]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c
Merge tag 'iomap-4.21-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[thirdparty/kernel/stable.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.c
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 int i;
43
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp, i) {
46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 bnx2x_poll, NAPI_POLL_WEIGHT);
48 }
49 }
50
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 int i;
54
55 /* Add NAPI objects */
56 for_each_eth_queue(bp, i) {
57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 bnx2x_poll, NAPI_POLL_WEIGHT);
59 }
60 }
61
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
68 nq = 1;
69
70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 return nq;
72 }
73
74 /**
75 * bnx2x_move_fp - move content of the fastpath structure.
76 *
77 * @bp: driver handle
78 * @from: source FP index
79 * @to: destination FP index
80 *
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
85 * content.
86 */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 int old_max_eth_txqs, new_max_eth_txqs;
96 int old_txdata_index = 0, new_txdata_index = 0;
97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp->napi = to_fp->napi;
101
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp, from_fp, sizeof(*to_fp));
104 to_fp->index = to;
105
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
108 */
109 to_fp->tpa_info = old_tpa_info;
110
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
120 */
121
122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 (bp)->max_cos;
125 if (from == FCOE_IDX(bp)) {
126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 }
129
130 memcpy(&bp->bnx2x_txq[new_txdata_index],
131 &bp->bnx2x_txq[old_txdata_index],
132 sizeof(struct bnx2x_fp_txdata));
133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135
136 /**
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
138 *
139 * @bp: driver handle
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
142 *
143 */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 if (IS_PF(bp)) {
147 u8 phy_fw_ver[PHY_FW_VER_LEN];
148
149 phy_fw_ver[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 phy_fw_ver, PHY_FW_VER_LEN);
152 strlcpy(buf, bp->fw_ver, buf_len);
153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 "bc %d.%d.%d%s%s",
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 /* Skip second parse bd... */
232 --nbd;
233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 }
235
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 --nbd;
241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 }
243
244 /* unmap first bd */
245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 DMA_TO_DEVICE);
248
249 /* now free frags */
250 while (nbd > 0) {
251
252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 if (--nbd)
256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 }
258
259 /* release skb */
260 WARN_ON(!skb);
261 if (likely(skb)) {
262 (*pkts_compl)++;
263 (*bytes_compl) += skb->len;
264 dev_kfree_skb_any(skb);
265 }
266
267 tx_buf->first_bd = 0;
268 tx_buf->skb = NULL;
269
270 return new_cons;
271 }
272
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 struct netdev_queue *txq;
276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 unsigned int pkts_compl = 0, bytes_compl = 0;
278
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp->panic))
281 return -1;
282 #endif
283
284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 sw_cons = txdata->tx_pkt_cons;
287
288 while (sw_cons != hw_cons) {
289 u16 pkt_cons;
290
291 pkt_cons = TX_BD(sw_cons);
292
293 DP(NETIF_MSG_TX_DONE,
294 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
295 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
296
297 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
298 &pkts_compl, &bytes_compl);
299
300 sw_cons++;
301 }
302
303 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
304
305 txdata->tx_pkt_cons = sw_cons;
306 txdata->tx_bd_cons = bd_cons;
307
308 /* Need to make the tx_bd_cons update visible to start_xmit()
309 * before checking for netif_tx_queue_stopped(). Without the
310 * memory barrier, there is a small possibility that
311 * start_xmit() will miss it and cause the queue to be stopped
312 * forever.
313 * On the other hand we need an rmb() here to ensure the proper
314 * ordering of bit testing in the following
315 * netif_tx_queue_stopped(txq) call.
316 */
317 smp_mb();
318
319 if (unlikely(netif_tx_queue_stopped(txq))) {
320 /* Taking tx_lock() is needed to prevent re-enabling the queue
321 * while it's empty. This could have happen if rx_action() gets
322 * suspended in bnx2x_tx_int() after the condition before
323 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
324 *
325 * stops the queue->sees fresh tx_bd_cons->releases the queue->
326 * sends some packets consuming the whole queue again->
327 * stops the queue
328 */
329
330 __netif_tx_lock(txq, smp_processor_id());
331
332 if ((netif_tx_queue_stopped(txq)) &&
333 (bp->state == BNX2X_STATE_OPEN) &&
334 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
335 netif_tx_wake_queue(txq);
336
337 __netif_tx_unlock(txq);
338 }
339 return 0;
340 }
341
342 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
343 u16 idx)
344 {
345 u16 last_max = fp->last_max_sge;
346
347 if (SUB_S16(idx, last_max) > 0)
348 fp->last_max_sge = idx;
349 }
350
351 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
352 u16 sge_len,
353 struct eth_end_agg_rx_cqe *cqe)
354 {
355 struct bnx2x *bp = fp->bp;
356 u16 last_max, last_elem, first_elem;
357 u16 delta = 0;
358 u16 i;
359
360 if (!sge_len)
361 return;
362
363 /* First mark all used pages */
364 for (i = 0; i < sge_len; i++)
365 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
366 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
367
368 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
369 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
370
371 /* Here we assume that the last SGE index is the biggest */
372 prefetch((void *)(fp->sge_mask));
373 bnx2x_update_last_max_sge(fp,
374 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
375
376 last_max = RX_SGE(fp->last_max_sge);
377 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
378 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
379
380 /* If ring is not full */
381 if (last_elem + 1 != first_elem)
382 last_elem++;
383
384 /* Now update the prod */
385 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
386 if (likely(fp->sge_mask[i]))
387 break;
388
389 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
390 delta += BIT_VEC64_ELEM_SZ;
391 }
392
393 if (delta > 0) {
394 fp->rx_sge_prod += delta;
395 /* clear page-end entries */
396 bnx2x_clear_sge_mask_next_elems(fp);
397 }
398
399 DP(NETIF_MSG_RX_STATUS,
400 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
401 fp->last_max_sge, fp->rx_sge_prod);
402 }
403
404 /* Get Toeplitz hash value in the skb using the value from the
405 * CQE (calculated by HW).
406 */
407 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
408 const struct eth_fast_path_rx_cqe *cqe,
409 enum pkt_hash_types *rxhash_type)
410 {
411 /* Get Toeplitz hash from CQE */
412 if ((bp->dev->features & NETIF_F_RXHASH) &&
413 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
414 enum eth_rss_hash_type htype;
415
416 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
417 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
418 (htype == TCP_IPV6_HASH_TYPE)) ?
419 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
420
421 return le32_to_cpu(cqe->rss_hash_result);
422 }
423 *rxhash_type = PKT_HASH_TYPE_NONE;
424 return 0;
425 }
426
427 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
428 u16 cons, u16 prod,
429 struct eth_fast_path_rx_cqe *cqe)
430 {
431 struct bnx2x *bp = fp->bp;
432 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
433 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
434 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
435 dma_addr_t mapping;
436 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
437 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
438
439 /* print error if current state != stop */
440 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
441 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
442
443 /* Try to map an empty data buffer from the aggregation info */
444 mapping = dma_map_single(&bp->pdev->dev,
445 first_buf->data + NET_SKB_PAD,
446 fp->rx_buf_size, DMA_FROM_DEVICE);
447 /*
448 * ...if it fails - move the skb from the consumer to the producer
449 * and set the current aggregation state as ERROR to drop it
450 * when TPA_STOP arrives.
451 */
452
453 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
454 /* Move the BD from the consumer to the producer */
455 bnx2x_reuse_rx_data(fp, cons, prod);
456 tpa_info->tpa_state = BNX2X_TPA_ERROR;
457 return;
458 }
459
460 /* move empty data from pool to prod */
461 prod_rx_buf->data = first_buf->data;
462 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
463 /* point prod_bd to new data */
464 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
465 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
466
467 /* move partial skb from cons to pool (don't unmap yet) */
468 *first_buf = *cons_rx_buf;
469
470 /* mark bin state as START */
471 tpa_info->parsing_flags =
472 le16_to_cpu(cqe->pars_flags.flags);
473 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
474 tpa_info->tpa_state = BNX2X_TPA_START;
475 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
476 tpa_info->placement_offset = cqe->placement_offset;
477 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
478 if (fp->mode == TPA_MODE_GRO) {
479 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
480 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
481 tpa_info->gro_size = gro_size;
482 }
483
484 #ifdef BNX2X_STOP_ON_ERROR
485 fp->tpa_queue_used |= (1 << queue);
486 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
487 fp->tpa_queue_used);
488 #endif
489 }
490
491 /* Timestamp option length allowed for TPA aggregation:
492 *
493 * nop nop kind length echo val
494 */
495 #define TPA_TSTAMP_OPT_LEN 12
496 /**
497 * bnx2x_set_gro_params - compute GRO values
498 *
499 * @skb: packet skb
500 * @parsing_flags: parsing flags from the START CQE
501 * @len_on_bd: total length of the first packet for the
502 * aggregation.
503 * @pkt_len: length of all segments
504 *
505 * Approximate value of the MSS for this aggregation calculated using
506 * the first packet of it.
507 * Compute number of aggregated segments, and gso_type.
508 */
509 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
510 u16 len_on_bd, unsigned int pkt_len,
511 u16 num_of_coalesced_segs)
512 {
513 /* TPA aggregation won't have either IP options or TCP options
514 * other than timestamp or IPv6 extension headers.
515 */
516 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
517
518 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
519 PRS_FLAG_OVERETH_IPV6) {
520 hdrs_len += sizeof(struct ipv6hdr);
521 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
522 } else {
523 hdrs_len += sizeof(struct iphdr);
524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
525 }
526
527 /* Check if there was a TCP timestamp, if there is it's will
528 * always be 12 bytes length: nop nop kind length echo val.
529 *
530 * Otherwise FW would close the aggregation.
531 */
532 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
533 hdrs_len += TPA_TSTAMP_OPT_LEN;
534
535 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
536
537 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
538 * to skb_shinfo(skb)->gso_segs
539 */
540 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
541 }
542
543 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
544 u16 index, gfp_t gfp_mask)
545 {
546 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
547 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
548 struct bnx2x_alloc_pool *pool = &fp->page_pool;
549 dma_addr_t mapping;
550
551 if (!pool->page) {
552 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
553 if (unlikely(!pool->page))
554 return -ENOMEM;
555
556 pool->offset = 0;
557 }
558
559 mapping = dma_map_page(&bp->pdev->dev, pool->page,
560 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
561 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
562 BNX2X_ERR("Can't map sge\n");
563 return -ENOMEM;
564 }
565
566 sw_buf->page = pool->page;
567 sw_buf->offset = pool->offset;
568
569 dma_unmap_addr_set(sw_buf, mapping, mapping);
570
571 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
572 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
573
574 pool->offset += SGE_PAGE_SIZE;
575 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
576 get_page(pool->page);
577 else
578 pool->page = NULL;
579 return 0;
580 }
581
582 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
583 struct bnx2x_agg_info *tpa_info,
584 u16 pages,
585 struct sk_buff *skb,
586 struct eth_end_agg_rx_cqe *cqe,
587 u16 cqe_idx)
588 {
589 struct sw_rx_page *rx_pg, old_rx_pg;
590 u32 i, frag_len, frag_size;
591 int err, j, frag_id = 0;
592 u16 len_on_bd = tpa_info->len_on_bd;
593 u16 full_page = 0, gro_size = 0;
594
595 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
596
597 if (fp->mode == TPA_MODE_GRO) {
598 gro_size = tpa_info->gro_size;
599 full_page = tpa_info->full_page;
600 }
601
602 /* This is needed in order to enable forwarding support */
603 if (frag_size)
604 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
605 le16_to_cpu(cqe->pkt_len),
606 le16_to_cpu(cqe->num_of_coalesced_segs));
607
608 #ifdef BNX2X_STOP_ON_ERROR
609 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
610 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
611 pages, cqe_idx);
612 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
613 bnx2x_panic();
614 return -EINVAL;
615 }
616 #endif
617
618 /* Run through the SGL and compose the fragmented skb */
619 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
620 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
621
622 /* FW gives the indices of the SGE as if the ring is an array
623 (meaning that "next" element will consume 2 indices) */
624 if (fp->mode == TPA_MODE_GRO)
625 frag_len = min_t(u32, frag_size, (u32)full_page);
626 else /* LRO */
627 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
628
629 rx_pg = &fp->rx_page_ring[sge_idx];
630 old_rx_pg = *rx_pg;
631
632 /* If we fail to allocate a substitute page, we simply stop
633 where we are and drop the whole packet */
634 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
635 if (unlikely(err)) {
636 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
637 return err;
638 }
639
640 dma_unmap_page(&bp->pdev->dev,
641 dma_unmap_addr(&old_rx_pg, mapping),
642 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
643 /* Add one frag and update the appropriate fields in the skb */
644 if (fp->mode == TPA_MODE_LRO)
645 skb_fill_page_desc(skb, j, old_rx_pg.page,
646 old_rx_pg.offset, frag_len);
647 else { /* GRO */
648 int rem;
649 int offset = 0;
650 for (rem = frag_len; rem > 0; rem -= gro_size) {
651 int len = rem > gro_size ? gro_size : rem;
652 skb_fill_page_desc(skb, frag_id++,
653 old_rx_pg.page,
654 old_rx_pg.offset + offset,
655 len);
656 if (offset)
657 get_page(old_rx_pg.page);
658 offset += len;
659 }
660 }
661
662 skb->data_len += frag_len;
663 skb->truesize += SGE_PAGES;
664 skb->len += frag_len;
665
666 frag_size -= frag_len;
667 }
668
669 return 0;
670 }
671
672 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
673 {
674 if (fp->rx_frag_size)
675 skb_free_frag(data);
676 else
677 kfree(data);
678 }
679
680 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
681 {
682 if (fp->rx_frag_size) {
683 /* GFP_KERNEL allocations are used only during initialization */
684 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
685 return (void *)__get_free_page(gfp_mask);
686
687 return netdev_alloc_frag(fp->rx_frag_size);
688 }
689
690 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
691 }
692
693 #ifdef CONFIG_INET
694 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
695 {
696 const struct iphdr *iph = ip_hdr(skb);
697 struct tcphdr *th;
698
699 skb_set_transport_header(skb, sizeof(struct iphdr));
700 th = tcp_hdr(skb);
701
702 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
703 iph->saddr, iph->daddr, 0);
704 }
705
706 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
707 {
708 struct ipv6hdr *iph = ipv6_hdr(skb);
709 struct tcphdr *th;
710
711 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
712 th = tcp_hdr(skb);
713
714 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
715 &iph->saddr, &iph->daddr, 0);
716 }
717
718 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
719 void (*gro_func)(struct bnx2x*, struct sk_buff*))
720 {
721 skb_reset_network_header(skb);
722 gro_func(bp, skb);
723 tcp_gro_complete(skb);
724 }
725 #endif
726
727 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
728 struct sk_buff *skb)
729 {
730 #ifdef CONFIG_INET
731 if (skb_shinfo(skb)->gso_size) {
732 switch (be16_to_cpu(skb->protocol)) {
733 case ETH_P_IP:
734 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
735 break;
736 case ETH_P_IPV6:
737 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
738 break;
739 default:
740 netdev_WARN_ONCE(bp->dev,
741 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
742 be16_to_cpu(skb->protocol));
743 }
744 }
745 #endif
746 skb_record_rx_queue(skb, fp->rx_queue);
747 napi_gro_receive(&fp->napi, skb);
748 }
749
750 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
751 struct bnx2x_agg_info *tpa_info,
752 u16 pages,
753 struct eth_end_agg_rx_cqe *cqe,
754 u16 cqe_idx)
755 {
756 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
757 u8 pad = tpa_info->placement_offset;
758 u16 len = tpa_info->len_on_bd;
759 struct sk_buff *skb = NULL;
760 u8 *new_data, *data = rx_buf->data;
761 u8 old_tpa_state = tpa_info->tpa_state;
762
763 tpa_info->tpa_state = BNX2X_TPA_STOP;
764
765 /* If we there was an error during the handling of the TPA_START -
766 * drop this aggregation.
767 */
768 if (old_tpa_state == BNX2X_TPA_ERROR)
769 goto drop;
770
771 /* Try to allocate the new data */
772 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
773 /* Unmap skb in the pool anyway, as we are going to change
774 pool entry status to BNX2X_TPA_STOP even if new skb allocation
775 fails. */
776 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
777 fp->rx_buf_size, DMA_FROM_DEVICE);
778 if (likely(new_data))
779 skb = build_skb(data, fp->rx_frag_size);
780
781 if (likely(skb)) {
782 #ifdef BNX2X_STOP_ON_ERROR
783 if (pad + len > fp->rx_buf_size) {
784 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
785 pad, len, fp->rx_buf_size);
786 bnx2x_panic();
787 return;
788 }
789 #endif
790
791 skb_reserve(skb, pad + NET_SKB_PAD);
792 skb_put(skb, len);
793 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
794
795 skb->protocol = eth_type_trans(skb, bp->dev);
796 skb->ip_summed = CHECKSUM_UNNECESSARY;
797
798 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
799 skb, cqe, cqe_idx)) {
800 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
801 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
802 bnx2x_gro_receive(bp, fp, skb);
803 } else {
804 DP(NETIF_MSG_RX_STATUS,
805 "Failed to allocate new pages - dropping packet!\n");
806 dev_kfree_skb_any(skb);
807 }
808
809 /* put new data in bin */
810 rx_buf->data = new_data;
811
812 return;
813 }
814 if (new_data)
815 bnx2x_frag_free(fp, new_data);
816 drop:
817 /* drop the packet and keep the buffer in the bin */
818 DP(NETIF_MSG_RX_STATUS,
819 "Failed to allocate or map a new skb - dropping packet!\n");
820 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
821 }
822
823 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
824 u16 index, gfp_t gfp_mask)
825 {
826 u8 *data;
827 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
828 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
829 dma_addr_t mapping;
830
831 data = bnx2x_frag_alloc(fp, gfp_mask);
832 if (unlikely(data == NULL))
833 return -ENOMEM;
834
835 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
836 fp->rx_buf_size,
837 DMA_FROM_DEVICE);
838 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
839 bnx2x_frag_free(fp, data);
840 BNX2X_ERR("Can't map rx data\n");
841 return -ENOMEM;
842 }
843
844 rx_buf->data = data;
845 dma_unmap_addr_set(rx_buf, mapping, mapping);
846
847 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
848 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
849
850 return 0;
851 }
852
853 static
854 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
855 struct bnx2x_fastpath *fp,
856 struct bnx2x_eth_q_stats *qstats)
857 {
858 /* Do nothing if no L4 csum validation was done.
859 * We do not check whether IP csum was validated. For IPv4 we assume
860 * that if the card got as far as validating the L4 csum, it also
861 * validated the IP csum. IPv6 has no IP csum.
862 */
863 if (cqe->fast_path_cqe.status_flags &
864 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
865 return;
866
867 /* If L4 validation was done, check if an error was found. */
868
869 if (cqe->fast_path_cqe.type_error_flags &
870 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
871 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
872 qstats->hw_csum_err++;
873 else
874 skb->ip_summed = CHECKSUM_UNNECESSARY;
875 }
876
877 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
878 {
879 struct bnx2x *bp = fp->bp;
880 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
881 u16 sw_comp_cons, sw_comp_prod;
882 int rx_pkt = 0;
883 union eth_rx_cqe *cqe;
884 struct eth_fast_path_rx_cqe *cqe_fp;
885
886 #ifdef BNX2X_STOP_ON_ERROR
887 if (unlikely(bp->panic))
888 return 0;
889 #endif
890 if (budget <= 0)
891 return rx_pkt;
892
893 bd_cons = fp->rx_bd_cons;
894 bd_prod = fp->rx_bd_prod;
895 bd_prod_fw = bd_prod;
896 sw_comp_cons = fp->rx_comp_cons;
897 sw_comp_prod = fp->rx_comp_prod;
898
899 comp_ring_cons = RCQ_BD(sw_comp_cons);
900 cqe = &fp->rx_comp_ring[comp_ring_cons];
901 cqe_fp = &cqe->fast_path_cqe;
902
903 DP(NETIF_MSG_RX_STATUS,
904 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
905
906 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
907 struct sw_rx_bd *rx_buf = NULL;
908 struct sk_buff *skb;
909 u8 cqe_fp_flags;
910 enum eth_rx_cqe_type cqe_fp_type;
911 u16 len, pad, queue;
912 u8 *data;
913 u32 rxhash;
914 enum pkt_hash_types rxhash_type;
915
916 #ifdef BNX2X_STOP_ON_ERROR
917 if (unlikely(bp->panic))
918 return 0;
919 #endif
920
921 bd_prod = RX_BD(bd_prod);
922 bd_cons = RX_BD(bd_cons);
923
924 /* A rmb() is required to ensure that the CQE is not read
925 * before it is written by the adapter DMA. PCI ordering
926 * rules will make sure the other fields are written before
927 * the marker at the end of struct eth_fast_path_rx_cqe
928 * but without rmb() a weakly ordered processor can process
929 * stale data. Without the barrier TPA state-machine might
930 * enter inconsistent state and kernel stack might be
931 * provided with incorrect packet description - these lead
932 * to various kernel crashed.
933 */
934 rmb();
935
936 cqe_fp_flags = cqe_fp->type_error_flags;
937 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
938
939 DP(NETIF_MSG_RX_STATUS,
940 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
941 CQE_TYPE(cqe_fp_flags),
942 cqe_fp_flags, cqe_fp->status_flags,
943 le32_to_cpu(cqe_fp->rss_hash_result),
944 le16_to_cpu(cqe_fp->vlan_tag),
945 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
946
947 /* is this a slowpath msg? */
948 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
949 bnx2x_sp_event(fp, cqe);
950 goto next_cqe;
951 }
952
953 rx_buf = &fp->rx_buf_ring[bd_cons];
954 data = rx_buf->data;
955
956 if (!CQE_TYPE_FAST(cqe_fp_type)) {
957 struct bnx2x_agg_info *tpa_info;
958 u16 frag_size, pages;
959 #ifdef BNX2X_STOP_ON_ERROR
960 /* sanity check */
961 if (fp->mode == TPA_MODE_DISABLED &&
962 (CQE_TYPE_START(cqe_fp_type) ||
963 CQE_TYPE_STOP(cqe_fp_type)))
964 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
965 CQE_TYPE(cqe_fp_type));
966 #endif
967
968 if (CQE_TYPE_START(cqe_fp_type)) {
969 u16 queue = cqe_fp->queue_index;
970 DP(NETIF_MSG_RX_STATUS,
971 "calling tpa_start on queue %d\n",
972 queue);
973
974 bnx2x_tpa_start(fp, queue,
975 bd_cons, bd_prod,
976 cqe_fp);
977
978 goto next_rx;
979 }
980 queue = cqe->end_agg_cqe.queue_index;
981 tpa_info = &fp->tpa_info[queue];
982 DP(NETIF_MSG_RX_STATUS,
983 "calling tpa_stop on queue %d\n",
984 queue);
985
986 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
987 tpa_info->len_on_bd;
988
989 if (fp->mode == TPA_MODE_GRO)
990 pages = (frag_size + tpa_info->full_page - 1) /
991 tpa_info->full_page;
992 else
993 pages = SGE_PAGE_ALIGN(frag_size) >>
994 SGE_PAGE_SHIFT;
995
996 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
997 &cqe->end_agg_cqe, comp_ring_cons);
998 #ifdef BNX2X_STOP_ON_ERROR
999 if (bp->panic)
1000 return 0;
1001 #endif
1002
1003 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1004 goto next_cqe;
1005 }
1006 /* non TPA */
1007 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1008 pad = cqe_fp->placement_offset;
1009 dma_sync_single_for_cpu(&bp->pdev->dev,
1010 dma_unmap_addr(rx_buf, mapping),
1011 pad + RX_COPY_THRESH,
1012 DMA_FROM_DEVICE);
1013 pad += NET_SKB_PAD;
1014 prefetch(data + pad); /* speedup eth_type_trans() */
1015 /* is this an error packet? */
1016 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1017 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1018 "ERROR flags %x rx packet %u\n",
1019 cqe_fp_flags, sw_comp_cons);
1020 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1021 goto reuse_rx;
1022 }
1023
1024 /* Since we don't have a jumbo ring
1025 * copy small packets if mtu > 1500
1026 */
1027 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1028 (len <= RX_COPY_THRESH)) {
1029 skb = napi_alloc_skb(&fp->napi, len);
1030 if (skb == NULL) {
1031 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1032 "ERROR packet dropped because of alloc failure\n");
1033 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1034 goto reuse_rx;
1035 }
1036 memcpy(skb->data, data + pad, len);
1037 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1038 } else {
1039 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1040 GFP_ATOMIC) == 0)) {
1041 dma_unmap_single(&bp->pdev->dev,
1042 dma_unmap_addr(rx_buf, mapping),
1043 fp->rx_buf_size,
1044 DMA_FROM_DEVICE);
1045 skb = build_skb(data, fp->rx_frag_size);
1046 if (unlikely(!skb)) {
1047 bnx2x_frag_free(fp, data);
1048 bnx2x_fp_qstats(bp, fp)->
1049 rx_skb_alloc_failed++;
1050 goto next_rx;
1051 }
1052 skb_reserve(skb, pad);
1053 } else {
1054 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1055 "ERROR packet dropped because of alloc failure\n");
1056 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1057 reuse_rx:
1058 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1059 goto next_rx;
1060 }
1061 }
1062
1063 skb_put(skb, len);
1064 skb->protocol = eth_type_trans(skb, bp->dev);
1065
1066 /* Set Toeplitz hash for a none-LRO skb */
1067 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1068 skb_set_hash(skb, rxhash, rxhash_type);
1069
1070 skb_checksum_none_assert(skb);
1071
1072 if (bp->dev->features & NETIF_F_RXCSUM)
1073 bnx2x_csum_validate(skb, cqe, fp,
1074 bnx2x_fp_qstats(bp, fp));
1075
1076 skb_record_rx_queue(skb, fp->rx_queue);
1077
1078 /* Check if this packet was timestamped */
1079 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1080 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1081 bnx2x_set_rx_ts(bp, skb);
1082
1083 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1084 PARSING_FLAGS_VLAN)
1085 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1086 le16_to_cpu(cqe_fp->vlan_tag));
1087
1088 napi_gro_receive(&fp->napi, skb);
1089 next_rx:
1090 rx_buf->data = NULL;
1091
1092 bd_cons = NEXT_RX_IDX(bd_cons);
1093 bd_prod = NEXT_RX_IDX(bd_prod);
1094 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1095 rx_pkt++;
1096 next_cqe:
1097 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1098 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1099
1100 /* mark CQE as free */
1101 BNX2X_SEED_CQE(cqe_fp);
1102
1103 if (rx_pkt == budget)
1104 break;
1105
1106 comp_ring_cons = RCQ_BD(sw_comp_cons);
1107 cqe = &fp->rx_comp_ring[comp_ring_cons];
1108 cqe_fp = &cqe->fast_path_cqe;
1109 } /* while */
1110
1111 fp->rx_bd_cons = bd_cons;
1112 fp->rx_bd_prod = bd_prod_fw;
1113 fp->rx_comp_cons = sw_comp_cons;
1114 fp->rx_comp_prod = sw_comp_prod;
1115
1116 /* Update producers */
1117 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1118 fp->rx_sge_prod);
1119
1120 return rx_pkt;
1121 }
1122
1123 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1124 {
1125 struct bnx2x_fastpath *fp = fp_cookie;
1126 struct bnx2x *bp = fp->bp;
1127 u8 cos;
1128
1129 DP(NETIF_MSG_INTR,
1130 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1131 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1132
1133 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1134
1135 #ifdef BNX2X_STOP_ON_ERROR
1136 if (unlikely(bp->panic))
1137 return IRQ_HANDLED;
1138 #endif
1139
1140 /* Handle Rx and Tx according to MSI-X vector */
1141 for_each_cos_in_tx_queue(fp, cos)
1142 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1143
1144 prefetch(&fp->sb_running_index[SM_RX_ID]);
1145 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1146
1147 return IRQ_HANDLED;
1148 }
1149
1150 /* HW Lock for shared dual port PHYs */
1151 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1152 {
1153 mutex_lock(&bp->port.phy_mutex);
1154
1155 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1156 }
1157
1158 void bnx2x_release_phy_lock(struct bnx2x *bp)
1159 {
1160 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161
1162 mutex_unlock(&bp->port.phy_mutex);
1163 }
1164
1165 /* calculates MF speed according to current linespeed and MF configuration */
1166 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1167 {
1168 u16 line_speed = bp->link_vars.line_speed;
1169 if (IS_MF(bp)) {
1170 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1171 bp->mf_config[BP_VN(bp)]);
1172
1173 /* Calculate the current MAX line speed limit for the MF
1174 * devices
1175 */
1176 if (IS_MF_PERCENT_BW(bp))
1177 line_speed = (line_speed * maxCfg) / 100;
1178 else { /* SD mode */
1179 u16 vn_max_rate = maxCfg * 100;
1180
1181 if (vn_max_rate < line_speed)
1182 line_speed = vn_max_rate;
1183 }
1184 }
1185
1186 return line_speed;
1187 }
1188
1189 /**
1190 * bnx2x_fill_report_data - fill link report data to report
1191 *
1192 * @bp: driver handle
1193 * @data: link state to update
1194 *
1195 * It uses a none-atomic bit operations because is called under the mutex.
1196 */
1197 static void bnx2x_fill_report_data(struct bnx2x *bp,
1198 struct bnx2x_link_report_data *data)
1199 {
1200 memset(data, 0, sizeof(*data));
1201
1202 if (IS_PF(bp)) {
1203 /* Fill the report data: effective line speed */
1204 data->line_speed = bnx2x_get_mf_speed(bp);
1205
1206 /* Link is down */
1207 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1208 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1209 &data->link_report_flags);
1210
1211 if (!BNX2X_NUM_ETH_QUEUES(bp))
1212 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 &data->link_report_flags);
1214
1215 /* Full DUPLEX */
1216 if (bp->link_vars.duplex == DUPLEX_FULL)
1217 __set_bit(BNX2X_LINK_REPORT_FD,
1218 &data->link_report_flags);
1219
1220 /* Rx Flow Control is ON */
1221 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1222 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1223 &data->link_report_flags);
1224
1225 /* Tx Flow Control is ON */
1226 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1227 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1228 &data->link_report_flags);
1229 } else { /* VF */
1230 *data = bp->vf_link_vars;
1231 }
1232 }
1233
1234 /**
1235 * bnx2x_link_report - report link status to OS.
1236 *
1237 * @bp: driver handle
1238 *
1239 * Calls the __bnx2x_link_report() under the same locking scheme
1240 * as a link/PHY state managing code to ensure a consistent link
1241 * reporting.
1242 */
1243
1244 void bnx2x_link_report(struct bnx2x *bp)
1245 {
1246 bnx2x_acquire_phy_lock(bp);
1247 __bnx2x_link_report(bp);
1248 bnx2x_release_phy_lock(bp);
1249 }
1250
1251 /**
1252 * __bnx2x_link_report - report link status to OS.
1253 *
1254 * @bp: driver handle
1255 *
1256 * None atomic implementation.
1257 * Should be called under the phy_lock.
1258 */
1259 void __bnx2x_link_report(struct bnx2x *bp)
1260 {
1261 struct bnx2x_link_report_data cur_data;
1262
1263 if (bp->force_link_down) {
1264 bp->link_vars.link_up = 0;
1265 return;
1266 }
1267
1268 /* reread mf_cfg */
1269 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1270 bnx2x_read_mf_cfg(bp);
1271
1272 /* Read the current link report info */
1273 bnx2x_fill_report_data(bp, &cur_data);
1274
1275 /* Don't report link down or exactly the same link status twice */
1276 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1277 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1278 &bp->last_reported_link.link_report_flags) &&
1279 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1280 &cur_data.link_report_flags)))
1281 return;
1282
1283 bp->link_cnt++;
1284
1285 /* We are going to report a new link parameters now -
1286 * remember the current data for the next time.
1287 */
1288 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1289
1290 /* propagate status to VFs */
1291 if (IS_PF(bp))
1292 bnx2x_iov_link_update(bp);
1293
1294 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1295 &cur_data.link_report_flags)) {
1296 netif_carrier_off(bp->dev);
1297 netdev_err(bp->dev, "NIC Link is Down\n");
1298 return;
1299 } else {
1300 const char *duplex;
1301 const char *flow;
1302
1303 netif_carrier_on(bp->dev);
1304
1305 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1306 &cur_data.link_report_flags))
1307 duplex = "full";
1308 else
1309 duplex = "half";
1310
1311 /* Handle the FC at the end so that only these flags would be
1312 * possibly set. This way we may easily check if there is no FC
1313 * enabled.
1314 */
1315 if (cur_data.link_report_flags) {
1316 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1317 &cur_data.link_report_flags)) {
1318 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1319 &cur_data.link_report_flags))
1320 flow = "ON - receive & transmit";
1321 else
1322 flow = "ON - receive";
1323 } else {
1324 flow = "ON - transmit";
1325 }
1326 } else {
1327 flow = "none";
1328 }
1329 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1330 cur_data.line_speed, duplex, flow);
1331 }
1332 }
1333
1334 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1335 {
1336 int i;
1337
1338 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1339 struct eth_rx_sge *sge;
1340
1341 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1342 sge->addr_hi =
1343 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1344 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1345
1346 sge->addr_lo =
1347 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1348 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349 }
1350 }
1351
1352 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1353 struct bnx2x_fastpath *fp, int last)
1354 {
1355 int i;
1356
1357 for (i = 0; i < last; i++) {
1358 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1359 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1360 u8 *data = first_buf->data;
1361
1362 if (data == NULL) {
1363 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1364 continue;
1365 }
1366 if (tpa_info->tpa_state == BNX2X_TPA_START)
1367 dma_unmap_single(&bp->pdev->dev,
1368 dma_unmap_addr(first_buf, mapping),
1369 fp->rx_buf_size, DMA_FROM_DEVICE);
1370 bnx2x_frag_free(fp, data);
1371 first_buf->data = NULL;
1372 }
1373 }
1374
1375 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1376 {
1377 int j;
1378
1379 for_each_rx_queue_cnic(bp, j) {
1380 struct bnx2x_fastpath *fp = &bp->fp[j];
1381
1382 fp->rx_bd_cons = 0;
1383
1384 /* Activate BD ring */
1385 /* Warning!
1386 * this will generate an interrupt (to the TSTORM)
1387 * must only be done after chip is initialized
1388 */
1389 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1390 fp->rx_sge_prod);
1391 }
1392 }
1393
1394 void bnx2x_init_rx_rings(struct bnx2x *bp)
1395 {
1396 int func = BP_FUNC(bp);
1397 u16 ring_prod;
1398 int i, j;
1399
1400 /* Allocate TPA resources */
1401 for_each_eth_queue(bp, j) {
1402 struct bnx2x_fastpath *fp = &bp->fp[j];
1403
1404 DP(NETIF_MSG_IFUP,
1405 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1406
1407 if (fp->mode != TPA_MODE_DISABLED) {
1408 /* Fill the per-aggregation pool */
1409 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1410 struct bnx2x_agg_info *tpa_info =
1411 &fp->tpa_info[i];
1412 struct sw_rx_bd *first_buf =
1413 &tpa_info->first_buf;
1414
1415 first_buf->data =
1416 bnx2x_frag_alloc(fp, GFP_KERNEL);
1417 if (!first_buf->data) {
1418 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1419 j);
1420 bnx2x_free_tpa_pool(bp, fp, i);
1421 fp->mode = TPA_MODE_DISABLED;
1422 break;
1423 }
1424 dma_unmap_addr_set(first_buf, mapping, 0);
1425 tpa_info->tpa_state = BNX2X_TPA_STOP;
1426 }
1427
1428 /* "next page" elements initialization */
1429 bnx2x_set_next_page_sgl(fp);
1430
1431 /* set SGEs bit mask */
1432 bnx2x_init_sge_ring_bit_mask(fp);
1433
1434 /* Allocate SGEs and initialize the ring elements */
1435 for (i = 0, ring_prod = 0;
1436 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1437
1438 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1439 GFP_KERNEL) < 0) {
1440 BNX2X_ERR("was only able to allocate %d rx sges\n",
1441 i);
1442 BNX2X_ERR("disabling TPA for queue[%d]\n",
1443 j);
1444 /* Cleanup already allocated elements */
1445 bnx2x_free_rx_sge_range(bp, fp,
1446 ring_prod);
1447 bnx2x_free_tpa_pool(bp, fp,
1448 MAX_AGG_QS(bp));
1449 fp->mode = TPA_MODE_DISABLED;
1450 ring_prod = 0;
1451 break;
1452 }
1453 ring_prod = NEXT_SGE_IDX(ring_prod);
1454 }
1455
1456 fp->rx_sge_prod = ring_prod;
1457 }
1458 }
1459
1460 for_each_eth_queue(bp, j) {
1461 struct bnx2x_fastpath *fp = &bp->fp[j];
1462
1463 fp->rx_bd_cons = 0;
1464
1465 /* Activate BD ring */
1466 /* Warning!
1467 * this will generate an interrupt (to the TSTORM)
1468 * must only be done after chip is initialized
1469 */
1470 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1471 fp->rx_sge_prod);
1472
1473 if (j != 0)
1474 continue;
1475
1476 if (CHIP_IS_E1(bp)) {
1477 REG_WR(bp, BAR_USTRORM_INTMEM +
1478 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1479 U64_LO(fp->rx_comp_mapping));
1480 REG_WR(bp, BAR_USTRORM_INTMEM +
1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1482 U64_HI(fp->rx_comp_mapping));
1483 }
1484 }
1485 }
1486
1487 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1488 {
1489 u8 cos;
1490 struct bnx2x *bp = fp->bp;
1491
1492 for_each_cos_in_tx_queue(fp, cos) {
1493 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1494 unsigned pkts_compl = 0, bytes_compl = 0;
1495
1496 u16 sw_prod = txdata->tx_pkt_prod;
1497 u16 sw_cons = txdata->tx_pkt_cons;
1498
1499 while (sw_cons != sw_prod) {
1500 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1501 &pkts_compl, &bytes_compl);
1502 sw_cons++;
1503 }
1504
1505 netdev_tx_reset_queue(
1506 netdev_get_tx_queue(bp->dev,
1507 txdata->txq_index));
1508 }
1509 }
1510
1511 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1512 {
1513 int i;
1514
1515 for_each_tx_queue_cnic(bp, i) {
1516 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1517 }
1518 }
1519
1520 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1521 {
1522 int i;
1523
1524 for_each_eth_queue(bp, i) {
1525 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1526 }
1527 }
1528
1529 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1530 {
1531 struct bnx2x *bp = fp->bp;
1532 int i;
1533
1534 /* ring wasn't allocated */
1535 if (fp->rx_buf_ring == NULL)
1536 return;
1537
1538 for (i = 0; i < NUM_RX_BD; i++) {
1539 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1540 u8 *data = rx_buf->data;
1541
1542 if (data == NULL)
1543 continue;
1544 dma_unmap_single(&bp->pdev->dev,
1545 dma_unmap_addr(rx_buf, mapping),
1546 fp->rx_buf_size, DMA_FROM_DEVICE);
1547
1548 rx_buf->data = NULL;
1549 bnx2x_frag_free(fp, data);
1550 }
1551 }
1552
1553 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1554 {
1555 int j;
1556
1557 for_each_rx_queue_cnic(bp, j) {
1558 bnx2x_free_rx_bds(&bp->fp[j]);
1559 }
1560 }
1561
1562 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1563 {
1564 int j;
1565
1566 for_each_eth_queue(bp, j) {
1567 struct bnx2x_fastpath *fp = &bp->fp[j];
1568
1569 bnx2x_free_rx_bds(fp);
1570
1571 if (fp->mode != TPA_MODE_DISABLED)
1572 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1573 }
1574 }
1575
1576 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1577 {
1578 bnx2x_free_tx_skbs_cnic(bp);
1579 bnx2x_free_rx_skbs_cnic(bp);
1580 }
1581
1582 void bnx2x_free_skbs(struct bnx2x *bp)
1583 {
1584 bnx2x_free_tx_skbs(bp);
1585 bnx2x_free_rx_skbs(bp);
1586 }
1587
1588 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1589 {
1590 /* load old values */
1591 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1592
1593 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1594 /* leave all but MAX value */
1595 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1596
1597 /* set new MAX value */
1598 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1599 & FUNC_MF_CFG_MAX_BW_MASK;
1600
1601 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1602 }
1603 }
1604
1605 /**
1606 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1607 *
1608 * @bp: driver handle
1609 * @nvecs: number of vectors to be released
1610 */
1611 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1612 {
1613 int i, offset = 0;
1614
1615 if (nvecs == offset)
1616 return;
1617
1618 /* VFs don't have a default SB */
1619 if (IS_PF(bp)) {
1620 free_irq(bp->msix_table[offset].vector, bp->dev);
1621 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1622 bp->msix_table[offset].vector);
1623 offset++;
1624 }
1625
1626 if (CNIC_SUPPORT(bp)) {
1627 if (nvecs == offset)
1628 return;
1629 offset++;
1630 }
1631
1632 for_each_eth_queue(bp, i) {
1633 if (nvecs == offset)
1634 return;
1635 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1636 i, bp->msix_table[offset].vector);
1637
1638 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1639 }
1640 }
1641
1642 void bnx2x_free_irq(struct bnx2x *bp)
1643 {
1644 if (bp->flags & USING_MSIX_FLAG &&
1645 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1646 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1647
1648 /* vfs don't have a default status block */
1649 if (IS_PF(bp))
1650 nvecs++;
1651
1652 bnx2x_free_msix_irqs(bp, nvecs);
1653 } else {
1654 free_irq(bp->dev->irq, bp->dev);
1655 }
1656 }
1657
1658 int bnx2x_enable_msix(struct bnx2x *bp)
1659 {
1660 int msix_vec = 0, i, rc;
1661
1662 /* VFs don't have a default status block */
1663 if (IS_PF(bp)) {
1664 bp->msix_table[msix_vec].entry = msix_vec;
1665 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1666 bp->msix_table[0].entry);
1667 msix_vec++;
1668 }
1669
1670 /* Cnic requires an msix vector for itself */
1671 if (CNIC_SUPPORT(bp)) {
1672 bp->msix_table[msix_vec].entry = msix_vec;
1673 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1674 msix_vec, bp->msix_table[msix_vec].entry);
1675 msix_vec++;
1676 }
1677
1678 /* We need separate vectors for ETH queues only (not FCoE) */
1679 for_each_eth_queue(bp, i) {
1680 bp->msix_table[msix_vec].entry = msix_vec;
1681 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1682 msix_vec, msix_vec, i);
1683 msix_vec++;
1684 }
1685
1686 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1687 msix_vec);
1688
1689 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1690 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1691 /*
1692 * reconfigure number of tx/rx queues according to available
1693 * MSI-X vectors
1694 */
1695 if (rc == -ENOSPC) {
1696 /* Get by with single vector */
1697 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1698 if (rc < 0) {
1699 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1700 rc);
1701 goto no_msix;
1702 }
1703
1704 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1705 bp->flags |= USING_SINGLE_MSIX_FLAG;
1706
1707 BNX2X_DEV_INFO("set number of queues to 1\n");
1708 bp->num_ethernet_queues = 1;
1709 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1710 } else if (rc < 0) {
1711 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1712 goto no_msix;
1713 } else if (rc < msix_vec) {
1714 /* how less vectors we will have? */
1715 int diff = msix_vec - rc;
1716
1717 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1718
1719 /*
1720 * decrease number of queues by number of unallocated entries
1721 */
1722 bp->num_ethernet_queues -= diff;
1723 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1724
1725 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1726 bp->num_queues);
1727 }
1728
1729 bp->flags |= USING_MSIX_FLAG;
1730
1731 return 0;
1732
1733 no_msix:
1734 /* fall to INTx if not enough memory */
1735 if (rc == -ENOMEM)
1736 bp->flags |= DISABLE_MSI_FLAG;
1737
1738 return rc;
1739 }
1740
1741 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1742 {
1743 int i, rc, offset = 0;
1744
1745 /* no default status block for vf */
1746 if (IS_PF(bp)) {
1747 rc = request_irq(bp->msix_table[offset++].vector,
1748 bnx2x_msix_sp_int, 0,
1749 bp->dev->name, bp->dev);
1750 if (rc) {
1751 BNX2X_ERR("request sp irq failed\n");
1752 return -EBUSY;
1753 }
1754 }
1755
1756 if (CNIC_SUPPORT(bp))
1757 offset++;
1758
1759 for_each_eth_queue(bp, i) {
1760 struct bnx2x_fastpath *fp = &bp->fp[i];
1761 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1762 bp->dev->name, i);
1763
1764 rc = request_irq(bp->msix_table[offset].vector,
1765 bnx2x_msix_fp_int, 0, fp->name, fp);
1766 if (rc) {
1767 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1768 bp->msix_table[offset].vector, rc);
1769 bnx2x_free_msix_irqs(bp, offset);
1770 return -EBUSY;
1771 }
1772
1773 offset++;
1774 }
1775
1776 i = BNX2X_NUM_ETH_QUEUES(bp);
1777 if (IS_PF(bp)) {
1778 offset = 1 + CNIC_SUPPORT(bp);
1779 netdev_info(bp->dev,
1780 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1781 bp->msix_table[0].vector,
1782 0, bp->msix_table[offset].vector,
1783 i - 1, bp->msix_table[offset + i - 1].vector);
1784 } else {
1785 offset = CNIC_SUPPORT(bp);
1786 netdev_info(bp->dev,
1787 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1788 0, bp->msix_table[offset].vector,
1789 i - 1, bp->msix_table[offset + i - 1].vector);
1790 }
1791 return 0;
1792 }
1793
1794 int bnx2x_enable_msi(struct bnx2x *bp)
1795 {
1796 int rc;
1797
1798 rc = pci_enable_msi(bp->pdev);
1799 if (rc) {
1800 BNX2X_DEV_INFO("MSI is not attainable\n");
1801 return -1;
1802 }
1803 bp->flags |= USING_MSI_FLAG;
1804
1805 return 0;
1806 }
1807
1808 static int bnx2x_req_irq(struct bnx2x *bp)
1809 {
1810 unsigned long flags;
1811 unsigned int irq;
1812
1813 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1814 flags = 0;
1815 else
1816 flags = IRQF_SHARED;
1817
1818 if (bp->flags & USING_MSIX_FLAG)
1819 irq = bp->msix_table[0].vector;
1820 else
1821 irq = bp->pdev->irq;
1822
1823 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1824 }
1825
1826 static int bnx2x_setup_irqs(struct bnx2x *bp)
1827 {
1828 int rc = 0;
1829 if (bp->flags & USING_MSIX_FLAG &&
1830 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1831 rc = bnx2x_req_msix_irqs(bp);
1832 if (rc)
1833 return rc;
1834 } else {
1835 rc = bnx2x_req_irq(bp);
1836 if (rc) {
1837 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1838 return rc;
1839 }
1840 if (bp->flags & USING_MSI_FLAG) {
1841 bp->dev->irq = bp->pdev->irq;
1842 netdev_info(bp->dev, "using MSI IRQ %d\n",
1843 bp->dev->irq);
1844 }
1845 if (bp->flags & USING_MSIX_FLAG) {
1846 bp->dev->irq = bp->msix_table[0].vector;
1847 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1848 bp->dev->irq);
1849 }
1850 }
1851
1852 return 0;
1853 }
1854
1855 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1856 {
1857 int i;
1858
1859 for_each_rx_queue_cnic(bp, i) {
1860 napi_enable(&bnx2x_fp(bp, i, napi));
1861 }
1862 }
1863
1864 static void bnx2x_napi_enable(struct bnx2x *bp)
1865 {
1866 int i;
1867
1868 for_each_eth_queue(bp, i) {
1869 napi_enable(&bnx2x_fp(bp, i, napi));
1870 }
1871 }
1872
1873 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1874 {
1875 int i;
1876
1877 for_each_rx_queue_cnic(bp, i) {
1878 napi_disable(&bnx2x_fp(bp, i, napi));
1879 }
1880 }
1881
1882 static void bnx2x_napi_disable(struct bnx2x *bp)
1883 {
1884 int i;
1885
1886 for_each_eth_queue(bp, i) {
1887 napi_disable(&bnx2x_fp(bp, i, napi));
1888 }
1889 }
1890
1891 void bnx2x_netif_start(struct bnx2x *bp)
1892 {
1893 if (netif_running(bp->dev)) {
1894 bnx2x_napi_enable(bp);
1895 if (CNIC_LOADED(bp))
1896 bnx2x_napi_enable_cnic(bp);
1897 bnx2x_int_enable(bp);
1898 if (bp->state == BNX2X_STATE_OPEN)
1899 netif_tx_wake_all_queues(bp->dev);
1900 }
1901 }
1902
1903 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1904 {
1905 bnx2x_int_disable_sync(bp, disable_hw);
1906 bnx2x_napi_disable(bp);
1907 if (CNIC_LOADED(bp))
1908 bnx2x_napi_disable_cnic(bp);
1909 }
1910
1911 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1912 struct net_device *sb_dev,
1913 select_queue_fallback_t fallback)
1914 {
1915 struct bnx2x *bp = netdev_priv(dev);
1916
1917 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1918 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1919 u16 ether_type = ntohs(hdr->h_proto);
1920
1921 /* Skip VLAN tag if present */
1922 if (ether_type == ETH_P_8021Q) {
1923 struct vlan_ethhdr *vhdr =
1924 (struct vlan_ethhdr *)skb->data;
1925
1926 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1927 }
1928
1929 /* If ethertype is FCoE or FIP - use FCoE ring */
1930 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1931 return bnx2x_fcoe_tx(bp, txq_index);
1932 }
1933
1934 /* select a non-FCoE queue */
1935 return fallback(dev, skb, NULL) %
1936 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1937 }
1938
1939 void bnx2x_set_num_queues(struct bnx2x *bp)
1940 {
1941 /* RSS queues */
1942 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1943
1944 /* override in STORAGE SD modes */
1945 if (IS_MF_STORAGE_ONLY(bp))
1946 bp->num_ethernet_queues = 1;
1947
1948 /* Add special queues */
1949 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1950 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1951
1952 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1953 }
1954
1955 /**
1956 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1957 *
1958 * @bp: Driver handle
1959 *
1960 * We currently support for at most 16 Tx queues for each CoS thus we will
1961 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1962 * bp->max_cos.
1963 *
1964 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1965 * index after all ETH L2 indices.
1966 *
1967 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1968 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1969 * 16..31,...) with indices that are not coupled with any real Tx queue.
1970 *
1971 * The proper configuration of skb->queue_mapping is handled by
1972 * bnx2x_select_queue() and __skb_tx_hash().
1973 *
1974 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1975 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1976 */
1977 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1978 {
1979 int rc, tx, rx;
1980
1981 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1982 rx = BNX2X_NUM_ETH_QUEUES(bp);
1983
1984 /* account for fcoe queue */
1985 if (include_cnic && !NO_FCOE(bp)) {
1986 rx++;
1987 tx++;
1988 }
1989
1990 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1991 if (rc) {
1992 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1993 return rc;
1994 }
1995 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1996 if (rc) {
1997 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1998 return rc;
1999 }
2000
2001 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2002 tx, rx);
2003
2004 return rc;
2005 }
2006
2007 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2008 {
2009 int i;
2010
2011 for_each_queue(bp, i) {
2012 struct bnx2x_fastpath *fp = &bp->fp[i];
2013 u32 mtu;
2014
2015 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2016 if (IS_FCOE_IDX(i))
2017 /*
2018 * Although there are no IP frames expected to arrive to
2019 * this ring we still want to add an
2020 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2021 * overrun attack.
2022 */
2023 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2024 else
2025 mtu = bp->dev->mtu;
2026 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2027 IP_HEADER_ALIGNMENT_PADDING +
2028 ETH_OVERHEAD +
2029 mtu +
2030 BNX2X_FW_RX_ALIGN_END;
2031 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2032 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2033 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2034 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2035 else
2036 fp->rx_frag_size = 0;
2037 }
2038 }
2039
2040 static int bnx2x_init_rss(struct bnx2x *bp)
2041 {
2042 int i;
2043 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2044
2045 /* Prepare the initial contents for the indirection table if RSS is
2046 * enabled
2047 */
2048 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2049 bp->rss_conf_obj.ind_table[i] =
2050 bp->fp->cl_id +
2051 ethtool_rxfh_indir_default(i, num_eth_queues);
2052
2053 /*
2054 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2055 * per-port, so if explicit configuration is needed , do it only
2056 * for a PMF.
2057 *
2058 * For 57712 and newer on the other hand it's a per-function
2059 * configuration.
2060 */
2061 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2062 }
2063
2064 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2065 bool config_hash, bool enable)
2066 {
2067 struct bnx2x_config_rss_params params = {NULL};
2068
2069 /* Although RSS is meaningless when there is a single HW queue we
2070 * still need it enabled in order to have HW Rx hash generated.
2071 *
2072 * if (!is_eth_multi(bp))
2073 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2074 */
2075
2076 params.rss_obj = rss_obj;
2077
2078 __set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2079
2080 if (enable) {
2081 __set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2082
2083 /* RSS configuration */
2084 __set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2085 __set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2086 __set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2087 __set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2088 if (rss_obj->udp_rss_v4)
2089 __set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2090 if (rss_obj->udp_rss_v6)
2091 __set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2092
2093 if (!CHIP_IS_E1x(bp)) {
2094 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2095 __set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2096 __set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2097
2098 /* valid only for TUNN_MODE_GRE tunnel mode */
2099 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2100 }
2101 } else {
2102 __set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2103 }
2104
2105 /* Hash bits */
2106 params.rss_result_mask = MULTI_MASK;
2107
2108 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2109
2110 if (config_hash) {
2111 /* RSS keys */
2112 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2113 __set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2114 }
2115
2116 if (IS_PF(bp))
2117 return bnx2x_config_rss(bp, &params);
2118 else
2119 return bnx2x_vfpf_config_rss(bp, &params);
2120 }
2121
2122 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2123 {
2124 struct bnx2x_func_state_params func_params = {NULL};
2125
2126 /* Prepare parameters for function state transitions */
2127 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2128
2129 func_params.f_obj = &bp->func_obj;
2130 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2131
2132 func_params.params.hw_init.load_phase = load_code;
2133
2134 return bnx2x_func_state_change(bp, &func_params);
2135 }
2136
2137 /*
2138 * Cleans the object that have internal lists without sending
2139 * ramrods. Should be run when interrupts are disabled.
2140 */
2141 void bnx2x_squeeze_objects(struct bnx2x *bp)
2142 {
2143 int rc;
2144 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2145 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2146 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2147
2148 /***************** Cleanup MACs' object first *************************/
2149
2150 /* Wait for completion of requested */
2151 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2152 /* Perform a dry cleanup */
2153 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2154
2155 /* Clean ETH primary MAC */
2156 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2157 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2158 &ramrod_flags);
2159 if (rc != 0)
2160 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2161
2162 /* Cleanup UC list */
2163 vlan_mac_flags = 0;
2164 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2165 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2166 &ramrod_flags);
2167 if (rc != 0)
2168 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2169
2170 /***************** Now clean mcast object *****************************/
2171 rparam.mcast_obj = &bp->mcast_obj;
2172 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2173
2174 /* Add a DEL command... - Since we're doing a driver cleanup only,
2175 * we take a lock surrounding both the initial send and the CONTs,
2176 * as we don't want a true completion to disrupt us in the middle.
2177 */
2178 netif_addr_lock_bh(bp->dev);
2179 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2180 if (rc < 0)
2181 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2182 rc);
2183
2184 /* ...and wait until all pending commands are cleared */
2185 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2186 while (rc != 0) {
2187 if (rc < 0) {
2188 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2189 rc);
2190 netif_addr_unlock_bh(bp->dev);
2191 return;
2192 }
2193
2194 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2195 }
2196 netif_addr_unlock_bh(bp->dev);
2197 }
2198
2199 #ifndef BNX2X_STOP_ON_ERROR
2200 #define LOAD_ERROR_EXIT(bp, label) \
2201 do { \
2202 (bp)->state = BNX2X_STATE_ERROR; \
2203 goto label; \
2204 } while (0)
2205
2206 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2207 do { \
2208 bp->cnic_loaded = false; \
2209 goto label; \
2210 } while (0)
2211 #else /*BNX2X_STOP_ON_ERROR*/
2212 #define LOAD_ERROR_EXIT(bp, label) \
2213 do { \
2214 (bp)->state = BNX2X_STATE_ERROR; \
2215 (bp)->panic = 1; \
2216 return -EBUSY; \
2217 } while (0)
2218 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2219 do { \
2220 bp->cnic_loaded = false; \
2221 (bp)->panic = 1; \
2222 return -EBUSY; \
2223 } while (0)
2224 #endif /*BNX2X_STOP_ON_ERROR*/
2225
2226 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2227 {
2228 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2229 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2230 return;
2231 }
2232
2233 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2234 {
2235 int num_groups, vf_headroom = 0;
2236 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2237
2238 /* number of queues for statistics is number of eth queues + FCoE */
2239 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2240
2241 /* Total number of FW statistics requests =
2242 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2243 * and fcoe l2 queue) stats + num of queues (which includes another 1
2244 * for fcoe l2 queue if applicable)
2245 */
2246 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2247
2248 /* vf stats appear in the request list, but their data is allocated by
2249 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2250 * it is used to determine where to place the vf stats queries in the
2251 * request struct
2252 */
2253 if (IS_SRIOV(bp))
2254 vf_headroom = bnx2x_vf_headroom(bp);
2255
2256 /* Request is built from stats_query_header and an array of
2257 * stats_query_cmd_group each of which contains
2258 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2259 * configured in the stats_query_header.
2260 */
2261 num_groups =
2262 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2263 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2264 1 : 0));
2265
2266 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2267 bp->fw_stats_num, vf_headroom, num_groups);
2268 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2269 num_groups * sizeof(struct stats_query_cmd_group);
2270
2271 /* Data for statistics requests + stats_counter
2272 * stats_counter holds per-STORM counters that are incremented
2273 * when STORM has finished with the current request.
2274 * memory for FCoE offloaded statistics are counted anyway,
2275 * even if they will not be sent.
2276 * VF stats are not accounted for here as the data of VF stats is stored
2277 * in memory allocated by the VF, not here.
2278 */
2279 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2280 sizeof(struct per_pf_stats) +
2281 sizeof(struct fcoe_statistics_params) +
2282 sizeof(struct per_queue_stats) * num_queue_stats +
2283 sizeof(struct stats_counter);
2284
2285 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2286 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2287 if (!bp->fw_stats)
2288 goto alloc_mem_err;
2289
2290 /* Set shortcuts */
2291 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2292 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2293 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2294 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2295 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2296 bp->fw_stats_req_sz;
2297
2298 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2299 U64_HI(bp->fw_stats_req_mapping),
2300 U64_LO(bp->fw_stats_req_mapping));
2301 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2302 U64_HI(bp->fw_stats_data_mapping),
2303 U64_LO(bp->fw_stats_data_mapping));
2304 return 0;
2305
2306 alloc_mem_err:
2307 bnx2x_free_fw_stats_mem(bp);
2308 BNX2X_ERR("Can't allocate FW stats memory\n");
2309 return -ENOMEM;
2310 }
2311
2312 /* send load request to mcp and analyze response */
2313 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2314 {
2315 u32 param;
2316
2317 /* init fw_seq */
2318 bp->fw_seq =
2319 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2320 DRV_MSG_SEQ_NUMBER_MASK);
2321 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2322
2323 /* Get current FW pulse sequence */
2324 bp->fw_drv_pulse_wr_seq =
2325 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2326 DRV_PULSE_SEQ_MASK);
2327 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2328
2329 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2330
2331 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2332 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2333
2334 /* load request */
2335 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2336
2337 /* if mcp fails to respond we must abort */
2338 if (!(*load_code)) {
2339 BNX2X_ERR("MCP response failure, aborting\n");
2340 return -EBUSY;
2341 }
2342
2343 /* If mcp refused (e.g. other port is in diagnostic mode) we
2344 * must abort
2345 */
2346 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2347 BNX2X_ERR("MCP refused load request, aborting\n");
2348 return -EBUSY;
2349 }
2350 return 0;
2351 }
2352
2353 /* check whether another PF has already loaded FW to chip. In
2354 * virtualized environments a pf from another VM may have already
2355 * initialized the device including loading FW
2356 */
2357 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2358 {
2359 /* is another pf loaded on this engine? */
2360 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2361 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2362 /* build my FW version dword */
2363 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2364 (BCM_5710_FW_MINOR_VERSION << 8) +
2365 (BCM_5710_FW_REVISION_VERSION << 16) +
2366 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2367
2368 /* read loaded FW from chip */
2369 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2370
2371 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2372 loaded_fw, my_fw);
2373
2374 /* abort nic load if version mismatch */
2375 if (my_fw != loaded_fw) {
2376 if (print_err)
2377 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2378 loaded_fw, my_fw);
2379 else
2380 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2381 loaded_fw, my_fw);
2382 return -EBUSY;
2383 }
2384 }
2385 return 0;
2386 }
2387
2388 /* returns the "mcp load_code" according to global load_count array */
2389 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2390 {
2391 int path = BP_PATH(bp);
2392
2393 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2394 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2395 bnx2x_load_count[path][2]);
2396 bnx2x_load_count[path][0]++;
2397 bnx2x_load_count[path][1 + port]++;
2398 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2399 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2400 bnx2x_load_count[path][2]);
2401 if (bnx2x_load_count[path][0] == 1)
2402 return FW_MSG_CODE_DRV_LOAD_COMMON;
2403 else if (bnx2x_load_count[path][1 + port] == 1)
2404 return FW_MSG_CODE_DRV_LOAD_PORT;
2405 else
2406 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2407 }
2408
2409 /* mark PMF if applicable */
2410 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2411 {
2412 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2413 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2414 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2415 bp->port.pmf = 1;
2416 /* We need the barrier to ensure the ordering between the
2417 * writing to bp->port.pmf here and reading it from the
2418 * bnx2x_periodic_task().
2419 */
2420 smp_mb();
2421 } else {
2422 bp->port.pmf = 0;
2423 }
2424
2425 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2426 }
2427
2428 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2429 {
2430 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2431 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2432 (bp->common.shmem2_base)) {
2433 if (SHMEM2_HAS(bp, dcc_support))
2434 SHMEM2_WR(bp, dcc_support,
2435 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2436 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2437 if (SHMEM2_HAS(bp, afex_driver_support))
2438 SHMEM2_WR(bp, afex_driver_support,
2439 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2440 }
2441
2442 /* Set AFEX default VLAN tag to an invalid value */
2443 bp->afex_def_vlan_tag = -1;
2444 }
2445
2446 /**
2447 * bnx2x_bz_fp - zero content of the fastpath structure.
2448 *
2449 * @bp: driver handle
2450 * @index: fastpath index to be zeroed
2451 *
2452 * Makes sure the contents of the bp->fp[index].napi is kept
2453 * intact.
2454 */
2455 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2456 {
2457 struct bnx2x_fastpath *fp = &bp->fp[index];
2458 int cos;
2459 struct napi_struct orig_napi = fp->napi;
2460 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2461
2462 /* bzero bnx2x_fastpath contents */
2463 if (fp->tpa_info)
2464 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2465 sizeof(struct bnx2x_agg_info));
2466 memset(fp, 0, sizeof(*fp));
2467
2468 /* Restore the NAPI object as it has been already initialized */
2469 fp->napi = orig_napi;
2470 fp->tpa_info = orig_tpa_info;
2471 fp->bp = bp;
2472 fp->index = index;
2473 if (IS_ETH_FP(fp))
2474 fp->max_cos = bp->max_cos;
2475 else
2476 /* Special queues support only one CoS */
2477 fp->max_cos = 1;
2478
2479 /* Init txdata pointers */
2480 if (IS_FCOE_FP(fp))
2481 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2482 if (IS_ETH_FP(fp))
2483 for_each_cos_in_tx_queue(fp, cos)
2484 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2485 BNX2X_NUM_ETH_QUEUES(bp) + index];
2486
2487 /* set the tpa flag for each queue. The tpa flag determines the queue
2488 * minimal size so it must be set prior to queue memory allocation
2489 */
2490 if (bp->dev->features & NETIF_F_LRO)
2491 fp->mode = TPA_MODE_LRO;
2492 else if (bp->dev->features & NETIF_F_GRO_HW)
2493 fp->mode = TPA_MODE_GRO;
2494 else
2495 fp->mode = TPA_MODE_DISABLED;
2496
2497 /* We don't want TPA if it's disabled in bp
2498 * or if this is an FCoE L2 ring.
2499 */
2500 if (bp->disable_tpa || IS_FCOE_FP(fp))
2501 fp->mode = TPA_MODE_DISABLED;
2502 }
2503
2504 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2505 {
2506 u32 cur;
2507
2508 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2509 return;
2510
2511 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2512 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2513 cur, state);
2514
2515 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2516 }
2517
2518 int bnx2x_load_cnic(struct bnx2x *bp)
2519 {
2520 int i, rc, port = BP_PORT(bp);
2521
2522 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2523
2524 mutex_init(&bp->cnic_mutex);
2525
2526 if (IS_PF(bp)) {
2527 rc = bnx2x_alloc_mem_cnic(bp);
2528 if (rc) {
2529 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2530 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2531 }
2532 }
2533
2534 rc = bnx2x_alloc_fp_mem_cnic(bp);
2535 if (rc) {
2536 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2537 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2538 }
2539
2540 /* Update the number of queues with the cnic queues */
2541 rc = bnx2x_set_real_num_queues(bp, 1);
2542 if (rc) {
2543 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2544 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2545 }
2546
2547 /* Add all CNIC NAPI objects */
2548 bnx2x_add_all_napi_cnic(bp);
2549 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2550 bnx2x_napi_enable_cnic(bp);
2551
2552 rc = bnx2x_init_hw_func_cnic(bp);
2553 if (rc)
2554 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2555
2556 bnx2x_nic_init_cnic(bp);
2557
2558 if (IS_PF(bp)) {
2559 /* Enable Timer scan */
2560 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2561
2562 /* setup cnic queues */
2563 for_each_cnic_queue(bp, i) {
2564 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2565 if (rc) {
2566 BNX2X_ERR("Queue setup failed\n");
2567 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2568 }
2569 }
2570 }
2571
2572 /* Initialize Rx filter. */
2573 bnx2x_set_rx_mode_inner(bp);
2574
2575 /* re-read iscsi info */
2576 bnx2x_get_iscsi_info(bp);
2577 bnx2x_setup_cnic_irq_info(bp);
2578 bnx2x_setup_cnic_info(bp);
2579 bp->cnic_loaded = true;
2580 if (bp->state == BNX2X_STATE_OPEN)
2581 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2582
2583 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2584
2585 return 0;
2586
2587 #ifndef BNX2X_STOP_ON_ERROR
2588 load_error_cnic2:
2589 /* Disable Timer scan */
2590 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2591
2592 load_error_cnic1:
2593 bnx2x_napi_disable_cnic(bp);
2594 /* Update the number of queues without the cnic queues */
2595 if (bnx2x_set_real_num_queues(bp, 0))
2596 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2597 load_error_cnic0:
2598 BNX2X_ERR("CNIC-related load failed\n");
2599 bnx2x_free_fp_mem_cnic(bp);
2600 bnx2x_free_mem_cnic(bp);
2601 return rc;
2602 #endif /* ! BNX2X_STOP_ON_ERROR */
2603 }
2604
2605 /* must be called with rtnl_lock */
2606 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2607 {
2608 int port = BP_PORT(bp);
2609 int i, rc = 0, load_code = 0;
2610
2611 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2612 DP(NETIF_MSG_IFUP,
2613 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2614
2615 #ifdef BNX2X_STOP_ON_ERROR
2616 if (unlikely(bp->panic)) {
2617 BNX2X_ERR("Can't load NIC when there is panic\n");
2618 return -EPERM;
2619 }
2620 #endif
2621
2622 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2623
2624 /* zero the structure w/o any lock, before SP handler is initialized */
2625 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2626 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2627 &bp->last_reported_link.link_report_flags);
2628
2629 if (IS_PF(bp))
2630 /* must be called before memory allocation and HW init */
2631 bnx2x_ilt_set_info(bp);
2632
2633 /*
2634 * Zero fastpath structures preserving invariants like napi, which are
2635 * allocated only once, fp index, max_cos, bp pointer.
2636 * Also set fp->mode and txdata_ptr.
2637 */
2638 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2639 for_each_queue(bp, i)
2640 bnx2x_bz_fp(bp, i);
2641 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2642 bp->num_cnic_queues) *
2643 sizeof(struct bnx2x_fp_txdata));
2644
2645 bp->fcoe_init = false;
2646
2647 /* Set the receive queues buffer size */
2648 bnx2x_set_rx_buf_size(bp);
2649
2650 if (IS_PF(bp)) {
2651 rc = bnx2x_alloc_mem(bp);
2652 if (rc) {
2653 BNX2X_ERR("Unable to allocate bp memory\n");
2654 return rc;
2655 }
2656 }
2657
2658 /* need to be done after alloc mem, since it's self adjusting to amount
2659 * of memory available for RSS queues
2660 */
2661 rc = bnx2x_alloc_fp_mem(bp);
2662 if (rc) {
2663 BNX2X_ERR("Unable to allocate memory for fps\n");
2664 LOAD_ERROR_EXIT(bp, load_error0);
2665 }
2666
2667 /* Allocated memory for FW statistics */
2668 if (bnx2x_alloc_fw_stats_mem(bp))
2669 LOAD_ERROR_EXIT(bp, load_error0);
2670
2671 /* request pf to initialize status blocks */
2672 if (IS_VF(bp)) {
2673 rc = bnx2x_vfpf_init(bp);
2674 if (rc)
2675 LOAD_ERROR_EXIT(bp, load_error0);
2676 }
2677
2678 /* As long as bnx2x_alloc_mem() may possibly update
2679 * bp->num_queues, bnx2x_set_real_num_queues() should always
2680 * come after it. At this stage cnic queues are not counted.
2681 */
2682 rc = bnx2x_set_real_num_queues(bp, 0);
2683 if (rc) {
2684 BNX2X_ERR("Unable to set real_num_queues\n");
2685 LOAD_ERROR_EXIT(bp, load_error0);
2686 }
2687
2688 /* configure multi cos mappings in kernel.
2689 * this configuration may be overridden by a multi class queue
2690 * discipline or by a dcbx negotiation result.
2691 */
2692 bnx2x_setup_tc(bp->dev, bp->max_cos);
2693
2694 /* Add all NAPI objects */
2695 bnx2x_add_all_napi(bp);
2696 DP(NETIF_MSG_IFUP, "napi added\n");
2697 bnx2x_napi_enable(bp);
2698
2699 if (IS_PF(bp)) {
2700 /* set pf load just before approaching the MCP */
2701 bnx2x_set_pf_load(bp);
2702
2703 /* if mcp exists send load request and analyze response */
2704 if (!BP_NOMCP(bp)) {
2705 /* attempt to load pf */
2706 rc = bnx2x_nic_load_request(bp, &load_code);
2707 if (rc)
2708 LOAD_ERROR_EXIT(bp, load_error1);
2709
2710 /* what did mcp say? */
2711 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2712 if (rc) {
2713 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2714 LOAD_ERROR_EXIT(bp, load_error2);
2715 }
2716 } else {
2717 load_code = bnx2x_nic_load_no_mcp(bp, port);
2718 }
2719
2720 /* mark pmf if applicable */
2721 bnx2x_nic_load_pmf(bp, load_code);
2722
2723 /* Init Function state controlling object */
2724 bnx2x__init_func_obj(bp);
2725
2726 /* Initialize HW */
2727 rc = bnx2x_init_hw(bp, load_code);
2728 if (rc) {
2729 BNX2X_ERR("HW init failed, aborting\n");
2730 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2731 LOAD_ERROR_EXIT(bp, load_error2);
2732 }
2733 }
2734
2735 bnx2x_pre_irq_nic_init(bp);
2736
2737 /* Connect to IRQs */
2738 rc = bnx2x_setup_irqs(bp);
2739 if (rc) {
2740 BNX2X_ERR("setup irqs failed\n");
2741 if (IS_PF(bp))
2742 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2743 LOAD_ERROR_EXIT(bp, load_error2);
2744 }
2745
2746 /* Init per-function objects */
2747 if (IS_PF(bp)) {
2748 /* Setup NIC internals and enable interrupts */
2749 bnx2x_post_irq_nic_init(bp, load_code);
2750
2751 bnx2x_init_bp_objs(bp);
2752 bnx2x_iov_nic_init(bp);
2753
2754 /* Set AFEX default VLAN tag to an invalid value */
2755 bp->afex_def_vlan_tag = -1;
2756 bnx2x_nic_load_afex_dcc(bp, load_code);
2757 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2758 rc = bnx2x_func_start(bp);
2759 if (rc) {
2760 BNX2X_ERR("Function start failed!\n");
2761 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2762
2763 LOAD_ERROR_EXIT(bp, load_error3);
2764 }
2765
2766 /* Send LOAD_DONE command to MCP */
2767 if (!BP_NOMCP(bp)) {
2768 load_code = bnx2x_fw_command(bp,
2769 DRV_MSG_CODE_LOAD_DONE, 0);
2770 if (!load_code) {
2771 BNX2X_ERR("MCP response failure, aborting\n");
2772 rc = -EBUSY;
2773 LOAD_ERROR_EXIT(bp, load_error3);
2774 }
2775 }
2776
2777 /* initialize FW coalescing state machines in RAM */
2778 bnx2x_update_coalesce(bp);
2779 }
2780
2781 /* setup the leading queue */
2782 rc = bnx2x_setup_leading(bp);
2783 if (rc) {
2784 BNX2X_ERR("Setup leading failed!\n");
2785 LOAD_ERROR_EXIT(bp, load_error3);
2786 }
2787
2788 /* set up the rest of the queues */
2789 for_each_nondefault_eth_queue(bp, i) {
2790 if (IS_PF(bp))
2791 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2792 else /* VF */
2793 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2794 if (rc) {
2795 BNX2X_ERR("Queue %d setup failed\n", i);
2796 LOAD_ERROR_EXIT(bp, load_error3);
2797 }
2798 }
2799
2800 /* setup rss */
2801 rc = bnx2x_init_rss(bp);
2802 if (rc) {
2803 BNX2X_ERR("PF RSS init failed\n");
2804 LOAD_ERROR_EXIT(bp, load_error3);
2805 }
2806
2807 /* Now when Clients are configured we are ready to work */
2808 bp->state = BNX2X_STATE_OPEN;
2809
2810 /* Configure a ucast MAC */
2811 if (IS_PF(bp))
2812 rc = bnx2x_set_eth_mac(bp, true);
2813 else /* vf */
2814 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2815 true);
2816 if (rc) {
2817 BNX2X_ERR("Setting Ethernet MAC failed\n");
2818 LOAD_ERROR_EXIT(bp, load_error3);
2819 }
2820
2821 if (IS_PF(bp) && bp->pending_max) {
2822 bnx2x_update_max_mf_config(bp, bp->pending_max);
2823 bp->pending_max = 0;
2824 }
2825
2826 bp->force_link_down = false;
2827 if (bp->port.pmf) {
2828 rc = bnx2x_initial_phy_init(bp, load_mode);
2829 if (rc)
2830 LOAD_ERROR_EXIT(bp, load_error3);
2831 }
2832 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2833
2834 /* Start fast path */
2835
2836 /* Re-configure vlan filters */
2837 rc = bnx2x_vlan_reconfigure_vid(bp);
2838 if (rc)
2839 LOAD_ERROR_EXIT(bp, load_error3);
2840
2841 /* Initialize Rx filter. */
2842 bnx2x_set_rx_mode_inner(bp);
2843
2844 if (bp->flags & PTP_SUPPORTED) {
2845 bnx2x_register_phc(bp);
2846 bnx2x_init_ptp(bp);
2847 bnx2x_configure_ptp_filters(bp);
2848 }
2849 /* Start Tx */
2850 switch (load_mode) {
2851 case LOAD_NORMAL:
2852 /* Tx queue should be only re-enabled */
2853 netif_tx_wake_all_queues(bp->dev);
2854 break;
2855
2856 case LOAD_OPEN:
2857 netif_tx_start_all_queues(bp->dev);
2858 smp_mb__after_atomic();
2859 break;
2860
2861 case LOAD_DIAG:
2862 case LOAD_LOOPBACK_EXT:
2863 bp->state = BNX2X_STATE_DIAG;
2864 break;
2865
2866 default:
2867 break;
2868 }
2869
2870 if (bp->port.pmf)
2871 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2872 else
2873 bnx2x__link_status_update(bp);
2874
2875 /* start the timer */
2876 mod_timer(&bp->timer, jiffies + bp->current_interval);
2877
2878 if (CNIC_ENABLED(bp))
2879 bnx2x_load_cnic(bp);
2880
2881 if (IS_PF(bp))
2882 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2883
2884 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2885 /* mark driver is loaded in shmem2 */
2886 u32 val;
2887 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2888 val &= ~DRV_FLAGS_MTU_MASK;
2889 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2890 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2891 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2892 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2893 }
2894
2895 /* Wait for all pending SP commands to complete */
2896 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2897 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2898 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2899 return -EBUSY;
2900 }
2901
2902 /* Update driver data for On-Chip MFW dump. */
2903 if (IS_PF(bp))
2904 bnx2x_update_mfw_dump(bp);
2905
2906 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2907 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2908 bnx2x_dcbx_init(bp, false);
2909
2910 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2911 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2912
2913 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2914
2915 return 0;
2916
2917 #ifndef BNX2X_STOP_ON_ERROR
2918 load_error3:
2919 if (IS_PF(bp)) {
2920 bnx2x_int_disable_sync(bp, 1);
2921
2922 /* Clean queueable objects */
2923 bnx2x_squeeze_objects(bp);
2924 }
2925
2926 /* Free SKBs, SGEs, TPA pool and driver internals */
2927 bnx2x_free_skbs(bp);
2928 for_each_rx_queue(bp, i)
2929 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2930
2931 /* Release IRQs */
2932 bnx2x_free_irq(bp);
2933 load_error2:
2934 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2935 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2936 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2937 }
2938
2939 bp->port.pmf = 0;
2940 load_error1:
2941 bnx2x_napi_disable(bp);
2942 bnx2x_del_all_napi(bp);
2943
2944 /* clear pf_load status, as it was already set */
2945 if (IS_PF(bp))
2946 bnx2x_clear_pf_load(bp);
2947 load_error0:
2948 bnx2x_free_fw_stats_mem(bp);
2949 bnx2x_free_fp_mem(bp);
2950 bnx2x_free_mem(bp);
2951
2952 return rc;
2953 #endif /* ! BNX2X_STOP_ON_ERROR */
2954 }
2955
2956 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2957 {
2958 u8 rc = 0, cos, i;
2959
2960 /* Wait until tx fastpath tasks complete */
2961 for_each_tx_queue(bp, i) {
2962 struct bnx2x_fastpath *fp = &bp->fp[i];
2963
2964 for_each_cos_in_tx_queue(fp, cos)
2965 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2966 if (rc)
2967 return rc;
2968 }
2969 return 0;
2970 }
2971
2972 /* must be called with rtnl_lock */
2973 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2974 {
2975 int i;
2976 bool global = false;
2977
2978 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2979
2980 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2981 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2982
2983 /* mark driver is unloaded in shmem2 */
2984 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2985 u32 val;
2986 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2987 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2988 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2989 }
2990
2991 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2992 (bp->state == BNX2X_STATE_CLOSED ||
2993 bp->state == BNX2X_STATE_ERROR)) {
2994 /* We can get here if the driver has been unloaded
2995 * during parity error recovery and is either waiting for a
2996 * leader to complete or for other functions to unload and
2997 * then ifdown has been issued. In this case we want to
2998 * unload and let other functions to complete a recovery
2999 * process.
3000 */
3001 bp->recovery_state = BNX2X_RECOVERY_DONE;
3002 bp->is_leader = 0;
3003 bnx2x_release_leader_lock(bp);
3004 smp_mb();
3005
3006 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3007 BNX2X_ERR("Can't unload in closed or error state\n");
3008 return -EINVAL;
3009 }
3010
3011 /* Nothing to do during unload if previous bnx2x_nic_load()
3012 * have not completed successfully - all resources are released.
3013 *
3014 * we can get here only after unsuccessful ndo_* callback, during which
3015 * dev->IFF_UP flag is still on.
3016 */
3017 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3018 return 0;
3019
3020 /* It's important to set the bp->state to the value different from
3021 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3022 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3023 */
3024 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3025 smp_mb();
3026
3027 /* indicate to VFs that the PF is going down */
3028 bnx2x_iov_channel_down(bp);
3029
3030 if (CNIC_LOADED(bp))
3031 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3032
3033 /* Stop Tx */
3034 bnx2x_tx_disable(bp);
3035 netdev_reset_tc(bp->dev);
3036
3037 bp->rx_mode = BNX2X_RX_MODE_NONE;
3038
3039 del_timer_sync(&bp->timer);
3040
3041 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3042 /* Set ALWAYS_ALIVE bit in shmem */
3043 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3044 bnx2x_drv_pulse(bp);
3045 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3046 bnx2x_save_statistics(bp);
3047 }
3048
3049 /* wait till consumers catch up with producers in all queues.
3050 * If we're recovering, FW can't write to host so no reason
3051 * to wait for the queues to complete all Tx.
3052 */
3053 if (unload_mode != UNLOAD_RECOVERY)
3054 bnx2x_drain_tx_queues(bp);
3055
3056 /* if VF indicate to PF this function is going down (PF will delete sp
3057 * elements and clear initializations
3058 */
3059 if (IS_VF(bp))
3060 bnx2x_vfpf_close_vf(bp);
3061 else if (unload_mode != UNLOAD_RECOVERY)
3062 /* if this is a normal/close unload need to clean up chip*/
3063 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3064 else {
3065 /* Send the UNLOAD_REQUEST to the MCP */
3066 bnx2x_send_unload_req(bp, unload_mode);
3067
3068 /* Prevent transactions to host from the functions on the
3069 * engine that doesn't reset global blocks in case of global
3070 * attention once global blocks are reset and gates are opened
3071 * (the engine which leader will perform the recovery
3072 * last).
3073 */
3074 if (!CHIP_IS_E1x(bp))
3075 bnx2x_pf_disable(bp);
3076
3077 /* Disable HW interrupts, NAPI */
3078 bnx2x_netif_stop(bp, 1);
3079 /* Delete all NAPI objects */
3080 bnx2x_del_all_napi(bp);
3081 if (CNIC_LOADED(bp))
3082 bnx2x_del_all_napi_cnic(bp);
3083 /* Release IRQs */
3084 bnx2x_free_irq(bp);
3085
3086 /* Report UNLOAD_DONE to MCP */
3087 bnx2x_send_unload_done(bp, false);
3088 }
3089
3090 /*
3091 * At this stage no more interrupts will arrive so we may safely clean
3092 * the queueable objects here in case they failed to get cleaned so far.
3093 */
3094 if (IS_PF(bp))
3095 bnx2x_squeeze_objects(bp);
3096
3097 /* There should be no more pending SP commands at this stage */
3098 bp->sp_state = 0;
3099
3100 bp->port.pmf = 0;
3101
3102 /* clear pending work in rtnl task */
3103 bp->sp_rtnl_state = 0;
3104 smp_mb();
3105
3106 /* Free SKBs, SGEs, TPA pool and driver internals */
3107 bnx2x_free_skbs(bp);
3108 if (CNIC_LOADED(bp))
3109 bnx2x_free_skbs_cnic(bp);
3110 for_each_rx_queue(bp, i)
3111 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3112
3113 bnx2x_free_fp_mem(bp);
3114 if (CNIC_LOADED(bp))
3115 bnx2x_free_fp_mem_cnic(bp);
3116
3117 if (IS_PF(bp)) {
3118 if (CNIC_LOADED(bp))
3119 bnx2x_free_mem_cnic(bp);
3120 }
3121 bnx2x_free_mem(bp);
3122
3123 bp->state = BNX2X_STATE_CLOSED;
3124 bp->cnic_loaded = false;
3125
3126 /* Clear driver version indication in shmem */
3127 if (IS_PF(bp) && !BP_NOMCP(bp))
3128 bnx2x_update_mng_version(bp);
3129
3130 /* Check if there are pending parity attentions. If there are - set
3131 * RECOVERY_IN_PROGRESS.
3132 */
3133 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3134 bnx2x_set_reset_in_progress(bp);
3135
3136 /* Set RESET_IS_GLOBAL if needed */
3137 if (global)
3138 bnx2x_set_reset_global(bp);
3139 }
3140
3141 /* The last driver must disable a "close the gate" if there is no
3142 * parity attention or "process kill" pending.
3143 */
3144 if (IS_PF(bp) &&
3145 !bnx2x_clear_pf_load(bp) &&
3146 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3147 bnx2x_disable_close_the_gate(bp);
3148
3149 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3150
3151 return 0;
3152 }
3153
3154 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3155 {
3156 u16 pmcsr;
3157
3158 /* If there is no power capability, silently succeed */
3159 if (!bp->pdev->pm_cap) {
3160 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3161 return 0;
3162 }
3163
3164 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3165
3166 switch (state) {
3167 case PCI_D0:
3168 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3169 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3170 PCI_PM_CTRL_PME_STATUS));
3171
3172 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3173 /* delay required during transition out of D3hot */
3174 msleep(20);
3175 break;
3176
3177 case PCI_D3hot:
3178 /* If there are other clients above don't
3179 shut down the power */
3180 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3181 return 0;
3182 /* Don't shut down the power for emulation and FPGA */
3183 if (CHIP_REV_IS_SLOW(bp))
3184 return 0;
3185
3186 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3187 pmcsr |= 3;
3188
3189 if (bp->wol)
3190 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3191
3192 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3193 pmcsr);
3194
3195 /* No more memory access after this point until
3196 * device is brought back to D0.
3197 */
3198 break;
3199
3200 default:
3201 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3202 return -EINVAL;
3203 }
3204 return 0;
3205 }
3206
3207 /*
3208 * net_device service functions
3209 */
3210 static int bnx2x_poll(struct napi_struct *napi, int budget)
3211 {
3212 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3213 napi);
3214 struct bnx2x *bp = fp->bp;
3215 int rx_work_done;
3216 u8 cos;
3217
3218 #ifdef BNX2X_STOP_ON_ERROR
3219 if (unlikely(bp->panic)) {
3220 napi_complete(napi);
3221 return 0;
3222 }
3223 #endif
3224 for_each_cos_in_tx_queue(fp, cos)
3225 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3226 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3227
3228 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3229
3230 if (rx_work_done < budget) {
3231 /* No need to update SB for FCoE L2 ring as long as
3232 * it's connected to the default SB and the SB
3233 * has been updated when NAPI was scheduled.
3234 */
3235 if (IS_FCOE_FP(fp)) {
3236 napi_complete_done(napi, rx_work_done);
3237 } else {
3238 bnx2x_update_fpsb_idx(fp);
3239 /* bnx2x_has_rx_work() reads the status block,
3240 * thus we need to ensure that status block indices
3241 * have been actually read (bnx2x_update_fpsb_idx)
3242 * prior to this check (bnx2x_has_rx_work) so that
3243 * we won't write the "newer" value of the status block
3244 * to IGU (if there was a DMA right after
3245 * bnx2x_has_rx_work and if there is no rmb, the memory
3246 * reading (bnx2x_update_fpsb_idx) may be postponed
3247 * to right before bnx2x_ack_sb). In this case there
3248 * will never be another interrupt until there is
3249 * another update of the status block, while there
3250 * is still unhandled work.
3251 */
3252 rmb();
3253
3254 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3255 if (napi_complete_done(napi, rx_work_done)) {
3256 /* Re-enable interrupts */
3257 DP(NETIF_MSG_RX_STATUS,
3258 "Update index to %d\n", fp->fp_hc_idx);
3259 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3260 le16_to_cpu(fp->fp_hc_idx),
3261 IGU_INT_ENABLE, 1);
3262 }
3263 } else {
3264 rx_work_done = budget;
3265 }
3266 }
3267 }
3268
3269 return rx_work_done;
3270 }
3271
3272 /* we split the first BD into headers and data BDs
3273 * to ease the pain of our fellow microcode engineers
3274 * we use one mapping for both BDs
3275 */
3276 static u16 bnx2x_tx_split(struct bnx2x *bp,
3277 struct bnx2x_fp_txdata *txdata,
3278 struct sw_tx_bd *tx_buf,
3279 struct eth_tx_start_bd **tx_bd, u16 hlen,
3280 u16 bd_prod)
3281 {
3282 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3283 struct eth_tx_bd *d_tx_bd;
3284 dma_addr_t mapping;
3285 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3286
3287 /* first fix first BD */
3288 h_tx_bd->nbytes = cpu_to_le16(hlen);
3289
3290 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3291 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3292
3293 /* now get a new data BD
3294 * (after the pbd) and fill it */
3295 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3296 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3297
3298 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3299 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3300
3301 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3302 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3303 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3304
3305 /* this marks the BD as one that has no individual mapping */
3306 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3307
3308 DP(NETIF_MSG_TX_QUEUED,
3309 "TSO split data size is %d (%x:%x)\n",
3310 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3311
3312 /* update tx_bd */
3313 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3314
3315 return bd_prod;
3316 }
3317
3318 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3319 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3320 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3321 {
3322 __sum16 tsum = (__force __sum16) csum;
3323
3324 if (fix > 0)
3325 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3326 csum_partial(t_header - fix, fix, 0)));
3327
3328 else if (fix < 0)
3329 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3330 csum_partial(t_header, -fix, 0)));
3331
3332 return bswab16(tsum);
3333 }
3334
3335 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3336 {
3337 u32 rc;
3338 __u8 prot = 0;
3339 __be16 protocol;
3340
3341 if (skb->ip_summed != CHECKSUM_PARTIAL)
3342 return XMIT_PLAIN;
3343
3344 protocol = vlan_get_protocol(skb);
3345 if (protocol == htons(ETH_P_IPV6)) {
3346 rc = XMIT_CSUM_V6;
3347 prot = ipv6_hdr(skb)->nexthdr;
3348 } else {
3349 rc = XMIT_CSUM_V4;
3350 prot = ip_hdr(skb)->protocol;
3351 }
3352
3353 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3354 if (inner_ip_hdr(skb)->version == 6) {
3355 rc |= XMIT_CSUM_ENC_V6;
3356 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3357 rc |= XMIT_CSUM_TCP;
3358 } else {
3359 rc |= XMIT_CSUM_ENC_V4;
3360 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3361 rc |= XMIT_CSUM_TCP;
3362 }
3363 }
3364 if (prot == IPPROTO_TCP)
3365 rc |= XMIT_CSUM_TCP;
3366
3367 if (skb_is_gso(skb)) {
3368 if (skb_is_gso_v6(skb)) {
3369 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3370 if (rc & XMIT_CSUM_ENC)
3371 rc |= XMIT_GSO_ENC_V6;
3372 } else {
3373 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3374 if (rc & XMIT_CSUM_ENC)
3375 rc |= XMIT_GSO_ENC_V4;
3376 }
3377 }
3378
3379 return rc;
3380 }
3381
3382 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3383 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3384
3385 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3386 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3387
3388 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3389 /* check if packet requires linearization (packet is too fragmented)
3390 no need to check fragmentation if page size > 8K (there will be no
3391 violation to FW restrictions) */
3392 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3393 u32 xmit_type)
3394 {
3395 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3396 int to_copy = 0, hlen = 0;
3397
3398 if (xmit_type & XMIT_GSO_ENC)
3399 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3400
3401 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3402 if (xmit_type & XMIT_GSO) {
3403 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3404 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3405 /* Number of windows to check */
3406 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3407 int wnd_idx = 0;
3408 int frag_idx = 0;
3409 u32 wnd_sum = 0;
3410
3411 /* Headers length */
3412 if (xmit_type & XMIT_GSO_ENC)
3413 hlen = (int)(skb_inner_transport_header(skb) -
3414 skb->data) +
3415 inner_tcp_hdrlen(skb);
3416 else
3417 hlen = (int)(skb_transport_header(skb) -
3418 skb->data) + tcp_hdrlen(skb);
3419
3420 /* Amount of data (w/o headers) on linear part of SKB*/
3421 first_bd_sz = skb_headlen(skb) - hlen;
3422
3423 wnd_sum = first_bd_sz;
3424
3425 /* Calculate the first sum - it's special */
3426 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3427 wnd_sum +=
3428 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3429
3430 /* If there was data on linear skb data - check it */
3431 if (first_bd_sz > 0) {
3432 if (unlikely(wnd_sum < lso_mss)) {
3433 to_copy = 1;
3434 goto exit_lbl;
3435 }
3436
3437 wnd_sum -= first_bd_sz;
3438 }
3439
3440 /* Others are easier: run through the frag list and
3441 check all windows */
3442 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3443 wnd_sum +=
3444 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3445
3446 if (unlikely(wnd_sum < lso_mss)) {
3447 to_copy = 1;
3448 break;
3449 }
3450 wnd_sum -=
3451 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3452 }
3453 } else {
3454 /* in non-LSO too fragmented packet should always
3455 be linearized */
3456 to_copy = 1;
3457 }
3458 }
3459
3460 exit_lbl:
3461 if (unlikely(to_copy))
3462 DP(NETIF_MSG_TX_QUEUED,
3463 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3464 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3465 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3466
3467 return to_copy;
3468 }
3469 #endif
3470
3471 /**
3472 * bnx2x_set_pbd_gso - update PBD in GSO case.
3473 *
3474 * @skb: packet skb
3475 * @pbd: parse BD
3476 * @xmit_type: xmit flags
3477 */
3478 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3479 struct eth_tx_parse_bd_e1x *pbd,
3480 u32 xmit_type)
3481 {
3482 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3483 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3484 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3485
3486 if (xmit_type & XMIT_GSO_V4) {
3487 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3488 pbd->tcp_pseudo_csum =
3489 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3490 ip_hdr(skb)->daddr,
3491 0, IPPROTO_TCP, 0));
3492 } else {
3493 pbd->tcp_pseudo_csum =
3494 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3495 &ipv6_hdr(skb)->daddr,
3496 0, IPPROTO_TCP, 0));
3497 }
3498
3499 pbd->global_data |=
3500 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3501 }
3502
3503 /**
3504 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3505 *
3506 * @bp: driver handle
3507 * @skb: packet skb
3508 * @parsing_data: data to be updated
3509 * @xmit_type: xmit flags
3510 *
3511 * 57712/578xx related, when skb has encapsulation
3512 */
3513 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3514 u32 *parsing_data, u32 xmit_type)
3515 {
3516 *parsing_data |=
3517 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3518 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3519 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3520
3521 if (xmit_type & XMIT_CSUM_TCP) {
3522 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3523 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3524 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3525
3526 return skb_inner_transport_header(skb) +
3527 inner_tcp_hdrlen(skb) - skb->data;
3528 }
3529
3530 /* We support checksum offload for TCP and UDP only.
3531 * No need to pass the UDP header length - it's a constant.
3532 */
3533 return skb_inner_transport_header(skb) +
3534 sizeof(struct udphdr) - skb->data;
3535 }
3536
3537 /**
3538 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3539 *
3540 * @bp: driver handle
3541 * @skb: packet skb
3542 * @parsing_data: data to be updated
3543 * @xmit_type: xmit flags
3544 *
3545 * 57712/578xx related
3546 */
3547 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3548 u32 *parsing_data, u32 xmit_type)
3549 {
3550 *parsing_data |=
3551 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3552 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3553 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3554
3555 if (xmit_type & XMIT_CSUM_TCP) {
3556 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3557 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3558 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3559
3560 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3561 }
3562 /* We support checksum offload for TCP and UDP only.
3563 * No need to pass the UDP header length - it's a constant.
3564 */
3565 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3566 }
3567
3568 /* set FW indication according to inner or outer protocols if tunneled */
3569 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3570 struct eth_tx_start_bd *tx_start_bd,
3571 u32 xmit_type)
3572 {
3573 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3574
3575 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3576 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3577
3578 if (!(xmit_type & XMIT_CSUM_TCP))
3579 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3580 }
3581
3582 /**
3583 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3584 *
3585 * @bp: driver handle
3586 * @skb: packet skb
3587 * @pbd: parse BD to be updated
3588 * @xmit_type: xmit flags
3589 */
3590 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3591 struct eth_tx_parse_bd_e1x *pbd,
3592 u32 xmit_type)
3593 {
3594 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3595
3596 /* for now NS flag is not used in Linux */
3597 pbd->global_data =
3598 cpu_to_le16(hlen |
3599 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3600 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3601
3602 pbd->ip_hlen_w = (skb_transport_header(skb) -
3603 skb_network_header(skb)) >> 1;
3604
3605 hlen += pbd->ip_hlen_w;
3606
3607 /* We support checksum offload for TCP and UDP only */
3608 if (xmit_type & XMIT_CSUM_TCP)
3609 hlen += tcp_hdrlen(skb) / 2;
3610 else
3611 hlen += sizeof(struct udphdr) / 2;
3612
3613 pbd->total_hlen_w = cpu_to_le16(hlen);
3614 hlen = hlen*2;
3615
3616 if (xmit_type & XMIT_CSUM_TCP) {
3617 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3618
3619 } else {
3620 s8 fix = SKB_CS_OFF(skb); /* signed! */
3621
3622 DP(NETIF_MSG_TX_QUEUED,
3623 "hlen %d fix %d csum before fix %x\n",
3624 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3625
3626 /* HW bug: fixup the CSUM */
3627 pbd->tcp_pseudo_csum =
3628 bnx2x_csum_fix(skb_transport_header(skb),
3629 SKB_CS(skb), fix);
3630
3631 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3632 pbd->tcp_pseudo_csum);
3633 }
3634
3635 return hlen;
3636 }
3637
3638 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3639 struct eth_tx_parse_bd_e2 *pbd_e2,
3640 struct eth_tx_parse_2nd_bd *pbd2,
3641 u16 *global_data,
3642 u32 xmit_type)
3643 {
3644 u16 hlen_w = 0;
3645 u8 outerip_off, outerip_len = 0;
3646
3647 /* from outer IP to transport */
3648 hlen_w = (skb_inner_transport_header(skb) -
3649 skb_network_header(skb)) >> 1;
3650
3651 /* transport len */
3652 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3653
3654 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3655
3656 /* outer IP header info */
3657 if (xmit_type & XMIT_CSUM_V4) {
3658 struct iphdr *iph = ip_hdr(skb);
3659 u32 csum = (__force u32)(~iph->check) -
3660 (__force u32)iph->tot_len -
3661 (__force u32)iph->frag_off;
3662
3663 outerip_len = iph->ihl << 1;
3664
3665 pbd2->fw_ip_csum_wo_len_flags_frag =
3666 bswab16(csum_fold((__force __wsum)csum));
3667 } else {
3668 pbd2->fw_ip_hdr_to_payload_w =
3669 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3670 pbd_e2->data.tunnel_data.flags |=
3671 ETH_TUNNEL_DATA_IPV6_OUTER;
3672 }
3673
3674 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3675
3676 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3677
3678 /* inner IP header info */
3679 if (xmit_type & XMIT_CSUM_ENC_V4) {
3680 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3681
3682 pbd_e2->data.tunnel_data.pseudo_csum =
3683 bswab16(~csum_tcpudp_magic(
3684 inner_ip_hdr(skb)->saddr,
3685 inner_ip_hdr(skb)->daddr,
3686 0, IPPROTO_TCP, 0));
3687 } else {
3688 pbd_e2->data.tunnel_data.pseudo_csum =
3689 bswab16(~csum_ipv6_magic(
3690 &inner_ipv6_hdr(skb)->saddr,
3691 &inner_ipv6_hdr(skb)->daddr,
3692 0, IPPROTO_TCP, 0));
3693 }
3694
3695 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3696
3697 *global_data |=
3698 outerip_off |
3699 (outerip_len <<
3700 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3701 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3702 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3703
3704 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3705 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3706 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3707 }
3708 }
3709
3710 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3711 u32 xmit_type)
3712 {
3713 struct ipv6hdr *ipv6;
3714
3715 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3716 return;
3717
3718 if (xmit_type & XMIT_GSO_ENC_V6)
3719 ipv6 = inner_ipv6_hdr(skb);
3720 else /* XMIT_GSO_V6 */
3721 ipv6 = ipv6_hdr(skb);
3722
3723 if (ipv6->nexthdr == NEXTHDR_IPV6)
3724 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3725 }
3726
3727 /* called with netif_tx_lock
3728 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3729 * netif_wake_queue()
3730 */
3731 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3732 {
3733 struct bnx2x *bp = netdev_priv(dev);
3734
3735 struct netdev_queue *txq;
3736 struct bnx2x_fp_txdata *txdata;
3737 struct sw_tx_bd *tx_buf;
3738 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3739 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3740 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3741 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3742 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3743 u32 pbd_e2_parsing_data = 0;
3744 u16 pkt_prod, bd_prod;
3745 int nbd, txq_index;
3746 dma_addr_t mapping;
3747 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3748 int i;
3749 u8 hlen = 0;
3750 __le16 pkt_size = 0;
3751 struct ethhdr *eth;
3752 u8 mac_type = UNICAST_ADDRESS;
3753
3754 #ifdef BNX2X_STOP_ON_ERROR
3755 if (unlikely(bp->panic))
3756 return NETDEV_TX_BUSY;
3757 #endif
3758
3759 txq_index = skb_get_queue_mapping(skb);
3760 txq = netdev_get_tx_queue(dev, txq_index);
3761
3762 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3763
3764 txdata = &bp->bnx2x_txq[txq_index];
3765
3766 /* enable this debug print to view the transmission queue being used
3767 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3768 txq_index, fp_index, txdata_index); */
3769
3770 /* enable this debug print to view the transmission details
3771 DP(NETIF_MSG_TX_QUEUED,
3772 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3773 txdata->cid, fp_index, txdata_index, txdata, fp); */
3774
3775 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3776 skb_shinfo(skb)->nr_frags +
3777 BDS_PER_TX_PKT +
3778 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3779 /* Handle special storage cases separately */
3780 if (txdata->tx_ring_size == 0) {
3781 struct bnx2x_eth_q_stats *q_stats =
3782 bnx2x_fp_qstats(bp, txdata->parent_fp);
3783 q_stats->driver_filtered_tx_pkt++;
3784 dev_kfree_skb(skb);
3785 return NETDEV_TX_OK;
3786 }
3787 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3788 netif_tx_stop_queue(txq);
3789 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3790
3791 return NETDEV_TX_BUSY;
3792 }
3793
3794 DP(NETIF_MSG_TX_QUEUED,
3795 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3796 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3797 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3798 skb->len);
3799
3800 eth = (struct ethhdr *)skb->data;
3801
3802 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3803 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3804 if (is_broadcast_ether_addr(eth->h_dest))
3805 mac_type = BROADCAST_ADDRESS;
3806 else
3807 mac_type = MULTICAST_ADDRESS;
3808 }
3809
3810 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3811 /* First, check if we need to linearize the skb (due to FW
3812 restrictions). No need to check fragmentation if page size > 8K
3813 (there will be no violation to FW restrictions) */
3814 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3815 /* Statistics of linearization */
3816 bp->lin_cnt++;
3817 if (skb_linearize(skb) != 0) {
3818 DP(NETIF_MSG_TX_QUEUED,
3819 "SKB linearization failed - silently dropping this SKB\n");
3820 dev_kfree_skb_any(skb);
3821 return NETDEV_TX_OK;
3822 }
3823 }
3824 #endif
3825 /* Map skb linear data for DMA */
3826 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3827 skb_headlen(skb), DMA_TO_DEVICE);
3828 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3829 DP(NETIF_MSG_TX_QUEUED,
3830 "SKB mapping failed - silently dropping this SKB\n");
3831 dev_kfree_skb_any(skb);
3832 return NETDEV_TX_OK;
3833 }
3834 /*
3835 Please read carefully. First we use one BD which we mark as start,
3836 then we have a parsing info BD (used for TSO or xsum),
3837 and only then we have the rest of the TSO BDs.
3838 (don't forget to mark the last one as last,
3839 and to unmap only AFTER you write to the BD ...)
3840 And above all, all pdb sizes are in words - NOT DWORDS!
3841 */
3842
3843 /* get current pkt produced now - advance it just before sending packet
3844 * since mapping of pages may fail and cause packet to be dropped
3845 */
3846 pkt_prod = txdata->tx_pkt_prod;
3847 bd_prod = TX_BD(txdata->tx_bd_prod);
3848
3849 /* get a tx_buf and first BD
3850 * tx_start_bd may be changed during SPLIT,
3851 * but first_bd will always stay first
3852 */
3853 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3854 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3855 first_bd = tx_start_bd;
3856
3857 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3858
3859 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3860 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3861 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3862 } else if (bp->ptp_tx_skb) {
3863 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3864 } else {
3865 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3866 /* schedule check for Tx timestamp */
3867 bp->ptp_tx_skb = skb_get(skb);
3868 bp->ptp_tx_start = jiffies;
3869 schedule_work(&bp->ptp_task);
3870 }
3871 }
3872
3873 /* header nbd: indirectly zero other flags! */
3874 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3875
3876 /* remember the first BD of the packet */
3877 tx_buf->first_bd = txdata->tx_bd_prod;
3878 tx_buf->skb = skb;
3879 tx_buf->flags = 0;
3880
3881 DP(NETIF_MSG_TX_QUEUED,
3882 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3883 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3884
3885 if (skb_vlan_tag_present(skb)) {
3886 tx_start_bd->vlan_or_ethertype =
3887 cpu_to_le16(skb_vlan_tag_get(skb));
3888 tx_start_bd->bd_flags.as_bitfield |=
3889 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3890 } else {
3891 /* when transmitting in a vf, start bd must hold the ethertype
3892 * for fw to enforce it
3893 */
3894 u16 vlan_tci = 0;
3895 #ifndef BNX2X_STOP_ON_ERROR
3896 if (IS_VF(bp)) {
3897 #endif
3898 /* Still need to consider inband vlan for enforced */
3899 if (__vlan_get_tag(skb, &vlan_tci)) {
3900 tx_start_bd->vlan_or_ethertype =
3901 cpu_to_le16(ntohs(eth->h_proto));
3902 } else {
3903 tx_start_bd->bd_flags.as_bitfield |=
3904 (X_ETH_INBAND_VLAN <<
3905 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3906 tx_start_bd->vlan_or_ethertype =
3907 cpu_to_le16(vlan_tci);
3908 }
3909 #ifndef BNX2X_STOP_ON_ERROR
3910 } else {
3911 /* used by FW for packet accounting */
3912 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3913 }
3914 #endif
3915 }
3916
3917 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3918
3919 /* turn on parsing and get a BD */
3920 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3921
3922 if (xmit_type & XMIT_CSUM)
3923 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3924
3925 if (!CHIP_IS_E1x(bp)) {
3926 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3927 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3928
3929 if (xmit_type & XMIT_CSUM_ENC) {
3930 u16 global_data = 0;
3931
3932 /* Set PBD in enc checksum offload case */
3933 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3934 &pbd_e2_parsing_data,
3935 xmit_type);
3936
3937 /* turn on 2nd parsing and get a BD */
3938 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3939
3940 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3941
3942 memset(pbd2, 0, sizeof(*pbd2));
3943
3944 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3945 (skb_inner_network_header(skb) -
3946 skb->data) >> 1;
3947
3948 if (xmit_type & XMIT_GSO_ENC)
3949 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3950 &global_data,
3951 xmit_type);
3952
3953 pbd2->global_data = cpu_to_le16(global_data);
3954
3955 /* add addition parse BD indication to start BD */
3956 SET_FLAG(tx_start_bd->general_data,
3957 ETH_TX_START_BD_PARSE_NBDS, 1);
3958 /* set encapsulation flag in start BD */
3959 SET_FLAG(tx_start_bd->general_data,
3960 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3961
3962 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3963
3964 nbd++;
3965 } else if (xmit_type & XMIT_CSUM) {
3966 /* Set PBD in checksum offload case w/o encapsulation */
3967 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3968 &pbd_e2_parsing_data,
3969 xmit_type);
3970 }
3971
3972 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3973 /* Add the macs to the parsing BD if this is a vf or if
3974 * Tx Switching is enabled.
3975 */
3976 if (IS_VF(bp)) {
3977 /* override GRE parameters in BD */
3978 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3979 &pbd_e2->data.mac_addr.src_mid,
3980 &pbd_e2->data.mac_addr.src_lo,
3981 eth->h_source);
3982
3983 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3984 &pbd_e2->data.mac_addr.dst_mid,
3985 &pbd_e2->data.mac_addr.dst_lo,
3986 eth->h_dest);
3987 } else {
3988 if (bp->flags & TX_SWITCHING)
3989 bnx2x_set_fw_mac_addr(
3990 &pbd_e2->data.mac_addr.dst_hi,
3991 &pbd_e2->data.mac_addr.dst_mid,
3992 &pbd_e2->data.mac_addr.dst_lo,
3993 eth->h_dest);
3994 #ifdef BNX2X_STOP_ON_ERROR
3995 /* Enforce security is always set in Stop on Error -
3996 * source mac should be present in the parsing BD
3997 */
3998 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3999 &pbd_e2->data.mac_addr.src_mid,
4000 &pbd_e2->data.mac_addr.src_lo,
4001 eth->h_source);
4002 #endif
4003 }
4004
4005 SET_FLAG(pbd_e2_parsing_data,
4006 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4007 } else {
4008 u16 global_data = 0;
4009 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4010 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4011 /* Set PBD in checksum offload case */
4012 if (xmit_type & XMIT_CSUM)
4013 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4014
4015 SET_FLAG(global_data,
4016 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4017 pbd_e1x->global_data |= cpu_to_le16(global_data);
4018 }
4019
4020 /* Setup the data pointer of the first BD of the packet */
4021 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4022 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4023 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4024 pkt_size = tx_start_bd->nbytes;
4025
4026 DP(NETIF_MSG_TX_QUEUED,
4027 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4028 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4029 le16_to_cpu(tx_start_bd->nbytes),
4030 tx_start_bd->bd_flags.as_bitfield,
4031 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4032
4033 if (xmit_type & XMIT_GSO) {
4034
4035 DP(NETIF_MSG_TX_QUEUED,
4036 "TSO packet len %d hlen %d total len %d tso size %d\n",
4037 skb->len, hlen, skb_headlen(skb),
4038 skb_shinfo(skb)->gso_size);
4039
4040 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4041
4042 if (unlikely(skb_headlen(skb) > hlen)) {
4043 nbd++;
4044 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4045 &tx_start_bd, hlen,
4046 bd_prod);
4047 }
4048 if (!CHIP_IS_E1x(bp))
4049 pbd_e2_parsing_data |=
4050 (skb_shinfo(skb)->gso_size <<
4051 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4052 ETH_TX_PARSE_BD_E2_LSO_MSS;
4053 else
4054 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4055 }
4056
4057 /* Set the PBD's parsing_data field if not zero
4058 * (for the chips newer than 57711).
4059 */
4060 if (pbd_e2_parsing_data)
4061 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4062
4063 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4064
4065 /* Handle fragmented skb */
4066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4067 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4068
4069 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4070 skb_frag_size(frag), DMA_TO_DEVICE);
4071 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4072 unsigned int pkts_compl = 0, bytes_compl = 0;
4073
4074 DP(NETIF_MSG_TX_QUEUED,
4075 "Unable to map page - dropping packet...\n");
4076
4077 /* we need unmap all buffers already mapped
4078 * for this SKB;
4079 * first_bd->nbd need to be properly updated
4080 * before call to bnx2x_free_tx_pkt
4081 */
4082 first_bd->nbd = cpu_to_le16(nbd);
4083 bnx2x_free_tx_pkt(bp, txdata,
4084 TX_BD(txdata->tx_pkt_prod),
4085 &pkts_compl, &bytes_compl);
4086 return NETDEV_TX_OK;
4087 }
4088
4089 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4090 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4091 if (total_pkt_bd == NULL)
4092 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4093
4094 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4095 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4096 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4097 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4098 nbd++;
4099
4100 DP(NETIF_MSG_TX_QUEUED,
4101 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4102 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4103 le16_to_cpu(tx_data_bd->nbytes));
4104 }
4105
4106 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4107
4108 /* update with actual num BDs */
4109 first_bd->nbd = cpu_to_le16(nbd);
4110
4111 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4112
4113 /* now send a tx doorbell, counting the next BD
4114 * if the packet contains or ends with it
4115 */
4116 if (TX_BD_POFF(bd_prod) < nbd)
4117 nbd++;
4118
4119 /* total_pkt_bytes should be set on the first data BD if
4120 * it's not an LSO packet and there is more than one
4121 * data BD. In this case pkt_size is limited by an MTU value.
4122 * However we prefer to set it for an LSO packet (while we don't
4123 * have to) in order to save some CPU cycles in a none-LSO
4124 * case, when we much more care about them.
4125 */
4126 if (total_pkt_bd != NULL)
4127 total_pkt_bd->total_pkt_bytes = pkt_size;
4128
4129 if (pbd_e1x)
4130 DP(NETIF_MSG_TX_QUEUED,
4131 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4132 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4133 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4134 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4135 le16_to_cpu(pbd_e1x->total_hlen_w));
4136 if (pbd_e2)
4137 DP(NETIF_MSG_TX_QUEUED,
4138 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4139 pbd_e2,
4140 pbd_e2->data.mac_addr.dst_hi,
4141 pbd_e2->data.mac_addr.dst_mid,
4142 pbd_e2->data.mac_addr.dst_lo,
4143 pbd_e2->data.mac_addr.src_hi,
4144 pbd_e2->data.mac_addr.src_mid,
4145 pbd_e2->data.mac_addr.src_lo,
4146 pbd_e2->parsing_data);
4147 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4148
4149 netdev_tx_sent_queue(txq, skb->len);
4150
4151 skb_tx_timestamp(skb);
4152
4153 txdata->tx_pkt_prod++;
4154 /*
4155 * Make sure that the BD data is updated before updating the producer
4156 * since FW might read the BD right after the producer is updated.
4157 * This is only applicable for weak-ordered memory model archs such
4158 * as IA-64. The following barrier is also mandatory since FW will
4159 * assumes packets must have BDs.
4160 */
4161 wmb();
4162
4163 txdata->tx_db.data.prod += nbd;
4164 /* make sure descriptor update is observed by HW */
4165 wmb();
4166
4167 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4168
4169 mmiowb();
4170
4171 txdata->tx_bd_prod += nbd;
4172
4173 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4174 netif_tx_stop_queue(txq);
4175
4176 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4177 * ordering of set_bit() in netif_tx_stop_queue() and read of
4178 * fp->bd_tx_cons */
4179 smp_mb();
4180
4181 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4182 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4183 netif_tx_wake_queue(txq);
4184 }
4185 txdata->tx_pkt++;
4186
4187 return NETDEV_TX_OK;
4188 }
4189
4190 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4191 {
4192 int mfw_vn = BP_FW_MB_IDX(bp);
4193 u32 tmp;
4194
4195 /* If the shmem shouldn't affect configuration, reflect */
4196 if (!IS_MF_BD(bp)) {
4197 int i;
4198
4199 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4200 c2s_map[i] = i;
4201 *c2s_default = 0;
4202
4203 return;
4204 }
4205
4206 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4207 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4208 c2s_map[0] = tmp & 0xff;
4209 c2s_map[1] = (tmp >> 8) & 0xff;
4210 c2s_map[2] = (tmp >> 16) & 0xff;
4211 c2s_map[3] = (tmp >> 24) & 0xff;
4212
4213 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4214 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4215 c2s_map[4] = tmp & 0xff;
4216 c2s_map[5] = (tmp >> 8) & 0xff;
4217 c2s_map[6] = (tmp >> 16) & 0xff;
4218 c2s_map[7] = (tmp >> 24) & 0xff;
4219
4220 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4221 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4222 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4223 }
4224
4225 /**
4226 * bnx2x_setup_tc - routine to configure net_device for multi tc
4227 *
4228 * @netdev: net device to configure
4229 * @tc: number of traffic classes to enable
4230 *
4231 * callback connected to the ndo_setup_tc function pointer
4232 */
4233 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4234 {
4235 struct bnx2x *bp = netdev_priv(dev);
4236 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4237 int cos, prio, count, offset;
4238
4239 /* setup tc must be called under rtnl lock */
4240 ASSERT_RTNL();
4241
4242 /* no traffic classes requested. Aborting */
4243 if (!num_tc) {
4244 netdev_reset_tc(dev);
4245 return 0;
4246 }
4247
4248 /* requested to support too many traffic classes */
4249 if (num_tc > bp->max_cos) {
4250 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4251 num_tc, bp->max_cos);
4252 return -EINVAL;
4253 }
4254
4255 /* declare amount of supported traffic classes */
4256 if (netdev_set_num_tc(dev, num_tc)) {
4257 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4258 return -EINVAL;
4259 }
4260
4261 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4262
4263 /* configure priority to traffic class mapping */
4264 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4265 int outer_prio = c2s_map[prio];
4266
4267 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4268 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4269 "mapping priority %d to tc %d\n",
4270 outer_prio, bp->prio_to_cos[outer_prio]);
4271 }
4272
4273 /* Use this configuration to differentiate tc0 from other COSes
4274 This can be used for ets or pfc, and save the effort of setting
4275 up a multio class queue disc or negotiating DCBX with a switch
4276 netdev_set_prio_tc_map(dev, 0, 0);
4277 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4278 for (prio = 1; prio < 16; prio++) {
4279 netdev_set_prio_tc_map(dev, prio, 1);
4280 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4281 } */
4282
4283 /* configure traffic class to transmission queue mapping */
4284 for (cos = 0; cos < bp->max_cos; cos++) {
4285 count = BNX2X_NUM_ETH_QUEUES(bp);
4286 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4287 netdev_set_tc_queue(dev, cos, count, offset);
4288 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4289 "mapping tc %d to offset %d count %d\n",
4290 cos, offset, count);
4291 }
4292
4293 return 0;
4294 }
4295
4296 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4297 void *type_data)
4298 {
4299 struct tc_mqprio_qopt *mqprio = type_data;
4300
4301 if (type != TC_SETUP_QDISC_MQPRIO)
4302 return -EOPNOTSUPP;
4303
4304 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4305
4306 return bnx2x_setup_tc(dev, mqprio->num_tc);
4307 }
4308
4309 /* called with rtnl_lock */
4310 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4311 {
4312 struct sockaddr *addr = p;
4313 struct bnx2x *bp = netdev_priv(dev);
4314 int rc = 0;
4315
4316 if (!is_valid_ether_addr(addr->sa_data)) {
4317 BNX2X_ERR("Requested MAC address is not valid\n");
4318 return -EINVAL;
4319 }
4320
4321 if (IS_MF_STORAGE_ONLY(bp)) {
4322 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4323 return -EINVAL;
4324 }
4325
4326 if (netif_running(dev)) {
4327 rc = bnx2x_set_eth_mac(bp, false);
4328 if (rc)
4329 return rc;
4330 }
4331
4332 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4333
4334 if (netif_running(dev))
4335 rc = bnx2x_set_eth_mac(bp, true);
4336
4337 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4338 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4339
4340 return rc;
4341 }
4342
4343 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4344 {
4345 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4346 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4347 u8 cos;
4348
4349 /* Common */
4350
4351 if (IS_FCOE_IDX(fp_index)) {
4352 memset(sb, 0, sizeof(union host_hc_status_block));
4353 fp->status_blk_mapping = 0;
4354 } else {
4355 /* status blocks */
4356 if (!CHIP_IS_E1x(bp))
4357 BNX2X_PCI_FREE(sb->e2_sb,
4358 bnx2x_fp(bp, fp_index,
4359 status_blk_mapping),
4360 sizeof(struct host_hc_status_block_e2));
4361 else
4362 BNX2X_PCI_FREE(sb->e1x_sb,
4363 bnx2x_fp(bp, fp_index,
4364 status_blk_mapping),
4365 sizeof(struct host_hc_status_block_e1x));
4366 }
4367
4368 /* Rx */
4369 if (!skip_rx_queue(bp, fp_index)) {
4370 bnx2x_free_rx_bds(fp);
4371
4372 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4373 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4374 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4375 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4376 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4377
4378 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4379 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4380 sizeof(struct eth_fast_path_rx_cqe) *
4381 NUM_RCQ_BD);
4382
4383 /* SGE ring */
4384 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4385 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4386 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4387 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4388 }
4389
4390 /* Tx */
4391 if (!skip_tx_queue(bp, fp_index)) {
4392 /* fastpath tx rings: tx_buf tx_desc */
4393 for_each_cos_in_tx_queue(fp, cos) {
4394 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4395
4396 DP(NETIF_MSG_IFDOWN,
4397 "freeing tx memory of fp %d cos %d cid %d\n",
4398 fp_index, cos, txdata->cid);
4399
4400 BNX2X_FREE(txdata->tx_buf_ring);
4401 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4402 txdata->tx_desc_mapping,
4403 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4404 }
4405 }
4406 /* end of fastpath */
4407 }
4408
4409 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4410 {
4411 int i;
4412 for_each_cnic_queue(bp, i)
4413 bnx2x_free_fp_mem_at(bp, i);
4414 }
4415
4416 void bnx2x_free_fp_mem(struct bnx2x *bp)
4417 {
4418 int i;
4419 for_each_eth_queue(bp, i)
4420 bnx2x_free_fp_mem_at(bp, i);
4421 }
4422
4423 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4424 {
4425 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4426 if (!CHIP_IS_E1x(bp)) {
4427 bnx2x_fp(bp, index, sb_index_values) =
4428 (__le16 *)status_blk.e2_sb->sb.index_values;
4429 bnx2x_fp(bp, index, sb_running_index) =
4430 (__le16 *)status_blk.e2_sb->sb.running_index;
4431 } else {
4432 bnx2x_fp(bp, index, sb_index_values) =
4433 (__le16 *)status_blk.e1x_sb->sb.index_values;
4434 bnx2x_fp(bp, index, sb_running_index) =
4435 (__le16 *)status_blk.e1x_sb->sb.running_index;
4436 }
4437 }
4438
4439 /* Returns the number of actually allocated BDs */
4440 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4441 int rx_ring_size)
4442 {
4443 struct bnx2x *bp = fp->bp;
4444 u16 ring_prod, cqe_ring_prod;
4445 int i, failure_cnt = 0;
4446
4447 fp->rx_comp_cons = 0;
4448 cqe_ring_prod = ring_prod = 0;
4449
4450 /* This routine is called only during fo init so
4451 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4452 */
4453 for (i = 0; i < rx_ring_size; i++) {
4454 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4455 failure_cnt++;
4456 continue;
4457 }
4458 ring_prod = NEXT_RX_IDX(ring_prod);
4459 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4460 WARN_ON(ring_prod <= (i - failure_cnt));
4461 }
4462
4463 if (failure_cnt)
4464 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4465 i - failure_cnt, fp->index);
4466
4467 fp->rx_bd_prod = ring_prod;
4468 /* Limit the CQE producer by the CQE ring size */
4469 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4470 cqe_ring_prod);
4471
4472 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4473
4474 return i - failure_cnt;
4475 }
4476
4477 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4478 {
4479 int i;
4480
4481 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4482 struct eth_rx_cqe_next_page *nextpg;
4483
4484 nextpg = (struct eth_rx_cqe_next_page *)
4485 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4486 nextpg->addr_hi =
4487 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4488 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4489 nextpg->addr_lo =
4490 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4491 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4492 }
4493 }
4494
4495 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4496 {
4497 union host_hc_status_block *sb;
4498 struct bnx2x_fastpath *fp = &bp->fp[index];
4499 int ring_size = 0;
4500 u8 cos;
4501 int rx_ring_size = 0;
4502
4503 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4504 rx_ring_size = MIN_RX_SIZE_NONTPA;
4505 bp->rx_ring_size = rx_ring_size;
4506 } else if (!bp->rx_ring_size) {
4507 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4508
4509 if (CHIP_IS_E3(bp)) {
4510 u32 cfg = SHMEM_RD(bp,
4511 dev_info.port_hw_config[BP_PORT(bp)].
4512 default_cfg);
4513
4514 /* Decrease ring size for 1G functions */
4515 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4516 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4517 rx_ring_size /= 10;
4518 }
4519
4520 /* allocate at least number of buffers required by FW */
4521 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4522 MIN_RX_SIZE_TPA, rx_ring_size);
4523
4524 bp->rx_ring_size = rx_ring_size;
4525 } else /* if rx_ring_size specified - use it */
4526 rx_ring_size = bp->rx_ring_size;
4527
4528 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4529
4530 /* Common */
4531 sb = &bnx2x_fp(bp, index, status_blk);
4532
4533 if (!IS_FCOE_IDX(index)) {
4534 /* status blocks */
4535 if (!CHIP_IS_E1x(bp)) {
4536 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4537 sizeof(struct host_hc_status_block_e2));
4538 if (!sb->e2_sb)
4539 goto alloc_mem_err;
4540 } else {
4541 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4542 sizeof(struct host_hc_status_block_e1x));
4543 if (!sb->e1x_sb)
4544 goto alloc_mem_err;
4545 }
4546 }
4547
4548 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4549 * set shortcuts for it.
4550 */
4551 if (!IS_FCOE_IDX(index))
4552 set_sb_shortcuts(bp, index);
4553
4554 /* Tx */
4555 if (!skip_tx_queue(bp, index)) {
4556 /* fastpath tx rings: tx_buf tx_desc */
4557 for_each_cos_in_tx_queue(fp, cos) {
4558 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4559
4560 DP(NETIF_MSG_IFUP,
4561 "allocating tx memory of fp %d cos %d\n",
4562 index, cos);
4563
4564 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4565 sizeof(struct sw_tx_bd),
4566 GFP_KERNEL);
4567 if (!txdata->tx_buf_ring)
4568 goto alloc_mem_err;
4569 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4570 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4571 if (!txdata->tx_desc_ring)
4572 goto alloc_mem_err;
4573 }
4574 }
4575
4576 /* Rx */
4577 if (!skip_rx_queue(bp, index)) {
4578 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4579 bnx2x_fp(bp, index, rx_buf_ring) =
4580 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4581 if (!bnx2x_fp(bp, index, rx_buf_ring))
4582 goto alloc_mem_err;
4583 bnx2x_fp(bp, index, rx_desc_ring) =
4584 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4585 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4586 if (!bnx2x_fp(bp, index, rx_desc_ring))
4587 goto alloc_mem_err;
4588
4589 /* Seed all CQEs by 1s */
4590 bnx2x_fp(bp, index, rx_comp_ring) =
4591 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4592 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4593 if (!bnx2x_fp(bp, index, rx_comp_ring))
4594 goto alloc_mem_err;
4595
4596 /* SGE ring */
4597 bnx2x_fp(bp, index, rx_page_ring) =
4598 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4599 GFP_KERNEL);
4600 if (!bnx2x_fp(bp, index, rx_page_ring))
4601 goto alloc_mem_err;
4602 bnx2x_fp(bp, index, rx_sge_ring) =
4603 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4604 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4605 if (!bnx2x_fp(bp, index, rx_sge_ring))
4606 goto alloc_mem_err;
4607 /* RX BD ring */
4608 bnx2x_set_next_page_rx_bd(fp);
4609
4610 /* CQ ring */
4611 bnx2x_set_next_page_rx_cq(fp);
4612
4613 /* BDs */
4614 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4615 if (ring_size < rx_ring_size)
4616 goto alloc_mem_err;
4617 }
4618
4619 return 0;
4620
4621 /* handles low memory cases */
4622 alloc_mem_err:
4623 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4624 index, ring_size);
4625 /* FW will drop all packets if queue is not big enough,
4626 * In these cases we disable the queue
4627 * Min size is different for OOO, TPA and non-TPA queues
4628 */
4629 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4630 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4631 /* release memory allocated for this queue */
4632 bnx2x_free_fp_mem_at(bp, index);
4633 return -ENOMEM;
4634 }
4635 return 0;
4636 }
4637
4638 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4639 {
4640 if (!NO_FCOE(bp))
4641 /* FCoE */
4642 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4643 /* we will fail load process instead of mark
4644 * NO_FCOE_FLAG
4645 */
4646 return -ENOMEM;
4647
4648 return 0;
4649 }
4650
4651 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4652 {
4653 int i;
4654
4655 /* 1. Allocate FP for leading - fatal if error
4656 * 2. Allocate RSS - fix number of queues if error
4657 */
4658
4659 /* leading */
4660 if (bnx2x_alloc_fp_mem_at(bp, 0))
4661 return -ENOMEM;
4662
4663 /* RSS */
4664 for_each_nondefault_eth_queue(bp, i)
4665 if (bnx2x_alloc_fp_mem_at(bp, i))
4666 break;
4667
4668 /* handle memory failures */
4669 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4670 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4671
4672 WARN_ON(delta < 0);
4673 bnx2x_shrink_eth_fp(bp, delta);
4674 if (CNIC_SUPPORT(bp))
4675 /* move non eth FPs next to last eth FP
4676 * must be done in that order
4677 * FCOE_IDX < FWD_IDX < OOO_IDX
4678 */
4679
4680 /* move FCoE fp even NO_FCOE_FLAG is on */
4681 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4682 bp->num_ethernet_queues -= delta;
4683 bp->num_queues = bp->num_ethernet_queues +
4684 bp->num_cnic_queues;
4685 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4686 bp->num_queues + delta, bp->num_queues);
4687 }
4688
4689 return 0;
4690 }
4691
4692 void bnx2x_free_mem_bp(struct bnx2x *bp)
4693 {
4694 int i;
4695
4696 for (i = 0; i < bp->fp_array_size; i++)
4697 kfree(bp->fp[i].tpa_info);
4698 kfree(bp->fp);
4699 kfree(bp->sp_objs);
4700 kfree(bp->fp_stats);
4701 kfree(bp->bnx2x_txq);
4702 kfree(bp->msix_table);
4703 kfree(bp->ilt);
4704 }
4705
4706 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4707 {
4708 struct bnx2x_fastpath *fp;
4709 struct msix_entry *tbl;
4710 struct bnx2x_ilt *ilt;
4711 int msix_table_size = 0;
4712 int fp_array_size, txq_array_size;
4713 int i;
4714
4715 /*
4716 * The biggest MSI-X table we might need is as a maximum number of fast
4717 * path IGU SBs plus default SB (for PF only).
4718 */
4719 msix_table_size = bp->igu_sb_cnt;
4720 if (IS_PF(bp))
4721 msix_table_size++;
4722 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4723
4724 /* fp array: RSS plus CNIC related L2 queues */
4725 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4726 bp->fp_array_size = fp_array_size;
4727 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4728
4729 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4730 if (!fp)
4731 goto alloc_err;
4732 for (i = 0; i < bp->fp_array_size; i++) {
4733 fp[i].tpa_info =
4734 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4735 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4736 if (!(fp[i].tpa_info))
4737 goto alloc_err;
4738 }
4739
4740 bp->fp = fp;
4741
4742 /* allocate sp objs */
4743 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4744 GFP_KERNEL);
4745 if (!bp->sp_objs)
4746 goto alloc_err;
4747
4748 /* allocate fp_stats */
4749 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4750 GFP_KERNEL);
4751 if (!bp->fp_stats)
4752 goto alloc_err;
4753
4754 /* Allocate memory for the transmission queues array */
4755 txq_array_size =
4756 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4757 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4758
4759 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4760 GFP_KERNEL);
4761 if (!bp->bnx2x_txq)
4762 goto alloc_err;
4763
4764 /* msix table */
4765 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4766 if (!tbl)
4767 goto alloc_err;
4768 bp->msix_table = tbl;
4769
4770 /* ilt */
4771 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4772 if (!ilt)
4773 goto alloc_err;
4774 bp->ilt = ilt;
4775
4776 return 0;
4777 alloc_err:
4778 bnx2x_free_mem_bp(bp);
4779 return -ENOMEM;
4780 }
4781
4782 int bnx2x_reload_if_running(struct net_device *dev)
4783 {
4784 struct bnx2x *bp = netdev_priv(dev);
4785
4786 if (unlikely(!netif_running(dev)))
4787 return 0;
4788
4789 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4790 return bnx2x_nic_load(bp, LOAD_NORMAL);
4791 }
4792
4793 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4794 {
4795 u32 sel_phy_idx = 0;
4796 if (bp->link_params.num_phys <= 1)
4797 return INT_PHY;
4798
4799 if (bp->link_vars.link_up) {
4800 sel_phy_idx = EXT_PHY1;
4801 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4802 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4803 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4804 sel_phy_idx = EXT_PHY2;
4805 } else {
4806
4807 switch (bnx2x_phy_selection(&bp->link_params)) {
4808 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4809 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4810 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4811 sel_phy_idx = EXT_PHY1;
4812 break;
4813 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4814 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4815 sel_phy_idx = EXT_PHY2;
4816 break;
4817 }
4818 }
4819
4820 return sel_phy_idx;
4821 }
4822 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4823 {
4824 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4825 /*
4826 * The selected activated PHY is always after swapping (in case PHY
4827 * swapping is enabled). So when swapping is enabled, we need to reverse
4828 * the configuration
4829 */
4830
4831 if (bp->link_params.multi_phy_config &
4832 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4833 if (sel_phy_idx == EXT_PHY1)
4834 sel_phy_idx = EXT_PHY2;
4835 else if (sel_phy_idx == EXT_PHY2)
4836 sel_phy_idx = EXT_PHY1;
4837 }
4838 return LINK_CONFIG_IDX(sel_phy_idx);
4839 }
4840
4841 #ifdef NETDEV_FCOE_WWNN
4842 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4843 {
4844 struct bnx2x *bp = netdev_priv(dev);
4845 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4846
4847 switch (type) {
4848 case NETDEV_FCOE_WWNN:
4849 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4850 cp->fcoe_wwn_node_name_lo);
4851 break;
4852 case NETDEV_FCOE_WWPN:
4853 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4854 cp->fcoe_wwn_port_name_lo);
4855 break;
4856 default:
4857 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4858 return -EINVAL;
4859 }
4860
4861 return 0;
4862 }
4863 #endif
4864
4865 /* called with rtnl_lock */
4866 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4867 {
4868 struct bnx2x *bp = netdev_priv(dev);
4869
4870 if (pci_num_vf(bp->pdev)) {
4871 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4872 return -EPERM;
4873 }
4874
4875 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4876 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4877 return -EAGAIN;
4878 }
4879
4880 /* This does not race with packet allocation
4881 * because the actual alloc size is
4882 * only updated as part of load
4883 */
4884 dev->mtu = new_mtu;
4885
4886 if (!bnx2x_mtu_allows_gro(new_mtu))
4887 dev->features &= ~NETIF_F_GRO_HW;
4888
4889 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4890 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4891
4892 return bnx2x_reload_if_running(dev);
4893 }
4894
4895 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4896 netdev_features_t features)
4897 {
4898 struct bnx2x *bp = netdev_priv(dev);
4899
4900 if (pci_num_vf(bp->pdev)) {
4901 netdev_features_t changed = dev->features ^ features;
4902
4903 /* Revert the requested changes in features if they
4904 * would require internal reload of PF in bnx2x_set_features().
4905 */
4906 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4907 features &= ~NETIF_F_RXCSUM;
4908 features |= dev->features & NETIF_F_RXCSUM;
4909 }
4910
4911 if (changed & NETIF_F_LOOPBACK) {
4912 features &= ~NETIF_F_LOOPBACK;
4913 features |= dev->features & NETIF_F_LOOPBACK;
4914 }
4915 }
4916
4917 /* TPA requires Rx CSUM offloading */
4918 if (!(features & NETIF_F_RXCSUM))
4919 features &= ~NETIF_F_LRO;
4920
4921 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4922 features &= ~NETIF_F_GRO_HW;
4923 if (features & NETIF_F_GRO_HW)
4924 features &= ~NETIF_F_LRO;
4925
4926 return features;
4927 }
4928
4929 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4930 {
4931 struct bnx2x *bp = netdev_priv(dev);
4932 netdev_features_t changes = features ^ dev->features;
4933 bool bnx2x_reload = false;
4934 int rc;
4935
4936 /* VFs or non SRIOV PFs should be able to change loopback feature */
4937 if (!pci_num_vf(bp->pdev)) {
4938 if (features & NETIF_F_LOOPBACK) {
4939 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4940 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4941 bnx2x_reload = true;
4942 }
4943 } else {
4944 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4945 bp->link_params.loopback_mode = LOOPBACK_NONE;
4946 bnx2x_reload = true;
4947 }
4948 }
4949 }
4950
4951 /* Don't care about GRO changes */
4952 changes &= ~NETIF_F_GRO;
4953
4954 if (changes)
4955 bnx2x_reload = true;
4956
4957 if (bnx2x_reload) {
4958 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4959 dev->features = features;
4960 rc = bnx2x_reload_if_running(dev);
4961 return rc ? rc : 1;
4962 }
4963 /* else: bnx2x_nic_load() will be called at end of recovery */
4964 }
4965
4966 return 0;
4967 }
4968
4969 void bnx2x_tx_timeout(struct net_device *dev)
4970 {
4971 struct bnx2x *bp = netdev_priv(dev);
4972
4973 /* We want the information of the dump logged,
4974 * but calling bnx2x_panic() would kill all chances of recovery.
4975 */
4976 if (!bp->panic)
4977 #ifndef BNX2X_STOP_ON_ERROR
4978 bnx2x_panic_dump(bp, false);
4979 #else
4980 bnx2x_panic();
4981 #endif
4982
4983 /* This allows the netif to be shutdown gracefully before resetting */
4984 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4985 }
4986
4987 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4988 {
4989 struct net_device *dev = pci_get_drvdata(pdev);
4990 struct bnx2x *bp;
4991
4992 if (!dev) {
4993 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4994 return -ENODEV;
4995 }
4996 bp = netdev_priv(dev);
4997
4998 rtnl_lock();
4999
5000 pci_save_state(pdev);
5001
5002 if (!netif_running(dev)) {
5003 rtnl_unlock();
5004 return 0;
5005 }
5006
5007 netif_device_detach(dev);
5008
5009 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5010
5011 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5012
5013 rtnl_unlock();
5014
5015 return 0;
5016 }
5017
5018 int bnx2x_resume(struct pci_dev *pdev)
5019 {
5020 struct net_device *dev = pci_get_drvdata(pdev);
5021 struct bnx2x *bp;
5022 int rc;
5023
5024 if (!dev) {
5025 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5026 return -ENODEV;
5027 }
5028 bp = netdev_priv(dev);
5029
5030 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5031 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5032 return -EAGAIN;
5033 }
5034
5035 rtnl_lock();
5036
5037 pci_restore_state(pdev);
5038
5039 if (!netif_running(dev)) {
5040 rtnl_unlock();
5041 return 0;
5042 }
5043
5044 bnx2x_set_power_state(bp, PCI_D0);
5045 netif_device_attach(dev);
5046
5047 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5048
5049 rtnl_unlock();
5050
5051 return rc;
5052 }
5053
5054 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5055 u32 cid)
5056 {
5057 if (!cxt) {
5058 BNX2X_ERR("bad context pointer %p\n", cxt);
5059 return;
5060 }
5061
5062 /* ustorm cxt validation */
5063 cxt->ustorm_ag_context.cdu_usage =
5064 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5065 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5066 /* xcontext validation */
5067 cxt->xstorm_ag_context.cdu_reserved =
5068 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5069 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5070 }
5071
5072 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5073 u8 fw_sb_id, u8 sb_index,
5074 u8 ticks)
5075 {
5076 u32 addr = BAR_CSTRORM_INTMEM +
5077 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5078 REG_WR8(bp, addr, ticks);
5079 DP(NETIF_MSG_IFUP,
5080 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5081 port, fw_sb_id, sb_index, ticks);
5082 }
5083
5084 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5085 u16 fw_sb_id, u8 sb_index,
5086 u8 disable)
5087 {
5088 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5089 u32 addr = BAR_CSTRORM_INTMEM +
5090 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5091 u8 flags = REG_RD8(bp, addr);
5092 /* clear and set */
5093 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5094 flags |= enable_flag;
5095 REG_WR8(bp, addr, flags);
5096 DP(NETIF_MSG_IFUP,
5097 "port %x fw_sb_id %d sb_index %d disable %d\n",
5098 port, fw_sb_id, sb_index, disable);
5099 }
5100
5101 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5102 u8 sb_index, u8 disable, u16 usec)
5103 {
5104 int port = BP_PORT(bp);
5105 u8 ticks = usec / BNX2X_BTR;
5106
5107 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5108
5109 disable = disable ? 1 : (usec ? 0 : 1);
5110 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5111 }
5112
5113 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5114 u32 verbose)
5115 {
5116 smp_mb__before_atomic();
5117 set_bit(flag, &bp->sp_rtnl_state);
5118 smp_mb__after_atomic();
5119 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5120 flag);
5121 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5122 }