]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_main.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[thirdparty/linux.git] / drivers / net / ethernet / cavium / thunder / nicvf_main.c
1 /*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19 #include <linux/iommu.h>
20 #include <linux/bpf.h>
21 #include <linux/bpf_trace.h>
22 #include <linux/filter.h>
23 #include <linux/net_tstamp.h>
24 #include <linux/workqueue.h>
25
26 #include "nic_reg.h"
27 #include "nic.h"
28 #include "nicvf_queues.h"
29 #include "thunder_bgx.h"
30 #include "../common/cavium_ptp.h"
31
32 #define DRV_NAME "nicvf"
33 #define DRV_VERSION "1.0"
34
35 /* Supported devices */
36 static const struct pci_device_id nicvf_id_table[] = {
37 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
38 PCI_DEVICE_ID_THUNDER_NIC_VF,
39 PCI_VENDOR_ID_CAVIUM,
40 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
41 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
42 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
43 PCI_VENDOR_ID_CAVIUM,
44 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
45 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
46 PCI_DEVICE_ID_THUNDER_NIC_VF,
47 PCI_VENDOR_ID_CAVIUM,
48 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
49 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
50 PCI_DEVICE_ID_THUNDER_NIC_VF,
51 PCI_VENDOR_ID_CAVIUM,
52 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
53 { 0, } /* end of table */
54 };
55
56 MODULE_AUTHOR("Sunil Goutham");
57 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
58 MODULE_LICENSE("GPL v2");
59 MODULE_VERSION(DRV_VERSION);
60 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
61
62 static int debug = 0x00;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Debug message level bitmap");
65
66 static int cpi_alg = CPI_ALG_NONE;
67 module_param(cpi_alg, int, 0444);
68 MODULE_PARM_DESC(cpi_alg,
69 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
70
71 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
72 {
73 if (nic->sqs_mode)
74 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
75 else
76 return qidx;
77 }
78
79 /* The Cavium ThunderX network controller can *only* be found in SoCs
80 * containing the ThunderX ARM64 CPU implementation. All accesses to the device
81 * registers on this platform are implicitly strongly ordered with respect
82 * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
83 * with no memory barriers in this driver. The readq()/writeq() functions add
84 * explicit ordering operation which in this case are redundant, and only
85 * add overhead.
86 */
87
88 /* Register read/write APIs */
89 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
90 {
91 writeq_relaxed(val, nic->reg_base + offset);
92 }
93
94 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
95 {
96 return readq_relaxed(nic->reg_base + offset);
97 }
98
99 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
100 u64 qidx, u64 val)
101 {
102 void __iomem *addr = nic->reg_base + offset;
103
104 writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
105 }
106
107 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
108 {
109 void __iomem *addr = nic->reg_base + offset;
110
111 return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
112 }
113
114 /* VF -> PF mailbox communication */
115 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
116 {
117 u64 *msg = (u64 *)mbx;
118
119 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
120 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
121 }
122
123 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
124 {
125 int timeout = NIC_MBOX_MSG_TIMEOUT;
126 int sleep = 10;
127 int ret = 0;
128
129 mutex_lock(&nic->rx_mode_mtx);
130
131 nic->pf_acked = false;
132 nic->pf_nacked = false;
133
134 nicvf_write_to_mbx(nic, mbx);
135
136 /* Wait for previous message to be acked, timeout 2sec */
137 while (!nic->pf_acked) {
138 if (nic->pf_nacked) {
139 netdev_err(nic->netdev,
140 "PF NACK to mbox msg 0x%02x from VF%d\n",
141 (mbx->msg.msg & 0xFF), nic->vf_id);
142 ret = -EINVAL;
143 break;
144 }
145 msleep(sleep);
146 if (nic->pf_acked)
147 break;
148 timeout -= sleep;
149 if (!timeout) {
150 netdev_err(nic->netdev,
151 "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
152 (mbx->msg.msg & 0xFF), nic->vf_id);
153 ret = -EBUSY;
154 break;
155 }
156 }
157 mutex_unlock(&nic->rx_mode_mtx);
158 return ret;
159 }
160
161 /* Checks if VF is able to comminicate with PF
162 * and also gets the VNIC number this VF is associated to.
163 */
164 static int nicvf_check_pf_ready(struct nicvf *nic)
165 {
166 union nic_mbx mbx = {};
167
168 mbx.msg.msg = NIC_MBOX_MSG_READY;
169 if (nicvf_send_msg_to_pf(nic, &mbx)) {
170 netdev_err(nic->netdev,
171 "PF didn't respond to READY msg\n");
172 return 0;
173 }
174
175 return 1;
176 }
177
178 static void nicvf_send_cfg_done(struct nicvf *nic)
179 {
180 union nic_mbx mbx = {};
181
182 mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
183 if (nicvf_send_msg_to_pf(nic, &mbx)) {
184 netdev_err(nic->netdev,
185 "PF didn't respond to CFG DONE msg\n");
186 }
187 }
188
189 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
190 {
191 if (bgx->rx)
192 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
193 else
194 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
195 }
196
197 static void nicvf_handle_mbx_intr(struct nicvf *nic)
198 {
199 union nic_mbx mbx = {};
200 u64 *mbx_data;
201 u64 mbx_addr;
202 int i;
203
204 mbx_addr = NIC_VF_PF_MAILBOX_0_1;
205 mbx_data = (u64 *)&mbx;
206
207 for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
208 *mbx_data = nicvf_reg_read(nic, mbx_addr);
209 mbx_data++;
210 mbx_addr += sizeof(u64);
211 }
212
213 netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
214 switch (mbx.msg.msg) {
215 case NIC_MBOX_MSG_READY:
216 nic->pf_acked = true;
217 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
218 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
219 nic->node = mbx.nic_cfg.node_id;
220 if (!nic->set_mac_pending)
221 ether_addr_copy(nic->netdev->dev_addr,
222 mbx.nic_cfg.mac_addr);
223 nic->sqs_mode = mbx.nic_cfg.sqs_mode;
224 nic->loopback_supported = mbx.nic_cfg.loopback_supported;
225 nic->link_up = false;
226 nic->duplex = 0;
227 nic->speed = 0;
228 break;
229 case NIC_MBOX_MSG_ACK:
230 nic->pf_acked = true;
231 break;
232 case NIC_MBOX_MSG_NACK:
233 nic->pf_nacked = true;
234 break;
235 case NIC_MBOX_MSG_RSS_SIZE:
236 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
237 nic->pf_acked = true;
238 break;
239 case NIC_MBOX_MSG_BGX_STATS:
240 nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
241 nic->pf_acked = true;
242 break;
243 case NIC_MBOX_MSG_BGX_LINK_CHANGE:
244 nic->pf_acked = true;
245 if (nic->link_up != mbx.link_status.link_up) {
246 nic->link_up = mbx.link_status.link_up;
247 nic->duplex = mbx.link_status.duplex;
248 nic->speed = mbx.link_status.speed;
249 nic->mac_type = mbx.link_status.mac_type;
250 if (nic->link_up) {
251 netdev_info(nic->netdev,
252 "Link is Up %d Mbps %s duplex\n",
253 nic->speed,
254 nic->duplex == DUPLEX_FULL ?
255 "Full" : "Half");
256 netif_carrier_on(nic->netdev);
257 netif_tx_start_all_queues(nic->netdev);
258 } else {
259 netdev_info(nic->netdev, "Link is Down\n");
260 netif_carrier_off(nic->netdev);
261 netif_tx_stop_all_queues(nic->netdev);
262 }
263 }
264 break;
265 case NIC_MBOX_MSG_ALLOC_SQS:
266 nic->sqs_count = mbx.sqs_alloc.qs_count;
267 nic->pf_acked = true;
268 break;
269 case NIC_MBOX_MSG_SNICVF_PTR:
270 /* Primary VF: make note of secondary VF's pointer
271 * to be used while packet transmission.
272 */
273 nic->snicvf[mbx.nicvf.sqs_id] =
274 (struct nicvf *)mbx.nicvf.nicvf;
275 nic->pf_acked = true;
276 break;
277 case NIC_MBOX_MSG_PNICVF_PTR:
278 /* Secondary VF/Qset: make note of primary VF's pointer
279 * to be used while packet reception, to handover packet
280 * to primary VF's netdev.
281 */
282 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
283 nic->pf_acked = true;
284 break;
285 case NIC_MBOX_MSG_PFC:
286 nic->pfc.autoneg = mbx.pfc.autoneg;
287 nic->pfc.fc_rx = mbx.pfc.fc_rx;
288 nic->pfc.fc_tx = mbx.pfc.fc_tx;
289 nic->pf_acked = true;
290 break;
291 default:
292 netdev_err(nic->netdev,
293 "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
294 break;
295 }
296 nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
297 }
298
299 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
300 {
301 union nic_mbx mbx = {};
302
303 mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
304 mbx.mac.vf_id = nic->vf_id;
305 ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
306
307 return nicvf_send_msg_to_pf(nic, &mbx);
308 }
309
310 static void nicvf_config_cpi(struct nicvf *nic)
311 {
312 union nic_mbx mbx = {};
313
314 mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
315 mbx.cpi_cfg.vf_id = nic->vf_id;
316 mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
317 mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
318
319 nicvf_send_msg_to_pf(nic, &mbx);
320 }
321
322 static void nicvf_get_rss_size(struct nicvf *nic)
323 {
324 union nic_mbx mbx = {};
325
326 mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
327 mbx.rss_size.vf_id = nic->vf_id;
328 nicvf_send_msg_to_pf(nic, &mbx);
329 }
330
331 void nicvf_config_rss(struct nicvf *nic)
332 {
333 union nic_mbx mbx = {};
334 struct nicvf_rss_info *rss = &nic->rss_info;
335 int ind_tbl_len = rss->rss_size;
336 int i, nextq = 0;
337
338 mbx.rss_cfg.vf_id = nic->vf_id;
339 mbx.rss_cfg.hash_bits = rss->hash_bits;
340 while (ind_tbl_len) {
341 mbx.rss_cfg.tbl_offset = nextq;
342 mbx.rss_cfg.tbl_len = min(ind_tbl_len,
343 RSS_IND_TBL_LEN_PER_MBX_MSG);
344 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
345 NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
346
347 for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
348 mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
349
350 nicvf_send_msg_to_pf(nic, &mbx);
351
352 ind_tbl_len -= mbx.rss_cfg.tbl_len;
353 }
354 }
355
356 void nicvf_set_rss_key(struct nicvf *nic)
357 {
358 struct nicvf_rss_info *rss = &nic->rss_info;
359 u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
360 int idx;
361
362 for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
363 nicvf_reg_write(nic, key_addr, rss->key[idx]);
364 key_addr += sizeof(u64);
365 }
366 }
367
368 static int nicvf_rss_init(struct nicvf *nic)
369 {
370 struct nicvf_rss_info *rss = &nic->rss_info;
371 int idx;
372
373 nicvf_get_rss_size(nic);
374
375 if (cpi_alg != CPI_ALG_NONE) {
376 rss->enable = false;
377 rss->hash_bits = 0;
378 return 0;
379 }
380
381 rss->enable = true;
382
383 netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
384 nicvf_set_rss_key(nic);
385
386 rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
387 nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
388
389 rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size));
390
391 for (idx = 0; idx < rss->rss_size; idx++)
392 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
393 nic->rx_queues);
394 nicvf_config_rss(nic);
395 return 1;
396 }
397
398 /* Request PF to allocate additional Qsets */
399 static void nicvf_request_sqs(struct nicvf *nic)
400 {
401 union nic_mbx mbx = {};
402 int sqs;
403 int sqs_count = nic->sqs_count;
404 int rx_queues = 0, tx_queues = 0;
405
406 /* Only primary VF should request */
407 if (nic->sqs_mode || !nic->sqs_count)
408 return;
409
410 mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
411 mbx.sqs_alloc.vf_id = nic->vf_id;
412 mbx.sqs_alloc.qs_count = nic->sqs_count;
413 if (nicvf_send_msg_to_pf(nic, &mbx)) {
414 /* No response from PF */
415 nic->sqs_count = 0;
416 return;
417 }
418
419 /* Return if no Secondary Qsets available */
420 if (!nic->sqs_count)
421 return;
422
423 if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
424 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
425
426 tx_queues = nic->tx_queues + nic->xdp_tx_queues;
427 if (tx_queues > MAX_SND_QUEUES_PER_QS)
428 tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
429
430 /* Set no of Rx/Tx queues in each of the SQsets */
431 for (sqs = 0; sqs < nic->sqs_count; sqs++) {
432 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
433 mbx.nicvf.vf_id = nic->vf_id;
434 mbx.nicvf.sqs_id = sqs;
435 nicvf_send_msg_to_pf(nic, &mbx);
436
437 nic->snicvf[sqs]->sqs_id = sqs;
438 if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
439 nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
440 rx_queues -= MAX_RCV_QUEUES_PER_QS;
441 } else {
442 nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
443 rx_queues = 0;
444 }
445
446 if (tx_queues > MAX_SND_QUEUES_PER_QS) {
447 nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
448 tx_queues -= MAX_SND_QUEUES_PER_QS;
449 } else {
450 nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
451 tx_queues = 0;
452 }
453
454 nic->snicvf[sqs]->qs->cq_cnt =
455 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
456
457 /* Initialize secondary Qset's queues and its interrupts */
458 nicvf_open(nic->snicvf[sqs]->netdev);
459 }
460
461 /* Update stack with actual Rx/Tx queue count allocated */
462 if (sqs_count != nic->sqs_count)
463 nicvf_set_real_num_queues(nic->netdev,
464 nic->tx_queues, nic->rx_queues);
465 }
466
467 /* Send this Qset's nicvf pointer to PF.
468 * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
469 * so that packets received by these Qsets can use primary VF's netdev
470 */
471 static void nicvf_send_vf_struct(struct nicvf *nic)
472 {
473 union nic_mbx mbx = {};
474
475 mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
476 mbx.nicvf.sqs_mode = nic->sqs_mode;
477 mbx.nicvf.nicvf = (u64)nic;
478 nicvf_send_msg_to_pf(nic, &mbx);
479 }
480
481 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
482 {
483 union nic_mbx mbx = {};
484
485 mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
486 nicvf_send_msg_to_pf(nic, &mbx);
487 }
488
489 int nicvf_set_real_num_queues(struct net_device *netdev,
490 int tx_queues, int rx_queues)
491 {
492 int err = 0;
493
494 err = netif_set_real_num_tx_queues(netdev, tx_queues);
495 if (err) {
496 netdev_err(netdev,
497 "Failed to set no of Tx queues: %d\n", tx_queues);
498 return err;
499 }
500
501 err = netif_set_real_num_rx_queues(netdev, rx_queues);
502 if (err)
503 netdev_err(netdev,
504 "Failed to set no of Rx queues: %d\n", rx_queues);
505 return err;
506 }
507
508 static int nicvf_init_resources(struct nicvf *nic)
509 {
510 int err;
511
512 /* Enable Qset */
513 nicvf_qset_config(nic, true);
514
515 /* Initialize queues and HW for data transfer */
516 err = nicvf_config_data_transfer(nic, true);
517 if (err) {
518 netdev_err(nic->netdev,
519 "Failed to alloc/config VF's QSet resources\n");
520 return err;
521 }
522
523 return 0;
524 }
525
526 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
527 struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
528 struct rcv_queue *rq, struct sk_buff **skb)
529 {
530 struct xdp_buff xdp;
531 struct page *page;
532 u32 action;
533 u16 len, offset = 0;
534 u64 dma_addr, cpu_addr;
535 void *orig_data;
536
537 /* Retrieve packet buffer's DMA address and length */
538 len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
539 dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
540
541 cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
542 if (!cpu_addr)
543 return false;
544 cpu_addr = (u64)phys_to_virt(cpu_addr);
545 page = virt_to_page((void *)cpu_addr);
546
547 xdp.data_hard_start = page_address(page);
548 xdp.data = (void *)cpu_addr;
549 xdp_set_data_meta_invalid(&xdp);
550 xdp.data_end = xdp.data + len;
551 xdp.rxq = &rq->xdp_rxq;
552 orig_data = xdp.data;
553
554 rcu_read_lock();
555 action = bpf_prog_run_xdp(prog, &xdp);
556 rcu_read_unlock();
557
558 len = xdp.data_end - xdp.data;
559 /* Check if XDP program has changed headers */
560 if (orig_data != xdp.data) {
561 offset = orig_data - xdp.data;
562 dma_addr -= offset;
563 }
564
565 switch (action) {
566 case XDP_PASS:
567 /* Check if it's a recycled page, if not
568 * unmap the DMA mapping.
569 *
570 * Recycled page holds an extra reference.
571 */
572 if (page_ref_count(page) == 1) {
573 dma_addr &= PAGE_MASK;
574 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
575 RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
576 DMA_FROM_DEVICE,
577 DMA_ATTR_SKIP_CPU_SYNC);
578 }
579
580 /* Build SKB and pass on packet to network stack */
581 *skb = build_skb(xdp.data,
582 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
583 if (!*skb)
584 put_page(page);
585 else
586 skb_put(*skb, len);
587 return false;
588 case XDP_TX:
589 nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
590 return true;
591 default:
592 bpf_warn_invalid_xdp_action(action);
593 /* fall through */
594 case XDP_ABORTED:
595 trace_xdp_exception(nic->netdev, prog, action);
596 /* fall through */
597 case XDP_DROP:
598 /* Check if it's a recycled page, if not
599 * unmap the DMA mapping.
600 *
601 * Recycled page holds an extra reference.
602 */
603 if (page_ref_count(page) == 1) {
604 dma_addr &= PAGE_MASK;
605 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
606 RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
607 DMA_FROM_DEVICE,
608 DMA_ATTR_SKIP_CPU_SYNC);
609 }
610 put_page(page);
611 return true;
612 }
613 return false;
614 }
615
616 static void nicvf_snd_ptp_handler(struct net_device *netdev,
617 struct cqe_send_t *cqe_tx)
618 {
619 struct nicvf *nic = netdev_priv(netdev);
620 struct skb_shared_hwtstamps ts;
621 u64 ns;
622
623 nic = nic->pnicvf;
624
625 /* Sync for 'ptp_skb' */
626 smp_rmb();
627
628 /* New timestamp request can be queued now */
629 atomic_set(&nic->tx_ptp_skbs, 0);
630
631 /* Check for timestamp requested skb */
632 if (!nic->ptp_skb)
633 return;
634
635 /* Check if timestamping is timedout, which is set to 10us */
636 if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
637 cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
638 goto no_tstamp;
639
640 /* Get the timestamp */
641 memset(&ts, 0, sizeof(ts));
642 ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
643 ts.hwtstamp = ns_to_ktime(ns);
644 skb_tstamp_tx(nic->ptp_skb, &ts);
645
646 no_tstamp:
647 /* Free the original skb */
648 dev_kfree_skb_any(nic->ptp_skb);
649 nic->ptp_skb = NULL;
650 /* Sync 'ptp_skb' */
651 smp_wmb();
652 }
653
654 static void nicvf_snd_pkt_handler(struct net_device *netdev,
655 struct cqe_send_t *cqe_tx,
656 int budget, int *subdesc_cnt,
657 unsigned int *tx_pkts, unsigned int *tx_bytes)
658 {
659 struct sk_buff *skb = NULL;
660 struct page *page;
661 struct nicvf *nic = netdev_priv(netdev);
662 struct snd_queue *sq;
663 struct sq_hdr_subdesc *hdr;
664 struct sq_hdr_subdesc *tso_sqe;
665
666 sq = &nic->qs->sq[cqe_tx->sq_idx];
667
668 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
669 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
670 return;
671
672 /* Check for errors */
673 if (cqe_tx->send_status)
674 nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
675
676 /* Is this a XDP designated Tx queue */
677 if (sq->is_xdp) {
678 page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
679 /* Check if it's recycled page or else unmap DMA mapping */
680 if (page && (page_ref_count(page) == 1))
681 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
682 hdr->subdesc_cnt);
683
684 /* Release page reference for recycling */
685 if (page)
686 put_page(page);
687 sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
688 *subdesc_cnt += hdr->subdesc_cnt + 1;
689 return;
690 }
691
692 skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
693 if (skb) {
694 /* Check for dummy descriptor used for HW TSO offload on 88xx */
695 if (hdr->dont_send) {
696 /* Get actual TSO descriptors and free them */
697 tso_sqe =
698 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
699 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
700 tso_sqe->subdesc_cnt);
701 *subdesc_cnt += tso_sqe->subdesc_cnt + 1;
702 } else {
703 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
704 hdr->subdesc_cnt);
705 }
706 *subdesc_cnt += hdr->subdesc_cnt + 1;
707 prefetch(skb);
708 (*tx_pkts)++;
709 *tx_bytes += skb->len;
710 /* If timestamp is requested for this skb, don't free it */
711 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
712 !nic->pnicvf->ptp_skb)
713 nic->pnicvf->ptp_skb = skb;
714 else
715 napi_consume_skb(skb, budget);
716 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
717 } else {
718 /* In case of SW TSO on 88xx, only last segment will have
719 * a SKB attached, so just free SQEs here.
720 */
721 if (!nic->hw_tso)
722 *subdesc_cnt += hdr->subdesc_cnt + 1;
723 }
724 }
725
726 static inline void nicvf_set_rxhash(struct net_device *netdev,
727 struct cqe_rx_t *cqe_rx,
728 struct sk_buff *skb)
729 {
730 u8 hash_type;
731 u32 hash;
732
733 if (!(netdev->features & NETIF_F_RXHASH))
734 return;
735
736 switch (cqe_rx->rss_alg) {
737 case RSS_ALG_TCP_IP:
738 case RSS_ALG_UDP_IP:
739 hash_type = PKT_HASH_TYPE_L4;
740 hash = cqe_rx->rss_tag;
741 break;
742 case RSS_ALG_IP:
743 hash_type = PKT_HASH_TYPE_L3;
744 hash = cqe_rx->rss_tag;
745 break;
746 default:
747 hash_type = PKT_HASH_TYPE_NONE;
748 hash = 0;
749 }
750
751 skb_set_hash(skb, hash, hash_type);
752 }
753
754 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
755 {
756 u64 ns;
757
758 if (!nic->ptp_clock || !nic->hw_rx_tstamp)
759 return;
760
761 /* The first 8 bytes is the timestamp */
762 ns = cavium_ptp_tstamp2time(nic->ptp_clock,
763 be64_to_cpu(*(__be64 *)skb->data));
764 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
765
766 __skb_pull(skb, 8);
767 }
768
769 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
770 struct napi_struct *napi,
771 struct cqe_rx_t *cqe_rx,
772 struct snd_queue *sq, struct rcv_queue *rq)
773 {
774 struct sk_buff *skb = NULL;
775 struct nicvf *nic = netdev_priv(netdev);
776 struct nicvf *snic = nic;
777 int err = 0;
778 int rq_idx;
779
780 rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
781
782 if (nic->sqs_mode) {
783 /* Use primary VF's 'nicvf' struct */
784 nic = nic->pnicvf;
785 netdev = nic->netdev;
786 }
787
788 /* Check for errors */
789 if (cqe_rx->err_level || cqe_rx->err_opcode) {
790 err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
791 if (err && !cqe_rx->rb_cnt)
792 return;
793 }
794
795 /* For XDP, ignore pkts spanning multiple pages */
796 if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
797 /* Packet consumed by XDP */
798 if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
799 return;
800 } else {
801 skb = nicvf_get_rcv_skb(snic, cqe_rx,
802 nic->xdp_prog ? true : false);
803 }
804
805 if (!skb)
806 return;
807
808 if (netif_msg_pktdata(nic)) {
809 netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
810 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
811 skb->data, skb->len, true);
812 }
813
814 /* If error packet, drop it here */
815 if (err) {
816 dev_kfree_skb_any(skb);
817 return;
818 }
819
820 nicvf_set_rxtstamp(nic, skb);
821 nicvf_set_rxhash(netdev, cqe_rx, skb);
822
823 skb_record_rx_queue(skb, rq_idx);
824 if (netdev->hw_features & NETIF_F_RXCSUM) {
825 /* HW by default verifies TCP/UDP/SCTP checksums */
826 skb->ip_summed = CHECKSUM_UNNECESSARY;
827 } else {
828 skb_checksum_none_assert(skb);
829 }
830
831 skb->protocol = eth_type_trans(skb, netdev);
832
833 /* Check for stripped VLAN */
834 if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
835 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
836 ntohs((__force __be16)cqe_rx->vlan_tci));
837
838 if (napi && (netdev->features & NETIF_F_GRO))
839 napi_gro_receive(napi, skb);
840 else
841 netif_receive_skb(skb);
842 }
843
844 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
845 struct napi_struct *napi, int budget)
846 {
847 int processed_cqe, work_done = 0, tx_done = 0;
848 int cqe_count, cqe_head;
849 int subdesc_cnt = 0;
850 struct nicvf *nic = netdev_priv(netdev);
851 struct queue_set *qs = nic->qs;
852 struct cmp_queue *cq = &qs->cq[cq_idx];
853 struct cqe_rx_t *cq_desc;
854 struct netdev_queue *txq;
855 struct snd_queue *sq = &qs->sq[cq_idx];
856 struct rcv_queue *rq = &qs->rq[cq_idx];
857 unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
858
859 spin_lock_bh(&cq->lock);
860 loop:
861 processed_cqe = 0;
862 /* Get no of valid CQ entries to process */
863 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
864 cqe_count &= CQ_CQE_COUNT;
865 if (!cqe_count)
866 goto done;
867
868 /* Get head of the valid CQ entries */
869 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
870 cqe_head &= 0xFFFF;
871
872 while (processed_cqe < cqe_count) {
873 /* Get the CQ descriptor */
874 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
875 cqe_head++;
876 cqe_head &= (cq->dmem.q_len - 1);
877 /* Initiate prefetch for next descriptor */
878 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
879
880 if ((work_done >= budget) && napi &&
881 (cq_desc->cqe_type != CQE_TYPE_SEND)) {
882 break;
883 }
884
885 switch (cq_desc->cqe_type) {
886 case CQE_TYPE_RX:
887 nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
888 work_done++;
889 break;
890 case CQE_TYPE_SEND:
891 nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
892 budget, &subdesc_cnt,
893 &tx_pkts, &tx_bytes);
894 tx_done++;
895 break;
896 case CQE_TYPE_SEND_PTP:
897 nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
898 break;
899 case CQE_TYPE_INVALID:
900 case CQE_TYPE_RX_SPLIT:
901 case CQE_TYPE_RX_TCP:
902 /* Ignore for now */
903 break;
904 }
905 processed_cqe++;
906 }
907
908 /* Ring doorbell to inform H/W to reuse processed CQEs */
909 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
910 cq_idx, processed_cqe);
911
912 if ((work_done < budget) && napi)
913 goto loop;
914
915 done:
916 /* Update SQ's descriptor free count */
917 if (subdesc_cnt)
918 nicvf_put_sq_desc(sq, subdesc_cnt);
919
920 txq_idx = nicvf_netdev_qidx(nic, cq_idx);
921 /* Handle XDP TX queues */
922 if (nic->pnicvf->xdp_prog) {
923 if (txq_idx < nic->pnicvf->xdp_tx_queues) {
924 nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
925 goto out;
926 }
927 nic = nic->pnicvf;
928 txq_idx -= nic->pnicvf->xdp_tx_queues;
929 }
930
931 /* Wakeup TXQ if its stopped earlier due to SQ full */
932 if (tx_done ||
933 (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
934 netdev = nic->pnicvf->netdev;
935 txq = netdev_get_tx_queue(netdev, txq_idx);
936 if (tx_pkts)
937 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
938
939 /* To read updated queue and carrier status */
940 smp_mb();
941 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
942 netif_tx_wake_queue(txq);
943 nic = nic->pnicvf;
944 this_cpu_inc(nic->drv_stats->txq_wake);
945 netif_warn(nic, tx_err, netdev,
946 "Transmit queue wakeup SQ%d\n", txq_idx);
947 }
948 }
949
950 out:
951 spin_unlock_bh(&cq->lock);
952 return work_done;
953 }
954
955 static int nicvf_poll(struct napi_struct *napi, int budget)
956 {
957 u64 cq_head;
958 int work_done = 0;
959 struct net_device *netdev = napi->dev;
960 struct nicvf *nic = netdev_priv(netdev);
961 struct nicvf_cq_poll *cq;
962
963 cq = container_of(napi, struct nicvf_cq_poll, napi);
964 work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
965
966 if (work_done < budget) {
967 /* Slow packet rate, exit polling */
968 napi_complete_done(napi, work_done);
969 /* Re-enable interrupts */
970 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
971 cq->cq_idx);
972 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
973 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
974 cq->cq_idx, cq_head);
975 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
976 }
977 return work_done;
978 }
979
980 /* Qset error interrupt handler
981 *
982 * As of now only CQ errors are handled
983 */
984 static void nicvf_handle_qs_err(unsigned long data)
985 {
986 struct nicvf *nic = (struct nicvf *)data;
987 struct queue_set *qs = nic->qs;
988 int qidx;
989 u64 status;
990
991 netif_tx_disable(nic->netdev);
992
993 /* Check if it is CQ err */
994 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
995 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
996 qidx);
997 if (!(status & CQ_ERR_MASK))
998 continue;
999 /* Process already queued CQEs and reconfig CQ */
1000 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1001 nicvf_sq_disable(nic, qidx);
1002 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
1003 nicvf_cmp_queue_config(nic, qs, qidx, true);
1004 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
1005 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
1006
1007 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1008 }
1009
1010 netif_tx_start_all_queues(nic->netdev);
1011 /* Re-enable Qset error interrupt */
1012 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1013 }
1014
1015 static void nicvf_dump_intr_status(struct nicvf *nic)
1016 {
1017 netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1018 nicvf_reg_read(nic, NIC_VF_INT));
1019 }
1020
1021 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1022 {
1023 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1024 u64 intr;
1025
1026 nicvf_dump_intr_status(nic);
1027
1028 intr = nicvf_reg_read(nic, NIC_VF_INT);
1029 /* Check for spurious interrupt */
1030 if (!(intr & NICVF_INTR_MBOX_MASK))
1031 return IRQ_HANDLED;
1032
1033 nicvf_handle_mbx_intr(nic);
1034
1035 return IRQ_HANDLED;
1036 }
1037
1038 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1039 {
1040 struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1041 struct nicvf *nic = cq_poll->nicvf;
1042 int qidx = cq_poll->cq_idx;
1043
1044 nicvf_dump_intr_status(nic);
1045
1046 /* Disable interrupts */
1047 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1048
1049 /* Schedule NAPI */
1050 napi_schedule_irqoff(&cq_poll->napi);
1051
1052 /* Clear interrupt */
1053 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1054
1055 return IRQ_HANDLED;
1056 }
1057
1058 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1059 {
1060 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1061 u8 qidx;
1062
1063
1064 nicvf_dump_intr_status(nic);
1065
1066 /* Disable RBDR interrupt and schedule softirq */
1067 for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1068 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1069 continue;
1070 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1071 tasklet_hi_schedule(&nic->rbdr_task);
1072 /* Clear interrupt */
1073 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1074 }
1075
1076 return IRQ_HANDLED;
1077 }
1078
1079 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1080 {
1081 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1082
1083 nicvf_dump_intr_status(nic);
1084
1085 /* Disable Qset err interrupt and schedule softirq */
1086 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1087 tasklet_hi_schedule(&nic->qs_err_task);
1088 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1089
1090 return IRQ_HANDLED;
1091 }
1092
1093 static void nicvf_set_irq_affinity(struct nicvf *nic)
1094 {
1095 int vec, cpu;
1096
1097 for (vec = 0; vec < nic->num_vec; vec++) {
1098 if (!nic->irq_allocated[vec])
1099 continue;
1100
1101 if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1102 return;
1103 /* CQ interrupts */
1104 if (vec < NICVF_INTR_ID_SQ)
1105 /* Leave CPU0 for RBDR and other interrupts */
1106 cpu = nicvf_netdev_qidx(nic, vec) + 1;
1107 else
1108 cpu = 0;
1109
1110 cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1111 nic->affinity_mask[vec]);
1112 irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1113 nic->affinity_mask[vec]);
1114 }
1115 }
1116
1117 static int nicvf_register_interrupts(struct nicvf *nic)
1118 {
1119 int irq, ret = 0;
1120
1121 for_each_cq_irq(irq)
1122 sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1123 nic->pnicvf->netdev->name,
1124 nicvf_netdev_qidx(nic, irq));
1125
1126 for_each_sq_irq(irq)
1127 sprintf(nic->irq_name[irq], "%s-sq-%d",
1128 nic->pnicvf->netdev->name,
1129 nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1130
1131 for_each_rbdr_irq(irq)
1132 sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1133 nic->pnicvf->netdev->name,
1134 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1135
1136 /* Register CQ interrupts */
1137 for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1138 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1139 nicvf_intr_handler,
1140 0, nic->irq_name[irq], nic->napi[irq]);
1141 if (ret)
1142 goto err;
1143 nic->irq_allocated[irq] = true;
1144 }
1145
1146 /* Register RBDR interrupt */
1147 for (irq = NICVF_INTR_ID_RBDR;
1148 irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1149 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1150 nicvf_rbdr_intr_handler,
1151 0, nic->irq_name[irq], nic);
1152 if (ret)
1153 goto err;
1154 nic->irq_allocated[irq] = true;
1155 }
1156
1157 /* Register QS error interrupt */
1158 sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1159 nic->pnicvf->netdev->name,
1160 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1161 irq = NICVF_INTR_ID_QS_ERR;
1162 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1163 nicvf_qs_err_intr_handler,
1164 0, nic->irq_name[irq], nic);
1165 if (ret)
1166 goto err;
1167
1168 nic->irq_allocated[irq] = true;
1169
1170 /* Set IRQ affinities */
1171 nicvf_set_irq_affinity(nic);
1172
1173 err:
1174 if (ret)
1175 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1176
1177 return ret;
1178 }
1179
1180 static void nicvf_unregister_interrupts(struct nicvf *nic)
1181 {
1182 struct pci_dev *pdev = nic->pdev;
1183 int irq;
1184
1185 /* Free registered interrupts */
1186 for (irq = 0; irq < nic->num_vec; irq++) {
1187 if (!nic->irq_allocated[irq])
1188 continue;
1189
1190 irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1191 free_cpumask_var(nic->affinity_mask[irq]);
1192
1193 if (irq < NICVF_INTR_ID_SQ)
1194 free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1195 else
1196 free_irq(pci_irq_vector(pdev, irq), nic);
1197
1198 nic->irq_allocated[irq] = false;
1199 }
1200
1201 /* Disable MSI-X */
1202 pci_free_irq_vectors(pdev);
1203 nic->num_vec = 0;
1204 }
1205
1206 /* Initialize MSIX vectors and register MISC interrupt.
1207 * Send READY message to PF to check if its alive
1208 */
1209 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1210 {
1211 int ret = 0;
1212 int irq = NICVF_INTR_ID_MISC;
1213
1214 /* Return if mailbox interrupt is already registered */
1215 if (nic->pdev->msix_enabled)
1216 return 0;
1217
1218 /* Enable MSI-X */
1219 nic->num_vec = pci_msix_vec_count(nic->pdev);
1220 ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1221 PCI_IRQ_MSIX);
1222 if (ret < 0) {
1223 netdev_err(nic->netdev,
1224 "Req for #%d msix vectors failed\n", nic->num_vec);
1225 return 1;
1226 }
1227
1228 sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1229 /* Register Misc interrupt */
1230 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1231 nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1232
1233 if (ret)
1234 return ret;
1235 nic->irq_allocated[irq] = true;
1236
1237 /* Enable mailbox interrupt */
1238 nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1239
1240 /* Check if VF is able to communicate with PF */
1241 if (!nicvf_check_pf_ready(nic)) {
1242 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1243 nicvf_unregister_interrupts(nic);
1244 return 1;
1245 }
1246
1247 return 0;
1248 }
1249
1250 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1251 {
1252 struct nicvf *nic = netdev_priv(netdev);
1253 int qid = skb_get_queue_mapping(skb);
1254 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1255 struct nicvf *snic;
1256 struct snd_queue *sq;
1257 int tmp;
1258
1259 /* Check for minimum packet length */
1260 if (skb->len <= ETH_HLEN) {
1261 dev_kfree_skb(skb);
1262 return NETDEV_TX_OK;
1263 }
1264
1265 /* In XDP case, initial HW tx queues are used for XDP,
1266 * but stack's queue mapping starts at '0', so skip the
1267 * Tx queues attached to Rx queues for XDP.
1268 */
1269 if (nic->xdp_prog)
1270 qid += nic->xdp_tx_queues;
1271
1272 snic = nic;
1273 /* Get secondary Qset's SQ structure */
1274 if (qid >= MAX_SND_QUEUES_PER_QS) {
1275 tmp = qid / MAX_SND_QUEUES_PER_QS;
1276 snic = (struct nicvf *)nic->snicvf[tmp - 1];
1277 if (!snic) {
1278 netdev_warn(nic->netdev,
1279 "Secondary Qset#%d's ptr not initialized\n",
1280 tmp - 1);
1281 dev_kfree_skb(skb);
1282 return NETDEV_TX_OK;
1283 }
1284 qid = qid % MAX_SND_QUEUES_PER_QS;
1285 }
1286
1287 sq = &snic->qs->sq[qid];
1288 if (!netif_tx_queue_stopped(txq) &&
1289 !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1290 netif_tx_stop_queue(txq);
1291
1292 /* Barrier, so that stop_queue visible to other cpus */
1293 smp_mb();
1294
1295 /* Check again, incase another cpu freed descriptors */
1296 if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1297 netif_tx_wake_queue(txq);
1298 } else {
1299 this_cpu_inc(nic->drv_stats->txq_stop);
1300 netif_warn(nic, tx_err, netdev,
1301 "Transmit ring full, stopping SQ%d\n", qid);
1302 }
1303 return NETDEV_TX_BUSY;
1304 }
1305
1306 return NETDEV_TX_OK;
1307 }
1308
1309 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1310 {
1311 struct nicvf_cq_poll *cq_poll;
1312 int qidx;
1313
1314 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1315 cq_poll = nic->napi[qidx];
1316 if (!cq_poll)
1317 continue;
1318 nic->napi[qidx] = NULL;
1319 kfree(cq_poll);
1320 }
1321 }
1322
1323 int nicvf_stop(struct net_device *netdev)
1324 {
1325 int irq, qidx;
1326 struct nicvf *nic = netdev_priv(netdev);
1327 struct queue_set *qs = nic->qs;
1328 struct nicvf_cq_poll *cq_poll = NULL;
1329 union nic_mbx mbx = {};
1330
1331 /* wait till all queued set_rx_mode tasks completes */
1332 if (nic->nicvf_rx_mode_wq) {
1333 cancel_delayed_work_sync(&nic->link_change_work);
1334 drain_workqueue(nic->nicvf_rx_mode_wq);
1335 }
1336
1337 mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1338 nicvf_send_msg_to_pf(nic, &mbx);
1339
1340 netif_carrier_off(netdev);
1341 netif_tx_stop_all_queues(nic->netdev);
1342 nic->link_up = false;
1343
1344 /* Teardown secondary qsets first */
1345 if (!nic->sqs_mode) {
1346 for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1347 if (!nic->snicvf[qidx])
1348 continue;
1349 nicvf_stop(nic->snicvf[qidx]->netdev);
1350 nic->snicvf[qidx] = NULL;
1351 }
1352 }
1353
1354 /* Disable RBDR & QS error interrupts */
1355 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1356 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1357 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1358 }
1359 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1360 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1361
1362 /* Wait for pending IRQ handlers to finish */
1363 for (irq = 0; irq < nic->num_vec; irq++)
1364 synchronize_irq(pci_irq_vector(nic->pdev, irq));
1365
1366 tasklet_kill(&nic->rbdr_task);
1367 tasklet_kill(&nic->qs_err_task);
1368 if (nic->rb_work_scheduled)
1369 cancel_delayed_work_sync(&nic->rbdr_work);
1370
1371 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1372 cq_poll = nic->napi[qidx];
1373 if (!cq_poll)
1374 continue;
1375 napi_synchronize(&cq_poll->napi);
1376 /* CQ intr is enabled while napi_complete,
1377 * so disable it now
1378 */
1379 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1380 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1381 napi_disable(&cq_poll->napi);
1382 netif_napi_del(&cq_poll->napi);
1383 }
1384
1385 netif_tx_disable(netdev);
1386
1387 for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1388 netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1389
1390 /* Free resources */
1391 nicvf_config_data_transfer(nic, false);
1392
1393 /* Disable HW Qset */
1394 nicvf_qset_config(nic, false);
1395
1396 /* disable mailbox interrupt */
1397 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1398
1399 nicvf_unregister_interrupts(nic);
1400
1401 nicvf_free_cq_poll(nic);
1402
1403 /* Free any pending SKB saved to receive timestamp */
1404 if (nic->ptp_skb) {
1405 dev_kfree_skb_any(nic->ptp_skb);
1406 nic->ptp_skb = NULL;
1407 }
1408
1409 /* Clear multiqset info */
1410 nic->pnicvf = nic;
1411
1412 return 0;
1413 }
1414
1415 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1416 {
1417 union nic_mbx mbx = {};
1418
1419 mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1420 mbx.ptp.enable = enable;
1421
1422 return nicvf_send_msg_to_pf(nic, &mbx);
1423 }
1424
1425 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1426 {
1427 union nic_mbx mbx = {};
1428
1429 mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1430 mbx.frs.max_frs = mtu;
1431 mbx.frs.vf_id = nic->vf_id;
1432
1433 return nicvf_send_msg_to_pf(nic, &mbx);
1434 }
1435
1436 static void nicvf_link_status_check_task(struct work_struct *work_arg)
1437 {
1438 struct nicvf *nic = container_of(work_arg,
1439 struct nicvf,
1440 link_change_work.work);
1441 union nic_mbx mbx = {};
1442 mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
1443 nicvf_send_msg_to_pf(nic, &mbx);
1444 queue_delayed_work(nic->nicvf_rx_mode_wq,
1445 &nic->link_change_work, 2 * HZ);
1446 }
1447
1448 int nicvf_open(struct net_device *netdev)
1449 {
1450 int cpu, err, qidx;
1451 struct nicvf *nic = netdev_priv(netdev);
1452 struct queue_set *qs = nic->qs;
1453 struct nicvf_cq_poll *cq_poll = NULL;
1454
1455 /* wait till all queued set_rx_mode tasks completes if any */
1456 if (nic->nicvf_rx_mode_wq)
1457 drain_workqueue(nic->nicvf_rx_mode_wq);
1458
1459 netif_carrier_off(netdev);
1460
1461 err = nicvf_register_misc_interrupt(nic);
1462 if (err)
1463 return err;
1464
1465 /* Register NAPI handler for processing CQEs */
1466 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1467 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1468 if (!cq_poll) {
1469 err = -ENOMEM;
1470 goto napi_del;
1471 }
1472 cq_poll->cq_idx = qidx;
1473 cq_poll->nicvf = nic;
1474 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1475 NAPI_POLL_WEIGHT);
1476 napi_enable(&cq_poll->napi);
1477 nic->napi[qidx] = cq_poll;
1478 }
1479
1480 /* Check if we got MAC address from PF or else generate a radom MAC */
1481 if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1482 eth_hw_addr_random(netdev);
1483 nicvf_hw_set_mac_addr(nic, netdev);
1484 }
1485
1486 if (nic->set_mac_pending) {
1487 nic->set_mac_pending = false;
1488 nicvf_hw_set_mac_addr(nic, netdev);
1489 }
1490
1491 /* Init tasklet for handling Qset err interrupt */
1492 tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1493 (unsigned long)nic);
1494
1495 /* Init RBDR tasklet which will refill RBDR */
1496 tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1497 (unsigned long)nic);
1498 INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1499
1500 /* Configure CPI alorithm */
1501 nic->cpi_alg = cpi_alg;
1502 if (!nic->sqs_mode)
1503 nicvf_config_cpi(nic);
1504
1505 nicvf_request_sqs(nic);
1506 if (nic->sqs_mode)
1507 nicvf_get_primary_vf_struct(nic);
1508
1509 /* Configure PTP timestamp */
1510 if (nic->ptp_clock)
1511 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1512 atomic_set(&nic->tx_ptp_skbs, 0);
1513 nic->ptp_skb = NULL;
1514
1515 /* Configure receive side scaling and MTU */
1516 if (!nic->sqs_mode) {
1517 nicvf_rss_init(nic);
1518 err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1519 if (err)
1520 goto cleanup;
1521
1522 /* Clear percpu stats */
1523 for_each_possible_cpu(cpu)
1524 memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1525 sizeof(struct nicvf_drv_stats));
1526 }
1527
1528 err = nicvf_register_interrupts(nic);
1529 if (err)
1530 goto cleanup;
1531
1532 /* Initialize the queues */
1533 err = nicvf_init_resources(nic);
1534 if (err)
1535 goto cleanup;
1536
1537 /* Make sure queue initialization is written */
1538 wmb();
1539
1540 nicvf_reg_write(nic, NIC_VF_INT, -1);
1541 /* Enable Qset err interrupt */
1542 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1543
1544 /* Enable completion queue interrupt */
1545 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1546 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1547
1548 /* Enable RBDR threshold interrupt */
1549 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1550 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1551
1552 /* Send VF config done msg to PF */
1553 nicvf_send_cfg_done(nic);
1554
1555 if (nic->nicvf_rx_mode_wq) {
1556 INIT_DELAYED_WORK(&nic->link_change_work,
1557 nicvf_link_status_check_task);
1558 queue_delayed_work(nic->nicvf_rx_mode_wq,
1559 &nic->link_change_work, 0);
1560 }
1561
1562 return 0;
1563 cleanup:
1564 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1565 nicvf_unregister_interrupts(nic);
1566 tasklet_kill(&nic->qs_err_task);
1567 tasklet_kill(&nic->rbdr_task);
1568 napi_del:
1569 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1570 cq_poll = nic->napi[qidx];
1571 if (!cq_poll)
1572 continue;
1573 napi_disable(&cq_poll->napi);
1574 netif_napi_del(&cq_poll->napi);
1575 }
1576 nicvf_free_cq_poll(nic);
1577 return err;
1578 }
1579
1580 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1581 {
1582 struct nicvf *nic = netdev_priv(netdev);
1583 int orig_mtu = netdev->mtu;
1584
1585 netdev->mtu = new_mtu;
1586
1587 if (!netif_running(netdev))
1588 return 0;
1589
1590 if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1591 netdev->mtu = orig_mtu;
1592 return -EINVAL;
1593 }
1594
1595 return 0;
1596 }
1597
1598 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1599 {
1600 struct sockaddr *addr = p;
1601 struct nicvf *nic = netdev_priv(netdev);
1602
1603 if (!is_valid_ether_addr(addr->sa_data))
1604 return -EADDRNOTAVAIL;
1605
1606 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1607
1608 if (nic->pdev->msix_enabled) {
1609 if (nicvf_hw_set_mac_addr(nic, netdev))
1610 return -EBUSY;
1611 } else {
1612 nic->set_mac_pending = true;
1613 }
1614
1615 return 0;
1616 }
1617
1618 void nicvf_update_lmac_stats(struct nicvf *nic)
1619 {
1620 int stat = 0;
1621 union nic_mbx mbx = {};
1622
1623 if (!netif_running(nic->netdev))
1624 return;
1625
1626 mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1627 mbx.bgx_stats.vf_id = nic->vf_id;
1628 /* Rx stats */
1629 mbx.bgx_stats.rx = 1;
1630 while (stat < BGX_RX_STATS_COUNT) {
1631 mbx.bgx_stats.idx = stat;
1632 if (nicvf_send_msg_to_pf(nic, &mbx))
1633 return;
1634 stat++;
1635 }
1636
1637 stat = 0;
1638
1639 /* Tx stats */
1640 mbx.bgx_stats.rx = 0;
1641 while (stat < BGX_TX_STATS_COUNT) {
1642 mbx.bgx_stats.idx = stat;
1643 if (nicvf_send_msg_to_pf(nic, &mbx))
1644 return;
1645 stat++;
1646 }
1647 }
1648
1649 void nicvf_update_stats(struct nicvf *nic)
1650 {
1651 int qidx, cpu;
1652 u64 tmp_stats = 0;
1653 struct nicvf_hw_stats *stats = &nic->hw_stats;
1654 struct nicvf_drv_stats *drv_stats;
1655 struct queue_set *qs = nic->qs;
1656
1657 #define GET_RX_STATS(reg) \
1658 nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1659 #define GET_TX_STATS(reg) \
1660 nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1661
1662 stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1663 stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1664 stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1665 stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1666 stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1667 stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1668 stats->rx_drop_red = GET_RX_STATS(RX_RED);
1669 stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1670 stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1671 stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1672 stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1673 stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1674 stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1675 stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1676
1677 stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1678 stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1679 stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1680 stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1681 stats->tx_drops = GET_TX_STATS(TX_DROP);
1682
1683 /* On T88 pass 2.0, the dummy SQE added for TSO notification
1684 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1685 * pointed by dummy SQE and results in tx_drops counter being
1686 * incremented. Subtracting it from tx_tso counter will give
1687 * exact tx_drops counter.
1688 */
1689 if (nic->t88 && nic->hw_tso) {
1690 for_each_possible_cpu(cpu) {
1691 drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1692 tmp_stats += drv_stats->tx_tso;
1693 }
1694 stats->tx_drops = tmp_stats - stats->tx_drops;
1695 }
1696 stats->tx_frames = stats->tx_ucast_frames +
1697 stats->tx_bcast_frames +
1698 stats->tx_mcast_frames;
1699 stats->rx_frames = stats->rx_ucast_frames +
1700 stats->rx_bcast_frames +
1701 stats->rx_mcast_frames;
1702 stats->rx_drops = stats->rx_drop_red +
1703 stats->rx_drop_overrun;
1704
1705 /* Update RQ and SQ stats */
1706 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1707 nicvf_update_rq_stats(nic, qidx);
1708 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1709 nicvf_update_sq_stats(nic, qidx);
1710 }
1711
1712 static void nicvf_get_stats64(struct net_device *netdev,
1713 struct rtnl_link_stats64 *stats)
1714 {
1715 struct nicvf *nic = netdev_priv(netdev);
1716 struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1717
1718 nicvf_update_stats(nic);
1719
1720 stats->rx_bytes = hw_stats->rx_bytes;
1721 stats->rx_packets = hw_stats->rx_frames;
1722 stats->rx_dropped = hw_stats->rx_drops;
1723 stats->multicast = hw_stats->rx_mcast_frames;
1724
1725 stats->tx_bytes = hw_stats->tx_bytes;
1726 stats->tx_packets = hw_stats->tx_frames;
1727 stats->tx_dropped = hw_stats->tx_drops;
1728
1729 }
1730
1731 static void nicvf_tx_timeout(struct net_device *dev)
1732 {
1733 struct nicvf *nic = netdev_priv(dev);
1734
1735 netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1736
1737 this_cpu_inc(nic->drv_stats->tx_timeout);
1738 schedule_work(&nic->reset_task);
1739 }
1740
1741 static void nicvf_reset_task(struct work_struct *work)
1742 {
1743 struct nicvf *nic;
1744
1745 nic = container_of(work, struct nicvf, reset_task);
1746
1747 if (!netif_running(nic->netdev))
1748 return;
1749
1750 nicvf_stop(nic->netdev);
1751 nicvf_open(nic->netdev);
1752 netif_trans_update(nic->netdev);
1753 }
1754
1755 static int nicvf_config_loopback(struct nicvf *nic,
1756 netdev_features_t features)
1757 {
1758 union nic_mbx mbx = {};
1759
1760 mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1761 mbx.lbk.vf_id = nic->vf_id;
1762 mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1763
1764 return nicvf_send_msg_to_pf(nic, &mbx);
1765 }
1766
1767 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1768 netdev_features_t features)
1769 {
1770 struct nicvf *nic = netdev_priv(netdev);
1771
1772 if ((features & NETIF_F_LOOPBACK) &&
1773 netif_running(netdev) && !nic->loopback_supported)
1774 features &= ~NETIF_F_LOOPBACK;
1775
1776 return features;
1777 }
1778
1779 static int nicvf_set_features(struct net_device *netdev,
1780 netdev_features_t features)
1781 {
1782 struct nicvf *nic = netdev_priv(netdev);
1783 netdev_features_t changed = features ^ netdev->features;
1784
1785 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1786 nicvf_config_vlan_stripping(nic, features);
1787
1788 if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1789 return nicvf_config_loopback(nic, features);
1790
1791 return 0;
1792 }
1793
1794 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1795 {
1796 u8 cq_count, txq_count;
1797
1798 /* Set XDP Tx queue count same as Rx queue count */
1799 if (!bpf_attached)
1800 nic->xdp_tx_queues = 0;
1801 else
1802 nic->xdp_tx_queues = nic->rx_queues;
1803
1804 /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1805 * needs to be allocated, check how many.
1806 */
1807 txq_count = nic->xdp_tx_queues + nic->tx_queues;
1808 cq_count = max(nic->rx_queues, txq_count);
1809 if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1810 nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1811 nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1812 } else {
1813 nic->sqs_count = 0;
1814 }
1815
1816 /* Set primary Qset's resources */
1817 nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1818 nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1819 nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1820
1821 /* Update stack */
1822 nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1823 }
1824
1825 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1826 {
1827 struct net_device *dev = nic->netdev;
1828 bool if_up = netif_running(nic->netdev);
1829 struct bpf_prog *old_prog;
1830 bool bpf_attached = false;
1831 int ret = 0;
1832
1833 /* For now just support only the usual MTU sized frames */
1834 if (prog && (dev->mtu > 1500)) {
1835 netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1836 dev->mtu);
1837 return -EOPNOTSUPP;
1838 }
1839
1840 /* ALL SQs attached to CQs i.e same as RQs, are treated as
1841 * XDP Tx queues and more Tx queues are allocated for
1842 * network stack to send pkts out.
1843 *
1844 * No of Tx queues are either same as Rx queues or whatever
1845 * is left in max no of queues possible.
1846 */
1847 if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1848 netdev_warn(dev,
1849 "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1850 nic->max_queues);
1851 return -ENOMEM;
1852 }
1853
1854 if (if_up)
1855 nicvf_stop(nic->netdev);
1856
1857 old_prog = xchg(&nic->xdp_prog, prog);
1858 /* Detach old prog, if any */
1859 if (old_prog)
1860 bpf_prog_put(old_prog);
1861
1862 if (nic->xdp_prog) {
1863 /* Attach BPF program */
1864 nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1865 if (!IS_ERR(nic->xdp_prog)) {
1866 bpf_attached = true;
1867 } else {
1868 ret = PTR_ERR(nic->xdp_prog);
1869 nic->xdp_prog = NULL;
1870 }
1871 }
1872
1873 /* Calculate Tx queues needed for XDP and network stack */
1874 nicvf_set_xdp_queues(nic, bpf_attached);
1875
1876 if (if_up) {
1877 /* Reinitialize interface, clean slate */
1878 nicvf_open(nic->netdev);
1879 netif_trans_update(nic->netdev);
1880 }
1881
1882 return ret;
1883 }
1884
1885 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1886 {
1887 struct nicvf *nic = netdev_priv(netdev);
1888
1889 /* To avoid checks while retrieving buffer address from CQE_RX,
1890 * do not support XDP for T88 pass1.x silicons which are anyway
1891 * not in use widely.
1892 */
1893 if (pass1_silicon(nic->pdev))
1894 return -EOPNOTSUPP;
1895
1896 switch (xdp->command) {
1897 case XDP_SETUP_PROG:
1898 return nicvf_xdp_setup(nic, xdp->prog);
1899 case XDP_QUERY_PROG:
1900 xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1901 return 0;
1902 default:
1903 return -EINVAL;
1904 }
1905 }
1906
1907 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1908 {
1909 struct hwtstamp_config config;
1910 struct nicvf *nic = netdev_priv(netdev);
1911
1912 if (!nic->ptp_clock)
1913 return -ENODEV;
1914
1915 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1916 return -EFAULT;
1917
1918 /* reserved for future extensions */
1919 if (config.flags)
1920 return -EINVAL;
1921
1922 switch (config.tx_type) {
1923 case HWTSTAMP_TX_OFF:
1924 case HWTSTAMP_TX_ON:
1925 break;
1926 default:
1927 return -ERANGE;
1928 }
1929
1930 switch (config.rx_filter) {
1931 case HWTSTAMP_FILTER_NONE:
1932 nic->hw_rx_tstamp = false;
1933 break;
1934 case HWTSTAMP_FILTER_ALL:
1935 case HWTSTAMP_FILTER_SOME:
1936 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1937 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1938 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1939 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1940 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1941 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1942 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1943 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1944 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1945 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1946 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1947 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1948 nic->hw_rx_tstamp = true;
1949 config.rx_filter = HWTSTAMP_FILTER_ALL;
1950 break;
1951 default:
1952 return -ERANGE;
1953 }
1954
1955 if (netif_running(netdev))
1956 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1957
1958 if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1959 return -EFAULT;
1960
1961 return 0;
1962 }
1963
1964 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1965 {
1966 switch (cmd) {
1967 case SIOCSHWTSTAMP:
1968 return nicvf_config_hwtstamp(netdev, req);
1969 default:
1970 return -EOPNOTSUPP;
1971 }
1972 }
1973
1974 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1975 struct nicvf *nic)
1976 {
1977 union nic_mbx mbx = {};
1978 int idx;
1979
1980 /* From the inside of VM code flow we have only 128 bits memory
1981 * available to send message to host's PF, so send all mc addrs
1982 * one by one, starting from flush command in case if kernel
1983 * requests to configure specific MAC filtering
1984 */
1985
1986 /* flush DMAC filters and reset RX mode */
1987 mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
1988 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
1989 goto free_mc;
1990
1991 if (mode & BGX_XCAST_MCAST_FILTER) {
1992 /* once enabling filtering, we need to signal to PF to add
1993 * its' own LMAC to the filter to accept packets for it.
1994 */
1995 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
1996 mbx.xcast.mac = 0;
1997 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
1998 goto free_mc;
1999 }
2000
2001 /* check if we have any specific MACs to be added to PF DMAC filter */
2002 if (mc_addrs) {
2003 /* now go through kernel list of MACs and add them one by one */
2004 for (idx = 0; idx < mc_addrs->count; idx++) {
2005 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2006 mbx.xcast.mac = mc_addrs->mc[idx];
2007 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2008 goto free_mc;
2009 }
2010 }
2011
2012 /* and finally set rx mode for PF accordingly */
2013 mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
2014 mbx.xcast.mode = mode;
2015
2016 nicvf_send_msg_to_pf(nic, &mbx);
2017 free_mc:
2018 kfree(mc_addrs);
2019 }
2020
2021 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
2022 {
2023 struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
2024 work);
2025 struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
2026 u8 mode;
2027 struct xcast_addr_list *mc;
2028
2029 if (!vf_work)
2030 return;
2031
2032 /* Save message data locally to prevent them from
2033 * being overwritten by next ndo_set_rx_mode call().
2034 */
2035 spin_lock(&nic->rx_mode_wq_lock);
2036 mode = vf_work->mode;
2037 mc = vf_work->mc;
2038 vf_work->mc = NULL;
2039 spin_unlock(&nic->rx_mode_wq_lock);
2040
2041 __nicvf_set_rx_mode_task(mode, mc, nic);
2042 }
2043
2044 static void nicvf_set_rx_mode(struct net_device *netdev)
2045 {
2046 struct nicvf *nic = netdev_priv(netdev);
2047 struct netdev_hw_addr *ha;
2048 struct xcast_addr_list *mc_list = NULL;
2049 u8 mode = 0;
2050
2051 if (netdev->flags & IFF_PROMISC) {
2052 mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2053 } else {
2054 if (netdev->flags & IFF_BROADCAST)
2055 mode |= BGX_XCAST_BCAST_ACCEPT;
2056
2057 if (netdev->flags & IFF_ALLMULTI) {
2058 mode |= BGX_XCAST_MCAST_ACCEPT;
2059 } else if (netdev->flags & IFF_MULTICAST) {
2060 mode |= BGX_XCAST_MCAST_FILTER;
2061 /* here we need to copy mc addrs */
2062 if (netdev_mc_count(netdev)) {
2063 mc_list = kmalloc(offsetof(typeof(*mc_list),
2064 mc[netdev_mc_count(netdev)]),
2065 GFP_ATOMIC);
2066 if (unlikely(!mc_list))
2067 return;
2068 mc_list->count = 0;
2069 netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2070 mc_list->mc[mc_list->count] =
2071 ether_addr_to_u64(ha->addr);
2072 mc_list->count++;
2073 }
2074 }
2075 }
2076 }
2077 spin_lock(&nic->rx_mode_wq_lock);
2078 kfree(nic->rx_mode_work.mc);
2079 nic->rx_mode_work.mc = mc_list;
2080 nic->rx_mode_work.mode = mode;
2081 queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work);
2082 spin_unlock(&nic->rx_mode_wq_lock);
2083 }
2084
2085 static const struct net_device_ops nicvf_netdev_ops = {
2086 .ndo_open = nicvf_open,
2087 .ndo_stop = nicvf_stop,
2088 .ndo_start_xmit = nicvf_xmit,
2089 .ndo_change_mtu = nicvf_change_mtu,
2090 .ndo_set_mac_address = nicvf_set_mac_address,
2091 .ndo_get_stats64 = nicvf_get_stats64,
2092 .ndo_tx_timeout = nicvf_tx_timeout,
2093 .ndo_fix_features = nicvf_fix_features,
2094 .ndo_set_features = nicvf_set_features,
2095 .ndo_bpf = nicvf_xdp,
2096 .ndo_do_ioctl = nicvf_ioctl,
2097 .ndo_set_rx_mode = nicvf_set_rx_mode,
2098 };
2099
2100 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2101 {
2102 struct device *dev = &pdev->dev;
2103 struct net_device *netdev;
2104 struct nicvf *nic;
2105 int err, qcount;
2106 u16 sdevid;
2107 struct cavium_ptp *ptp_clock;
2108
2109 ptp_clock = cavium_ptp_get();
2110 if (IS_ERR(ptp_clock)) {
2111 if (PTR_ERR(ptp_clock) == -ENODEV)
2112 /* In virtualized environment we proceed without ptp */
2113 ptp_clock = NULL;
2114 else
2115 return PTR_ERR(ptp_clock);
2116 }
2117
2118 err = pci_enable_device(pdev);
2119 if (err) {
2120 dev_err(dev, "Failed to enable PCI device\n");
2121 return err;
2122 }
2123
2124 err = pci_request_regions(pdev, DRV_NAME);
2125 if (err) {
2126 dev_err(dev, "PCI request regions failed 0x%x\n", err);
2127 goto err_disable_device;
2128 }
2129
2130 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2131 if (err) {
2132 dev_err(dev, "Unable to get usable DMA configuration\n");
2133 goto err_release_regions;
2134 }
2135
2136 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2137 if (err) {
2138 dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
2139 goto err_release_regions;
2140 }
2141
2142 qcount = netif_get_num_default_rss_queues();
2143
2144 /* Restrict multiqset support only for host bound VFs */
2145 if (pdev->is_virtfn) {
2146 /* Set max number of queues per VF */
2147 qcount = min_t(int, num_online_cpus(),
2148 (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2149 }
2150
2151 netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2152 if (!netdev) {
2153 err = -ENOMEM;
2154 goto err_release_regions;
2155 }
2156
2157 pci_set_drvdata(pdev, netdev);
2158
2159 SET_NETDEV_DEV(netdev, &pdev->dev);
2160
2161 nic = netdev_priv(netdev);
2162 nic->netdev = netdev;
2163 nic->pdev = pdev;
2164 nic->pnicvf = nic;
2165 nic->max_queues = qcount;
2166 /* If no of CPUs are too low, there won't be any queues left
2167 * for XDP_TX, hence double it.
2168 */
2169 if (!nic->t88)
2170 nic->max_queues *= 2;
2171 nic->ptp_clock = ptp_clock;
2172
2173 /* MAP VF's configuration registers */
2174 nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2175 if (!nic->reg_base) {
2176 dev_err(dev, "Cannot map config register space, aborting\n");
2177 err = -ENOMEM;
2178 goto err_free_netdev;
2179 }
2180
2181 nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2182 if (!nic->drv_stats) {
2183 err = -ENOMEM;
2184 goto err_free_netdev;
2185 }
2186
2187 err = nicvf_set_qset_resources(nic);
2188 if (err)
2189 goto err_free_netdev;
2190
2191 /* Check if PF is alive and get MAC address for this VF */
2192 err = nicvf_register_misc_interrupt(nic);
2193 if (err)
2194 goto err_free_netdev;
2195
2196 nicvf_send_vf_struct(nic);
2197
2198 if (!pass1_silicon(nic->pdev))
2199 nic->hw_tso = true;
2200
2201 /* Get iommu domain for iova to physical addr conversion */
2202 nic->iommu_domain = iommu_get_domain_for_dev(dev);
2203
2204 pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2205 if (sdevid == 0xA134)
2206 nic->t88 = true;
2207
2208 /* Check if this VF is in QS only mode */
2209 if (nic->sqs_mode)
2210 return 0;
2211
2212 err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2213 if (err)
2214 goto err_unregister_interrupts;
2215
2216 netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2217 NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2218 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2219 NETIF_F_HW_VLAN_CTAG_RX);
2220
2221 netdev->hw_features |= NETIF_F_RXHASH;
2222
2223 netdev->features |= netdev->hw_features;
2224 netdev->hw_features |= NETIF_F_LOOPBACK;
2225
2226 netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2227 NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2228
2229 netdev->netdev_ops = &nicvf_netdev_ops;
2230 netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2231
2232 /* MTU range: 64 - 9200 */
2233 netdev->min_mtu = NIC_HW_MIN_FRS;
2234 netdev->max_mtu = NIC_HW_MAX_FRS;
2235
2236 INIT_WORK(&nic->reset_task, nicvf_reset_task);
2237
2238 nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d",
2239 WQ_MEM_RECLAIM,
2240 nic->vf_id);
2241 if (!nic->nicvf_rx_mode_wq) {
2242 err = -ENOMEM;
2243 dev_err(dev, "Failed to allocate work queue\n");
2244 goto err_unregister_interrupts;
2245 }
2246
2247 INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2248 spin_lock_init(&nic->rx_mode_wq_lock);
2249 mutex_init(&nic->rx_mode_mtx);
2250
2251 err = register_netdev(netdev);
2252 if (err) {
2253 dev_err(dev, "Failed to register netdevice\n");
2254 goto err_unregister_interrupts;
2255 }
2256
2257 nic->msg_enable = debug;
2258
2259 nicvf_set_ethtool_ops(netdev);
2260
2261 return 0;
2262
2263 err_unregister_interrupts:
2264 nicvf_unregister_interrupts(nic);
2265 err_free_netdev:
2266 pci_set_drvdata(pdev, NULL);
2267 if (nic->drv_stats)
2268 free_percpu(nic->drv_stats);
2269 free_netdev(netdev);
2270 err_release_regions:
2271 pci_release_regions(pdev);
2272 err_disable_device:
2273 pci_disable_device(pdev);
2274 return err;
2275 }
2276
2277 static void nicvf_remove(struct pci_dev *pdev)
2278 {
2279 struct net_device *netdev = pci_get_drvdata(pdev);
2280 struct nicvf *nic;
2281 struct net_device *pnetdev;
2282
2283 if (!netdev)
2284 return;
2285
2286 nic = netdev_priv(netdev);
2287 pnetdev = nic->pnicvf->netdev;
2288
2289 /* Check if this Qset is assigned to different VF.
2290 * If yes, clean primary and all secondary Qsets.
2291 */
2292 if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2293 unregister_netdev(pnetdev);
2294 if (nic->nicvf_rx_mode_wq) {
2295 destroy_workqueue(nic->nicvf_rx_mode_wq);
2296 nic->nicvf_rx_mode_wq = NULL;
2297 }
2298 nicvf_unregister_interrupts(nic);
2299 pci_set_drvdata(pdev, NULL);
2300 if (nic->drv_stats)
2301 free_percpu(nic->drv_stats);
2302 cavium_ptp_put(nic->ptp_clock);
2303 free_netdev(netdev);
2304 pci_release_regions(pdev);
2305 pci_disable_device(pdev);
2306 }
2307
2308 static void nicvf_shutdown(struct pci_dev *pdev)
2309 {
2310 nicvf_remove(pdev);
2311 }
2312
2313 static struct pci_driver nicvf_driver = {
2314 .name = DRV_NAME,
2315 .id_table = nicvf_id_table,
2316 .probe = nicvf_probe,
2317 .remove = nicvf_remove,
2318 .shutdown = nicvf_shutdown,
2319 };
2320
2321 static int __init nicvf_init_module(void)
2322 {
2323 pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2324 return pci_register_driver(&nicvf_driver);
2325 }
2326
2327 static void __exit nicvf_cleanup_module(void)
2328 {
2329 pci_unregister_driver(&nicvf_driver);
2330 }
2331
2332 module_init(nicvf_init_module);
2333 module_exit(nicvf_cleanup_module);