(dev);
1188 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1189 ea[2*i] = bitrev8(data & 0x0ff);
1190 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1191 }
1192 }
1193
1194 static void bmac_reset_and_enable(struct net_device *dev)
1195 {
1196 struct bmac_data *bp = netdev_priv(dev);
1197 unsigned long flags;
1198 struct sk_buff *skb;
1199 unsigned char *data;
1200
1201 spin_lock_irqsave(&bp->lock, flags);
1202 bmac_enable_and_reset_chip(dev);
1203 bmac_init_tx_ring(bp);
1204 bmac_init_rx_ring(dev);
1205 bmac_init_chip(dev);
1206 bmac_start_chip(dev);
1207 bmwrite(dev, INTDISABLE, EnableNormal);
1208 bp->sleeping = 0;
1209
1210 /*
1211 * It seems that the bmac can't receive until it's transmitted
1212 * a packet. So we give it a dummy packet to transmit.
1213 */
1214 skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1215 if (skb != NULL) {
1216 data = skb_put_zero(skb, ETHERMINPACKET);
1217 memcpy(data, dev->dev_addr, ETH_ALEN);
1218 memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1219 bmac_transmit_packet(skb, dev);
1220 }
1221 spin_unlock_irqrestore(&bp->lock, flags);
1222 }
1223
1224 static const struct ethtool_ops bmac_ethtool_ops = {
1225 .get_link = ethtool_op_get_link,
1226 };
1227
1228 static const struct net_device_ops bmac_netdev_ops = {
1229 .ndo_open = bmac_open,
1230 .ndo_stop = bmac_close,
1231 .ndo_start_xmit = bmac_output,
1232 .ndo_set_rx_mode = bmac_set_multicast,
1233 .ndo_set_mac_address = bmac_set_address,
1234 .ndo_validate_addr = eth_validate_addr,
1235 };
1236
1237 static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1238 {
1239 int j, rev, ret;
1240 struct bmac_data *bp;
1241 const unsigned char *prop_addr;
1242 unsigned char addr[6];
1243 struct net_device *dev;
1244 int is_bmac_plus = ((int)match->data) != 0;
1245
1246 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1247 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1248 return -ENODEV;
1249 }
1250 prop_addr = of_get_property(macio_get_of_node(mdev),
1251 "mac-address", NULL);
1252 if (prop_addr == NULL) {
1253 prop_addr = of_get_property(macio_get_of_node(mdev),
1254 "local-mac-address", NULL);
1255 if (prop_addr == NULL) {
1256 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1257 return -ENODEV;
1258 }
1259 }
1260 memcpy(addr, prop_addr, sizeof(addr));
1261
1262 dev = alloc_etherdev(PRIV_BYTES);
1263 if (!dev)
1264 return -ENOMEM;
1265
1266 bp = netdev_priv(dev);
1267 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1268 macio_set_drvdata(mdev, dev);
1269
1270 bp->mdev = mdev;
1271 spin_lock_init(&bp->lock);
1272
1273 if (macio_request_resources(mdev, "bmac")) {
1274 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1275 goto out_free;
1276 }
1277
1278 dev->base_addr = (unsigned long)
1279 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1280 if (dev->base_addr == 0)
1281 goto out_release;
1282
1283 dev->irq = macio_irq(mdev, 0);
1284
1285 bmac_enable_and_reset_chip(dev);
1286 bmwrite(dev, INTDISABLE, DisableAll);
1287
1288 rev = addr[0] == 0 && addr[1] == 0xA0;
1289 for (j = 0; j < 6; ++j)
1290 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1291
1292 /* Enable chip without interrupts for now */
1293 bmac_enable_and_reset_chip(dev);
1294 bmwrite(dev, INTDISABLE, DisableAll);
1295
1296 dev->netdev_ops = &bmac_netdev_ops;
1297 dev->ethtool_ops = &bmac_ethtool_ops;
1298
1299 bmac_get_station_address(dev, addr);
1300 if (bmac_verify_checksum(dev) != 0)
1301 goto err_out_iounmap;
1302
1303 bp->is_bmac_plus = is_bmac_plus;
1304 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1305 if (!bp->tx_dma)
1306 goto err_out_iounmap;
1307 bp->tx_dma_intr = macio_irq(mdev, 1);
1308 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1309 if (!bp->rx_dma)
1310 goto err_out_iounmap_tx;
1311 bp->rx_dma_intr = macio_irq(mdev, 2);
1312
1313 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1314 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1315
1316 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1317 skb_queue_head_init(bp->queue);
1318
1319 timer_setup(&bp->tx_timeout, bmac_tx_timeout, 0);
1320
1321 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1322 if (ret) {
1323 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1324 goto err_out_iounmap_rx;
1325 }
1326 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1327 if (ret) {
1328 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1329 goto err_out_irq0;
1330 }
1331 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1332 if (ret) {
1333 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1334 goto err_out_irq1;
1335 }
1336
1337 /* Mask chip interrupts and disable chip, will be
1338 * re-enabled on open()
1339 */
1340 disable_irq(dev->irq);
1341 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1342
1343 if (register_netdev(dev) != 0) {
1344 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1345 goto err_out_irq2;
1346 }
1347
1348 printk(KERN_INFO "%s: BMAC%s at %pM",
1349 dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1350 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1351 printk("\n");
1352
1353 return 0;
1354
1355 err_out_irq2:
1356 free_irq(bp->rx_dma_intr, dev);
1357 err_out_irq1:
1358 free_irq(bp->tx_dma_intr, dev);
1359 err_out_irq0:
1360 free_irq(dev->irq, dev);
1361 err_out_iounmap_rx:
1362 iounmap(bp->rx_dma);
1363 err_out_iounmap_tx:
1364 iounmap(bp->tx_dma);
1365 err_out_iounmap:
1366 iounmap((void __iomem *)dev->base_addr);
1367 out_release:
1368 macio_release_resources(mdev);
1369 out_free:
1370 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1371 free_netdev(dev);
1372
1373 return -ENODEV;
1374 }
1375
1376 static int bmac_open(struct net_device *dev)
1377 {
1378 struct bmac_data *bp = netdev_priv(dev);
1379 /* XXDEBUG(("bmac: enter open\n")); */
1380 /* reset the chip */
1381 bp->opened = 1;
1382 bmac_reset_and_enable(dev);
1383 enable_irq(dev->irq);
1384 return 0;
1385 }
1386
1387 static int bmac_close(struct net_device *dev)
1388 {
1389 struct bmac_data *bp = netdev_priv(dev);
1390 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1391 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1392 unsigned short config;
1393 int i;
1394
1395 bp->sleeping = 1;
1396
1397 /* disable rx and tx */
1398 config = bmread(dev, RXCFG);
1399 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1400
1401 config = bmread(dev, TXCFG);
1402 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1403
1404 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1405
1406 /* disable rx and tx dma */
1407 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1408 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1409
1410 /* free some skb's */
1411 XXDEBUG(("bmac: free rx bufs\n"));
1412 for (i=0; i<N_RX_RING; i++) {
1413 if (bp->rx_bufs[i] != NULL) {
1414 dev_kfree_skb(bp->rx_bufs[i]);
1415 bp->rx_bufs[i] = NULL;
1416 }
1417 }
1418 XXDEBUG(("bmac: free tx bufs\n"));
1419 for (i = 0; i<N_TX_RING; i++) {
1420 if (bp->tx_bufs[i] != NULL) {
1421 dev_kfree_skb(bp->tx_bufs[i]);
1422 bp->tx_bufs[i] = NULL;
1423 }
1424 }
1425 XXDEBUG(("bmac: all bufs freed\n"));
1426
1427 bp->opened = 0;
1428 disable_irq(dev->irq);
1429 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1430
1431 return 0;
1432 }
1433
1434 static void
1435 bmac_start(struct net_device *dev)
1436 {
1437 struct bmac_data *bp = netdev_priv(dev);
1438 int i;
1439 struct sk_buff *skb;
1440 unsigned long flags;
1441
1442 if (bp->sleeping)
1443 return;
1444
1445 spin_lock_irqsave(&bp->lock, flags);
1446 while (1) {
1447 i = bp->tx_fill + 1;
1448 if (i >= N_TX_RING)
1449 i = 0;
1450 if (i == bp->tx_empty)
1451 break;
1452 skb = skb_dequeue(bp->queue);
1453 if (skb == NULL)
1454 break;
1455 bmac_transmit_packet(skb, dev);
1456 }
1457 spin_unlock_irqrestore(&bp->lock, flags);
1458 }
1459
1460 static netdev_tx_t
1461 bmac_output(struct sk_buff *skb, struct net_device *dev)
1462 {
1463 struct bmac_data *bp = netdev_priv(dev);
1464 skb_queue_tail(bp->queue, skb);
1465 bmac_start(dev);
1466 return NETDEV_TX_OK;
1467 }
1468
1469 static void bmac_tx_timeout(struct timer_list *t)
1470 {
1471 struct bmac_data *bp = from_timer(bp, t, tx_timeout);
1472 struct net_device *dev = macio_get_drvdata(bp->mdev);
1473 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1474 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1475 volatile struct dbdma_cmd *cp;
1476 unsigned long flags;
1477 unsigned short config, oldConfig;
1478 int i;
1479
1480 XXDEBUG(("bmac: tx_timeout called\n"));
1481 spin_lock_irqsave(&bp->lock, flags);
1482 bp->timeout_active = 0;
1483
1484 /* update various counters */
1485 /* bmac_handle_misc_intrs(bp, 0); */
1486
1487 cp = &bp->tx_cmds[bp->tx_empty];
1488 /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1489 /* le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1490 /* mb->pr, mb->xmtfs, mb->fifofc)); */
1491
1492 /* turn off both tx and rx and reset the chip */
1493 config = bmread(dev, RXCFG);
1494 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1495 config = bmread(dev, TXCFG);
1496 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1497 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1498 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1499 bmac_enable_and_reset_chip(dev);
1500
1501 /* restart rx dma */
1502 cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1503 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1504 out_le16(&cp->xfer_status, 0);
1505 out_le32(&rd->cmdptr, virt_to_bus(cp));
1506 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1507
1508 /* fix up the transmit side */
1509 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1510 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1511 i = bp->tx_empty;
1512 ++dev->stats.tx_errors;
1513 if (i != bp->tx_fill) {
1514 dev_kfree_skb(bp->tx_bufs[i]);
1515 bp->tx_bufs[i] = NULL;
1516 if (++i >= N_TX_RING) i = 0;
1517 bp->tx_empty = i;
1518 }
1519 bp->tx_fullup = 0;
1520 netif_wake_queue(dev);
1521 if (i != bp->tx_fill) {
1522 cp = &bp->tx_cmds[i];
1523 out_le16(&cp->xfer_status, 0);
1524 out_le16(&cp->command, OUTPUT_LAST);
1525 out_le32(&td->cmdptr, virt_to_bus(cp));
1526 out_le32(&td->control, DBDMA_SET(RUN));
1527 /* bmac_set_timeout(dev); */
1528 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1529 }
1530
1531 /* turn it back on */
1532 oldConfig = bmread(dev, RXCFG);
1533 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1534 oldConfig = bmread(dev, TXCFG);
1535 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1536
1537 spin_unlock_irqrestore(&bp->lock, flags);
1538 }
1539
1540 #if 0
1541 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1542 {
1543 int i,*ip;
1544
1545 for (i=0;i< count;i++) {
1546 ip = (int*)(cp+i);
1547
1548 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1549 le32_to_cpup(ip+0),
1550 le32_to_cpup(ip+1),
1551 le32_to_cpup(ip+2),
1552 le32_to_cpup(ip+3));
1553 }
1554
1555 }
1556 #endif
1557
1558 #if 0
1559 static int
1560 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1561 {
1562 int len = 0;
1563 off_t pos = 0;
1564 off_t begin = 0;
1565 int i;
1566
1567 if (bmac_devs == NULL)
1568 return -ENOSYS;
1569
1570 len += sprintf(buffer, "BMAC counters & registers\n");
1571
1572 for (i = 0; i<N_REG_ENTRIES; i++) {
1573 len += sprintf(buffer + len, "%s: %#08x\n",
1574 reg_entries[i].name,
1575 bmread(bmac_devs, reg_entries[i].reg_offset));
1576 pos = begin + len;
1577
1578 if (pos < offset) {
1579 len = 0;
1580 begin = pos;
1581 }
1582
1583 if (pos > offset+length) break;
1584 }
1585
1586 *start = buffer + (offset - begin);
1587 len -= (offset - begin);
1588
1589 if (len > length) len = length;
1590
1591 return len;
1592 }
1593 #endif
1594
1595 static int bmac_remove(struct macio_dev *mdev)
1596 {
1597 struct net_device *dev = macio_get_drvdata(mdev);
1598 struct bmac_data *bp = netdev_priv(dev);
1599
1600 unregister_netdev(dev);
1601
1602 free_irq(dev->irq, dev);
1603 free_irq(bp->tx_dma_intr, dev);
1604 free_irq(bp->rx_dma_intr, dev);
1605
1606 iounmap((void __iomem *)dev->base_addr);
1607 iounmap(bp->tx_dma);
1608 iounmap(bp->rx_dma);
1609
1610 macio_release_resources(mdev);
1611
1612 free_netdev(dev);
1613
1614 return 0;
1615 }
1616
1617 static const struct of_device_id bmac_match[] =
1618 {
1619 {
1620 .name = "bmac",
1621 .data = (void *)0,
1622 },
1623 {
1624 .type = "network",
1625 .compatible = "bmac+",
1626 .data = (void *)1,
1627 },
1628 {},
1629 };
1630 MODULE_DEVICE_TABLE (of, bmac_match);
1631
1632 static struct macio_driver bmac_driver =
1633 {
1634 .driver = {
1635 .name = "bmac",
1636 .owner = THIS_MODULE,
1637 .of_match_table = bmac_match,
1638 },
1639 .probe = bmac_probe,
1640 .remove = bmac_remove,
1641 #ifdef CONFIG_PM
1642 .suspend = bmac_suspend,
1643 .resume = bmac_resume,
1644 #endif
1645 };
1646
1647
1648 static int __init bmac_init(void)
1649 {
1650 if (bmac_emergency_rxbuf == NULL) {
1651 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1652 if (bmac_emergency_rxbuf == NULL)
1653 return -ENOMEM;
1654 }
1655
1656 return macio_register_driver(&bmac_driver);
1657 }
1658
1659 static void __exit bmac_exit(void)
1660 {
1661 macio_unregister_driver(&bmac_driver);
1662
1663 kfree(bmac_emergency_rxbuf);
1664 bmac_emergency_rxbuf = NULL;
1665 }
1666
1667 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1668 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1669 MODULE_LICENSE("GPL");
1670
1671 module_init(bmac_init);
1672 module_exit(bmac_exit);