]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c
Merge tag 'riscv/for-v5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv...
[thirdparty/kernel/stable.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.c
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 int i;
43
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp, i) {
46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 bnx2x_poll, NAPI_POLL_WEIGHT);
48 }
49 }
50
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 int i;
54
55 /* Add NAPI objects */
56 for_each_eth_queue(bp, i) {
57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 bnx2x_poll, NAPI_POLL_WEIGHT);
59 }
60 }
61
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
68 nq = 1;
69
70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 return nq;
72 }
73
74 /**
75 * bnx2x_move_fp - move content of the fastpath structure.
76 *
77 * @bp: driver handle
78 * @from: source FP index
79 * @to: destination FP index
80 *
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
85 * content.
86 */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 int old_max_eth_txqs, new_max_eth_txqs;
96 int old_txdata_index = 0, new_txdata_index = 0;
97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp->napi = to_fp->napi;
101
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp, from_fp, sizeof(*to_fp));
104 to_fp->index = to;
105
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
108 */
109 to_fp->tpa_info = old_tpa_info;
110
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
120 */
121
122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 (bp)->max_cos;
125 if (from == FCOE_IDX(bp)) {
126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 }
129
130 memcpy(&bp->bnx2x_txq[new_txdata_index],
131 &bp->bnx2x_txq[old_txdata_index],
132 sizeof(struct bnx2x_fp_txdata));
133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135
136 /**
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
138 *
139 * @bp: driver handle
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
142 *
143 */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 if (IS_PF(bp)) {
147 u8 phy_fw_ver[PHY_FW_VER_LEN];
148
149 phy_fw_ver[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 phy_fw_ver, PHY_FW_VER_LEN);
152 strlcpy(buf, bp->fw_ver, buf_len);
153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 "bc %d.%d.%d%s%s",
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 /* Skip second parse bd... */
232 --nbd;
233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 }
235
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 --nbd;
241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 }
243
244 /* unmap first bd */
245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 DMA_TO_DEVICE);
248
249 /* now free frags */
250 while (nbd > 0) {
251
252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 if (--nbd)
256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 }
258
259 /* release skb */
260 WARN_ON(!skb);
261 if (likely(skb)) {
262 (*pkts_compl)++;
263 (*bytes_compl) += skb->len;
264 dev_kfree_skb_any(skb);
265 }
266
267 tx_buf->first_bd = 0;
268 tx_buf->skb = NULL;
269
270 return new_cons;
271 }
272
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 struct netdev_queue *txq;
276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 unsigned int pkts_compl = 0, bytes_compl = 0;
278
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp->panic))
281 return -1;
282 #endif
283
284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 sw_cons = txdata->tx_pkt_cons;
287
288 while (sw_cons != hw_cons) {
289 u16 pkt_cons;
290
291 pkt_cons = TX_BD(sw_cons);
292
293 DP(NETIF_MSG_TX_DONE,
294 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
295 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
296
297 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
298 &pkts_compl, &bytes_compl);
299
300 sw_cons++;
301 }
302
303 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
304
305 txdata->tx_pkt_cons = sw_cons;
306 txdata->tx_bd_cons = bd_cons;
307
308 /* Need to make the tx_bd_cons update visible to start_xmit()
309 * before checking for netif_tx_queue_stopped(). Without the
310 * memory barrier, there is a small possibility that
311 * start_xmit() will miss it and cause the queue to be stopped
312 * forever.
313 * On the other hand we need an rmb() here to ensure the proper
314 * ordering of bit testing in the following
315 * netif_tx_queue_stopped(txq) call.
316 */
317 smp_mb();
318
319 if (unlikely(netif_tx_queue_stopped(txq))) {
320 /* Taking tx_lock() is needed to prevent re-enabling the queue
321 * while it's empty. This could have happen if rx_action() gets
322 * suspended in bnx2x_tx_int() after the condition before
323 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
324 *
325 * stops the queue->sees fresh tx_bd_cons->releases the queue->
326 * sends some packets consuming the whole queue again->
327 * stops the queue
328 */
329
330 __netif_tx_lock(txq, smp_processor_id());
331
332 if ((netif_tx_queue_stopped(txq)) &&
333 (bp->state == BNX2X_STATE_OPEN) &&
334 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
335 netif_tx_wake_queue(txq);
336
337 __netif_tx_unlock(txq);
338 }
339 return 0;
340 }
341
342 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
343 u16 idx)
344 {
345 u16 last_max = fp->last_max_sge;
346
347 if (SUB_S16(idx, last_max) > 0)
348 fp->last_max_sge = idx;
349 }
350
351 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
352 u16 sge_len,
353 struct eth_end_agg_rx_cqe *cqe)
354 {
355 struct bnx2x *bp = fp->bp;
356 u16 last_max, last_elem, first_elem;
357 u16 delta = 0;
358 u16 i;
359
360 if (!sge_len)
361 return;
362
363 /* First mark all used pages */
364 for (i = 0; i < sge_len; i++)
365 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
366 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
367
368 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
369 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
370
371 /* Here we assume that the last SGE index is the biggest */
372 prefetch((void *)(fp->sge_mask));
373 bnx2x_update_last_max_sge(fp,
374 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
375
376 last_max = RX_SGE(fp->last_max_sge);
377 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
378 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
379
380 /* If ring is not full */
381 if (last_elem + 1 != first_elem)
382 last_elem++;
383
384 /* Now update the prod */
385 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
386 if (likely(fp->sge_mask[i]))
387 break;
388
389 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
390 delta += BIT_VEC64_ELEM_SZ;
391 }
392
393 if (delta > 0) {
394 fp->rx_sge_prod += delta;
395 /* clear page-end entries */
396 bnx2x_clear_sge_mask_next_elems(fp);
397 }
398
399 DP(NETIF_MSG_RX_STATUS,
400 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
401 fp->last_max_sge, fp->rx_sge_prod);
402 }
403
404 /* Get Toeplitz hash value in the skb using the value from the
405 * CQE (calculated by HW).
406 */
407 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
408 const struct eth_fast_path_rx_cqe *cqe,
409 enum pkt_hash_types *rxhash_type)
410 {
411 /* Get Toeplitz hash from CQE */
412 if ((bp->dev->features & NETIF_F_RXHASH) &&
413 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
414 enum eth_rss_hash_type htype;
415
416 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
417 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
418 (htype == TCP_IPV6_HASH_TYPE)) ?
419 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
420
421 return le32_to_cpu(cqe->rss_hash_result);
422 }
423 *rxhash_type = PKT_HASH_TYPE_NONE;
424 return 0;
425 }
426
427 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
428 u16 cons, u16 prod,
429 struct eth_fast_path_rx_cqe *cqe)
430 {
431 struct bnx2x *bp = fp->bp;
432 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
433 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
434 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
435 dma_addr_t mapping;
436 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
437 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
438
439 /* print error if current state != stop */
440 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
441 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
442
443 /* Try to map an empty data buffer from the aggregation info */
444 mapping = dma_map_single(&bp->pdev->dev,
445 first_buf->data + NET_SKB_PAD,
446 fp->rx_buf_size, DMA_FROM_DEVICE);
447 /*
448 * ...if it fails - move the skb from the consumer to the producer
449 * and set the current aggregation state as ERROR to drop it
450 * when TPA_STOP arrives.
451 */
452
453 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
454 /* Move the BD from the consumer to the producer */
455 bnx2x_reuse_rx_data(fp, cons, prod);
456 tpa_info->tpa_state = BNX2X_TPA_ERROR;
457 return;
458 }
459
460 /* move empty data from pool to prod */
461 prod_rx_buf->data = first_buf->data;
462 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
463 /* point prod_bd to new data */
464 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
465 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
466
467 /* move partial skb from cons to pool (don't unmap yet) */
468 *first_buf = *cons_rx_buf;
469
470 /* mark bin state as START */
471 tpa_info->parsing_flags =
472 le16_to_cpu(cqe->pars_flags.flags);
473 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
474 tpa_info->tpa_state = BNX2X_TPA_START;
475 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
476 tpa_info->placement_offset = cqe->placement_offset;
477 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
478 if (fp->mode == TPA_MODE_GRO) {
479 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
480 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
481 tpa_info->gro_size = gro_size;
482 }
483
484 #ifdef BNX2X_STOP_ON_ERROR
485 fp->tpa_queue_used |= (1 << queue);
486 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
487 fp->tpa_queue_used);
488 #endif
489 }
490
491 /* Timestamp option length allowed for TPA aggregation:
492 *
493 * nop nop kind length echo val
494 */
495 #define TPA_TSTAMP_OPT_LEN 12
496 /**
497 * bnx2x_set_gro_params - compute GRO values
498 *
499 * @skb: packet skb
500 * @parsing_flags: parsing flags from the START CQE
501 * @len_on_bd: total length of the first packet for the
502 * aggregation.
503 * @pkt_len: length of all segments
504 *
505 * Approximate value of the MSS for this aggregation calculated using
506 * the first packet of it.
507 * Compute number of aggregated segments, and gso_type.
508 */
509 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
510 u16 len_on_bd, unsigned int pkt_len,
511 u16 num_of_coalesced_segs)
512 {
513 /* TPA aggregation won't have either IP options or TCP options
514 * other than timestamp or IPv6 extension headers.
515 */
516 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
517
518 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
519 PRS_FLAG_OVERETH_IPV6) {
520 hdrs_len += sizeof(struct ipv6hdr);
521 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
522 } else {
523 hdrs_len += sizeof(struct iphdr);
524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
525 }
526
527 /* Check if there was a TCP timestamp, if there is it's will
528 * always be 12 bytes length: nop nop kind length echo val.
529 *
530 * Otherwise FW would close the aggregation.
531 */
532 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
533 hdrs_len += TPA_TSTAMP_OPT_LEN;
534
535 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
536
537 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
538 * to skb_shinfo(skb)->gso_segs
539 */
540 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
541 }
542
543 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
544 u16 index, gfp_t gfp_mask)
545 {
546 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
547 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
548 struct bnx2x_alloc_pool *pool = &fp->page_pool;
549 dma_addr_t mapping;
550
551 if (!pool->page) {
552 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
553 if (unlikely(!pool->page))
554 return -ENOMEM;
555
556 pool->offset = 0;
557 }
558
559 mapping = dma_map_page(&bp->pdev->dev, pool->page,
560 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
561 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
562 BNX2X_ERR("Can't map sge\n");
563 return -ENOMEM;
564 }
565
566 sw_buf->page = pool->page;
567 sw_buf->offset = pool->offset;
568
569 dma_unmap_addr_set(sw_buf, mapping, mapping);
570
571 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
572 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
573
574 pool->offset += SGE_PAGE_SIZE;
575 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
576 get_page(pool->page);
577 else
578 pool->page = NULL;
579 return 0;
580 }
581
582 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
583 struct bnx2x_agg_info *tpa_info,
584 u16 pages,
585 struct sk_buff *skb,
586 struct eth_end_agg_rx_cqe *cqe,
587 u16 cqe_idx)
588 {
589 struct sw_rx_page *rx_pg, old_rx_pg;
590 u32 i, frag_len, frag_size;
591 int err, j, frag_id = 0;
592 u16 len_on_bd = tpa_info->len_on_bd;
593 u16 full_page = 0, gro_size = 0;
594
595 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
596
597 if (fp->mode == TPA_MODE_GRO) {
598 gro_size = tpa_info->gro_size;
599 full_page = tpa_info->full_page;
600 }
601
602 /* This is needed in order to enable forwarding support */
603 if (frag_size)
604 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
605 le16_to_cpu(cqe->pkt_len),
606 le16_to_cpu(cqe->num_of_coalesced_segs));
607
608 #ifdef BNX2X_STOP_ON_ERROR
609 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
610 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
611 pages, cqe_idx);
612 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
613 bnx2x_panic();
614 return -EINVAL;
615 }
616 #endif
617
618 /* Run through the SGL and compose the fragmented skb */
619 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
620 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
621
622 /* FW gives the indices of the SGE as if the ring is an array
623 (meaning that "next" element will consume 2 indices) */
624 if (fp->mode == TPA_MODE_GRO)
625 frag_len = min_t(u32, frag_size, (u32)full_page);
626 else /* LRO */
627 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
628
629 rx_pg = &fp->rx_page_ring[sge_idx];
630 old_rx_pg = *rx_pg;
631
632 /* If we fail to allocate a substitute page, we simply stop
633 where we are and drop the whole packet */
634 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
635 if (unlikely(err)) {
636 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
637 return err;
638 }
639
640 dma_unmap_page(&bp->pdev->dev,
641 dma_unmap_addr(&old_rx_pg, mapping),
642 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
643 /* Add one frag and update the appropriate fields in the skb */
644 if (fp->mode == TPA_MODE_LRO)
645 skb_fill_page_desc(skb, j, old_rx_pg.page,
646 old_rx_pg.offset, frag_len);
647 else { /* GRO */
648 int rem;
649 int offset = 0;
650 for (rem = frag_len; rem > 0; rem -= gro_size) {
651 int len = rem > gro_size ? gro_size : rem;
652 skb_fill_page_desc(skb, frag_id++,
653 old_rx_pg.page,
654 old_rx_pg.offset + offset,
655 len);
656 if (offset)
657 get_page(old_rx_pg.page);
658 offset += len;
659 }
660 }
661
662 skb->data_len += frag_len;
663 skb->truesize += SGE_PAGES;
664 skb->len += frag_len;
665
666 frag_size -= frag_len;
667 }
668
669 return 0;
670 }
671
672 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
673 {
674 if (fp->rx_frag_size)
675 skb_free_frag(data);
676 else
677 kfree(data);
678 }
679
680 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
681 {
682 if (fp->rx_frag_size) {
683 /* GFP_KERNEL allocations are used only during initialization */
684 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
685 return (void *)__get_free_page(gfp_mask);
686
687 return napi_alloc_frag(fp->rx_frag_size);
688 }
689
690 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
691 }
692
693 #ifdef CONFIG_INET
694 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
695 {
696 const struct iphdr *iph = ip_hdr(skb);
697 struct tcphdr *th;
698
699 skb_set_transport_header(skb, sizeof(struct iphdr));
700 th = tcp_hdr(skb);
701
702 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
703 iph->saddr, iph->daddr, 0);
704 }
705
706 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
707 {
708 struct ipv6hdr *iph = ipv6_hdr(skb);
709 struct tcphdr *th;
710
711 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
712 th = tcp_hdr(skb);
713
714 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
715 &iph->saddr, &iph->daddr, 0);
716 }
717
718 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
719 void (*gro_func)(struct bnx2x*, struct sk_buff*))
720 {
721 skb_reset_network_header(skb);
722 gro_func(bp, skb);
723 tcp_gro_complete(skb);
724 }
725 #endif
726
727 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
728 struct sk_buff *skb)
729 {
730 #ifdef CONFIG_INET
731 if (skb_shinfo(skb)->gso_size) {
732 switch (be16_to_cpu(skb->protocol)) {
733 case ETH_P_IP:
734 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
735 break;
736 case ETH_P_IPV6:
737 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
738 break;
739 default:
740 netdev_WARN_ONCE(bp->dev,
741 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
742 be16_to_cpu(skb->protocol));
743 }
744 }
745 #endif
746 skb_record_rx_queue(skb, fp->rx_queue);
747 napi_gro_receive(&fp->napi, skb);
748 }
749
750 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
751 struct bnx2x_agg_info *tpa_info,
752 u16 pages,
753 struct eth_end_agg_rx_cqe *cqe,
754 u16 cqe_idx)
755 {
756 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
757 u8 pad = tpa_info->placement_offset;
758 u16 len = tpa_info->len_on_bd;
759 struct sk_buff *skb = NULL;
760 u8 *new_data, *data = rx_buf->data;
761 u8 old_tpa_state = tpa_info->tpa_state;
762
763 tpa_info->tpa_state = BNX2X_TPA_STOP;
764
765 /* If we there was an error during the handling of the TPA_START -
766 * drop this aggregation.
767 */
768 if (old_tpa_state == BNX2X_TPA_ERROR)
769 goto drop;
770
771 /* Try to allocate the new data */
772 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
773 /* Unmap skb in the pool anyway, as we are going to change
774 pool entry status to BNX2X_TPA_STOP even if new skb allocation
775 fails. */
776 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
777 fp->rx_buf_size, DMA_FROM_DEVICE);
778 if (likely(new_data))
779 skb = build_skb(data, fp->rx_frag_size);
780
781 if (likely(skb)) {
782 #ifdef BNX2X_STOP_ON_ERROR
783 if (pad + len > fp->rx_buf_size) {
784 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
785 pad, len, fp->rx_buf_size);
786 bnx2x_panic();
787 return;
788 }
789 #endif
790
791 skb_reserve(skb, pad + NET_SKB_PAD);
792 skb_put(skb, len);
793 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
794
795 skb->protocol = eth_type_trans(skb, bp->dev);
796 skb->ip_summed = CHECKSUM_UNNECESSARY;
797
798 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
799 skb, cqe, cqe_idx)) {
800 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
801 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
802 bnx2x_gro_receive(bp, fp, skb);
803 } else {
804 DP(NETIF_MSG_RX_STATUS,
805 "Failed to allocate new pages - dropping packet!\n");
806 dev_kfree_skb_any(skb);
807 }
808
809 /* put new data in bin */
810 rx_buf->data = new_data;
811
812 return;
813 }
814 if (new_data)
815 bnx2x_frag_free(fp, new_data);
816 drop:
817 /* drop the packet and keep the buffer in the bin */
818 DP(NETIF_MSG_RX_STATUS,
819 "Failed to allocate or map a new skb - dropping packet!\n");
820 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
821 }
822
823 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
824 u16 index, gfp_t gfp_mask)
825 {
826 u8 *data;
827 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
828 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
829 dma_addr_t mapping;
830
831 data = bnx2x_frag_alloc(fp, gfp_mask);
832 if (unlikely(data == NULL))
833 return -ENOMEM;
834
835 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
836 fp->rx_buf_size,
837 DMA_FROM_DEVICE);
838 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
839 bnx2x_frag_free(fp, data);
840 BNX2X_ERR("Can't map rx data\n");
841 return -ENOMEM;
842 }
843
844 rx_buf->data = data;
845 dma_unmap_addr_set(rx_buf, mapping, mapping);
846
847 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
848 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
849
850 return 0;
851 }
852
853 static
854 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
855 struct bnx2x_fastpath *fp,
856 struct bnx2x_eth_q_stats *qstats)
857 {
858 /* Do nothing if no L4 csum validation was done.
859 * We do not check whether IP csum was validated. For IPv4 we assume
860 * that if the card got as far as validating the L4 csum, it also
861 * validated the IP csum. IPv6 has no IP csum.
862 */
863 if (cqe->fast_path_cqe.status_flags &
864 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
865 return;
866
867 /* If L4 validation was done, check if an error was found. */
868
869 if (cqe->fast_path_cqe.type_error_flags &
870 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
871 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
872 qstats->hw_csum_err++;
873 else
874 skb->ip_summed = CHECKSUM_UNNECESSARY;
875 }
876
877 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
878 {
879 struct bnx2x *bp = fp->bp;
880 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
881 u16 sw_comp_cons, sw_comp_prod;
882 int rx_pkt = 0;
883 union eth_rx_cqe *cqe;
884 struct eth_fast_path_rx_cqe *cqe_fp;
885
886 #ifdef BNX2X_STOP_ON_ERROR
887 if (unlikely(bp->panic))
888 return 0;
889 #endif
890 if (budget <= 0)
891 return rx_pkt;
892
893 bd_cons = fp->rx_bd_cons;
894 bd_prod = fp->rx_bd_prod;
895 bd_prod_fw = bd_prod;
896 sw_comp_cons = fp->rx_comp_cons;
897 sw_comp_prod = fp->rx_comp_prod;
898
899 comp_ring_cons = RCQ_BD(sw_comp_cons);
900 cqe = &fp->rx_comp_ring[comp_ring_cons];
901 cqe_fp = &cqe->fast_path_cqe;
902
903 DP(NETIF_MSG_RX_STATUS,
904 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
905
906 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
907 struct sw_rx_bd *rx_buf = NULL;
908 struct sk_buff *skb;
909 u8 cqe_fp_flags;
910 enum eth_rx_cqe_type cqe_fp_type;
911 u16 len, pad, queue;
912 u8 *data;
913 u32 rxhash;
914 enum pkt_hash_types rxhash_type;
915
916 #ifdef BNX2X_STOP_ON_ERROR
917 if (unlikely(bp->panic))
918 return 0;
919 #endif
920
921 bd_prod = RX_BD(bd_prod);
922 bd_cons = RX_BD(bd_cons);
923
924 /* A rmb() is required to ensure that the CQE is not read
925 * before it is written by the adapter DMA. PCI ordering
926 * rules will make sure the other fields are written before
927 * the marker at the end of struct eth_fast_path_rx_cqe
928 * but without rmb() a weakly ordered processor can process
929 * stale data. Without the barrier TPA state-machine might
930 * enter inconsistent state and kernel stack might be
931 * provided with incorrect packet description - these lead
932 * to various kernel crashed.
933 */
934 rmb();
935
936 cqe_fp_flags = cqe_fp->type_error_flags;
937 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
938
939 DP(NETIF_MSG_RX_STATUS,
940 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
941 CQE_TYPE(cqe_fp_flags),
942 cqe_fp_flags, cqe_fp->status_flags,
943 le32_to_cpu(cqe_fp->rss_hash_result),
944 le16_to_cpu(cqe_fp->vlan_tag),
945 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
946
947 /* is this a slowpath msg? */
948 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
949 bnx2x_sp_event(fp, cqe);
950 goto next_cqe;
951 }
952
953 rx_buf = &fp->rx_buf_ring[bd_cons];
954 data = rx_buf->data;
955
956 if (!CQE_TYPE_FAST(cqe_fp_type)) {
957 struct bnx2x_agg_info *tpa_info;
958 u16 frag_size, pages;
959 #ifdef BNX2X_STOP_ON_ERROR
960 /* sanity check */
961 if (fp->mode == TPA_MODE_DISABLED &&
962 (CQE_TYPE_START(cqe_fp_type) ||
963 CQE_TYPE_STOP(cqe_fp_type)))
964 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
965 CQE_TYPE(cqe_fp_type));
966 #endif
967
968 if (CQE_TYPE_START(cqe_fp_type)) {
969 u16 queue = cqe_fp->queue_index;
970 DP(NETIF_MSG_RX_STATUS,
971 "calling tpa_start on queue %d\n",
972 queue);
973
974 bnx2x_tpa_start(fp, queue,
975 bd_cons, bd_prod,
976 cqe_fp);
977
978 goto next_rx;
979 }
980 queue = cqe->end_agg_cqe.queue_index;
981 tpa_info = &fp->tpa_info[queue];
982 DP(NETIF_MSG_RX_STATUS,
983 "calling tpa_stop on queue %d\n",
984 queue);
985
986 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
987 tpa_info->len_on_bd;
988
989 if (fp->mode == TPA_MODE_GRO)
990 pages = (frag_size + tpa_info->full_page - 1) /
991 tpa_info->full_page;
992 else
993 pages = SGE_PAGE_ALIGN(frag_size) >>
994 SGE_PAGE_SHIFT;
995
996 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
997 &cqe->end_agg_cqe, comp_ring_cons);
998 #ifdef BNX2X_STOP_ON_ERROR
999 if (bp->panic)
1000 return 0;
1001 #endif
1002
1003 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1004 goto next_cqe;
1005 }
1006 /* non TPA */
1007 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1008 pad = cqe_fp->placement_offset;
1009 dma_sync_single_for_cpu(&bp->pdev->dev,
1010 dma_unmap_addr(rx_buf, mapping),
1011 pad + RX_COPY_THRESH,
1012 DMA_FROM_DEVICE);
1013 pad += NET_SKB_PAD;
1014 prefetch(data + pad); /* speedup eth_type_trans() */
1015 /* is this an error packet? */
1016 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1017 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1018 "ERROR flags %x rx packet %u\n",
1019 cqe_fp_flags, sw_comp_cons);
1020 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1021 goto reuse_rx;
1022 }
1023
1024 /* Since we don't have a jumbo ring
1025 * copy small packets if mtu > 1500
1026 */
1027 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1028 (len <= RX_COPY_THRESH)) {
1029 skb = napi_alloc_skb(&fp->napi, len);
1030 if (skb == NULL) {
1031 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1032 "ERROR packet dropped because of alloc failure\n");
1033 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1034 goto reuse_rx;
1035 }
1036 memcpy(skb->data, data + pad, len);
1037 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1038 } else {
1039 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1040 GFP_ATOMIC) == 0)) {
1041 dma_unmap_single(&bp->pdev->dev,
1042 dma_unmap_addr(rx_buf, mapping),
1043 fp->rx_buf_size,
1044 DMA_FROM_DEVICE);
1045 skb = build_skb(data, fp->rx_frag_size);
1046 if (unlikely(!skb)) {
1047 bnx2x_frag_free(fp, data);
1048 bnx2x_fp_qstats(bp, fp)->
1049 rx_skb_alloc_failed++;
1050 goto next_rx;
1051 }
1052 skb_reserve(skb, pad);
1053 } else {
1054 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1055 "ERROR packet dropped because of alloc failure\n");
1056 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1057 reuse_rx:
1058 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1059 goto next_rx;
1060 }
1061 }
1062
1063 skb_put(skb, len);
1064 skb->protocol = eth_type_trans(skb, bp->dev);
1065
1066 /* Set Toeplitz hash for a none-LRO skb */
1067 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1068 skb_set_hash(skb, rxhash, rxhash_type);
1069
1070 skb_checksum_none_assert(skb);
1071
1072 if (bp->dev->features & NETIF_F_RXCSUM)
1073 bnx2x_csum_validate(skb, cqe, fp,
1074 bnx2x_fp_qstats(bp, fp));
1075
1076 skb_record_rx_queue(skb, fp->rx_queue);
1077
1078 /* Check if this packet was timestamped */
1079 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1080 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1081 bnx2x_set_rx_ts(bp, skb);
1082
1083 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1084 PARSING_FLAGS_VLAN)
1085 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1086 le16_to_cpu(cqe_fp->vlan_tag));
1087
1088 napi_gro_receive(&fp->napi, skb);
1089 next_rx:
1090 rx_buf->data = NULL;
1091
1092 bd_cons = NEXT_RX_IDX(bd_cons);
1093 bd_prod = NEXT_RX_IDX(bd_prod);
1094 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1095 rx_pkt++;
1096 next_cqe:
1097 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1098 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1099
1100 /* mark CQE as free */
1101 BNX2X_SEED_CQE(cqe_fp);
1102
1103 if (rx_pkt == budget)
1104 break;
1105
1106 comp_ring_cons = RCQ_BD(sw_comp_cons);
1107 cqe = &fp->rx_comp_ring[comp_ring_cons];
1108 cqe_fp = &cqe->fast_path_cqe;
1109 } /* while */
1110
1111 fp->rx_bd_cons = bd_cons;
1112 fp->rx_bd_prod = bd_prod_fw;
1113 fp->rx_comp_cons = sw_comp_cons;
1114 fp->rx_comp_prod = sw_comp_prod;
1115
1116 /* Update producers */
1117 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1118 fp->rx_sge_prod);
1119
1120 return rx_pkt;
1121 }
1122
1123 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1124 {
1125 struct bnx2x_fastpath *fp = fp_cookie;
1126 struct bnx2x *bp = fp->bp;
1127 u8 cos;
1128
1129 DP(NETIF_MSG_INTR,
1130 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1131 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1132
1133 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1134
1135 #ifdef BNX2X_STOP_ON_ERROR
1136 if (unlikely(bp->panic))
1137 return IRQ_HANDLED;
1138 #endif
1139
1140 /* Handle Rx and Tx according to MSI-X vector */
1141 for_each_cos_in_tx_queue(fp, cos)
1142 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1143
1144 prefetch(&fp->sb_running_index[SM_RX_ID]);
1145 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1146
1147 return IRQ_HANDLED;
1148 }
1149
1150 /* HW Lock for shared dual port PHYs */
1151 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1152 {
1153 mutex_lock(&bp->port.phy_mutex);
1154
1155 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1156 }
1157
1158 void bnx2x_release_phy_lock(struct bnx2x *bp)
1159 {
1160 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161
1162 mutex_unlock(&bp->port.phy_mutex);
1163 }
1164
1165 /* calculates MF speed according to current linespeed and MF configuration */
1166 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1167 {
1168 u16 line_speed = bp->link_vars.line_speed;
1169 if (IS_MF(bp)) {
1170 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1171 bp->mf_config[BP_VN(bp)]);
1172
1173 /* Calculate the current MAX line speed limit for the MF
1174 * devices
1175 */
1176 if (IS_MF_PERCENT_BW(bp))
1177 line_speed = (line_speed * maxCfg) / 100;
1178 else { /* SD mode */
1179 u16 vn_max_rate = maxCfg * 100;
1180
1181 if (vn_max_rate < line_speed)
1182 line_speed = vn_max_rate;
1183 }
1184 }
1185
1186 return line_speed;
1187 }
1188
1189 /**
1190 * bnx2x_fill_report_data - fill link report data to report
1191 *
1192 * @bp: driver handle
1193 * @data: link state to update
1194 *
1195 * It uses a none-atomic bit operations because is called under the mutex.
1196 */
1197 static void bnx2x_fill_report_data(struct bnx2x *bp,
1198 struct bnx2x_link_report_data *data)
1199 {
1200 memset(data, 0, sizeof(*data));
1201
1202 if (IS_PF(bp)) {
1203 /* Fill the report data: effective line speed */
1204 data->line_speed = bnx2x_get_mf_speed(bp);
1205
1206 /* Link is down */
1207 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1208 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1209 &data->link_report_flags);
1210
1211 if (!BNX2X_NUM_ETH_QUEUES(bp))
1212 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 &data->link_report_flags);
1214
1215 /* Full DUPLEX */
1216 if (bp->link_vars.duplex == DUPLEX_FULL)
1217 __set_bit(BNX2X_LINK_REPORT_FD,
1218 &data->link_report_flags);
1219
1220 /* Rx Flow Control is ON */
1221 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1222 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1223 &data->link_report_flags);
1224
1225 /* Tx Flow Control is ON */
1226 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1227 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1228 &data->link_report_flags);
1229 } else { /* VF */
1230 *data = bp->vf_link_vars;
1231 }
1232 }
1233
1234 /**
1235 * bnx2x_link_report - report link status to OS.
1236 *
1237 * @bp: driver handle
1238 *
1239 * Calls the __bnx2x_link_report() under the same locking scheme
1240 * as a link/PHY state managing code to ensure a consistent link
1241 * reporting.
1242 */
1243
1244 void bnx2x_link_report(struct bnx2x *bp)
1245 {
1246 bnx2x_acquire_phy_lock(bp);
1247 __bnx2x_link_report(bp);
1248 bnx2x_release_phy_lock(bp);
1249 }
1250
1251 /**
1252 * __bnx2x_link_report - report link status to OS.
1253 *
1254 * @bp: driver handle
1255 *
1256 * None atomic implementation.
1257 * Should be called under the phy_lock.
1258 */
1259 void __bnx2x_link_report(struct bnx2x *bp)
1260 {
1261 struct bnx2x_link_report_data cur_data;
1262
1263 if (bp->force_link_down) {
1264 bp->link_vars.link_up = 0;
1265 return;
1266 }
1267
1268 /* reread mf_cfg */
1269 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1270 bnx2x_read_mf_cfg(bp);
1271
1272 /* Read the current link report info */
1273 bnx2x_fill_report_data(bp, &cur_data);
1274
1275 /* Don't report link down or exactly the same link status twice */
1276 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1277 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1278 &bp->last_reported_link.link_report_flags) &&
1279 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1280 &cur_data.link_report_flags)))
1281 return;
1282
1283 bp->link_cnt++;
1284
1285 /* We are going to report a new link parameters now -
1286 * remember the current data for the next time.
1287 */
1288 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1289
1290 /* propagate status to VFs */
1291 if (IS_PF(bp))
1292 bnx2x_iov_link_update(bp);
1293
1294 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1295 &cur_data.link_report_flags)) {
1296 netif_carrier_off(bp->dev);
1297 netdev_err(bp->dev, "NIC Link is Down\n");
1298 return;
1299 } else {
1300 const char *duplex;
1301 const char *flow;
1302
1303 netif_carrier_on(bp->dev);
1304
1305 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1306 &cur_data.link_report_flags))
1307 duplex = "full";
1308 else
1309 duplex = "half";
1310
1311 /* Handle the FC at the end so that only these flags would be
1312 * possibly set. This way we may easily check if there is no FC
1313 * enabled.
1314 */
1315 if (cur_data.link_report_flags) {
1316 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1317 &cur_data.link_report_flags)) {
1318 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1319 &cur_data.link_report_flags))
1320 flow = "ON - receive & transmit";
1321 else
1322 flow = "ON - receive";
1323 } else {
1324 flow = "ON - transmit";
1325 }
1326 } else {
1327 flow = "none";
1328 }
1329 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1330 cur_data.line_speed, duplex, flow);
1331 }
1332 }
1333
1334 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1335 {
1336 int i;
1337
1338 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1339 struct eth_rx_sge *sge;
1340
1341 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1342 sge->addr_hi =
1343 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1344 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1345
1346 sge->addr_lo =
1347 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1348 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349 }
1350 }
1351
1352 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1353 struct bnx2x_fastpath *fp, int last)
1354 {
1355 int i;
1356
1357 for (i = 0; i < last; i++) {
1358 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1359 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1360 u8 *data = first_buf->data;
1361
1362 if (data == NULL) {
1363 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1364 continue;
1365 }
1366 if (tpa_info->tpa_state == BNX2X_TPA_START)
1367 dma_unmap_single(&bp->pdev->dev,
1368 dma_unmap_addr(first_buf, mapping),
1369 fp->rx_buf_size, DMA_FROM_DEVICE);
1370 bnx2x_frag_free(fp, data);
1371 first_buf->data = NULL;
1372 }
1373 }
1374
1375 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1376 {
1377 int j;
1378
1379 for_each_rx_queue_cnic(bp, j) {
1380 struct bnx2x_fastpath *fp = &bp->fp[j];
1381
1382 fp->rx_bd_cons = 0;
1383
1384 /* Activate BD ring */
1385 /* Warning!
1386 * this will generate an interrupt (to the TSTORM)
1387 * must only be done after chip is initialized
1388 */
1389 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1390 fp->rx_sge_prod);
1391 }
1392 }
1393
1394 void bnx2x_init_rx_rings(struct bnx2x *bp)
1395 {
1396 int func = BP_FUNC(bp);
1397 u16 ring_prod;
1398 int i, j;
1399
1400 /* Allocate TPA resources */
1401 for_each_eth_queue(bp, j) {
1402 struct bnx2x_fastpath *fp = &bp->fp[j];
1403
1404 DP(NETIF_MSG_IFUP,
1405 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1406
1407 if (fp->mode != TPA_MODE_DISABLED) {
1408 /* Fill the per-aggregation pool */
1409 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1410 struct bnx2x_agg_info *tpa_info =
1411 &fp->tpa_info[i];
1412 struct sw_rx_bd *first_buf =
1413 &tpa_info->first_buf;
1414
1415 first_buf->data =
1416 bnx2x_frag_alloc(fp, GFP_KERNEL);
1417 if (!first_buf->data) {
1418 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1419 j);
1420 bnx2x_free_tpa_pool(bp, fp, i);
1421 fp->mode = TPA_MODE_DISABLED;
1422 break;
1423 }
1424 dma_unmap_addr_set(first_buf, mapping, 0);
1425 tpa_info->tpa_state = BNX2X_TPA_STOP;
1426 }
1427
1428 /* "next page" elements initialization */
1429 bnx2x_set_next_page_sgl(fp);
1430
1431 /* set SGEs bit mask */
1432 bnx2x_init_sge_ring_bit_mask(fp);
1433
1434 /* Allocate SGEs and initialize the ring elements */
1435 for (i = 0, ring_prod = 0;
1436 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1437
1438 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1439 GFP_KERNEL) < 0) {
1440 BNX2X_ERR("was only able to allocate %d rx sges\n",
1441 i);
1442 BNX2X_ERR("disabling TPA for queue[%d]\n",
1443 j);
1444 /* Cleanup already allocated elements */
1445 bnx2x_free_rx_sge_range(bp, fp,
1446 ring_prod);
1447 bnx2x_free_tpa_pool(bp, fp,
1448 MAX_AGG_QS(bp));
1449 fp->mode = TPA_MODE_DISABLED;
1450 ring_prod = 0;
1451 break;
1452 }
1453 ring_prod = NEXT_SGE_IDX(ring_prod);
1454 }
1455
1456 fp->rx_sge_prod = ring_prod;
1457 }
1458 }
1459
1460 for_each_eth_queue(bp, j) {
1461 struct bnx2x_fastpath *fp = &bp->fp[j];
1462
1463 fp->rx_bd_cons = 0;
1464
1465 /* Activate BD ring */
1466 /* Warning!
1467 * this will generate an interrupt (to the TSTORM)
1468 * must only be done after chip is initialized
1469 */
1470 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1471 fp->rx_sge_prod);
1472
1473 if (j != 0)
1474 continue;
1475
1476 if (CHIP_IS_E1(bp)) {
1477 REG_WR(bp, BAR_USTRORM_INTMEM +
1478 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1479 U64_LO(fp->rx_comp_mapping));
1480 REG_WR(bp, BAR_USTRORM_INTMEM +
1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1482 U64_HI(fp->rx_comp_mapping));
1483 }
1484 }
1485 }
1486
1487 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1488 {
1489 u8 cos;
1490 struct bnx2x *bp = fp->bp;
1491
1492 for_each_cos_in_tx_queue(fp, cos) {
1493 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1494 unsigned pkts_compl = 0, bytes_compl = 0;
1495
1496 u16 sw_prod = txdata->tx_pkt_prod;
1497 u16 sw_cons = txdata->tx_pkt_cons;
1498
1499 while (sw_cons != sw_prod) {
1500 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1501 &pkts_compl, &bytes_compl);
1502 sw_cons++;
1503 }
1504
1505 netdev_tx_reset_queue(
1506 netdev_get_tx_queue(bp->dev,
1507 txdata->txq_index));
1508 }
1509 }
1510
1511 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1512 {
1513 int i;
1514
1515 for_each_tx_queue_cnic(bp, i) {
1516 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1517 }
1518 }
1519
1520 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1521 {
1522 int i;
1523
1524 for_each_eth_queue(bp, i) {
1525 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1526 }
1527 }
1528
1529 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1530 {
1531 struct bnx2x *bp = fp->bp;
1532 int i;
1533
1534 /* ring wasn't allocated */
1535 if (fp->rx_buf_ring == NULL)
1536 return;
1537
1538 for (i = 0; i < NUM_RX_BD; i++) {
1539 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1540 u8 *data = rx_buf->data;
1541
1542 if (data == NULL)
1543 continue;
1544 dma_unmap_single(&bp->pdev->dev,
1545 dma_unmap_addr(rx_buf, mapping),
1546 fp->rx_buf_size, DMA_FROM_DEVICE);
1547
1548 rx_buf->data = NULL;
1549 bnx2x_frag_free(fp, data);
1550 }
1551 }
1552
1553 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1554 {
1555 int j;
1556
1557 for_each_rx_queue_cnic(bp, j) {
1558 bnx2x_free_rx_bds(&bp->fp[j]);
1559 }
1560 }
1561
1562 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1563 {
1564 int j;
1565
1566 for_each_eth_queue(bp, j) {
1567 struct bnx2x_fastpath *fp = &bp->fp[j];
1568
1569 bnx2x_free_rx_bds(fp);
1570
1571 if (fp->mode != TPA_MODE_DISABLED)
1572 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1573 }
1574 }
1575
1576 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1577 {
1578 bnx2x_free_tx_skbs_cnic(bp);
1579 bnx2x_free_rx_skbs_cnic(bp);
1580 }
1581
1582 void bnx2x_free_skbs(struct bnx2x *bp)
1583 {
1584 bnx2x_free_tx_skbs(bp);
1585 bnx2x_free_rx_skbs(bp);
1586 }
1587
1588 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1589 {
1590 /* load old values */
1591 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1592
1593 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1594 /* leave all but MAX value */
1595 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1596
1597 /* set new MAX value */
1598 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1599 & FUNC_MF_CFG_MAX_BW_MASK;
1600
1601 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1602 }
1603 }
1604
1605 /**
1606 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1607 *
1608 * @bp: driver handle
1609 * @nvecs: number of vectors to be released
1610 */
1611 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1612 {
1613 int i, offset = 0;
1614
1615 if (nvecs == offset)
1616 return;
1617
1618 /* VFs don't have a default SB */
1619 if (IS_PF(bp)) {
1620 free_irq(bp->msix_table[offset].vector, bp->dev);
1621 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1622 bp->msix_table[offset].vector);
1623 offset++;
1624 }
1625
1626 if (CNIC_SUPPORT(bp)) {
1627 if (nvecs == offset)
1628 return;
1629 offset++;
1630 }
1631
1632 for_each_eth_queue(bp, i) {
1633 if (nvecs == offset)
1634 return;
1635 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1636 i, bp->msix_table[offset].vector);
1637
1638 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1639 }
1640 }
1641
1642 void bnx2x_free_irq(struct bnx2x *bp)
1643 {
1644 if (bp->flags & USING_MSIX_FLAG &&
1645 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1646 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1647
1648 /* vfs don't have a default status block */
1649 if (IS_PF(bp))
1650 nvecs++;
1651
1652 bnx2x_free_msix_irqs(bp, nvecs);
1653 } else {
1654 free_irq(bp->dev->irq, bp->dev);
1655 }
1656 }
1657
1658 int bnx2x_enable_msix(struct bnx2x *bp)
1659 {
1660 int msix_vec = 0, i, rc;
1661
1662 /* VFs don't have a default status block */
1663 if (IS_PF(bp)) {
1664 bp->msix_table[msix_vec].entry = msix_vec;
1665 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1666 bp->msix_table[0].entry);
1667 msix_vec++;
1668 }
1669
1670 /* Cnic requires an msix vector for itself */
1671 if (CNIC_SUPPORT(bp)) {
1672 bp->msix_table[msix_vec].entry = msix_vec;
1673 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1674 msix_vec, bp->msix_table[msix_vec].entry);
1675 msix_vec++;
1676 }
1677
1678 /* We need separate vectors for ETH queues only (not FCoE) */
1679 for_each_eth_queue(bp, i) {
1680 bp->msix_table[msix_vec].entry = msix_vec;
1681 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1682 msix_vec, msix_vec, i);
1683 msix_vec++;
1684 }
1685
1686 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1687 msix_vec);
1688
1689 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1690 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1691 /*
1692 * reconfigure number of tx/rx queues according to available
1693 * MSI-X vectors
1694 */
1695 if (rc == -ENOSPC) {
1696 /* Get by with single vector */
1697 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1698 if (rc < 0) {
1699 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1700 rc);
1701 goto no_msix;
1702 }
1703
1704 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1705 bp->flags |= USING_SINGLE_MSIX_FLAG;
1706
1707 BNX2X_DEV_INFO("set number of queues to 1\n");
1708 bp->num_ethernet_queues = 1;
1709 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1710 } else if (rc < 0) {
1711 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1712 goto no_msix;
1713 } else if (rc < msix_vec) {
1714 /* how less vectors we will have? */
1715 int diff = msix_vec - rc;
1716
1717 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1718
1719 /*
1720 * decrease number of queues by number of unallocated entries
1721 */
1722 bp->num_ethernet_queues -= diff;
1723 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1724
1725 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1726 bp->num_queues);
1727 }
1728
1729 bp->flags |= USING_MSIX_FLAG;
1730
1731 return 0;
1732
1733 no_msix:
1734 /* fall to INTx if not enough memory */
1735 if (rc == -ENOMEM)
1736 bp->flags |= DISABLE_MSI_FLAG;
1737
1738 return rc;
1739 }
1740
1741 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1742 {
1743 int i, rc, offset = 0;
1744
1745 /* no default status block for vf */
1746 if (IS_PF(bp)) {
1747 rc = request_irq(bp->msix_table[offset++].vector,
1748 bnx2x_msix_sp_int, 0,
1749 bp->dev->name, bp->dev);
1750 if (rc) {
1751 BNX2X_ERR("request sp irq failed\n");
1752 return -EBUSY;
1753 }
1754 }
1755
1756 if (CNIC_SUPPORT(bp))
1757 offset++;
1758
1759 for_each_eth_queue(bp, i) {
1760 struct bnx2x_fastpath *fp = &bp->fp[i];
1761 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1762 bp->dev->name, i);
1763
1764 rc = request_irq(bp->msix_table[offset].vector,
1765 bnx2x_msix_fp_int, 0, fp->name, fp);
1766 if (rc) {
1767 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1768 bp->msix_table[offset].vector, rc);
1769 bnx2x_free_msix_irqs(bp, offset);
1770 return -EBUSY;
1771 }
1772
1773 offset++;
1774 }
1775
1776 i = BNX2X_NUM_ETH_QUEUES(bp);
1777 if (IS_PF(bp)) {
1778 offset = 1 + CNIC_SUPPORT(bp);
1779 netdev_info(bp->dev,
1780 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1781 bp->msix_table[0].vector,
1782 0, bp->msix_table[offset].vector,
1783 i - 1, bp->msix_table[offset + i - 1].vector);
1784 } else {
1785 offset = CNIC_SUPPORT(bp);
1786 netdev_info(bp->dev,
1787 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1788 0, bp->msix_table[offset].vector,
1789 i - 1, bp->msix_table[offset + i - 1].vector);
1790 }
1791 return 0;
1792 }
1793
1794 int bnx2x_enable_msi(struct bnx2x *bp)
1795 {
1796 int rc;
1797
1798 rc = pci_enable_msi(bp->pdev);
1799 if (rc) {
1800 BNX2X_DEV_INFO("MSI is not attainable\n");
1801 return -1;
1802 }
1803 bp->flags |= USING_MSI_FLAG;
1804
1805 return 0;
1806 }
1807
1808 static int bnx2x_req_irq(struct bnx2x *bp)
1809 {
1810 unsigned long flags;
1811 unsigned int irq;
1812
1813 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1814 flags = 0;
1815 else
1816 flags = IRQF_SHARED;
1817
1818 if (bp->flags & USING_MSIX_FLAG)
1819 irq = bp->msix_table[0].vector;
1820 else
1821 irq = bp->pdev->irq;
1822
1823 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1824 }
1825
1826 static int bnx2x_setup_irqs(struct bnx2x *bp)
1827 {
1828 int rc = 0;
1829 if (bp->flags & USING_MSIX_FLAG &&
1830 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1831 rc = bnx2x_req_msix_irqs(bp);
1832 if (rc)
1833 return rc;
1834 } else {
1835 rc = bnx2x_req_irq(bp);
1836 if (rc) {
1837 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1838 return rc;
1839 }
1840 if (bp->flags & USING_MSI_FLAG) {
1841 bp->dev->irq = bp->pdev->irq;
1842 netdev_info(bp->dev, "using MSI IRQ %d\n",
1843 bp->dev->irq);
1844 }
1845 if (bp->flags & USING_MSIX_FLAG) {
1846 bp->dev->irq = bp->msix_table[0].vector;
1847 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1848 bp->dev->irq);
1849 }
1850 }
1851
1852 return 0;
1853 }
1854
1855 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1856 {
1857 int i;
1858
1859 for_each_rx_queue_cnic(bp, i) {
1860 napi_enable(&bnx2x_fp(bp, i, napi));
1861 }
1862 }
1863
1864 static void bnx2x_napi_enable(struct bnx2x *bp)
1865 {
1866 int i;
1867
1868 for_each_eth_queue(bp, i) {
1869 napi_enable(&bnx2x_fp(bp, i, napi));
1870 }
1871 }
1872
1873 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1874 {
1875 int i;
1876
1877 for_each_rx_queue_cnic(bp, i) {
1878 napi_disable(&bnx2x_fp(bp, i, napi));
1879 }
1880 }
1881
1882 static void bnx2x_napi_disable(struct bnx2x *bp)
1883 {
1884 int i;
1885
1886 for_each_eth_queue(bp, i) {
1887 napi_disable(&bnx2x_fp(bp, i, napi));
1888 }
1889 }
1890
1891 void bnx2x_netif_start(struct bnx2x *bp)
1892 {
1893 if (netif_running(bp->dev)) {
1894 bnx2x_napi_enable(bp);
1895 if (CNIC_LOADED(bp))
1896 bnx2x_napi_enable_cnic(bp);
1897 bnx2x_int_enable(bp);
1898 if (bp->state == BNX2X_STATE_OPEN)
1899 netif_tx_wake_all_queues(bp->dev);
1900 }
1901 }
1902
1903 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1904 {
1905 bnx2x_int_disable_sync(bp, disable_hw);
1906 bnx2x_napi_disable(bp);
1907 if (CNIC_LOADED(bp))
1908 bnx2x_napi_disable_cnic(bp);
1909 }
1910
1911 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1912 struct net_device *sb_dev)
1913 {
1914 struct bnx2x *bp = netdev_priv(dev);
1915
1916 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1917 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1918 u16 ether_type = ntohs(hdr->h_proto);
1919
1920 /* Skip VLAN tag if present */
1921 if (ether_type == ETH_P_8021Q) {
1922 struct vlan_ethhdr *vhdr =
1923 (struct vlan_ethhdr *)skb->data;
1924
1925 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1926 }
1927
1928 /* If ethertype is FCoE or FIP - use FCoE ring */
1929 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1930 return bnx2x_fcoe_tx(bp, txq_index);
1931 }
1932
1933 /* select a non-FCoE queue */
1934 return netdev_pick_tx(dev, skb, NULL) %
1935 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1936 }
1937
1938 void bnx2x_set_num_queues(struct bnx2x *bp)
1939 {
1940 /* RSS queues */
1941 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1942
1943 /* override in STORAGE SD modes */
1944 if (IS_MF_STORAGE_ONLY(bp))
1945 bp->num_ethernet_queues = 1;
1946
1947 /* Add special queues */
1948 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1949 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1950
1951 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1952 }
1953
1954 /**
1955 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1956 *
1957 * @bp: Driver handle
1958 *
1959 * We currently support for at most 16 Tx queues for each CoS thus we will
1960 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1961 * bp->max_cos.
1962 *
1963 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1964 * index after all ETH L2 indices.
1965 *
1966 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1967 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1968 * 16..31,...) with indices that are not coupled with any real Tx queue.
1969 *
1970 * The proper configuration of skb->queue_mapping is handled by
1971 * bnx2x_select_queue() and __skb_tx_hash().
1972 *
1973 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1974 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1975 */
1976 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1977 {
1978 int rc, tx, rx;
1979
1980 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1981 rx = BNX2X_NUM_ETH_QUEUES(bp);
1982
1983 /* account for fcoe queue */
1984 if (include_cnic && !NO_FCOE(bp)) {
1985 rx++;
1986 tx++;
1987 }
1988
1989 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1990 if (rc) {
1991 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1992 return rc;
1993 }
1994 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1995 if (rc) {
1996 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1997 return rc;
1998 }
1999
2000 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2001 tx, rx);
2002
2003 return rc;
2004 }
2005
2006 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2007 {
2008 int i;
2009
2010 for_each_queue(bp, i) {
2011 struct bnx2x_fastpath *fp = &bp->fp[i];
2012 u32 mtu;
2013
2014 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2015 if (IS_FCOE_IDX(i))
2016 /*
2017 * Although there are no IP frames expected to arrive to
2018 * this ring we still want to add an
2019 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2020 * overrun attack.
2021 */
2022 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2023 else
2024 mtu = bp->dev->mtu;
2025 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2026 IP_HEADER_ALIGNMENT_PADDING +
2027 ETH_OVERHEAD +
2028 mtu +
2029 BNX2X_FW_RX_ALIGN_END;
2030 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2031 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2032 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2033 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2034 else
2035 fp->rx_frag_size = 0;
2036 }
2037 }
2038
2039 static int bnx2x_init_rss(struct bnx2x *bp)
2040 {
2041 int i;
2042 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2043
2044 /* Prepare the initial contents for the indirection table if RSS is
2045 * enabled
2046 */
2047 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2048 bp->rss_conf_obj.ind_table[i] =
2049 bp->fp->cl_id +
2050 ethtool_rxfh_indir_default(i, num_eth_queues);
2051
2052 /*
2053 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2054 * per-port, so if explicit configuration is needed , do it only
2055 * for a PMF.
2056 *
2057 * For 57712 and newer on the other hand it's a per-function
2058 * configuration.
2059 */
2060 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2061 }
2062
2063 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2064 bool config_hash, bool enable)
2065 {
2066 struct bnx2x_config_rss_params params = {NULL};
2067
2068 /* Although RSS is meaningless when there is a single HW queue we
2069 * still need it enabled in order to have HW Rx hash generated.
2070 *
2071 * if (!is_eth_multi(bp))
2072 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2073 */
2074
2075 params.rss_obj = rss_obj;
2076
2077 __set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2078
2079 if (enable) {
2080 __set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2081
2082 /* RSS configuration */
2083 __set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2084 __set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2085 __set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2086 __set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2087 if (rss_obj->udp_rss_v4)
2088 __set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2089 if (rss_obj->udp_rss_v6)
2090 __set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2091
2092 if (!CHIP_IS_E1x(bp)) {
2093 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2094 __set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2095 __set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2096
2097 /* valid only for TUNN_MODE_GRE tunnel mode */
2098 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2099 }
2100 } else {
2101 __set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2102 }
2103
2104 /* Hash bits */
2105 params.rss_result_mask = MULTI_MASK;
2106
2107 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2108
2109 if (config_hash) {
2110 /* RSS keys */
2111 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2112 __set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2113 }
2114
2115 if (IS_PF(bp))
2116 return bnx2x_config_rss(bp, &params);
2117 else
2118 return bnx2x_vfpf_config_rss(bp, &params);
2119 }
2120
2121 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2122 {
2123 struct bnx2x_func_state_params func_params = {NULL};
2124
2125 /* Prepare parameters for function state transitions */
2126 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2127
2128 func_params.f_obj = &bp->func_obj;
2129 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2130
2131 func_params.params.hw_init.load_phase = load_code;
2132
2133 return bnx2x_func_state_change(bp, &func_params);
2134 }
2135
2136 /*
2137 * Cleans the object that have internal lists without sending
2138 * ramrods. Should be run when interrupts are disabled.
2139 */
2140 void bnx2x_squeeze_objects(struct bnx2x *bp)
2141 {
2142 int rc;
2143 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2144 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2145 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2146
2147 /***************** Cleanup MACs' object first *************************/
2148
2149 /* Wait for completion of requested */
2150 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2151 /* Perform a dry cleanup */
2152 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2153
2154 /* Clean ETH primary MAC */
2155 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2156 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2157 &ramrod_flags);
2158 if (rc != 0)
2159 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2160
2161 /* Cleanup UC list */
2162 vlan_mac_flags = 0;
2163 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2164 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2165 &ramrod_flags);
2166 if (rc != 0)
2167 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2168
2169 /***************** Now clean mcast object *****************************/
2170 rparam.mcast_obj = &bp->mcast_obj;
2171 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2172
2173 /* Add a DEL command... - Since we're doing a driver cleanup only,
2174 * we take a lock surrounding both the initial send and the CONTs,
2175 * as we don't want a true completion to disrupt us in the middle.
2176 */
2177 netif_addr_lock_bh(bp->dev);
2178 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2179 if (rc < 0)
2180 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2181 rc);
2182
2183 /* ...and wait until all pending commands are cleared */
2184 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2185 while (rc != 0) {
2186 if (rc < 0) {
2187 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2188 rc);
2189 netif_addr_unlock_bh(bp->dev);
2190 return;
2191 }
2192
2193 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2194 }
2195 netif_addr_unlock_bh(bp->dev);
2196 }
2197
2198 #ifndef BNX2X_STOP_ON_ERROR
2199 #define LOAD_ERROR_EXIT(bp, label) \
2200 do { \
2201 (bp)->state = BNX2X_STATE_ERROR; \
2202 goto label; \
2203 } while (0)
2204
2205 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2206 do { \
2207 bp->cnic_loaded = false; \
2208 goto label; \
2209 } while (0)
2210 #else /*BNX2X_STOP_ON_ERROR*/
2211 #define LOAD_ERROR_EXIT(bp, label) \
2212 do { \
2213 (bp)->state = BNX2X_STATE_ERROR; \
2214 (bp)->panic = 1; \
2215 return -EBUSY; \
2216 } while (0)
2217 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2218 do { \
2219 bp->cnic_loaded = false; \
2220 (bp)->panic = 1; \
2221 return -EBUSY; \
2222 } while (0)
2223 #endif /*BNX2X_STOP_ON_ERROR*/
2224
2225 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2226 {
2227 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2228 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2229 return;
2230 }
2231
2232 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2233 {
2234 int num_groups, vf_headroom = 0;
2235 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2236
2237 /* number of queues for statistics is number of eth queues + FCoE */
2238 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2239
2240 /* Total number of FW statistics requests =
2241 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2242 * and fcoe l2 queue) stats + num of queues (which includes another 1
2243 * for fcoe l2 queue if applicable)
2244 */
2245 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2246
2247 /* vf stats appear in the request list, but their data is allocated by
2248 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2249 * it is used to determine where to place the vf stats queries in the
2250 * request struct
2251 */
2252 if (IS_SRIOV(bp))
2253 vf_headroom = bnx2x_vf_headroom(bp);
2254
2255 /* Request is built from stats_query_header and an array of
2256 * stats_query_cmd_group each of which contains
2257 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2258 * configured in the stats_query_header.
2259 */
2260 num_groups =
2261 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2262 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2263 1 : 0));
2264
2265 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2266 bp->fw_stats_num, vf_headroom, num_groups);
2267 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2268 num_groups * sizeof(struct stats_query_cmd_group);
2269
2270 /* Data for statistics requests + stats_counter
2271 * stats_counter holds per-STORM counters that are incremented
2272 * when STORM has finished with the current request.
2273 * memory for FCoE offloaded statistics are counted anyway,
2274 * even if they will not be sent.
2275 * VF stats are not accounted for here as the data of VF stats is stored
2276 * in memory allocated by the VF, not here.
2277 */
2278 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2279 sizeof(struct per_pf_stats) +
2280 sizeof(struct fcoe_statistics_params) +
2281 sizeof(struct per_queue_stats) * num_queue_stats +
2282 sizeof(struct stats_counter);
2283
2284 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2285 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2286 if (!bp->fw_stats)
2287 goto alloc_mem_err;
2288
2289 /* Set shortcuts */
2290 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2291 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2292 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2293 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2294 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2295 bp->fw_stats_req_sz;
2296
2297 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2298 U64_HI(bp->fw_stats_req_mapping),
2299 U64_LO(bp->fw_stats_req_mapping));
2300 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2301 U64_HI(bp->fw_stats_data_mapping),
2302 U64_LO(bp->fw_stats_data_mapping));
2303 return 0;
2304
2305 alloc_mem_err:
2306 bnx2x_free_fw_stats_mem(bp);
2307 BNX2X_ERR("Can't allocate FW stats memory\n");
2308 return -ENOMEM;
2309 }
2310
2311 /* send load request to mcp and analyze response */
2312 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2313 {
2314 u32 param;
2315
2316 /* init fw_seq */
2317 bp->fw_seq =
2318 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2319 DRV_MSG_SEQ_NUMBER_MASK);
2320 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2321
2322 /* Get current FW pulse sequence */
2323 bp->fw_drv_pulse_wr_seq =
2324 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2325 DRV_PULSE_SEQ_MASK);
2326 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2327
2328 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2329
2330 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2331 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2332
2333 /* load request */
2334 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2335
2336 /* if mcp fails to respond we must abort */
2337 if (!(*load_code)) {
2338 BNX2X_ERR("MCP response failure, aborting\n");
2339 return -EBUSY;
2340 }
2341
2342 /* If mcp refused (e.g. other port is in diagnostic mode) we
2343 * must abort
2344 */
2345 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2346 BNX2X_ERR("MCP refused load request, aborting\n");
2347 return -EBUSY;
2348 }
2349 return 0;
2350 }
2351
2352 /* check whether another PF has already loaded FW to chip. In
2353 * virtualized environments a pf from another VM may have already
2354 * initialized the device including loading FW
2355 */
2356 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2357 {
2358 /* is another pf loaded on this engine? */
2359 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2360 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2361 /* build my FW version dword */
2362 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2363 (BCM_5710_FW_MINOR_VERSION << 8) +
2364 (BCM_5710_FW_REVISION_VERSION << 16) +
2365 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2366
2367 /* read loaded FW from chip */
2368 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2369
2370 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2371 loaded_fw, my_fw);
2372
2373 /* abort nic load if version mismatch */
2374 if (my_fw != loaded_fw) {
2375 if (print_err)
2376 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2377 loaded_fw, my_fw);
2378 else
2379 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2380 loaded_fw, my_fw);
2381 return -EBUSY;
2382 }
2383 }
2384 return 0;
2385 }
2386
2387 /* returns the "mcp load_code" according to global load_count array */
2388 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2389 {
2390 int path = BP_PATH(bp);
2391
2392 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2393 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2394 bnx2x_load_count[path][2]);
2395 bnx2x_load_count[path][0]++;
2396 bnx2x_load_count[path][1 + port]++;
2397 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2398 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2399 bnx2x_load_count[path][2]);
2400 if (bnx2x_load_count[path][0] == 1)
2401 return FW_MSG_CODE_DRV_LOAD_COMMON;
2402 else if (bnx2x_load_count[path][1 + port] == 1)
2403 return FW_MSG_CODE_DRV_LOAD_PORT;
2404 else
2405 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2406 }
2407
2408 /* mark PMF if applicable */
2409 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2410 {
2411 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2412 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2413 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2414 bp->port.pmf = 1;
2415 /* We need the barrier to ensure the ordering between the
2416 * writing to bp->port.pmf here and reading it from the
2417 * bnx2x_periodic_task().
2418 */
2419 smp_mb();
2420 } else {
2421 bp->port.pmf = 0;
2422 }
2423
2424 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2425 }
2426
2427 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2428 {
2429 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2430 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2431 (bp->common.shmem2_base)) {
2432 if (SHMEM2_HAS(bp, dcc_support))
2433 SHMEM2_WR(bp, dcc_support,
2434 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2435 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2436 if (SHMEM2_HAS(bp, afex_driver_support))
2437 SHMEM2_WR(bp, afex_driver_support,
2438 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2439 }
2440
2441 /* Set AFEX default VLAN tag to an invalid value */
2442 bp->afex_def_vlan_tag = -1;
2443 }
2444
2445 /**
2446 * bnx2x_bz_fp - zero content of the fastpath structure.
2447 *
2448 * @bp: driver handle
2449 * @index: fastpath index to be zeroed
2450 *
2451 * Makes sure the contents of the bp->fp[index].napi is kept
2452 * intact.
2453 */
2454 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2455 {
2456 struct bnx2x_fastpath *fp = &bp->fp[index];
2457 int cos;
2458 struct napi_struct orig_napi = fp->napi;
2459 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2460
2461 /* bzero bnx2x_fastpath contents */
2462 if (fp->tpa_info)
2463 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2464 sizeof(struct bnx2x_agg_info));
2465 memset(fp, 0, sizeof(*fp));
2466
2467 /* Restore the NAPI object as it has been already initialized */
2468 fp->napi = orig_napi;
2469 fp->tpa_info = orig_tpa_info;
2470 fp->bp = bp;
2471 fp->index = index;
2472 if (IS_ETH_FP(fp))
2473 fp->max_cos = bp->max_cos;
2474 else
2475 /* Special queues support only one CoS */
2476 fp->max_cos = 1;
2477
2478 /* Init txdata pointers */
2479 if (IS_FCOE_FP(fp))
2480 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2481 if (IS_ETH_FP(fp))
2482 for_each_cos_in_tx_queue(fp, cos)
2483 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2484 BNX2X_NUM_ETH_QUEUES(bp) + index];
2485
2486 /* set the tpa flag for each queue. The tpa flag determines the queue
2487 * minimal size so it must be set prior to queue memory allocation
2488 */
2489 if (bp->dev->features & NETIF_F_LRO)
2490 fp->mode = TPA_MODE_LRO;
2491 else if (bp->dev->features & NETIF_F_GRO_HW)
2492 fp->mode = TPA_MODE_GRO;
2493 else
2494 fp->mode = TPA_MODE_DISABLED;
2495
2496 /* We don't want TPA if it's disabled in bp
2497 * or if this is an FCoE L2 ring.
2498 */
2499 if (bp->disable_tpa || IS_FCOE_FP(fp))
2500 fp->mode = TPA_MODE_DISABLED;
2501 }
2502
2503 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2504 {
2505 u32 cur;
2506
2507 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2508 return;
2509
2510 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2511 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2512 cur, state);
2513
2514 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2515 }
2516
2517 int bnx2x_load_cnic(struct bnx2x *bp)
2518 {
2519 int i, rc, port = BP_PORT(bp);
2520
2521 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2522
2523 mutex_init(&bp->cnic_mutex);
2524
2525 if (IS_PF(bp)) {
2526 rc = bnx2x_alloc_mem_cnic(bp);
2527 if (rc) {
2528 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2529 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2530 }
2531 }
2532
2533 rc = bnx2x_alloc_fp_mem_cnic(bp);
2534 if (rc) {
2535 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2536 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2537 }
2538
2539 /* Update the number of queues with the cnic queues */
2540 rc = bnx2x_set_real_num_queues(bp, 1);
2541 if (rc) {
2542 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2543 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2544 }
2545
2546 /* Add all CNIC NAPI objects */
2547 bnx2x_add_all_napi_cnic(bp);
2548 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2549 bnx2x_napi_enable_cnic(bp);
2550
2551 rc = bnx2x_init_hw_func_cnic(bp);
2552 if (rc)
2553 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2554
2555 bnx2x_nic_init_cnic(bp);
2556
2557 if (IS_PF(bp)) {
2558 /* Enable Timer scan */
2559 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2560
2561 /* setup cnic queues */
2562 for_each_cnic_queue(bp, i) {
2563 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2564 if (rc) {
2565 BNX2X_ERR("Queue setup failed\n");
2566 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2567 }
2568 }
2569 }
2570
2571 /* Initialize Rx filter. */
2572 bnx2x_set_rx_mode_inner(bp);
2573
2574 /* re-read iscsi info */
2575 bnx2x_get_iscsi_info(bp);
2576 bnx2x_setup_cnic_irq_info(bp);
2577 bnx2x_setup_cnic_info(bp);
2578 bp->cnic_loaded = true;
2579 if (bp->state == BNX2X_STATE_OPEN)
2580 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2581
2582 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2583
2584 return 0;
2585
2586 #ifndef BNX2X_STOP_ON_ERROR
2587 load_error_cnic2:
2588 /* Disable Timer scan */
2589 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2590
2591 load_error_cnic1:
2592 bnx2x_napi_disable_cnic(bp);
2593 /* Update the number of queues without the cnic queues */
2594 if (bnx2x_set_real_num_queues(bp, 0))
2595 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2596 load_error_cnic0:
2597 BNX2X_ERR("CNIC-related load failed\n");
2598 bnx2x_free_fp_mem_cnic(bp);
2599 bnx2x_free_mem_cnic(bp);
2600 return rc;
2601 #endif /* ! BNX2X_STOP_ON_ERROR */
2602 }
2603
2604 /* must be called with rtnl_lock */
2605 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2606 {
2607 int port = BP_PORT(bp);
2608 int i, rc = 0, load_code = 0;
2609
2610 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2611 DP(NETIF_MSG_IFUP,
2612 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2613
2614 #ifdef BNX2X_STOP_ON_ERROR
2615 if (unlikely(bp->panic)) {
2616 BNX2X_ERR("Can't load NIC when there is panic\n");
2617 return -EPERM;
2618 }
2619 #endif
2620
2621 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2622
2623 /* zero the structure w/o any lock, before SP handler is initialized */
2624 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2625 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2626 &bp->last_reported_link.link_report_flags);
2627
2628 if (IS_PF(bp))
2629 /* must be called before memory allocation and HW init */
2630 bnx2x_ilt_set_info(bp);
2631
2632 /*
2633 * Zero fastpath structures preserving invariants like napi, which are
2634 * allocated only once, fp index, max_cos, bp pointer.
2635 * Also set fp->mode and txdata_ptr.
2636 */
2637 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2638 for_each_queue(bp, i)
2639 bnx2x_bz_fp(bp, i);
2640 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2641 bp->num_cnic_queues) *
2642 sizeof(struct bnx2x_fp_txdata));
2643
2644 bp->fcoe_init = false;
2645
2646 /* Set the receive queues buffer size */
2647 bnx2x_set_rx_buf_size(bp);
2648
2649 if (IS_PF(bp)) {
2650 rc = bnx2x_alloc_mem(bp);
2651 if (rc) {
2652 BNX2X_ERR("Unable to allocate bp memory\n");
2653 return rc;
2654 }
2655 }
2656
2657 /* need to be done after alloc mem, since it's self adjusting to amount
2658 * of memory available for RSS queues
2659 */
2660 rc = bnx2x_alloc_fp_mem(bp);
2661 if (rc) {
2662 BNX2X_ERR("Unable to allocate memory for fps\n");
2663 LOAD_ERROR_EXIT(bp, load_error0);
2664 }
2665
2666 /* Allocated memory for FW statistics */
2667 if (bnx2x_alloc_fw_stats_mem(bp))
2668 LOAD_ERROR_EXIT(bp, load_error0);
2669
2670 /* request pf to initialize status blocks */
2671 if (IS_VF(bp)) {
2672 rc = bnx2x_vfpf_init(bp);
2673 if (rc)
2674 LOAD_ERROR_EXIT(bp, load_error0);
2675 }
2676
2677 /* As long as bnx2x_alloc_mem() may possibly update
2678 * bp->num_queues, bnx2x_set_real_num_queues() should always
2679 * come after it. At this stage cnic queues are not counted.
2680 */
2681 rc = bnx2x_set_real_num_queues(bp, 0);
2682 if (rc) {
2683 BNX2X_ERR("Unable to set real_num_queues\n");
2684 LOAD_ERROR_EXIT(bp, load_error0);
2685 }
2686
2687 /* configure multi cos mappings in kernel.
2688 * this configuration may be overridden by a multi class queue
2689 * discipline or by a dcbx negotiation result.
2690 */
2691 bnx2x_setup_tc(bp->dev, bp->max_cos);
2692
2693 /* Add all NAPI objects */
2694 bnx2x_add_all_napi(bp);
2695 DP(NETIF_MSG_IFUP, "napi added\n");
2696 bnx2x_napi_enable(bp);
2697
2698 if (IS_PF(bp)) {
2699 /* set pf load just before approaching the MCP */
2700 bnx2x_set_pf_load(bp);
2701
2702 /* if mcp exists send load request and analyze response */
2703 if (!BP_NOMCP(bp)) {
2704 /* attempt to load pf */
2705 rc = bnx2x_nic_load_request(bp, &load_code);
2706 if (rc)
2707 LOAD_ERROR_EXIT(bp, load_error1);
2708
2709 /* what did mcp say? */
2710 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2711 if (rc) {
2712 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2713 LOAD_ERROR_EXIT(bp, load_error2);
2714 }
2715 } else {
2716 load_code = bnx2x_nic_load_no_mcp(bp, port);
2717 }
2718
2719 /* mark pmf if applicable */
2720 bnx2x_nic_load_pmf(bp, load_code);
2721
2722 /* Init Function state controlling object */
2723 bnx2x__init_func_obj(bp);
2724
2725 /* Initialize HW */
2726 rc = bnx2x_init_hw(bp, load_code);
2727 if (rc) {
2728 BNX2X_ERR("HW init failed, aborting\n");
2729 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2730 LOAD_ERROR_EXIT(bp, load_error2);
2731 }
2732 }
2733
2734 bnx2x_pre_irq_nic_init(bp);
2735
2736 /* Connect to IRQs */
2737 rc = bnx2x_setup_irqs(bp);
2738 if (rc) {
2739 BNX2X_ERR("setup irqs failed\n");
2740 if (IS_PF(bp))
2741 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2742 LOAD_ERROR_EXIT(bp, load_error2);
2743 }
2744
2745 /* Init per-function objects */
2746 if (IS_PF(bp)) {
2747 /* Setup NIC internals and enable interrupts */
2748 bnx2x_post_irq_nic_init(bp, load_code);
2749
2750 bnx2x_init_bp_objs(bp);
2751 bnx2x_iov_nic_init(bp);
2752
2753 /* Set AFEX default VLAN tag to an invalid value */
2754 bp->afex_def_vlan_tag = -1;
2755 bnx2x_nic_load_afex_dcc(bp, load_code);
2756 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2757 rc = bnx2x_func_start(bp);
2758 if (rc) {
2759 BNX2X_ERR("Function start failed!\n");
2760 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2761
2762 LOAD_ERROR_EXIT(bp, load_error3);
2763 }
2764
2765 /* Send LOAD_DONE command to MCP */
2766 if (!BP_NOMCP(bp)) {
2767 load_code = bnx2x_fw_command(bp,
2768 DRV_MSG_CODE_LOAD_DONE, 0);
2769 if (!load_code) {
2770 BNX2X_ERR("MCP response failure, aborting\n");
2771 rc = -EBUSY;
2772 LOAD_ERROR_EXIT(bp, load_error3);
2773 }
2774 }
2775
2776 /* initialize FW coalescing state machines in RAM */
2777 bnx2x_update_coalesce(bp);
2778 }
2779
2780 /* setup the leading queue */
2781 rc = bnx2x_setup_leading(bp);
2782 if (rc) {
2783 BNX2X_ERR("Setup leading failed!\n");
2784 LOAD_ERROR_EXIT(bp, load_error3);
2785 }
2786
2787 /* set up the rest of the queues */
2788 for_each_nondefault_eth_queue(bp, i) {
2789 if (IS_PF(bp))
2790 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2791 else /* VF */
2792 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2793 if (rc) {
2794 BNX2X_ERR("Queue %d setup failed\n", i);
2795 LOAD_ERROR_EXIT(bp, load_error3);
2796 }
2797 }
2798
2799 /* setup rss */
2800 rc = bnx2x_init_rss(bp);
2801 if (rc) {
2802 BNX2X_ERR("PF RSS init failed\n");
2803 LOAD_ERROR_EXIT(bp, load_error3);
2804 }
2805
2806 /* Now when Clients are configured we are ready to work */
2807 bp->state = BNX2X_STATE_OPEN;
2808
2809 /* Configure a ucast MAC */
2810 if (IS_PF(bp))
2811 rc = bnx2x_set_eth_mac(bp, true);
2812 else /* vf */
2813 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2814 true);
2815 if (rc) {
2816 BNX2X_ERR("Setting Ethernet MAC failed\n");
2817 LOAD_ERROR_EXIT(bp, load_error3);
2818 }
2819
2820 if (IS_PF(bp) && bp->pending_max) {
2821 bnx2x_update_max_mf_config(bp, bp->pending_max);
2822 bp->pending_max = 0;
2823 }
2824
2825 bp->force_link_down = false;
2826 if (bp->port.pmf) {
2827 rc = bnx2x_initial_phy_init(bp, load_mode);
2828 if (rc)
2829 LOAD_ERROR_EXIT(bp, load_error3);
2830 }
2831 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2832
2833 /* Start fast path */
2834
2835 /* Re-configure vlan filters */
2836 rc = bnx2x_vlan_reconfigure_vid(bp);
2837 if (rc)
2838 LOAD_ERROR_EXIT(bp, load_error3);
2839
2840 /* Initialize Rx filter. */
2841 bnx2x_set_rx_mode_inner(bp);
2842
2843 if (bp->flags & PTP_SUPPORTED) {
2844 bnx2x_register_phc(bp);
2845 bnx2x_init_ptp(bp);
2846 bnx2x_configure_ptp_filters(bp);
2847 }
2848 /* Start Tx */
2849 switch (load_mode) {
2850 case LOAD_NORMAL:
2851 /* Tx queue should be only re-enabled */
2852 netif_tx_wake_all_queues(bp->dev);
2853 break;
2854
2855 case LOAD_OPEN:
2856 netif_tx_start_all_queues(bp->dev);
2857 smp_mb__after_atomic();
2858 break;
2859
2860 case LOAD_DIAG:
2861 case LOAD_LOOPBACK_EXT:
2862 bp->state = BNX2X_STATE_DIAG;
2863 break;
2864
2865 default:
2866 break;
2867 }
2868
2869 if (bp->port.pmf)
2870 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2871 else
2872 bnx2x__link_status_update(bp);
2873
2874 /* start the timer */
2875 mod_timer(&bp->timer, jiffies + bp->current_interval);
2876
2877 if (CNIC_ENABLED(bp))
2878 bnx2x_load_cnic(bp);
2879
2880 if (IS_PF(bp))
2881 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2882
2883 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2884 /* mark driver is loaded in shmem2 */
2885 u32 val;
2886 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2887 val &= ~DRV_FLAGS_MTU_MASK;
2888 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2889 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2890 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2891 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2892 }
2893
2894 /* Wait for all pending SP commands to complete */
2895 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2896 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2897 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2898 return -EBUSY;
2899 }
2900
2901 /* Update driver data for On-Chip MFW dump. */
2902 if (IS_PF(bp))
2903 bnx2x_update_mfw_dump(bp);
2904
2905 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2906 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2907 bnx2x_dcbx_init(bp, false);
2908
2909 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2910 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2911
2912 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2913
2914 return 0;
2915
2916 #ifndef BNX2X_STOP_ON_ERROR
2917 load_error3:
2918 if (IS_PF(bp)) {
2919 bnx2x_int_disable_sync(bp, 1);
2920
2921 /* Clean queueable objects */
2922 bnx2x_squeeze_objects(bp);
2923 }
2924
2925 /* Free SKBs, SGEs, TPA pool and driver internals */
2926 bnx2x_free_skbs(bp);
2927 for_each_rx_queue(bp, i)
2928 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2929
2930 /* Release IRQs */
2931 bnx2x_free_irq(bp);
2932 load_error2:
2933 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2934 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2935 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2936 }
2937
2938 bp->port.pmf = 0;
2939 load_error1:
2940 bnx2x_napi_disable(bp);
2941 bnx2x_del_all_napi(bp);
2942
2943 /* clear pf_load status, as it was already set */
2944 if (IS_PF(bp))
2945 bnx2x_clear_pf_load(bp);
2946 load_error0:
2947 bnx2x_free_fw_stats_mem(bp);
2948 bnx2x_free_fp_mem(bp);
2949 bnx2x_free_mem(bp);
2950
2951 return rc;
2952 #endif /* ! BNX2X_STOP_ON_ERROR */
2953 }
2954
2955 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2956 {
2957 u8 rc = 0, cos, i;
2958
2959 /* Wait until tx fastpath tasks complete */
2960 for_each_tx_queue(bp, i) {
2961 struct bnx2x_fastpath *fp = &bp->fp[i];
2962
2963 for_each_cos_in_tx_queue(fp, cos)
2964 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2965 if (rc)
2966 return rc;
2967 }
2968 return 0;
2969 }
2970
2971 /* must be called with rtnl_lock */
2972 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2973 {
2974 int i;
2975 bool global = false;
2976
2977 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2978
2979 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2980 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2981
2982 /* mark driver is unloaded in shmem2 */
2983 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2984 u32 val;
2985 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2986 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2987 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2988 }
2989
2990 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2991 (bp->state == BNX2X_STATE_CLOSED ||
2992 bp->state == BNX2X_STATE_ERROR)) {
2993 /* We can get here if the driver has been unloaded
2994 * during parity error recovery and is either waiting for a
2995 * leader to complete or for other functions to unload and
2996 * then ifdown has been issued. In this case we want to
2997 * unload and let other functions to complete a recovery
2998 * process.
2999 */
3000 bp->recovery_state = BNX2X_RECOVERY_DONE;
3001 bp->is_leader = 0;
3002 bnx2x_release_leader_lock(bp);
3003 smp_mb();
3004
3005 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3006 BNX2X_ERR("Can't unload in closed or error state\n");
3007 return -EINVAL;
3008 }
3009
3010 /* Nothing to do during unload if previous bnx2x_nic_load()
3011 * have not completed successfully - all resources are released.
3012 *
3013 * we can get here only after unsuccessful ndo_* callback, during which
3014 * dev->IFF_UP flag is still on.
3015 */
3016 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3017 return 0;
3018
3019 /* It's important to set the bp->state to the value different from
3020 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3021 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3022 */
3023 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3024 smp_mb();
3025
3026 /* indicate to VFs that the PF is going down */
3027 bnx2x_iov_channel_down(bp);
3028
3029 if (CNIC_LOADED(bp))
3030 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3031
3032 /* Stop Tx */
3033 bnx2x_tx_disable(bp);
3034 netdev_reset_tc(bp->dev);
3035
3036 bp->rx_mode = BNX2X_RX_MODE_NONE;
3037
3038 del_timer_sync(&bp->timer);
3039
3040 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3041 /* Set ALWAYS_ALIVE bit in shmem */
3042 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3043 bnx2x_drv_pulse(bp);
3044 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3045 bnx2x_save_statistics(bp);
3046 }
3047
3048 /* wait till consumers catch up with producers in all queues.
3049 * If we're recovering, FW can't write to host so no reason
3050 * to wait for the queues to complete all Tx.
3051 */
3052 if (unload_mode != UNLOAD_RECOVERY)
3053 bnx2x_drain_tx_queues(bp);
3054
3055 /* if VF indicate to PF this function is going down (PF will delete sp
3056 * elements and clear initializations
3057 */
3058 if (IS_VF(bp))
3059 bnx2x_vfpf_close_vf(bp);
3060 else if (unload_mode != UNLOAD_RECOVERY)
3061 /* if this is a normal/close unload need to clean up chip*/
3062 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3063 else {
3064 /* Send the UNLOAD_REQUEST to the MCP */
3065 bnx2x_send_unload_req(bp, unload_mode);
3066
3067 /* Prevent transactions to host from the functions on the
3068 * engine that doesn't reset global blocks in case of global
3069 * attention once global blocks are reset and gates are opened
3070 * (the engine which leader will perform the recovery
3071 * last).
3072 */
3073 if (!CHIP_IS_E1x(bp))
3074 bnx2x_pf_disable(bp);
3075
3076 /* Disable HW interrupts, NAPI */
3077 bnx2x_netif_stop(bp, 1);
3078 /* Delete all NAPI objects */
3079 bnx2x_del_all_napi(bp);
3080 if (CNIC_LOADED(bp))
3081 bnx2x_del_all_napi_cnic(bp);
3082 /* Release IRQs */
3083 bnx2x_free_irq(bp);
3084
3085 /* Report UNLOAD_DONE to MCP */
3086 bnx2x_send_unload_done(bp, false);
3087 }
3088
3089 /*
3090 * At this stage no more interrupts will arrive so we may safely clean
3091 * the queueable objects here in case they failed to get cleaned so far.
3092 */
3093 if (IS_PF(bp))
3094 bnx2x_squeeze_objects(bp);
3095
3096 /* There should be no more pending SP commands at this stage */
3097 bp->sp_state = 0;
3098
3099 bp->port.pmf = 0;
3100
3101 /* clear pending work in rtnl task */
3102 bp->sp_rtnl_state = 0;
3103 smp_mb();
3104
3105 /* Free SKBs, SGEs, TPA pool and driver internals */
3106 bnx2x_free_skbs(bp);
3107 if (CNIC_LOADED(bp))
3108 bnx2x_free_skbs_cnic(bp);
3109 for_each_rx_queue(bp, i)
3110 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3111
3112 bnx2x_free_fp_mem(bp);
3113 if (CNIC_LOADED(bp))
3114 bnx2x_free_fp_mem_cnic(bp);
3115
3116 if (IS_PF(bp)) {
3117 if (CNIC_LOADED(bp))
3118 bnx2x_free_mem_cnic(bp);
3119 }
3120 bnx2x_free_mem(bp);
3121
3122 bp->state = BNX2X_STATE_CLOSED;
3123 bp->cnic_loaded = false;
3124
3125 /* Clear driver version indication in shmem */
3126 if (IS_PF(bp) && !BP_NOMCP(bp))
3127 bnx2x_update_mng_version(bp);
3128
3129 /* Check if there are pending parity attentions. If there are - set
3130 * RECOVERY_IN_PROGRESS.
3131 */
3132 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3133 bnx2x_set_reset_in_progress(bp);
3134
3135 /* Set RESET_IS_GLOBAL if needed */
3136 if (global)
3137 bnx2x_set_reset_global(bp);
3138 }
3139
3140 /* The last driver must disable a "close the gate" if there is no
3141 * parity attention or "process kill" pending.
3142 */
3143 if (IS_PF(bp) &&
3144 !bnx2x_clear_pf_load(bp) &&
3145 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3146 bnx2x_disable_close_the_gate(bp);
3147
3148 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3149
3150 return 0;
3151 }
3152
3153 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3154 {
3155 u16 pmcsr;
3156
3157 /* If there is no power capability, silently succeed */
3158 if (!bp->pdev->pm_cap) {
3159 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3160 return 0;
3161 }
3162
3163 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3164
3165 switch (state) {
3166 case PCI_D0:
3167 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3168 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3169 PCI_PM_CTRL_PME_STATUS));
3170
3171 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3172 /* delay required during transition out of D3hot */
3173 msleep(20);
3174 break;
3175
3176 case PCI_D3hot:
3177 /* If there are other clients above don't
3178 shut down the power */
3179 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3180 return 0;
3181 /* Don't shut down the power for emulation and FPGA */
3182 if (CHIP_REV_IS_SLOW(bp))
3183 return 0;
3184
3185 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3186 pmcsr |= 3;
3187
3188 if (bp->wol)
3189 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3190
3191 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3192 pmcsr);
3193
3194 /* No more memory access after this point until
3195 * device is brought back to D0.
3196 */
3197 break;
3198
3199 default:
3200 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3201 return -EINVAL;
3202 }
3203 return 0;
3204 }
3205
3206 /*
3207 * net_device service functions
3208 */
3209 static int bnx2x_poll(struct napi_struct *napi, int budget)
3210 {
3211 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3212 napi);
3213 struct bnx2x *bp = fp->bp;
3214 int rx_work_done;
3215 u8 cos;
3216
3217 #ifdef BNX2X_STOP_ON_ERROR
3218 if (unlikely(bp->panic)) {
3219 napi_complete(napi);
3220 return 0;
3221 }
3222 #endif
3223 for_each_cos_in_tx_queue(fp, cos)
3224 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3225 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3226
3227 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3228
3229 if (rx_work_done < budget) {
3230 /* No need to update SB for FCoE L2 ring as long as
3231 * it's connected to the default SB and the SB
3232 * has been updated when NAPI was scheduled.
3233 */
3234 if (IS_FCOE_FP(fp)) {
3235 napi_complete_done(napi, rx_work_done);
3236 } else {
3237 bnx2x_update_fpsb_idx(fp);
3238 /* bnx2x_has_rx_work() reads the status block,
3239 * thus we need to ensure that status block indices
3240 * have been actually read (bnx2x_update_fpsb_idx)
3241 * prior to this check (bnx2x_has_rx_work) so that
3242 * we won't write the "newer" value of the status block
3243 * to IGU (if there was a DMA right after
3244 * bnx2x_has_rx_work and if there is no rmb, the memory
3245 * reading (bnx2x_update_fpsb_idx) may be postponed
3246 * to right before bnx2x_ack_sb). In this case there
3247 * will never be another interrupt until there is
3248 * another update of the status block, while there
3249 * is still unhandled work.
3250 */
3251 rmb();
3252
3253 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3254 if (napi_complete_done(napi, rx_work_done)) {
3255 /* Re-enable interrupts */
3256 DP(NETIF_MSG_RX_STATUS,
3257 "Update index to %d\n", fp->fp_hc_idx);
3258 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3259 le16_to_cpu(fp->fp_hc_idx),
3260 IGU_INT_ENABLE, 1);
3261 }
3262 } else {
3263 rx_work_done = budget;
3264 }
3265 }
3266 }
3267
3268 return rx_work_done;
3269 }
3270
3271 /* we split the first BD into headers and data BDs
3272 * to ease the pain of our fellow microcode engineers
3273 * we use one mapping for both BDs
3274 */
3275 static u16 bnx2x_tx_split(struct bnx2x *bp,
3276 struct bnx2x_fp_txdata *txdata,
3277 struct sw_tx_bd *tx_buf,
3278 struct eth_tx_start_bd **tx_bd, u16 hlen,
3279 u16 bd_prod)
3280 {
3281 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3282 struct eth_tx_bd *d_tx_bd;
3283 dma_addr_t mapping;
3284 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3285
3286 /* first fix first BD */
3287 h_tx_bd->nbytes = cpu_to_le16(hlen);
3288
3289 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3290 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3291
3292 /* now get a new data BD
3293 * (after the pbd) and fill it */
3294 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3295 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3296
3297 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3298 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3299
3300 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3301 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3302 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3303
3304 /* this marks the BD as one that has no individual mapping */
3305 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3306
3307 DP(NETIF_MSG_TX_QUEUED,
3308 "TSO split data size is %d (%x:%x)\n",
3309 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3310
3311 /* update tx_bd */
3312 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3313
3314 return bd_prod;
3315 }
3316
3317 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3318 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3319 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3320 {
3321 __sum16 tsum = (__force __sum16) csum;
3322
3323 if (fix > 0)
3324 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3325 csum_partial(t_header - fix, fix, 0)));
3326
3327 else if (fix < 0)
3328 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3329 csum_partial(t_header, -fix, 0)));
3330
3331 return bswab16(tsum);
3332 }
3333
3334 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3335 {
3336 u32 rc;
3337 __u8 prot = 0;
3338 __be16 protocol;
3339
3340 if (skb->ip_summed != CHECKSUM_PARTIAL)
3341 return XMIT_PLAIN;
3342
3343 protocol = vlan_get_protocol(skb);
3344 if (protocol == htons(ETH_P_IPV6)) {
3345 rc = XMIT_CSUM_V6;
3346 prot = ipv6_hdr(skb)->nexthdr;
3347 } else {
3348 rc = XMIT_CSUM_V4;
3349 prot = ip_hdr(skb)->protocol;
3350 }
3351
3352 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3353 if (inner_ip_hdr(skb)->version == 6) {
3354 rc |= XMIT_CSUM_ENC_V6;
3355 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3356 rc |= XMIT_CSUM_TCP;
3357 } else {
3358 rc |= XMIT_CSUM_ENC_V4;
3359 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3360 rc |= XMIT_CSUM_TCP;
3361 }
3362 }
3363 if (prot == IPPROTO_TCP)
3364 rc |= XMIT_CSUM_TCP;
3365
3366 if (skb_is_gso(skb)) {
3367 if (skb_is_gso_v6(skb)) {
3368 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3369 if (rc & XMIT_CSUM_ENC)
3370 rc |= XMIT_GSO_ENC_V6;
3371 } else {
3372 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3373 if (rc & XMIT_CSUM_ENC)
3374 rc |= XMIT_GSO_ENC_V4;
3375 }
3376 }
3377
3378 return rc;
3379 }
3380
3381 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3382 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3383
3384 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3385 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3386
3387 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3388 /* check if packet requires linearization (packet is too fragmented)
3389 no need to check fragmentation if page size > 8K (there will be no
3390 violation to FW restrictions) */
3391 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3392 u32 xmit_type)
3393 {
3394 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3395 int to_copy = 0, hlen = 0;
3396
3397 if (xmit_type & XMIT_GSO_ENC)
3398 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3399
3400 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3401 if (xmit_type & XMIT_GSO) {
3402 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3403 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3404 /* Number of windows to check */
3405 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3406 int wnd_idx = 0;
3407 int frag_idx = 0;
3408 u32 wnd_sum = 0;
3409
3410 /* Headers length */
3411 if (xmit_type & XMIT_GSO_ENC)
3412 hlen = (int)(skb_inner_transport_header(skb) -
3413 skb->data) +
3414 inner_tcp_hdrlen(skb);
3415 else
3416 hlen = (int)(skb_transport_header(skb) -
3417 skb->data) + tcp_hdrlen(skb);
3418
3419 /* Amount of data (w/o headers) on linear part of SKB*/
3420 first_bd_sz = skb_headlen(skb) - hlen;
3421
3422 wnd_sum = first_bd_sz;
3423
3424 /* Calculate the first sum - it's special */
3425 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3426 wnd_sum +=
3427 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3428
3429 /* If there was data on linear skb data - check it */
3430 if (first_bd_sz > 0) {
3431 if (unlikely(wnd_sum < lso_mss)) {
3432 to_copy = 1;
3433 goto exit_lbl;
3434 }
3435
3436 wnd_sum -= first_bd_sz;
3437 }
3438
3439 /* Others are easier: run through the frag list and
3440 check all windows */
3441 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3442 wnd_sum +=
3443 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3444
3445 if (unlikely(wnd_sum < lso_mss)) {
3446 to_copy = 1;
3447 break;
3448 }
3449 wnd_sum -=
3450 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3451 }
3452 } else {
3453 /* in non-LSO too fragmented packet should always
3454 be linearized */
3455 to_copy = 1;
3456 }
3457 }
3458
3459 exit_lbl:
3460 if (unlikely(to_copy))
3461 DP(NETIF_MSG_TX_QUEUED,
3462 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3463 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3464 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3465
3466 return to_copy;
3467 }
3468 #endif
3469
3470 /**
3471 * bnx2x_set_pbd_gso - update PBD in GSO case.
3472 *
3473 * @skb: packet skb
3474 * @pbd: parse BD
3475 * @xmit_type: xmit flags
3476 */
3477 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3478 struct eth_tx_parse_bd_e1x *pbd,
3479 u32 xmit_type)
3480 {
3481 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3482 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3483 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3484
3485 if (xmit_type & XMIT_GSO_V4) {
3486 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3487 pbd->tcp_pseudo_csum =
3488 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3489 ip_hdr(skb)->daddr,
3490 0, IPPROTO_TCP, 0));
3491 } else {
3492 pbd->tcp_pseudo_csum =
3493 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3494 &ipv6_hdr(skb)->daddr,
3495 0, IPPROTO_TCP, 0));
3496 }
3497
3498 pbd->global_data |=
3499 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3500 }
3501
3502 /**
3503 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3504 *
3505 * @bp: driver handle
3506 * @skb: packet skb
3507 * @parsing_data: data to be updated
3508 * @xmit_type: xmit flags
3509 *
3510 * 57712/578xx related, when skb has encapsulation
3511 */
3512 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3513 u32 *parsing_data, u32 xmit_type)
3514 {
3515 *parsing_data |=
3516 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3517 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3518 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3519
3520 if (xmit_type & XMIT_CSUM_TCP) {
3521 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3522 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3523 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3524
3525 return skb_inner_transport_header(skb) +
3526 inner_tcp_hdrlen(skb) - skb->data;
3527 }
3528
3529 /* We support checksum offload for TCP and UDP only.
3530 * No need to pass the UDP header length - it's a constant.
3531 */
3532 return skb_inner_transport_header(skb) +
3533 sizeof(struct udphdr) - skb->data;
3534 }
3535
3536 /**
3537 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3538 *
3539 * @bp: driver handle
3540 * @skb: packet skb
3541 * @parsing_data: data to be updated
3542 * @xmit_type: xmit flags
3543 *
3544 * 57712/578xx related
3545 */
3546 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3547 u32 *parsing_data, u32 xmit_type)
3548 {
3549 *parsing_data |=
3550 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3551 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3552 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3553
3554 if (xmit_type & XMIT_CSUM_TCP) {
3555 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3556 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3557 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3558
3559 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3560 }
3561 /* We support checksum offload for TCP and UDP only.
3562 * No need to pass the UDP header length - it's a constant.
3563 */
3564 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3565 }
3566
3567 /* set FW indication according to inner or outer protocols if tunneled */
3568 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3569 struct eth_tx_start_bd *tx_start_bd,
3570 u32 xmit_type)
3571 {
3572 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3573
3574 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3575 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3576
3577 if (!(xmit_type & XMIT_CSUM_TCP))
3578 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3579 }
3580
3581 /**
3582 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3583 *
3584 * @bp: driver handle
3585 * @skb: packet skb
3586 * @pbd: parse BD to be updated
3587 * @xmit_type: xmit flags
3588 */
3589 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3590 struct eth_tx_parse_bd_e1x *pbd,
3591 u32 xmit_type)
3592 {
3593 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3594
3595 /* for now NS flag is not used in Linux */
3596 pbd->global_data =
3597 cpu_to_le16(hlen |
3598 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3599 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3600
3601 pbd->ip_hlen_w = (skb_transport_header(skb) -
3602 skb_network_header(skb)) >> 1;
3603
3604 hlen += pbd->ip_hlen_w;
3605
3606 /* We support checksum offload for TCP and UDP only */
3607 if (xmit_type & XMIT_CSUM_TCP)
3608 hlen += tcp_hdrlen(skb) / 2;
3609 else
3610 hlen += sizeof(struct udphdr) / 2;
3611
3612 pbd->total_hlen_w = cpu_to_le16(hlen);
3613 hlen = hlen*2;
3614
3615 if (xmit_type & XMIT_CSUM_TCP) {
3616 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3617
3618 } else {
3619 s8 fix = SKB_CS_OFF(skb); /* signed! */
3620
3621 DP(NETIF_MSG_TX_QUEUED,
3622 "hlen %d fix %d csum before fix %x\n",
3623 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3624
3625 /* HW bug: fixup the CSUM */
3626 pbd->tcp_pseudo_csum =
3627 bnx2x_csum_fix(skb_transport_header(skb),
3628 SKB_CS(skb), fix);
3629
3630 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3631 pbd->tcp_pseudo_csum);
3632 }
3633
3634 return hlen;
3635 }
3636
3637 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3638 struct eth_tx_parse_bd_e2 *pbd_e2,
3639 struct eth_tx_parse_2nd_bd *pbd2,
3640 u16 *global_data,
3641 u32 xmit_type)
3642 {
3643 u16 hlen_w = 0;
3644 u8 outerip_off, outerip_len = 0;
3645
3646 /* from outer IP to transport */
3647 hlen_w = (skb_inner_transport_header(skb) -
3648 skb_network_header(skb)) >> 1;
3649
3650 /* transport len */
3651 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3652
3653 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3654
3655 /* outer IP header info */
3656 if (xmit_type & XMIT_CSUM_V4) {
3657 struct iphdr *iph = ip_hdr(skb);
3658 u32 csum = (__force u32)(~iph->check) -
3659 (__force u32)iph->tot_len -
3660 (__force u32)iph->frag_off;
3661
3662 outerip_len = iph->ihl << 1;
3663
3664 pbd2->fw_ip_csum_wo_len_flags_frag =
3665 bswab16(csum_fold((__force __wsum)csum));
3666 } else {
3667 pbd2->fw_ip_hdr_to_payload_w =
3668 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3669 pbd_e2->data.tunnel_data.flags |=
3670 ETH_TUNNEL_DATA_IPV6_OUTER;
3671 }
3672
3673 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3674
3675 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3676
3677 /* inner IP header info */
3678 if (xmit_type & XMIT_CSUM_ENC_V4) {
3679 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3680
3681 pbd_e2->data.tunnel_data.pseudo_csum =
3682 bswab16(~csum_tcpudp_magic(
3683 inner_ip_hdr(skb)->saddr,
3684 inner_ip_hdr(skb)->daddr,
3685 0, IPPROTO_TCP, 0));
3686 } else {
3687 pbd_e2->data.tunnel_data.pseudo_csum =
3688 bswab16(~csum_ipv6_magic(
3689 &inner_ipv6_hdr(skb)->saddr,
3690 &inner_ipv6_hdr(skb)->daddr,
3691 0, IPPROTO_TCP, 0));
3692 }
3693
3694 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3695
3696 *global_data |=
3697 outerip_off |
3698 (outerip_len <<
3699 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3700 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3701 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3702
3703 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3704 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3705 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3706 }
3707 }
3708
3709 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3710 u32 xmit_type)
3711 {
3712 struct ipv6hdr *ipv6;
3713
3714 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3715 return;
3716
3717 if (xmit_type & XMIT_GSO_ENC_V6)
3718 ipv6 = inner_ipv6_hdr(skb);
3719 else /* XMIT_GSO_V6 */
3720 ipv6 = ipv6_hdr(skb);
3721
3722 if (ipv6->nexthdr == NEXTHDR_IPV6)
3723 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3724 }
3725
3726 /* called with netif_tx_lock
3727 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3728 * netif_wake_queue()
3729 */
3730 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3731 {
3732 struct bnx2x *bp = netdev_priv(dev);
3733
3734 struct netdev_queue *txq;
3735 struct bnx2x_fp_txdata *txdata;
3736 struct sw_tx_bd *tx_buf;
3737 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3738 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3739 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3740 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3741 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3742 u32 pbd_e2_parsing_data = 0;
3743 u16 pkt_prod, bd_prod;
3744 int nbd, txq_index;
3745 dma_addr_t mapping;
3746 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3747 int i;
3748 u8 hlen = 0;
3749 __le16 pkt_size = 0;
3750 struct ethhdr *eth;
3751 u8 mac_type = UNICAST_ADDRESS;
3752
3753 #ifdef BNX2X_STOP_ON_ERROR
3754 if (unlikely(bp->panic))
3755 return NETDEV_TX_BUSY;
3756 #endif
3757
3758 txq_index = skb_get_queue_mapping(skb);
3759 txq = netdev_get_tx_queue(dev, txq_index);
3760
3761 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3762
3763 txdata = &bp->bnx2x_txq[txq_index];
3764
3765 /* enable this debug print to view the transmission queue being used
3766 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3767 txq_index, fp_index, txdata_index); */
3768
3769 /* enable this debug print to view the transmission details
3770 DP(NETIF_MSG_TX_QUEUED,
3771 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3772 txdata->cid, fp_index, txdata_index, txdata, fp); */
3773
3774 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3775 skb_shinfo(skb)->nr_frags +
3776 BDS_PER_TX_PKT +
3777 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3778 /* Handle special storage cases separately */
3779 if (txdata->tx_ring_size == 0) {
3780 struct bnx2x_eth_q_stats *q_stats =
3781 bnx2x_fp_qstats(bp, txdata->parent_fp);
3782 q_stats->driver_filtered_tx_pkt++;
3783 dev_kfree_skb(skb);
3784 return NETDEV_TX_OK;
3785 }
3786 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3787 netif_tx_stop_queue(txq);
3788 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3789
3790 return NETDEV_TX_BUSY;
3791 }
3792
3793 DP(NETIF_MSG_TX_QUEUED,
3794 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3795 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3796 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3797 skb->len);
3798
3799 eth = (struct ethhdr *)skb->data;
3800
3801 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3802 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3803 if (is_broadcast_ether_addr(eth->h_dest))
3804 mac_type = BROADCAST_ADDRESS;
3805 else
3806 mac_type = MULTICAST_ADDRESS;
3807 }
3808
3809 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3810 /* First, check if we need to linearize the skb (due to FW
3811 restrictions). No need to check fragmentation if page size > 8K
3812 (there will be no violation to FW restrictions) */
3813 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3814 /* Statistics of linearization */
3815 bp->lin_cnt++;
3816 if (skb_linearize(skb) != 0) {
3817 DP(NETIF_MSG_TX_QUEUED,
3818 "SKB linearization failed - silently dropping this SKB\n");
3819 dev_kfree_skb_any(skb);
3820 return NETDEV_TX_OK;
3821 }
3822 }
3823 #endif
3824 /* Map skb linear data for DMA */
3825 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3826 skb_headlen(skb), DMA_TO_DEVICE);
3827 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3828 DP(NETIF_MSG_TX_QUEUED,
3829 "SKB mapping failed - silently dropping this SKB\n");
3830 dev_kfree_skb_any(skb);
3831 return NETDEV_TX_OK;
3832 }
3833 /*
3834 Please read carefully. First we use one BD which we mark as start,
3835 then we have a parsing info BD (used for TSO or xsum),
3836 and only then we have the rest of the TSO BDs.
3837 (don't forget to mark the last one as last,
3838 and to unmap only AFTER you write to the BD ...)
3839 And above all, all pdb sizes are in words - NOT DWORDS!
3840 */
3841
3842 /* get current pkt produced now - advance it just before sending packet
3843 * since mapping of pages may fail and cause packet to be dropped
3844 */
3845 pkt_prod = txdata->tx_pkt_prod;
3846 bd_prod = TX_BD(txdata->tx_bd_prod);
3847
3848 /* get a tx_buf and first BD
3849 * tx_start_bd may be changed during SPLIT,
3850 * but first_bd will always stay first
3851 */
3852 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3853 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3854 first_bd = tx_start_bd;
3855
3856 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3857
3858 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3859 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3860 bp->eth_stats.ptp_skip_tx_ts++;
3861 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3862 } else if (bp->ptp_tx_skb) {
3863 bp->eth_stats.ptp_skip_tx_ts++;
3864 netdev_err_once(bp->dev,
3865 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3866 } else {
3867 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3868 /* schedule check for Tx timestamp */
3869 bp->ptp_tx_skb = skb_get(skb);
3870 bp->ptp_tx_start = jiffies;
3871 schedule_work(&bp->ptp_task);
3872 }
3873 }
3874
3875 /* header nbd: indirectly zero other flags! */
3876 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3877
3878 /* remember the first BD of the packet */
3879 tx_buf->first_bd = txdata->tx_bd_prod;
3880 tx_buf->skb = skb;
3881 tx_buf->flags = 0;
3882
3883 DP(NETIF_MSG_TX_QUEUED,
3884 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3885 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3886
3887 if (skb_vlan_tag_present(skb)) {
3888 tx_start_bd->vlan_or_ethertype =
3889 cpu_to_le16(skb_vlan_tag_get(skb));
3890 tx_start_bd->bd_flags.as_bitfield |=
3891 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3892 } else {
3893 /* when transmitting in a vf, start bd must hold the ethertype
3894 * for fw to enforce it
3895 */
3896 u16 vlan_tci = 0;
3897 #ifndef BNX2X_STOP_ON_ERROR
3898 if (IS_VF(bp)) {
3899 #endif
3900 /* Still need to consider inband vlan for enforced */
3901 if (__vlan_get_tag(skb, &vlan_tci)) {
3902 tx_start_bd->vlan_or_ethertype =
3903 cpu_to_le16(ntohs(eth->h_proto));
3904 } else {
3905 tx_start_bd->bd_flags.as_bitfield |=
3906 (X_ETH_INBAND_VLAN <<
3907 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3908 tx_start_bd->vlan_or_ethertype =
3909 cpu_to_le16(vlan_tci);
3910 }
3911 #ifndef BNX2X_STOP_ON_ERROR
3912 } else {
3913 /* used by FW for packet accounting */
3914 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3915 }
3916 #endif
3917 }
3918
3919 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3920
3921 /* turn on parsing and get a BD */
3922 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3923
3924 if (xmit_type & XMIT_CSUM)
3925 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3926
3927 if (!CHIP_IS_E1x(bp)) {
3928 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3929 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3930
3931 if (xmit_type & XMIT_CSUM_ENC) {
3932 u16 global_data = 0;
3933
3934 /* Set PBD in enc checksum offload case */
3935 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3936 &pbd_e2_parsing_data,
3937 xmit_type);
3938
3939 /* turn on 2nd parsing and get a BD */
3940 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3941
3942 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3943
3944 memset(pbd2, 0, sizeof(*pbd2));
3945
3946 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3947 (skb_inner_network_header(skb) -
3948 skb->data) >> 1;
3949
3950 if (xmit_type & XMIT_GSO_ENC)
3951 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3952 &global_data,
3953 xmit_type);
3954
3955 pbd2->global_data = cpu_to_le16(global_data);
3956
3957 /* add addition parse BD indication to start BD */
3958 SET_FLAG(tx_start_bd->general_data,
3959 ETH_TX_START_BD_PARSE_NBDS, 1);
3960 /* set encapsulation flag in start BD */
3961 SET_FLAG(tx_start_bd->general_data,
3962 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3963
3964 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3965
3966 nbd++;
3967 } else if (xmit_type & XMIT_CSUM) {
3968 /* Set PBD in checksum offload case w/o encapsulation */
3969 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3970 &pbd_e2_parsing_data,
3971 xmit_type);
3972 }
3973
3974 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3975 /* Add the macs to the parsing BD if this is a vf or if
3976 * Tx Switching is enabled.
3977 */
3978 if (IS_VF(bp)) {
3979 /* override GRE parameters in BD */
3980 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3981 &pbd_e2->data.mac_addr.src_mid,
3982 &pbd_e2->data.mac_addr.src_lo,
3983 eth->h_source);
3984
3985 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3986 &pbd_e2->data.mac_addr.dst_mid,
3987 &pbd_e2->data.mac_addr.dst_lo,
3988 eth->h_dest);
3989 } else {
3990 if (bp->flags & TX_SWITCHING)
3991 bnx2x_set_fw_mac_addr(
3992 &pbd_e2->data.mac_addr.dst_hi,
3993 &pbd_e2->data.mac_addr.dst_mid,
3994 &pbd_e2->data.mac_addr.dst_lo,
3995 eth->h_dest);
3996 #ifdef BNX2X_STOP_ON_ERROR
3997 /* Enforce security is always set in Stop on Error -
3998 * source mac should be present in the parsing BD
3999 */
4000 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4001 &pbd_e2->data.mac_addr.src_mid,
4002 &pbd_e2->data.mac_addr.src_lo,
4003 eth->h_source);
4004 #endif
4005 }
4006
4007 SET_FLAG(pbd_e2_parsing_data,
4008 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4009 } else {
4010 u16 global_data = 0;
4011 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4012 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4013 /* Set PBD in checksum offload case */
4014 if (xmit_type & XMIT_CSUM)
4015 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4016
4017 SET_FLAG(global_data,
4018 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4019 pbd_e1x->global_data |= cpu_to_le16(global_data);
4020 }
4021
4022 /* Setup the data pointer of the first BD of the packet */
4023 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4024 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4025 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4026 pkt_size = tx_start_bd->nbytes;
4027
4028 DP(NETIF_MSG_TX_QUEUED,
4029 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4030 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4031 le16_to_cpu(tx_start_bd->nbytes),
4032 tx_start_bd->bd_flags.as_bitfield,
4033 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4034
4035 if (xmit_type & XMIT_GSO) {
4036
4037 DP(NETIF_MSG_TX_QUEUED,
4038 "TSO packet len %d hlen %d total len %d tso size %d\n",
4039 skb->len, hlen, skb_headlen(skb),
4040 skb_shinfo(skb)->gso_size);
4041
4042 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4043
4044 if (unlikely(skb_headlen(skb) > hlen)) {
4045 nbd++;
4046 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4047 &tx_start_bd, hlen,
4048 bd_prod);
4049 }
4050 if (!CHIP_IS_E1x(bp))
4051 pbd_e2_parsing_data |=
4052 (skb_shinfo(skb)->gso_size <<
4053 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4054 ETH_TX_PARSE_BD_E2_LSO_MSS;
4055 else
4056 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4057 }
4058
4059 /* Set the PBD's parsing_data field if not zero
4060 * (for the chips newer than 57711).
4061 */
4062 if (pbd_e2_parsing_data)
4063 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4064
4065 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4066
4067 /* Handle fragmented skb */
4068 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4069 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4070
4071 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4072 skb_frag_size(frag), DMA_TO_DEVICE);
4073 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4074 unsigned int pkts_compl = 0, bytes_compl = 0;
4075
4076 DP(NETIF_MSG_TX_QUEUED,
4077 "Unable to map page - dropping packet...\n");
4078
4079 /* we need unmap all buffers already mapped
4080 * for this SKB;
4081 * first_bd->nbd need to be properly updated
4082 * before call to bnx2x_free_tx_pkt
4083 */
4084 first_bd->nbd = cpu_to_le16(nbd);
4085 bnx2x_free_tx_pkt(bp, txdata,
4086 TX_BD(txdata->tx_pkt_prod),
4087 &pkts_compl, &bytes_compl);
4088 return NETDEV_TX_OK;
4089 }
4090
4091 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4092 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4093 if (total_pkt_bd == NULL)
4094 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4095
4096 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4097 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4098 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4099 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4100 nbd++;
4101
4102 DP(NETIF_MSG_TX_QUEUED,
4103 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4104 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4105 le16_to_cpu(tx_data_bd->nbytes));
4106 }
4107
4108 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4109
4110 /* update with actual num BDs */
4111 first_bd->nbd = cpu_to_le16(nbd);
4112
4113 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4114
4115 /* now send a tx doorbell, counting the next BD
4116 * if the packet contains or ends with it
4117 */
4118 if (TX_BD_POFF(bd_prod) < nbd)
4119 nbd++;
4120
4121 /* total_pkt_bytes should be set on the first data BD if
4122 * it's not an LSO packet and there is more than one
4123 * data BD. In this case pkt_size is limited by an MTU value.
4124 * However we prefer to set it for an LSO packet (while we don't
4125 * have to) in order to save some CPU cycles in a none-LSO
4126 * case, when we much more care about them.
4127 */
4128 if (total_pkt_bd != NULL)
4129 total_pkt_bd->total_pkt_bytes = pkt_size;
4130
4131 if (pbd_e1x)
4132 DP(NETIF_MSG_TX_QUEUED,
4133 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4134 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4135 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4136 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4137 le16_to_cpu(pbd_e1x->total_hlen_w));
4138 if (pbd_e2)
4139 DP(NETIF_MSG_TX_QUEUED,
4140 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4141 pbd_e2,
4142 pbd_e2->data.mac_addr.dst_hi,
4143 pbd_e2->data.mac_addr.dst_mid,
4144 pbd_e2->data.mac_addr.dst_lo,
4145 pbd_e2->data.mac_addr.src_hi,
4146 pbd_e2->data.mac_addr.src_mid,
4147 pbd_e2->data.mac_addr.src_lo,
4148 pbd_e2->parsing_data);
4149 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4150
4151 netdev_tx_sent_queue(txq, skb->len);
4152
4153 skb_tx_timestamp(skb);
4154
4155 txdata->tx_pkt_prod++;
4156 /*
4157 * Make sure that the BD data is updated before updating the producer
4158 * since FW might read the BD right after the producer is updated.
4159 * This is only applicable for weak-ordered memory model archs such
4160 * as IA-64. The following barrier is also mandatory since FW will
4161 * assumes packets must have BDs.
4162 */
4163 wmb();
4164
4165 txdata->tx_db.data.prod += nbd;
4166 /* make sure descriptor update is observed by HW */
4167 wmb();
4168
4169 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4170
4171 txdata->tx_bd_prod += nbd;
4172
4173 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4174 netif_tx_stop_queue(txq);
4175
4176 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4177 * ordering of set_bit() in netif_tx_stop_queue() and read of
4178 * fp->bd_tx_cons */
4179 smp_mb();
4180
4181 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4182 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4183 netif_tx_wake_queue(txq);
4184 }
4185 txdata->tx_pkt++;
4186
4187 return NETDEV_TX_OK;
4188 }
4189
4190 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4191 {
4192 int mfw_vn = BP_FW_MB_IDX(bp);
4193 u32 tmp;
4194
4195 /* If the shmem shouldn't affect configuration, reflect */
4196 if (!IS_MF_BD(bp)) {
4197 int i;
4198
4199 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4200 c2s_map[i] = i;
4201 *c2s_default = 0;
4202
4203 return;
4204 }
4205
4206 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4207 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4208 c2s_map[0] = tmp & 0xff;
4209 c2s_map[1] = (tmp >> 8) & 0xff;
4210 c2s_map[2] = (tmp >> 16) & 0xff;
4211 c2s_map[3] = (tmp >> 24) & 0xff;
4212
4213 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4214 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4215 c2s_map[4] = tmp & 0xff;
4216 c2s_map[5] = (tmp >> 8) & 0xff;
4217 c2s_map[6] = (tmp >> 16) & 0xff;
4218 c2s_map[7] = (tmp >> 24) & 0xff;
4219
4220 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4221 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4222 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4223 }
4224
4225 /**
4226 * bnx2x_setup_tc - routine to configure net_device for multi tc
4227 *
4228 * @netdev: net device to configure
4229 * @tc: number of traffic classes to enable
4230 *
4231 * callback connected to the ndo_setup_tc function pointer
4232 */
4233 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4234 {
4235 struct bnx2x *bp = netdev_priv(dev);
4236 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4237 int cos, prio, count, offset;
4238
4239 /* setup tc must be called under rtnl lock */
4240 ASSERT_RTNL();
4241
4242 /* no traffic classes requested. Aborting */
4243 if (!num_tc) {
4244 netdev_reset_tc(dev);
4245 return 0;
4246 }
4247
4248 /* requested to support too many traffic classes */
4249 if (num_tc > bp->max_cos) {
4250 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4251 num_tc, bp->max_cos);
4252 return -EINVAL;
4253 }
4254
4255 /* declare amount of supported traffic classes */
4256 if (netdev_set_num_tc(dev, num_tc)) {
4257 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4258 return -EINVAL;
4259 }
4260
4261 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4262
4263 /* configure priority to traffic class mapping */
4264 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4265 int outer_prio = c2s_map[prio];
4266
4267 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4268 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4269 "mapping priority %d to tc %d\n",
4270 outer_prio, bp->prio_to_cos[outer_prio]);
4271 }
4272
4273 /* Use this configuration to differentiate tc0 from other COSes
4274 This can be used for ets or pfc, and save the effort of setting
4275 up a multio class queue disc or negotiating DCBX with a switch
4276 netdev_set_prio_tc_map(dev, 0, 0);
4277 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4278 for (prio = 1; prio < 16; prio++) {
4279 netdev_set_prio_tc_map(dev, prio, 1);
4280 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4281 } */
4282
4283 /* configure traffic class to transmission queue mapping */
4284 for (cos = 0; cos < bp->max_cos; cos++) {
4285 count = BNX2X_NUM_ETH_QUEUES(bp);
4286 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4287 netdev_set_tc_queue(dev, cos, count, offset);
4288 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4289 "mapping tc %d to offset %d count %d\n",
4290 cos, offset, count);
4291 }
4292
4293 return 0;
4294 }
4295
4296 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4297 void *type_data)
4298 {
4299 struct tc_mqprio_qopt *mqprio = type_data;
4300
4301 if (type != TC_SETUP_QDISC_MQPRIO)
4302 return -EOPNOTSUPP;
4303
4304 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4305
4306 return bnx2x_setup_tc(dev, mqprio->num_tc);
4307 }
4308
4309 /* called with rtnl_lock */
4310 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4311 {
4312 struct sockaddr *addr = p;
4313 struct bnx2x *bp = netdev_priv(dev);
4314 int rc = 0;
4315
4316 if (!is_valid_ether_addr(addr->sa_data)) {
4317 BNX2X_ERR("Requested MAC address is not valid\n");
4318 return -EINVAL;
4319 }
4320
4321 if (IS_MF_STORAGE_ONLY(bp)) {
4322 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4323 return -EINVAL;
4324 }
4325
4326 if (netif_running(dev)) {
4327 rc = bnx2x_set_eth_mac(bp, false);
4328 if (rc)
4329 return rc;
4330 }
4331
4332 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4333
4334 if (netif_running(dev))
4335 rc = bnx2x_set_eth_mac(bp, true);
4336
4337 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4338 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4339
4340 return rc;
4341 }
4342
4343 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4344 {
4345 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4346 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4347 u8 cos;
4348
4349 /* Common */
4350
4351 if (IS_FCOE_IDX(fp_index)) {
4352 memset(sb, 0, sizeof(union host_hc_status_block));
4353 fp->status_blk_mapping = 0;
4354 } else {
4355 /* status blocks */
4356 if (!CHIP_IS_E1x(bp))
4357 BNX2X_PCI_FREE(sb->e2_sb,
4358 bnx2x_fp(bp, fp_index,
4359 status_blk_mapping),
4360 sizeof(struct host_hc_status_block_e2));
4361 else
4362 BNX2X_PCI_FREE(sb->e1x_sb,
4363 bnx2x_fp(bp, fp_index,
4364 status_blk_mapping),
4365 sizeof(struct host_hc_status_block_e1x));
4366 }
4367
4368 /* Rx */
4369 if (!skip_rx_queue(bp, fp_index)) {
4370 bnx2x_free_rx_bds(fp);
4371
4372 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4373 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4374 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4375 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4376 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4377
4378 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4379 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4380 sizeof(struct eth_fast_path_rx_cqe) *
4381 NUM_RCQ_BD);
4382
4383 /* SGE ring */
4384 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4385 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4386 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4387 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4388 }
4389
4390 /* Tx */
4391 if (!skip_tx_queue(bp, fp_index)) {
4392 /* fastpath tx rings: tx_buf tx_desc */
4393 for_each_cos_in_tx_queue(fp, cos) {
4394 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4395
4396 DP(NETIF_MSG_IFDOWN,
4397 "freeing tx memory of fp %d cos %d cid %d\n",
4398 fp_index, cos, txdata->cid);
4399
4400 BNX2X_FREE(txdata->tx_buf_ring);
4401 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4402 txdata->tx_desc_mapping,
4403 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4404 }
4405 }
4406 /* end of fastpath */
4407 }
4408
4409 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4410 {
4411 int i;
4412 for_each_cnic_queue(bp, i)
4413 bnx2x_free_fp_mem_at(bp, i);
4414 }
4415
4416 void bnx2x_free_fp_mem(struct bnx2x *bp)
4417 {
4418 int i;
4419 for_each_eth_queue(bp, i)
4420 bnx2x_free_fp_mem_at(bp, i);
4421 }
4422
4423 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4424 {
4425 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4426 if (!CHIP_IS_E1x(bp)) {
4427 bnx2x_fp(bp, index, sb_index_values) =
4428 (__le16 *)status_blk.e2_sb->sb.index_values;
4429 bnx2x_fp(bp, index, sb_running_index) =
4430 (__le16 *)status_blk.e2_sb->sb.running_index;
4431 } else {
4432 bnx2x_fp(bp, index, sb_index_values) =
4433 (__le16 *)status_blk.e1x_sb->sb.index_values;
4434 bnx2x_fp(bp, index, sb_running_index) =
4435 (__le16 *)status_blk.e1x_sb->sb.running_index;
4436 }
4437 }
4438
4439 /* Returns the number of actually allocated BDs */
4440 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4441 int rx_ring_size)
4442 {
4443 struct bnx2x *bp = fp->bp;
4444 u16 ring_prod, cqe_ring_prod;
4445 int i, failure_cnt = 0;
4446
4447 fp->rx_comp_cons = 0;
4448 cqe_ring_prod = ring_prod = 0;
4449
4450 /* This routine is called only during fo init so
4451 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4452 */
4453 for (i = 0; i < rx_ring_size; i++) {
4454 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4455 failure_cnt++;
4456 continue;
4457 }
4458 ring_prod = NEXT_RX_IDX(ring_prod);
4459 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4460 WARN_ON(ring_prod <= (i - failure_cnt));
4461 }
4462
4463 if (failure_cnt)
4464 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4465 i - failure_cnt, fp->index);
4466
4467 fp->rx_bd_prod = ring_prod;
4468 /* Limit the CQE producer by the CQE ring size */
4469 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4470 cqe_ring_prod);
4471
4472 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4473
4474 return i - failure_cnt;
4475 }
4476
4477 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4478 {
4479 int i;
4480
4481 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4482 struct eth_rx_cqe_next_page *nextpg;
4483
4484 nextpg = (struct eth_rx_cqe_next_page *)
4485 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4486 nextpg->addr_hi =
4487 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4488 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4489 nextpg->addr_lo =
4490 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4491 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4492 }
4493 }
4494
4495 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4496 {
4497 union host_hc_status_block *sb;
4498 struct bnx2x_fastpath *fp = &bp->fp[index];
4499 int ring_size = 0;
4500 u8 cos;
4501 int rx_ring_size = 0;
4502
4503 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4504 rx_ring_size = MIN_RX_SIZE_NONTPA;
4505 bp->rx_ring_size = rx_ring_size;
4506 } else if (!bp->rx_ring_size) {
4507 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4508
4509 if (CHIP_IS_E3(bp)) {
4510 u32 cfg = SHMEM_RD(bp,
4511 dev_info.port_hw_config[BP_PORT(bp)].
4512 default_cfg);
4513
4514 /* Decrease ring size for 1G functions */
4515 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4516 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4517 rx_ring_size /= 10;
4518 }
4519
4520 /* allocate at least number of buffers required by FW */
4521 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4522 MIN_RX_SIZE_TPA, rx_ring_size);
4523
4524 bp->rx_ring_size = rx_ring_size;
4525 } else /* if rx_ring_size specified - use it */
4526 rx_ring_size = bp->rx_ring_size;
4527
4528 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4529
4530 /* Common */
4531 sb = &bnx2x_fp(bp, index, status_blk);
4532
4533 if (!IS_FCOE_IDX(index)) {
4534 /* status blocks */
4535 if (!CHIP_IS_E1x(bp)) {
4536 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4537 sizeof(struct host_hc_status_block_e2));
4538 if (!sb->e2_sb)
4539 goto alloc_mem_err;
4540 } else {
4541 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4542 sizeof(struct host_hc_status_block_e1x));
4543 if (!sb->e1x_sb)
4544 goto alloc_mem_err;
4545 }
4546 }
4547
4548 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4549 * set shortcuts for it.
4550 */
4551 if (!IS_FCOE_IDX(index))
4552 set_sb_shortcuts(bp, index);
4553
4554 /* Tx */
4555 if (!skip_tx_queue(bp, index)) {
4556 /* fastpath tx rings: tx_buf tx_desc */
4557 for_each_cos_in_tx_queue(fp, cos) {
4558 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4559
4560 DP(NETIF_MSG_IFUP,
4561 "allocating tx memory of fp %d cos %d\n",
4562 index, cos);
4563
4564 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4565 sizeof(struct sw_tx_bd),
4566 GFP_KERNEL);
4567 if (!txdata->tx_buf_ring)
4568 goto alloc_mem_err;
4569 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4570 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4571 if (!txdata->tx_desc_ring)
4572 goto alloc_mem_err;
4573 }
4574 }
4575
4576 /* Rx */
4577 if (!skip_rx_queue(bp, index)) {
4578 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4579 bnx2x_fp(bp, index, rx_buf_ring) =
4580 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4581 if (!bnx2x_fp(bp, index, rx_buf_ring))
4582 goto alloc_mem_err;
4583 bnx2x_fp(bp, index, rx_desc_ring) =
4584 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4585 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4586 if (!bnx2x_fp(bp, index, rx_desc_ring))
4587 goto alloc_mem_err;
4588
4589 /* Seed all CQEs by 1s */
4590 bnx2x_fp(bp, index, rx_comp_ring) =
4591 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4592 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4593 if (!bnx2x_fp(bp, index, rx_comp_ring))
4594 goto alloc_mem_err;
4595
4596 /* SGE ring */
4597 bnx2x_fp(bp, index, rx_page_ring) =
4598 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4599 GFP_KERNEL);
4600 if (!bnx2x_fp(bp, index, rx_page_ring))
4601 goto alloc_mem_err;
4602 bnx2x_fp(bp, index, rx_sge_ring) =
4603 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4604 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4605 if (!bnx2x_fp(bp, index, rx_sge_ring))
4606 goto alloc_mem_err;
4607 /* RX BD ring */
4608 bnx2x_set_next_page_rx_bd(fp);
4609
4610 /* CQ ring */
4611 bnx2x_set_next_page_rx_cq(fp);
4612
4613 /* BDs */
4614 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4615 if (ring_size < rx_ring_size)
4616 goto alloc_mem_err;
4617 }
4618
4619 return 0;
4620
4621 /* handles low memory cases */
4622 alloc_mem_err:
4623 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4624 index, ring_size);
4625 /* FW will drop all packets if queue is not big enough,
4626 * In these cases we disable the queue
4627 * Min size is different for OOO, TPA and non-TPA queues
4628 */
4629 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4630 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4631 /* release memory allocated for this queue */
4632 bnx2x_free_fp_mem_at(bp, index);
4633 return -ENOMEM;
4634 }
4635 return 0;
4636 }
4637
4638 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4639 {
4640 if (!NO_FCOE(bp))
4641 /* FCoE */
4642 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4643 /* we will fail load process instead of mark
4644 * NO_FCOE_FLAG
4645 */
4646 return -ENOMEM;
4647
4648 return 0;
4649 }
4650
4651 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4652 {
4653 int i;
4654
4655 /* 1. Allocate FP for leading - fatal if error
4656 * 2. Allocate RSS - fix number of queues if error
4657 */
4658
4659 /* leading */
4660 if (bnx2x_alloc_fp_mem_at(bp, 0))
4661 return -ENOMEM;
4662
4663 /* RSS */
4664 for_each_nondefault_eth_queue(bp, i)
4665 if (bnx2x_alloc_fp_mem_at(bp, i))
4666 break;
4667
4668 /* handle memory failures */
4669 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4670 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4671
4672 WARN_ON(delta < 0);
4673 bnx2x_shrink_eth_fp(bp, delta);
4674 if (CNIC_SUPPORT(bp))
4675 /* move non eth FPs next to last eth FP
4676 * must be done in that order
4677 * FCOE_IDX < FWD_IDX < OOO_IDX
4678 */
4679
4680 /* move FCoE fp even NO_FCOE_FLAG is on */
4681 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4682 bp->num_ethernet_queues -= delta;
4683 bp->num_queues = bp->num_ethernet_queues +
4684 bp->num_cnic_queues;
4685 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4686 bp->num_queues + delta, bp->num_queues);
4687 }
4688
4689 return 0;
4690 }
4691
4692 void bnx2x_free_mem_bp(struct bnx2x *bp)
4693 {
4694 int i;
4695
4696 for (i = 0; i < bp->fp_array_size; i++)
4697 kfree(bp->fp[i].tpa_info);
4698 kfree(bp->fp);
4699 kfree(bp->sp_objs);
4700 kfree(bp->fp_stats);
4701 kfree(bp->bnx2x_txq);
4702 kfree(bp->msix_table);
4703 kfree(bp->ilt);
4704 }
4705
4706 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4707 {
4708 struct bnx2x_fastpath *fp;
4709 struct msix_entry *tbl;
4710 struct bnx2x_ilt *ilt;
4711 int msix_table_size = 0;
4712 int fp_array_size, txq_array_size;
4713 int i;
4714
4715 /*
4716 * The biggest MSI-X table we might need is as a maximum number of fast
4717 * path IGU SBs plus default SB (for PF only).
4718 */
4719 msix_table_size = bp->igu_sb_cnt;
4720 if (IS_PF(bp))
4721 msix_table_size++;
4722 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4723
4724 /* fp array: RSS plus CNIC related L2 queues */
4725 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4726 bp->fp_array_size = fp_array_size;
4727 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4728
4729 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4730 if (!fp)
4731 goto alloc_err;
4732 for (i = 0; i < bp->fp_array_size; i++) {
4733 fp[i].tpa_info =
4734 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4735 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4736 if (!(fp[i].tpa_info))
4737 goto alloc_err;
4738 }
4739
4740 bp->fp = fp;
4741
4742 /* allocate sp objs */
4743 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4744 GFP_KERNEL);
4745 if (!bp->sp_objs)
4746 goto alloc_err;
4747
4748 /* allocate fp_stats */
4749 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4750 GFP_KERNEL);
4751 if (!bp->fp_stats)
4752 goto alloc_err;
4753
4754 /* Allocate memory for the transmission queues array */
4755 txq_array_size =
4756 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4757 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4758
4759 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4760 GFP_KERNEL);
4761 if (!bp->bnx2x_txq)
4762 goto alloc_err;
4763
4764 /* msix table */
4765 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4766 if (!tbl)
4767 goto alloc_err;
4768 bp->msix_table = tbl;
4769
4770 /* ilt */
4771 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4772 if (!ilt)
4773 goto alloc_err;
4774 bp->ilt = ilt;
4775
4776 return 0;
4777 alloc_err:
4778 bnx2x_free_mem_bp(bp);
4779 return -ENOMEM;
4780 }
4781
4782 int bnx2x_reload_if_running(struct net_device *dev)
4783 {
4784 struct bnx2x *bp = netdev_priv(dev);
4785
4786 if (unlikely(!netif_running(dev)))
4787 return 0;
4788
4789 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4790 return bnx2x_nic_load(bp, LOAD_NORMAL);
4791 }
4792
4793 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4794 {
4795 u32 sel_phy_idx = 0;
4796 if (bp->link_params.num_phys <= 1)
4797 return INT_PHY;
4798
4799 if (bp->link_vars.link_up) {
4800 sel_phy_idx = EXT_PHY1;
4801 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4802 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4803 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4804 sel_phy_idx = EXT_PHY2;
4805 } else {
4806
4807 switch (bnx2x_phy_selection(&bp->link_params)) {
4808 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4809 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4810 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4811 sel_phy_idx = EXT_PHY1;
4812 break;
4813 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4814 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4815 sel_phy_idx = EXT_PHY2;
4816 break;
4817 }
4818 }
4819
4820 return sel_phy_idx;
4821 }
4822 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4823 {
4824 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4825 /*
4826 * The selected activated PHY is always after swapping (in case PHY
4827 * swapping is enabled). So when swapping is enabled, we need to reverse
4828 * the configuration
4829 */
4830
4831 if (bp->link_params.multi_phy_config &
4832 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4833 if (sel_phy_idx == EXT_PHY1)
4834 sel_phy_idx = EXT_PHY2;
4835 else if (sel_phy_idx == EXT_PHY2)
4836 sel_phy_idx = EXT_PHY1;
4837 }
4838 return LINK_CONFIG_IDX(sel_phy_idx);
4839 }
4840
4841 #ifdef NETDEV_FCOE_WWNN
4842 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4843 {
4844 struct bnx2x *bp = netdev_priv(dev);
4845 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4846
4847 switch (type) {
4848 case NETDEV_FCOE_WWNN:
4849 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4850 cp->fcoe_wwn_node_name_lo);
4851 break;
4852 case NETDEV_FCOE_WWPN:
4853 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4854 cp->fcoe_wwn_port_name_lo);
4855 break;
4856 default:
4857 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4858 return -EINVAL;
4859 }
4860
4861 return 0;
4862 }
4863 #endif
4864
4865 /* called with rtnl_lock */
4866 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4867 {
4868 struct bnx2x *bp = netdev_priv(dev);
4869
4870 if (pci_num_vf(bp->pdev)) {
4871 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4872 return -EPERM;
4873 }
4874
4875 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4876 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4877 return -EAGAIN;
4878 }
4879
4880 /* This does not race with packet allocation
4881 * because the actual alloc size is
4882 * only updated as part of load
4883 */
4884 dev->mtu = new_mtu;
4885
4886 if (!bnx2x_mtu_allows_gro(new_mtu))
4887 dev->features &= ~NETIF_F_GRO_HW;
4888
4889 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4890 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4891
4892 return bnx2x_reload_if_running(dev);
4893 }
4894
4895 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4896 netdev_features_t features)
4897 {
4898 struct bnx2x *bp = netdev_priv(dev);
4899
4900 if (pci_num_vf(bp->pdev)) {
4901 netdev_features_t changed = dev->features ^ features;
4902
4903 /* Revert the requested changes in features if they
4904 * would require internal reload of PF in bnx2x_set_features().
4905 */
4906 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4907 features &= ~NETIF_F_RXCSUM;
4908 features |= dev->features & NETIF_F_RXCSUM;
4909 }
4910
4911 if (changed & NETIF_F_LOOPBACK) {
4912 features &= ~NETIF_F_LOOPBACK;
4913 features |= dev->features & NETIF_F_LOOPBACK;
4914 }
4915 }
4916
4917 /* TPA requires Rx CSUM offloading */
4918 if (!(features & NETIF_F_RXCSUM))
4919 features &= ~NETIF_F_LRO;
4920
4921 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4922 features &= ~NETIF_F_GRO_HW;
4923 if (features & NETIF_F_GRO_HW)
4924 features &= ~NETIF_F_LRO;
4925
4926 return features;
4927 }
4928
4929 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4930 {
4931 struct bnx2x *bp = netdev_priv(dev);
4932 netdev_features_t changes = features ^ dev->features;
4933 bool bnx2x_reload = false;
4934 int rc;
4935
4936 /* VFs or non SRIOV PFs should be able to change loopback feature */
4937 if (!pci_num_vf(bp->pdev)) {
4938 if (features & NETIF_F_LOOPBACK) {
4939 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4940 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4941 bnx2x_reload = true;
4942 }
4943 } else {
4944 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4945 bp->link_params.loopback_mode = LOOPBACK_NONE;
4946 bnx2x_reload = true;
4947 }
4948 }
4949 }
4950
4951 /* Don't care about GRO changes */
4952 changes &= ~NETIF_F_GRO;
4953
4954 if (changes)
4955 bnx2x_reload = true;
4956
4957 if (bnx2x_reload) {
4958 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4959 dev->features = features;
4960 rc = bnx2x_reload_if_running(dev);
4961 return rc ? rc : 1;
4962 }
4963 /* else: bnx2x_nic_load() will be called at end of recovery */
4964 }
4965
4966 return 0;
4967 }
4968
4969 void bnx2x_tx_timeout(struct net_device *dev)
4970 {
4971 struct bnx2x *bp = netdev_priv(dev);
4972
4973 /* We want the information of the dump logged,
4974 * but calling bnx2x_panic() would kill all chances of recovery.
4975 */
4976 if (!bp->panic)
4977 #ifndef BNX2X_STOP_ON_ERROR
4978 bnx2x_panic_dump(bp, false);
4979 #else
4980 bnx2x_panic();
4981 #endif
4982
4983 /* This allows the netif to be shutdown gracefully before resetting */
4984 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4985 }
4986
4987 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4988 {
4989 struct net_device *dev = pci_get_drvdata(pdev);
4990 struct bnx2x *bp;
4991
4992 if (!dev) {
4993 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4994 return -ENODEV;
4995 }
4996 bp = netdev_priv(dev);
4997
4998 rtnl_lock();
4999
5000 pci_save_state(pdev);
5001
5002 if (!netif_running(dev)) {
5003 rtnl_unlock();
5004 return 0;
5005 }
5006
5007 netif_device_detach(dev);
5008
5009 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5010
5011 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5012
5013 rtnl_unlock();
5014
5015 return 0;
5016 }
5017
5018 int bnx2x_resume(struct pci_dev *pdev)
5019 {
5020 struct net_device *dev = pci_get_drvdata(pdev);
5021 struct bnx2x *bp;
5022 int rc;
5023
5024 if (!dev) {
5025 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5026 return -ENODEV;
5027 }
5028 bp = netdev_priv(dev);
5029
5030 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5031 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5032 return -EAGAIN;
5033 }
5034
5035 rtnl_lock();
5036
5037 pci_restore_state(pdev);
5038
5039 if (!netif_running(dev)) {
5040 rtnl_unlock();
5041 return 0;
5042 }
5043
5044 bnx2x_set_power_state(bp, PCI_D0);
5045 netif_device_attach(dev);
5046
5047 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5048
5049 rtnl_unlock();
5050
5051 return rc;
5052 }
5053
5054 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5055 u32 cid)
5056 {
5057 if (!cxt) {
5058 BNX2X_ERR("bad context pointer %p\n", cxt);
5059 return;
5060 }
5061
5062 /* ustorm cxt validation */
5063 cxt->ustorm_ag_context.cdu_usage =
5064 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5065 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5066 /* xcontext validation */
5067 cxt->xstorm_ag_context.cdu_reserved =
5068 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5069 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5070 }
5071
5072 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5073 u8 fw_sb_id, u8 sb_index,
5074 u8 ticks)
5075 {
5076 u32 addr = BAR_CSTRORM_INTMEM +
5077 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5078 REG_WR8(bp, addr, ticks);
5079 DP(NETIF_MSG_IFUP,
5080 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5081 port, fw_sb_id, sb_index, ticks);
5082 }
5083
5084 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5085 u16 fw_sb_id, u8 sb_index,
5086 u8 disable)
5087 {
5088 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5089 u32 addr = BAR_CSTRORM_INTMEM +
5090 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5091 u8 flags = REG_RD8(bp, addr);
5092 /* clear and set */
5093 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5094 flags |= enable_flag;
5095 REG_WR8(bp, addr, flags);
5096 DP(NETIF_MSG_IFUP,
5097 "port %x fw_sb_id %d sb_index %d disable %d\n",
5098 port, fw_sb_id, sb_index, disable);
5099 }
5100
5101 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5102 u8 sb_index, u8 disable, u16 usec)
5103 {
5104 int port = BP_PORT(bp);
5105 u8 ticks = usec / BNX2X_BTR;
5106
5107 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5108
5109 disable = disable ? 1 : (usec ? 0 : 1);
5110 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5111 }
5112
5113 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5114 u32 verbose)
5115 {
5116 smp_mb__before_atomic();
5117 set_bit(flag, &bp->sp_rtnl_state);
5118 smp_mb__after_atomic();
5119 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5120 flag);
5121 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5122 }