]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/sge.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60
61 /*
62 * Rx buffer size. We use largish buffers if possible but settle for single
63 * pages under memory shortage.
64 */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES 256
73 #define RX_PULL_LEN 128
74
75 /*
76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78 */
79 #define RX_PKT_SKB_LEN 512
80
81 /*
82 * Max number of Tx descriptors we clean up at a time. Should be modest as
83 * freeing skbs isn't cheap and it happens while holding locks. We just need
84 * to free packets faster than they arrive, we eventually catch up and keep
85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
86 * also match the CIDX Flush Threshold.
87 */
88 #define MAX_TX_RECLAIM 32
89
90 /*
91 * Max number of Rx buffers we replenish at a time. Again keep this modest,
92 * allocating buffers isn't cheap either.
93 */
94 #define MAX_RX_REFILL 16U
95
96 /*
97 * Period of the Rx queue check timer. This timer is infrequent as it has
98 * something to do only when the system experiences severe memory shortage.
99 */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101
102 /*
103 * Period of the Tx queue check timer.
104 */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106
107 /*
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
109 */
110 #define MAX_TIMER_TX_RECLAIM 100
111
112 /*
113 * Timer index used when backing off due to memory shortage.
114 */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116
117 /*
118 * Suspension threshold for non-Ethernet Tx queues. We require enough room
119 * for a full sized WR.
120 */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122
123 /*
124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125 * into a WR.
126 */
127 #define MAX_IMM_TX_PKT_LEN 256
128
129 /*
130 * Max size of a WR sent through a control Tx queue.
131 */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133
134 struct rx_sw_desc { /* SW state per Rx descriptor */
135 struct page *page;
136 dma_addr_t dma_addr;
137 };
138
139 /*
140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
142 * We could easily support more but there doesn't seem to be much need for
143 * that ...
144 */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 unsigned int mtu)
150 {
151 struct sge *s = &adapter->sge;
152
153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158
159 /*
160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
161 * these to specify the buffer size as an index into the SGE Free List Buffer
162 * Size register array. We also use bit 4, when the buffer has been unmapped
163 * for DMA, but this is of course never sent to the hardware and is only used
164 * to prevent double unmappings. All of the above requires that the Free List
165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
167 * Free List Buffer alignment is 32 bytes, this works out for us ...
168 */
169 enum {
170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
173
174 /*
175 * XXX We shouldn't depend on being able to use these indices.
176 * XXX Especially when some other Master PF has initialized the
177 * XXX adapter or we use the Firmware Configuration File. We
178 * XXX should really search through the Host Buffer Size register
179 * XXX array for the appropriately sized buffer indices.
180 */
181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
183
184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
186 };
187
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK 1
190
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200
201 /**
202 * txq_avail - return the number of available slots in a Tx queue
203 * @q: the Tx queue
204 *
205 * Returns the number of descriptors in a Tx queue available to write new
206 * packets.
207 */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 return q->size - 1 - q->in_use;
211 }
212
213 /**
214 * fl_cap - return the capacity of a free-buffer list
215 * @fl: the FL
216 *
217 * Returns the capacity of a free-buffer list. The capacity is less than
218 * the size because one descriptor needs to be left unpopulated, otherwise
219 * HW will think the FL is empty.
220 */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 return fl->size - 8; /* 1 descriptor = 8 buffers */
224 }
225
226 /**
227 * fl_starving - return whether a Free List is starving.
228 * @adapter: pointer to the adapter
229 * @fl: the Free List
230 *
231 * Tests specified Free List to see whether the number of buffers
232 * available to the hardware has falled below our "starvation"
233 * threshold.
234 */
235 static inline bool fl_starving(const struct adapter *adapter,
236 const struct sge_fl *fl)
237 {
238 const struct sge *s = &adapter->sge;
239
240 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 dma_addr_t *addr)
245 {
246 const skb_frag_t *fp, *end;
247 const struct skb_shared_info *si;
248
249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 if (dma_mapping_error(dev, *addr))
251 goto out_err;
252
253 si = skb_shinfo(skb);
254 end = &si->frags[si->nr_frags];
255
256 for (fp = si->frags; fp < end; fp++) {
257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 DMA_TO_DEVICE);
259 if (dma_mapping_error(dev, *addr))
260 goto unwind;
261 }
262 return 0;
263
264 unwind:
265 while (fp-- > si->frags)
266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267
268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 const dma_addr_t *addr)
276 {
277 const skb_frag_t *fp, *end;
278 const struct skb_shared_info *si;
279
280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281
282 si = skb_shinfo(skb);
283 end = &si->frags[si->nr_frags];
284 for (fp = si->frags; fp < end; fp++)
285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290 * deferred_unmap_destructor - unmap a packet when it is freed
291 * @skb: the packet
292 *
293 * This is the packet destructor used for Tx packets that need to remain
294 * mapped until they are freed rather than until their Tx descriptors are
295 * freed.
296 */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302
303 /**
304 * free_tx_desc - reclaims Tx descriptors and their buffers
305 * @adapter: the adapter
306 * @q: the Tx queue to reclaim descriptors from
307 * @n: the number of descriptors to reclaim
308 * @unmap: whether the buffers should be unmapped for DMA
309 *
310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311 * Tx buffers. Called with the Tx queue lock held.
312 */
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 unsigned int n, bool unmap)
315 {
316 unsigned int cidx = q->cidx;
317 struct tx_sw_desc *d;
318
319 d = &q->sdesc[cidx];
320 while (n--) {
321 if (d->skb) { /* an SGL is present */
322 if (unmap && d->addr[0]) {
323 unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 memset(d->addr, 0, sizeof(d->addr));
325 }
326 dev_consume_skb_any(d->skb);
327 d->skb = NULL;
328 }
329 ++d;
330 if (++cidx == q->size) {
331 cidx = 0;
332 d = q->sdesc;
333 }
334 }
335 q->cidx = cidx;
336 }
337
338 /*
339 * Return the number of reclaimable descriptors in a Tx queue.
340 */
341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 hw_cidx -= q->cidx;
345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347
348 /**
349 * reclaim_completed_tx - reclaims completed TX Descriptors
350 * @adap: the adapter
351 * @q: the Tx queue to reclaim completed descriptors from
352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353 * @unmap: whether the buffers should be unmapped for DMA
354 *
355 * Reclaims Tx Descriptors that the SGE has indicated it has processed,
356 * and frees the associated buffers if possible. If @max == -1, then
357 * we'll use a defaiult maximum. Called with the TX Queue locked.
358 */
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 int maxreclaim, bool unmap)
361 {
362 int reclaim = reclaimable(q);
363
364 if (reclaim) {
365 /*
366 * Limit the amount of clean up work we do at a time to keep
367 * the Tx lock hold time O(1).
368 */
369 if (maxreclaim < 0)
370 maxreclaim = MAX_TX_RECLAIM;
371 if (reclaim > maxreclaim)
372 reclaim = maxreclaim;
373
374 free_tx_desc(adap, q, reclaim, unmap);
375 q->in_use -= reclaim;
376 }
377
378 return reclaim;
379 }
380
381 /**
382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383 * @adap: the adapter
384 * @q: the Tx queue to reclaim completed descriptors from
385 * @unmap: whether the buffers should be unmapped for DMA
386 *
387 * Reclaims Tx descriptors that the SGE has indicated it has processed,
388 * and frees the associated buffers if possible. Called with the Tx
389 * queue locked.
390 */
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 bool unmap)
393 {
394 (void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397
398 static inline int get_buf_size(struct adapter *adapter,
399 const struct rx_sw_desc *d)
400 {
401 struct sge *s = &adapter->sge;
402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 int buf_size;
404
405 switch (rx_buf_size_idx) {
406 case RX_SMALL_PG_BUF:
407 buf_size = PAGE_SIZE;
408 break;
409
410 case RX_LARGE_PG_BUF:
411 buf_size = PAGE_SIZE << s->fl_pg_order;
412 break;
413
414 case RX_SMALL_MTU_BUF:
415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 break;
417
418 case RX_LARGE_MTU_BUF:
419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 break;
421
422 default:
423 BUG();
424 }
425
426 return buf_size;
427 }
428
429 /**
430 * free_rx_bufs - free the Rx buffers on an SGE free list
431 * @adap: the adapter
432 * @q: the SGE free list to free buffers from
433 * @n: how many buffers to free
434 *
435 * Release the next @n buffers on an SGE free-buffer Rx queue. The
436 * buffers must be made inaccessible to HW before calling this function.
437 */
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 while (n--) {
441 struct rx_sw_desc *d = &q->sdesc[q->cidx];
442
443 if (is_buf_mapped(d))
444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 get_buf_size(adap, d),
446 PCI_DMA_FROMDEVICE);
447 put_page(d->page);
448 d->page = NULL;
449 if (++q->cidx == q->size)
450 q->cidx = 0;
451 q->avail--;
452 }
453 }
454
455 /**
456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457 * @adap: the adapter
458 * @q: the SGE free list
459 *
460 * Unmap the current buffer on an SGE free-buffer Rx queue. The
461 * buffer must be made inaccessible to HW before calling this function.
462 *
463 * This is similar to @free_rx_bufs above but does not free the buffer.
464 * Do note that the FL still loses any further access to the buffer.
465 */
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 struct rx_sw_desc *d = &q->sdesc[q->cidx];
469
470 if (is_buf_mapped(d))
471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 d->page = NULL;
474 if (++q->cidx == q->size)
475 q->cidx = 0;
476 q->avail--;
477 }
478
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 if (q->pend_cred >= 8) {
482 u32 val = adap->params.arch.sge_fl_db;
483
484 if (is_t4(adap->params.chip))
485 val |= PIDX_V(q->pend_cred / 8);
486 else
487 val |= PIDX_T5_V(q->pend_cred / 8);
488
489 /* Make sure all memory writes to the Free List queue are
490 * committed before we tell the hardware about them.
491 */
492 wmb();
493
494 /* If we don't have access to the new User Doorbell (T5+), use
495 * the old doorbell mechanism; otherwise use the new BAR2
496 * mechanism.
497 */
498 if (unlikely(q->bar2_addr == NULL)) {
499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 val | QID_V(q->cntxt_id));
501 } else {
502 writel(val | QID_V(q->bar2_qid),
503 q->bar2_addr + SGE_UDB_KDOORBELL);
504
505 /* This Write memory Barrier will force the write to
506 * the User Doorbell area to be flushed.
507 */
508 wmb();
509 }
510 q->pend_cred &= 7;
511 }
512 }
513
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 dma_addr_t mapping)
516 {
517 sd->page = pg;
518 sd->dma_addr = mapping; /* includes size low bits */
519 }
520
521 /**
522 * refill_fl - refill an SGE Rx buffer ring
523 * @adap: the adapter
524 * @q: the ring to refill
525 * @n: the number of new buffers to allocate
526 * @gfp: the gfp flags for the allocations
527 *
528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529 * allocated with the supplied gfp flags. The caller must assure that
530 * @n does not exceed the queue's capacity. If afterwards the queue is
531 * found critically low mark it as starving in the bitmap of starving FLs.
532 *
533 * Returns the number of buffers allocated.
534 */
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 gfp_t gfp)
537 {
538 struct sge *s = &adap->sge;
539 struct page *pg;
540 dma_addr_t mapping;
541 unsigned int cred = q->avail;
542 __be64 *d = &q->desc[q->pidx];
543 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 int node;
545
546 #ifdef CONFIG_DEBUG_FS
547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 goto out;
549 #endif
550
551 gfp |= __GFP_NOWARN;
552 node = dev_to_node(adap->pdev_dev);
553
554 if (s->fl_pg_order == 0)
555 goto alloc_small_pages;
556
557 /*
558 * Prefer large buffers
559 */
560 while (n) {
561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 if (unlikely(!pg)) {
563 q->large_alloc_failed++;
564 break; /* fall back to single pages */
565 }
566
567 mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 PAGE_SIZE << s->fl_pg_order,
569 PCI_DMA_FROMDEVICE);
570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 __free_pages(pg, s->fl_pg_order);
572 q->mapping_err++;
573 goto out; /* do not try small pages for this error */
574 }
575 mapping |= RX_LARGE_PG_BUF;
576 *d++ = cpu_to_be64(mapping);
577
578 set_rx_sw_desc(sd, pg, mapping);
579 sd++;
580
581 q->avail++;
582 if (++q->pidx == q->size) {
583 q->pidx = 0;
584 sd = q->sdesc;
585 d = q->desc;
586 }
587 n--;
588 }
589
590 alloc_small_pages:
591 while (n--) {
592 pg = alloc_pages_node(node, gfp, 0);
593 if (unlikely(!pg)) {
594 q->alloc_failed++;
595 break;
596 }
597
598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 PCI_DMA_FROMDEVICE);
600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 put_page(pg);
602 q->mapping_err++;
603 goto out;
604 }
605 *d++ = cpu_to_be64(mapping);
606
607 set_rx_sw_desc(sd, pg, mapping);
608 sd++;
609
610 q->avail++;
611 if (++q->pidx == q->size) {
612 q->pidx = 0;
613 sd = q->sdesc;
614 d = q->desc;
615 }
616 }
617
618 out: cred = q->avail - cred;
619 q->pend_cred += cred;
620 ring_fl_db(adap, q);
621
622 if (unlikely(fl_starving(adap, q))) {
623 smp_wmb();
624 q->low++;
625 set_bit(q->cntxt_id - adap->sge.egr_start,
626 adap->sge.starving_fl);
627 }
628
629 return cred;
630 }
631
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 GFP_ATOMIC);
636 }
637
638 /**
639 * alloc_ring - allocate resources for an SGE descriptor ring
640 * @dev: the PCI device's core device
641 * @nelem: the number of descriptors
642 * @elem_size: the size of each descriptor
643 * @sw_size: the size of the SW state associated with each ring element
644 * @phys: the physical address of the allocated ring
645 * @metadata: address of the array holding the SW state for the ring
646 * @stat_size: extra space in HW ring for status information
647 * @node: preferred node for memory allocations
648 *
649 * Allocates resources for an SGE descriptor ring, such as Tx queues,
650 * free buffer lists, or response queues. Each SGE ring requires
651 * space for its HW descriptors plus, optionally, space for the SW state
652 * associated with each HW entry (the metadata). The function returns
653 * three values: the virtual address for the HW ring (the return value
654 * of the function), the bus address of the HW ring, and the address
655 * of the SW ring.
656 */
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 size_t sw_size, dma_addr_t *phys, void *metadata,
659 size_t stat_size, int node)
660 {
661 size_t len = nelem * elem_size + stat_size;
662 void *s = NULL;
663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664
665 if (!p)
666 return NULL;
667 if (sw_size) {
668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669
670 if (!s) {
671 dma_free_coherent(dev, len, p, *phys);
672 return NULL;
673 }
674 }
675 if (metadata)
676 *(void **)metadata = s;
677 return p;
678 }
679
680 /**
681 * sgl_len - calculates the size of an SGL of the given capacity
682 * @n: the number of SGL entries
683 *
684 * Calculates the number of flits needed for a scatter/gather list that
685 * can hold the given number of entries.
686 */
687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 * boundaries). If N is even, then Length[N+1] should be set to 0 and
695 * Address[N+1] is omitted.
696 *
697 * The following calculation incorporates all of the above. It's
698 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 * first two flits which include the DSGL header, Length0 and
700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 * (n-1) is odd ...
704 */
705 n--;
706 return (3 * n) / 2 + (n & 1) + 2;
707 }
708
709 /**
710 * flits_to_desc - returns the num of Tx descriptors for the given flits
711 * @n: the number of flits
712 *
713 * Returns the number of Tx descriptors needed for the supplied number
714 * of flits.
715 */
716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 return DIV_ROUND_UP(n, 8);
720 }
721
722 /**
723 * is_eth_imm - can an Ethernet packet be sent as immediate data?
724 * @skb: the packet
725 *
726 * Returns whether an Ethernet packet is small enough to fit as
727 * immediate data. Return value corresponds to headroom required.
728 */
729 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
730 {
731 int hdrlen = 0;
732
733 if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
734 chip_ver > CHELSIO_T5) {
735 hdrlen = sizeof(struct cpl_tx_tnl_lso);
736 hdrlen += sizeof(struct cpl_tx_pkt_core);
737 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
738 return 0;
739 } else {
740 hdrlen = skb_shinfo(skb)->gso_size ?
741 sizeof(struct cpl_tx_pkt_lso_core) : 0;
742 hdrlen += sizeof(struct cpl_tx_pkt);
743 }
744 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
745 return hdrlen;
746 return 0;
747 }
748
749 /**
750 * calc_tx_flits - calculate the number of flits for a packet Tx WR
751 * @skb: the packet
752 *
753 * Returns the number of flits needed for a Tx WR for the given Ethernet
754 * packet, including the needed WR and CPL headers.
755 */
756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
757 unsigned int chip_ver)
758 {
759 unsigned int flits;
760 int hdrlen = is_eth_imm(skb, chip_ver);
761
762 /* If the skb is small enough, we can pump it out as a work request
763 * with only immediate data. In that case we just have to have the
764 * TX Packet header plus the skb data in the Work Request.
765 */
766
767 if (hdrlen)
768 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
769
770 /* Otherwise, we're going to have to construct a Scatter gather list
771 * of the skb body and fragments. We also include the flits necessary
772 * for the TX Packet Work Request and CPL. We always have a firmware
773 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
774 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
775 * message or, if we're doing a Large Send Offload, an LSO CPL message
776 * with an embedded TX Packet Write CPL message.
777 */
778 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
779 if (skb_shinfo(skb)->gso_size) {
780 if (skb->encapsulation && chip_ver > CHELSIO_T5) {
781 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
782 sizeof(struct cpl_tx_tnl_lso);
783 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
784 u32 pkt_hdrlen;
785
786 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
787 skb_headlen(skb));
788 hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
789 round_up(pkt_hdrlen, 16);
790 } else {
791 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
792 sizeof(struct cpl_tx_pkt_lso_core);
793 }
794
795 hdrlen += sizeof(struct cpl_tx_pkt_core);
796 flits += (hdrlen / sizeof(__be64));
797 } else {
798 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
799 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
800 }
801 return flits;
802 }
803
804 /**
805 * calc_tx_descs - calculate the number of Tx descriptors for a packet
806 * @skb: the packet
807 *
808 * Returns the number of Tx descriptors needed for the given Ethernet
809 * packet, including the needed WR and CPL headers.
810 */
811 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
812 unsigned int chip_ver)
813 {
814 return flits_to_desc(calc_tx_flits(skb, chip_ver));
815 }
816
817 /**
818 * cxgb4_write_sgl - populate a scatter/gather list for a packet
819 * @skb: the packet
820 * @q: the Tx queue we are writing into
821 * @sgl: starting location for writing the SGL
822 * @end: points right after the end of the SGL
823 * @start: start offset into skb main-body data to include in the SGL
824 * @addr: the list of bus addresses for the SGL elements
825 *
826 * Generates a gather list for the buffers that make up a packet.
827 * The caller must provide adequate space for the SGL that will be written.
828 * The SGL includes all of the packet's page fragments and the data in its
829 * main body except for the first @start bytes. @sgl must be 16-byte
830 * aligned and within a Tx descriptor with available space. @end points
831 * right after the end of the SGL but does not account for any potential
832 * wrap around, i.e., @end > @sgl.
833 */
834 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
835 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
836 const dma_addr_t *addr)
837 {
838 unsigned int i, len;
839 struct ulptx_sge_pair *to;
840 const struct skb_shared_info *si = skb_shinfo(skb);
841 unsigned int nfrags = si->nr_frags;
842 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
843
844 len = skb_headlen(skb) - start;
845 if (likely(len)) {
846 sgl->len0 = htonl(len);
847 sgl->addr0 = cpu_to_be64(addr[0] + start);
848 nfrags++;
849 } else {
850 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
851 sgl->addr0 = cpu_to_be64(addr[1]);
852 }
853
854 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
855 ULPTX_NSGE_V(nfrags));
856 if (likely(--nfrags == 0))
857 return;
858 /*
859 * Most of the complexity below deals with the possibility we hit the
860 * end of the queue in the middle of writing the SGL. For this case
861 * only we create the SGL in a temporary buffer and then copy it.
862 */
863 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
864
865 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
866 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
867 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
868 to->addr[0] = cpu_to_be64(addr[i]);
869 to->addr[1] = cpu_to_be64(addr[++i]);
870 }
871 if (nfrags) {
872 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
873 to->len[1] = cpu_to_be32(0);
874 to->addr[0] = cpu_to_be64(addr[i + 1]);
875 }
876 if (unlikely((u8 *)end > (u8 *)q->stat)) {
877 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
878
879 if (likely(part0))
880 memcpy(sgl->sge, buf, part0);
881 part1 = (u8 *)end - (u8 *)q->stat;
882 memcpy(q->desc, (u8 *)buf + part0, part1);
883 end = (void *)q->desc + part1;
884 }
885 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
886 *end = 0;
887 }
888 EXPORT_SYMBOL(cxgb4_write_sgl);
889
890 /* This function copies 64 byte coalesced work request to
891 * memory mapped BAR2 space. For coalesced WR SGE fetches
892 * data from the FIFO instead of from Host.
893 */
894 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
895 {
896 int count = 8;
897
898 while (count) {
899 writeq(*src, dst);
900 src++;
901 dst++;
902 count--;
903 }
904 }
905
906 /**
907 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
908 * @adap: the adapter
909 * @q: the Tx queue
910 * @n: number of new descriptors to give to HW
911 *
912 * Ring the doorbel for a Tx queue.
913 */
914 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
915 {
916 /* Make sure that all writes to the TX Descriptors are committed
917 * before we tell the hardware about them.
918 */
919 wmb();
920
921 /* If we don't have access to the new User Doorbell (T5+), use the old
922 * doorbell mechanism; otherwise use the new BAR2 mechanism.
923 */
924 if (unlikely(q->bar2_addr == NULL)) {
925 u32 val = PIDX_V(n);
926 unsigned long flags;
927
928 /* For T4 we need to participate in the Doorbell Recovery
929 * mechanism.
930 */
931 spin_lock_irqsave(&q->db_lock, flags);
932 if (!q->db_disabled)
933 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
934 QID_V(q->cntxt_id) | val);
935 else
936 q->db_pidx_inc += n;
937 q->db_pidx = q->pidx;
938 spin_unlock_irqrestore(&q->db_lock, flags);
939 } else {
940 u32 val = PIDX_T5_V(n);
941
942 /* T4 and later chips share the same PIDX field offset within
943 * the doorbell, but T5 and later shrank the field in order to
944 * gain a bit for Doorbell Priority. The field was absurdly
945 * large in the first place (14 bits) so we just use the T5
946 * and later limits and warn if a Queue ID is too large.
947 */
948 WARN_ON(val & DBPRIO_F);
949
950 /* If we're only writing a single TX Descriptor and we can use
951 * Inferred QID registers, we can use the Write Combining
952 * Gather Buffer; otherwise we use the simple doorbell.
953 */
954 if (n == 1 && q->bar2_qid == 0) {
955 int index = (q->pidx
956 ? (q->pidx - 1)
957 : (q->size - 1));
958 u64 *wr = (u64 *)&q->desc[index];
959
960 cxgb_pio_copy((u64 __iomem *)
961 (q->bar2_addr + SGE_UDB_WCDOORBELL),
962 wr);
963 } else {
964 writel(val | QID_V(q->bar2_qid),
965 q->bar2_addr + SGE_UDB_KDOORBELL);
966 }
967
968 /* This Write Memory Barrier will force the write to the User
969 * Doorbell area to be flushed. This is needed to prevent
970 * writes on different CPUs for the same queue from hitting
971 * the adapter out of order. This is required when some Work
972 * Requests take the Write Combine Gather Buffer path (user
973 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
974 * take the traditional path where we simply increment the
975 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
976 * hardware DMA read the actual Work Request.
977 */
978 wmb();
979 }
980 }
981 EXPORT_SYMBOL(cxgb4_ring_tx_db);
982
983 /**
984 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
985 * @skb: the packet
986 * @q: the Tx queue where the packet will be inlined
987 * @pos: starting position in the Tx queue where to inline the packet
988 *
989 * Inline a packet's contents directly into Tx descriptors, starting at
990 * the given position within the Tx DMA ring.
991 * Most of the complexity of this operation is dealing with wrap arounds
992 * in the middle of the packet we want to inline.
993 */
994 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
995 const struct sge_txq *q, void *pos)
996 {
997 int left = (void *)q->stat - pos;
998 u64 *p;
999
1000 if (likely(skb->len <= left)) {
1001 if (likely(!skb->data_len))
1002 skb_copy_from_linear_data(skb, pos, skb->len);
1003 else
1004 skb_copy_bits(skb, 0, pos, skb->len);
1005 pos += skb->len;
1006 } else {
1007 skb_copy_bits(skb, 0, pos, left);
1008 skb_copy_bits(skb, left, q->desc, skb->len - left);
1009 pos = (void *)q->desc + (skb->len - left);
1010 }
1011
1012 /* 0-pad to multiple of 16 */
1013 p = PTR_ALIGN(pos, 8);
1014 if ((uintptr_t)p & 8)
1015 *p = 0;
1016 }
1017 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1018
1019 static void *inline_tx_skb_header(const struct sk_buff *skb,
1020 const struct sge_txq *q, void *pos,
1021 int length)
1022 {
1023 u64 *p;
1024 int left = (void *)q->stat - pos;
1025
1026 if (likely(length <= left)) {
1027 memcpy(pos, skb->data, length);
1028 pos += length;
1029 } else {
1030 memcpy(pos, skb->data, left);
1031 memcpy(q->desc, skb->data + left, length - left);
1032 pos = (void *)q->desc + (length - left);
1033 }
1034 /* 0-pad to multiple of 16 */
1035 p = PTR_ALIGN(pos, 8);
1036 if ((uintptr_t)p & 8) {
1037 *p = 0;
1038 return p + 1;
1039 }
1040 return p;
1041 }
1042
1043 /*
1044 * Figure out what HW csum a packet wants and return the appropriate control
1045 * bits.
1046 */
1047 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1048 {
1049 int csum_type;
1050 bool inner_hdr_csum = false;
1051 u16 proto, ver;
1052
1053 if (skb->encapsulation &&
1054 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1055 inner_hdr_csum = true;
1056
1057 if (inner_hdr_csum) {
1058 ver = inner_ip_hdr(skb)->version;
1059 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1060 inner_ipv6_hdr(skb)->nexthdr;
1061 } else {
1062 ver = ip_hdr(skb)->version;
1063 proto = (ver == 4) ? ip_hdr(skb)->protocol :
1064 ipv6_hdr(skb)->nexthdr;
1065 }
1066
1067 if (ver == 4) {
1068 if (proto == IPPROTO_TCP)
1069 csum_type = TX_CSUM_TCPIP;
1070 else if (proto == IPPROTO_UDP)
1071 csum_type = TX_CSUM_UDPIP;
1072 else {
1073 nocsum: /*
1074 * unknown protocol, disable HW csum
1075 * and hope a bad packet is detected
1076 */
1077 return TXPKT_L4CSUM_DIS_F;
1078 }
1079 } else {
1080 /*
1081 * this doesn't work with extension headers
1082 */
1083 if (proto == IPPROTO_TCP)
1084 csum_type = TX_CSUM_TCPIP6;
1085 else if (proto == IPPROTO_UDP)
1086 csum_type = TX_CSUM_UDPIP6;
1087 else
1088 goto nocsum;
1089 }
1090
1091 if (likely(csum_type >= TX_CSUM_TCPIP)) {
1092 int eth_hdr_len, l4_len;
1093 u64 hdr_len;
1094
1095 if (inner_hdr_csum) {
1096 /* This allows checksum offload for all encapsulated
1097 * packets like GRE etc..
1098 */
1099 l4_len = skb_inner_network_header_len(skb);
1100 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1101 } else {
1102 l4_len = skb_network_header_len(skb);
1103 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1104 }
1105 hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1106
1107 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1108 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1109 else
1110 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1111 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1112 } else {
1113 int start = skb_transport_offset(skb);
1114
1115 return TXPKT_CSUM_TYPE_V(csum_type) |
1116 TXPKT_CSUM_START_V(start) |
1117 TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1118 }
1119 }
1120
1121 static void eth_txq_stop(struct sge_eth_txq *q)
1122 {
1123 netif_tx_stop_queue(q->txq);
1124 q->q.stops++;
1125 }
1126
1127 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1128 {
1129 q->in_use += n;
1130 q->pidx += n;
1131 if (q->pidx >= q->size)
1132 q->pidx -= q->size;
1133 }
1134
1135 #ifdef CONFIG_CHELSIO_T4_FCOE
1136 static inline int
1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1138 const struct port_info *pi, u64 *cntrl)
1139 {
1140 const struct cxgb_fcoe *fcoe = &pi->fcoe;
1141
1142 if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1143 return 0;
1144
1145 if (skb->protocol != htons(ETH_P_FCOE))
1146 return 0;
1147
1148 skb_reset_mac_header(skb);
1149 skb->mac_len = sizeof(struct ethhdr);
1150
1151 skb_set_network_header(skb, skb->mac_len);
1152 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1153
1154 if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1155 return -ENOTSUPP;
1156
1157 /* FC CRC offload */
1158 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1159 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1160 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1161 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1162 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1163 return 0;
1164 }
1165 #endif /* CONFIG_CHELSIO_T4_FCOE */
1166
1167 /* Returns tunnel type if hardware supports offloading of the same.
1168 * It is called only for T5 and onwards.
1169 */
1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1171 {
1172 u8 l4_hdr = 0;
1173 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1174 struct port_info *pi = netdev_priv(skb->dev);
1175 struct adapter *adapter = pi->adapter;
1176
1177 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1178 skb->inner_protocol != htons(ETH_P_TEB))
1179 return tnl_type;
1180
1181 switch (vlan_get_protocol(skb)) {
1182 case htons(ETH_P_IP):
1183 l4_hdr = ip_hdr(skb)->protocol;
1184 break;
1185 case htons(ETH_P_IPV6):
1186 l4_hdr = ipv6_hdr(skb)->nexthdr;
1187 break;
1188 default:
1189 return tnl_type;
1190 }
1191
1192 switch (l4_hdr) {
1193 case IPPROTO_UDP:
1194 if (adapter->vxlan_port == udp_hdr(skb)->dest)
1195 tnl_type = TX_TNL_TYPE_VXLAN;
1196 else if (adapter->geneve_port == udp_hdr(skb)->dest)
1197 tnl_type = TX_TNL_TYPE_GENEVE;
1198 break;
1199 default:
1200 return tnl_type;
1201 }
1202
1203 return tnl_type;
1204 }
1205
1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1207 struct cpl_tx_tnl_lso *tnl_lso,
1208 enum cpl_tx_tnl_lso_type tnl_type)
1209 {
1210 u32 val;
1211 int in_eth_xtra_len;
1212 int l3hdr_len = skb_network_header_len(skb);
1213 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1214 const struct skb_shared_info *ssi = skb_shinfo(skb);
1215 bool v6 = (ip_hdr(skb)->version == 6);
1216
1217 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1218 CPL_TX_TNL_LSO_FIRST_F |
1219 CPL_TX_TNL_LSO_LAST_F |
1220 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1221 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1222 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1223 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1224 CPL_TX_TNL_LSO_IPLENSETOUT_F |
1225 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1226 tnl_lso->op_to_IpIdSplitOut = htonl(val);
1227
1228 tnl_lso->IpIdOffsetOut = 0;
1229
1230 /* Get the tunnel header length */
1231 val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1232 in_eth_xtra_len = skb_inner_network_header(skb) -
1233 skb_inner_mac_header(skb) - ETH_HLEN;
1234
1235 switch (tnl_type) {
1236 case TX_TNL_TYPE_VXLAN:
1237 case TX_TNL_TYPE_GENEVE:
1238 tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1239 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1240 CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1241 break;
1242 default:
1243 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1244 break;
1245 }
1246
1247 tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1248 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1249 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1250
1251 tnl_lso->r1 = 0;
1252
1253 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1254 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1255 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1256 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1257 tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1258
1259 tnl_lso->IpIdOffset = htons(0);
1260
1261 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1262 tnl_lso->TCPSeqOffset = htonl(0);
1263 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1264 }
1265
1266 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1267 struct cpl_tx_pkt_lso_core *lso)
1268 {
1269 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1270 int l3hdr_len = skb_network_header_len(skb);
1271 const struct skb_shared_info *ssi;
1272 bool ipv6 = false;
1273
1274 ssi = skb_shinfo(skb);
1275 if (ssi->gso_type & SKB_GSO_TCPV6)
1276 ipv6 = true;
1277
1278 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1279 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1280 LSO_IPV6_V(ipv6) |
1281 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1282 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1283 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1284 lso->ipid_ofst = htons(0);
1285 lso->mss = htons(ssi->gso_size);
1286 lso->seqno_offset = htonl(0);
1287 if (is_t4(adap->params.chip))
1288 lso->len = htonl(skb->len);
1289 else
1290 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1291
1292 return (void *)(lso + 1);
1293 }
1294
1295 /**
1296 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1297 * @adap: the adapter
1298 * @eq: the Ethernet TX Queue
1299 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1300 *
1301 * We're typically called here to update the state of an Ethernet TX
1302 * Queue with respect to the hardware's progress in consuming the TX
1303 * Work Requests that we've put on that Egress Queue. This happens
1304 * when we get Egress Queue Update messages and also prophylactically
1305 * in regular timer-based Ethernet TX Queue maintenance.
1306 */
1307 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1308 int maxreclaim)
1309 {
1310 unsigned int reclaimed, hw_cidx;
1311 struct sge_txq *q = &eq->q;
1312 int hw_in_use;
1313
1314 if (!q->in_use || !__netif_tx_trylock(eq->txq))
1315 return 0;
1316
1317 /* Reclaim pending completed TX Descriptors. */
1318 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1319
1320 hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1321 hw_in_use = q->pidx - hw_cidx;
1322 if (hw_in_use < 0)
1323 hw_in_use += q->size;
1324
1325 /* If the TX Queue is currently stopped and there's now more than half
1326 * the queue available, restart it. Otherwise bail out since the rest
1327 * of what we want do here is with the possibility of shipping any
1328 * currently buffered Coalesced TX Work Request.
1329 */
1330 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1331 netif_tx_wake_queue(eq->txq);
1332 eq->q.restarts++;
1333 }
1334
1335 __netif_tx_unlock(eq->txq);
1336 return reclaimed;
1337 }
1338
1339 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1340 struct net_device *dev,
1341 u32 min_pkt_len)
1342 {
1343 u32 max_pkt_len;
1344
1345 /* The chip min packet length is 10 octets but some firmware
1346 * commands have a minimum packet length requirement. So, play
1347 * safe and reject anything shorter than @min_pkt_len.
1348 */
1349 if (unlikely(skb->len < min_pkt_len))
1350 return -EINVAL;
1351
1352 /* Discard the packet if the length is greater than mtu */
1353 max_pkt_len = ETH_HLEN + dev->mtu;
1354
1355 if (skb_vlan_tagged(skb))
1356 max_pkt_len += VLAN_HLEN;
1357
1358 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1359 return -EINVAL;
1360
1361 return 0;
1362 }
1363
1364 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1365 u32 hdr_len)
1366 {
1367 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1368 wr->u.udpseg.ethlen = skb_network_offset(skb);
1369 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1370 wr->u.udpseg.udplen = sizeof(struct udphdr);
1371 wr->u.udpseg.rtplen = 0;
1372 wr->u.udpseg.r4 = 0;
1373 if (skb_shinfo(skb)->gso_size)
1374 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1375 else
1376 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1377 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1378 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1379
1380 return (void *)(wr + 1);
1381 }
1382
1383 /**
1384 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1385 * @skb: the packet
1386 * @dev: the egress net device
1387 *
1388 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1389 */
1390 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1391 {
1392 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1393 bool ptp_enabled = is_ptp_enabled(skb, dev);
1394 unsigned int last_desc, flits, ndesc;
1395 u32 wr_mid, ctrl0, op, sgl_off = 0;
1396 const struct skb_shared_info *ssi;
1397 int len, qidx, credits, ret, left;
1398 struct tx_sw_desc *sgl_sdesc;
1399 struct fw_eth_tx_eo_wr *eowr;
1400 struct fw_eth_tx_pkt_wr *wr;
1401 struct cpl_tx_pkt_core *cpl;
1402 const struct port_info *pi;
1403 bool immediate = false;
1404 u64 cntrl, *end, *sgl;
1405 struct sge_eth_txq *q;
1406 unsigned int chip_ver;
1407 struct adapter *adap;
1408
1409 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1410 if (ret)
1411 goto out_free;
1412
1413 pi = netdev_priv(dev);
1414 adap = pi->adapter;
1415 ssi = skb_shinfo(skb);
1416 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1417 if (xfrm_offload(skb) && !ssi->gso_size)
1418 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1419 #endif /* CHELSIO_IPSEC_INLINE */
1420
1421 #ifdef CONFIG_CHELSIO_TLS_DEVICE
1422 if (skb->decrypted)
1423 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1424 #endif /* CHELSIO_TLS_DEVICE */
1425
1426 qidx = skb_get_queue_mapping(skb);
1427 if (ptp_enabled) {
1428 spin_lock(&adap->ptp_lock);
1429 if (!(adap->ptp_tx_skb)) {
1430 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1431 adap->ptp_tx_skb = skb_get(skb);
1432 } else {
1433 spin_unlock(&adap->ptp_lock);
1434 goto out_free;
1435 }
1436 q = &adap->sge.ptptxq;
1437 } else {
1438 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1439 }
1440 skb_tx_timestamp(skb);
1441
1442 reclaim_completed_tx(adap, &q->q, -1, true);
1443 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1444
1445 #ifdef CONFIG_CHELSIO_T4_FCOE
1446 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1447 if (unlikely(ret == -ENOTSUPP)) {
1448 if (ptp_enabled)
1449 spin_unlock(&adap->ptp_lock);
1450 goto out_free;
1451 }
1452 #endif /* CONFIG_CHELSIO_T4_FCOE */
1453
1454 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1455 flits = calc_tx_flits(skb, chip_ver);
1456 ndesc = flits_to_desc(flits);
1457 credits = txq_avail(&q->q) - ndesc;
1458
1459 if (unlikely(credits < 0)) {
1460 eth_txq_stop(q);
1461 dev_err(adap->pdev_dev,
1462 "%s: Tx ring %u full while queue awake!\n",
1463 dev->name, qidx);
1464 if (ptp_enabled)
1465 spin_unlock(&adap->ptp_lock);
1466 return NETDEV_TX_BUSY;
1467 }
1468
1469 if (is_eth_imm(skb, chip_ver))
1470 immediate = true;
1471
1472 if (skb->encapsulation && chip_ver > CHELSIO_T5)
1473 tnl_type = cxgb_encap_offload_supported(skb);
1474
1475 last_desc = q->q.pidx + ndesc - 1;
1476 if (last_desc >= q->q.size)
1477 last_desc -= q->q.size;
1478 sgl_sdesc = &q->q.sdesc[last_desc];
1479
1480 if (!immediate &&
1481 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1482 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1483 q->mapping_err++;
1484 if (ptp_enabled)
1485 spin_unlock(&adap->ptp_lock);
1486 goto out_free;
1487 }
1488
1489 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1490 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1491 /* After we're done injecting the Work Request for this
1492 * packet, we'll be below our "stop threshold" so stop the TX
1493 * Queue now and schedule a request for an SGE Egress Queue
1494 * Update message. The queue will get started later on when
1495 * the firmware processes this Work Request and sends us an
1496 * Egress Queue Status Update message indicating that space
1497 * has opened up.
1498 */
1499 eth_txq_stop(q);
1500 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1501 }
1502
1503 wr = (void *)&q->q.desc[q->q.pidx];
1504 eowr = (void *)&q->q.desc[q->q.pidx];
1505 wr->equiq_to_len16 = htonl(wr_mid);
1506 wr->r3 = cpu_to_be64(0);
1507 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1508 end = (u64 *)eowr + flits;
1509 else
1510 end = (u64 *)wr + flits;
1511
1512 len = immediate ? skb->len : 0;
1513 len += sizeof(*cpl);
1514 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1515 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1516 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1517
1518 if (tnl_type)
1519 len += sizeof(*tnl_lso);
1520 else
1521 len += sizeof(*lso);
1522
1523 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1524 FW_WR_IMMDLEN_V(len));
1525 if (tnl_type) {
1526 struct iphdr *iph = ip_hdr(skb);
1527
1528 t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1529 cpl = (void *)(tnl_lso + 1);
1530 /* Driver is expected to compute partial checksum that
1531 * does not include the IP Total Length.
1532 */
1533 if (iph->version == 4) {
1534 iph->check = 0;
1535 iph->tot_len = 0;
1536 iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1537 iph->ihl));
1538 }
1539 if (skb->ip_summed == CHECKSUM_PARTIAL)
1540 cntrl = hwcsum(adap->params.chip, skb);
1541 } else {
1542 cpl = write_tso_wr(adap, skb, lso);
1543 cntrl = hwcsum(adap->params.chip, skb);
1544 }
1545 sgl = (u64 *)(cpl + 1); /* sgl start here */
1546 q->tso++;
1547 q->tx_cso += ssi->gso_segs;
1548 } else if (ssi->gso_size) {
1549 u64 *start;
1550 u32 hdrlen;
1551
1552 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1553 len += hdrlen;
1554 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1555 FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1556 cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1557 cntrl = hwcsum(adap->params.chip, skb);
1558
1559 start = (u64 *)(cpl + 1);
1560 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1561 hdrlen);
1562 if (unlikely(start > sgl)) {
1563 left = (u8 *)end - (u8 *)q->q.stat;
1564 end = (void *)q->q.desc + left;
1565 }
1566 sgl_off = hdrlen;
1567 q->uso++;
1568 q->tx_cso += ssi->gso_segs;
1569 } else {
1570 if (ptp_enabled)
1571 op = FW_PTP_TX_PKT_WR;
1572 else
1573 op = FW_ETH_TX_PKT_WR;
1574 wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1575 FW_WR_IMMDLEN_V(len));
1576 cpl = (void *)(wr + 1);
1577 sgl = (u64 *)(cpl + 1);
1578 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1579 cntrl = hwcsum(adap->params.chip, skb) |
1580 TXPKT_IPCSUM_DIS_F;
1581 q->tx_cso++;
1582 }
1583 }
1584
1585 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1586 /* If current position is already at the end of the
1587 * txq, reset the current to point to start of the queue
1588 * and update the end ptr as well.
1589 */
1590 left = (u8 *)end - (u8 *)q->q.stat;
1591 end = (void *)q->q.desc + left;
1592 sgl = (void *)q->q.desc;
1593 }
1594
1595 if (skb_vlan_tag_present(skb)) {
1596 q->vlan_ins++;
1597 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1598 #ifdef CONFIG_CHELSIO_T4_FCOE
1599 if (skb->protocol == htons(ETH_P_FCOE))
1600 cntrl |= TXPKT_VLAN_V(
1601 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1602 #endif /* CONFIG_CHELSIO_T4_FCOE */
1603 }
1604
1605 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1606 TXPKT_PF_V(adap->pf);
1607 if (ptp_enabled)
1608 ctrl0 |= TXPKT_TSTAMP_F;
1609 #ifdef CONFIG_CHELSIO_T4_DCB
1610 if (is_t4(adap->params.chip))
1611 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1612 else
1613 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1614 #endif
1615 cpl->ctrl0 = htonl(ctrl0);
1616 cpl->pack = htons(0);
1617 cpl->len = htons(skb->len);
1618 cpl->ctrl1 = cpu_to_be64(cntrl);
1619
1620 if (immediate) {
1621 cxgb4_inline_tx_skb(skb, &q->q, sgl);
1622 dev_consume_skb_any(skb);
1623 } else {
1624 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1625 sgl_sdesc->addr);
1626 skb_orphan(skb);
1627 sgl_sdesc->skb = skb;
1628 }
1629
1630 txq_advance(&q->q, ndesc);
1631
1632 cxgb4_ring_tx_db(adap, &q->q, ndesc);
1633 if (ptp_enabled)
1634 spin_unlock(&adap->ptp_lock);
1635 return NETDEV_TX_OK;
1636
1637 out_free:
1638 dev_kfree_skb_any(skb);
1639 return NETDEV_TX_OK;
1640 }
1641
1642 /* Constants ... */
1643 enum {
1644 /* Egress Queue sizes, producer and consumer indices are all in units
1645 * of Egress Context Units bytes. Note that as far as the hardware is
1646 * concerned, the free list is an Egress Queue (the host produces free
1647 * buffers which the hardware consumes) and free list entries are
1648 * 64-bit PCI DMA addresses.
1649 */
1650 EQ_UNIT = SGE_EQ_IDXSIZE,
1651 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1652 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1653
1654 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1655 sizeof(struct cpl_tx_pkt_lso_core) +
1656 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1657 };
1658
1659 /**
1660 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1661 * @skb: the packet
1662 *
1663 * Returns whether an Ethernet packet is small enough to fit completely as
1664 * immediate data.
1665 */
1666 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1667 {
1668 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1669 * which does not accommodate immediate data. We could dike out all
1670 * of the support code for immediate data but that would tie our hands
1671 * too much if we ever want to enhace the firmware. It would also
1672 * create more differences between the PF and VF Drivers.
1673 */
1674 return false;
1675 }
1676
1677 /**
1678 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1679 * @skb: the packet
1680 *
1681 * Returns the number of flits needed for a TX Work Request for the
1682 * given Ethernet packet, including the needed WR and CPL headers.
1683 */
1684 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1685 {
1686 unsigned int flits;
1687
1688 /* If the skb is small enough, we can pump it out as a work request
1689 * with only immediate data. In that case we just have to have the
1690 * TX Packet header plus the skb data in the Work Request.
1691 */
1692 if (t4vf_is_eth_imm(skb))
1693 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1694 sizeof(__be64));
1695
1696 /* Otherwise, we're going to have to construct a Scatter gather list
1697 * of the skb body and fragments. We also include the flits necessary
1698 * for the TX Packet Work Request and CPL. We always have a firmware
1699 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1700 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1701 * message or, if we're doing a Large Send Offload, an LSO CPL message
1702 * with an embedded TX Packet Write CPL message.
1703 */
1704 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1705 if (skb_shinfo(skb)->gso_size)
1706 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1707 sizeof(struct cpl_tx_pkt_lso_core) +
1708 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1709 else
1710 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1711 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1712 return flits;
1713 }
1714
1715 /**
1716 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1717 * @skb: the packet
1718 * @dev: the egress net device
1719 *
1720 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1721 */
1722 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1723 struct net_device *dev)
1724 {
1725 unsigned int last_desc, flits, ndesc;
1726 const struct skb_shared_info *ssi;
1727 struct fw_eth_tx_pkt_vm_wr *wr;
1728 struct tx_sw_desc *sgl_sdesc;
1729 struct cpl_tx_pkt_core *cpl;
1730 const struct port_info *pi;
1731 struct sge_eth_txq *txq;
1732 struct adapter *adapter;
1733 int qidx, credits, ret;
1734 size_t fw_hdr_copy_len;
1735 u64 cntrl, *end;
1736 u32 wr_mid;
1737
1738 /* The chip minimum packet length is 10 octets but the firmware
1739 * command that we are using requires that we copy the Ethernet header
1740 * (including the VLAN tag) into the header so we reject anything
1741 * smaller than that ...
1742 */
1743 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1744 sizeof(wr->ethtype) + sizeof(wr->vlantci);
1745 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1746 if (ret)
1747 goto out_free;
1748
1749 /* Figure out which TX Queue we're going to use. */
1750 pi = netdev_priv(dev);
1751 adapter = pi->adapter;
1752 qidx = skb_get_queue_mapping(skb);
1753 WARN_ON(qidx >= pi->nqsets);
1754 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1755
1756 /* Take this opportunity to reclaim any TX Descriptors whose DMA
1757 * transfers have completed.
1758 */
1759 reclaim_completed_tx(adapter, &txq->q, -1, true);
1760
1761 /* Calculate the number of flits and TX Descriptors we're going to
1762 * need along with how many TX Descriptors will be left over after
1763 * we inject our Work Request.
1764 */
1765 flits = t4vf_calc_tx_flits(skb);
1766 ndesc = flits_to_desc(flits);
1767 credits = txq_avail(&txq->q) - ndesc;
1768
1769 if (unlikely(credits < 0)) {
1770 /* Not enough room for this packet's Work Request. Stop the
1771 * TX Queue and return a "busy" condition. The queue will get
1772 * started later on when the firmware informs us that space
1773 * has opened up.
1774 */
1775 eth_txq_stop(txq);
1776 dev_err(adapter->pdev_dev,
1777 "%s: TX ring %u full while queue awake!\n",
1778 dev->name, qidx);
1779 return NETDEV_TX_BUSY;
1780 }
1781
1782 last_desc = txq->q.pidx + ndesc - 1;
1783 if (last_desc >= txq->q.size)
1784 last_desc -= txq->q.size;
1785 sgl_sdesc = &txq->q.sdesc[last_desc];
1786
1787 if (!t4vf_is_eth_imm(skb) &&
1788 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1789 sgl_sdesc->addr) < 0)) {
1790 /* We need to map the skb into PCI DMA space (because it can't
1791 * be in-lined directly into the Work Request) and the mapping
1792 * operation failed. Record the error and drop the packet.
1793 */
1794 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1795 txq->mapping_err++;
1796 goto out_free;
1797 }
1798
1799 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1800 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1801 /* After we're done injecting the Work Request for this
1802 * packet, we'll be below our "stop threshold" so stop the TX
1803 * Queue now and schedule a request for an SGE Egress Queue
1804 * Update message. The queue will get started later on when
1805 * the firmware processes this Work Request and sends us an
1806 * Egress Queue Status Update message indicating that space
1807 * has opened up.
1808 */
1809 eth_txq_stop(txq);
1810 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1811 }
1812
1813 /* Start filling in our Work Request. Note that we do _not_ handle
1814 * the WR Header wrapping around the TX Descriptor Ring. If our
1815 * maximum header size ever exceeds one TX Descriptor, we'll need to
1816 * do something else here.
1817 */
1818 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1819 wr = (void *)&txq->q.desc[txq->q.pidx];
1820 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1821 wr->r3[0] = cpu_to_be32(0);
1822 wr->r3[1] = cpu_to_be32(0);
1823 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1824 end = (u64 *)wr + flits;
1825
1826 /* If this is a Large Send Offload packet we'll put in an LSO CPL
1827 * message with an encapsulated TX Packet CPL message. Otherwise we
1828 * just use a TX Packet CPL message.
1829 */
1830 ssi = skb_shinfo(skb);
1831 if (ssi->gso_size) {
1832 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1833 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1834 int l3hdr_len = skb_network_header_len(skb);
1835 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1836
1837 wr->op_immdlen =
1838 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1839 FW_WR_IMMDLEN_V(sizeof(*lso) +
1840 sizeof(*cpl)));
1841 /* Fill in the LSO CPL message. */
1842 lso->lso_ctrl =
1843 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1844 LSO_FIRST_SLICE_F |
1845 LSO_LAST_SLICE_F |
1846 LSO_IPV6_V(v6) |
1847 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1848 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1849 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1850 lso->ipid_ofst = cpu_to_be16(0);
1851 lso->mss = cpu_to_be16(ssi->gso_size);
1852 lso->seqno_offset = cpu_to_be32(0);
1853 if (is_t4(adapter->params.chip))
1854 lso->len = cpu_to_be32(skb->len);
1855 else
1856 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1857
1858 /* Set up TX Packet CPL pointer, control word and perform
1859 * accounting.
1860 */
1861 cpl = (void *)(lso + 1);
1862
1863 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1864 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1865 else
1866 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1867
1868 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1869 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1870 TXPKT_IPHDR_LEN_V(l3hdr_len);
1871 txq->tso++;
1872 txq->tx_cso += ssi->gso_segs;
1873 } else {
1874 int len;
1875
1876 len = (t4vf_is_eth_imm(skb)
1877 ? skb->len + sizeof(*cpl)
1878 : sizeof(*cpl));
1879 wr->op_immdlen =
1880 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1881 FW_WR_IMMDLEN_V(len));
1882
1883 /* Set up TX Packet CPL pointer, control word and perform
1884 * accounting.
1885 */
1886 cpl = (void *)(wr + 1);
1887 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1888 cntrl = hwcsum(adapter->params.chip, skb) |
1889 TXPKT_IPCSUM_DIS_F;
1890 txq->tx_cso++;
1891 } else {
1892 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1893 }
1894 }
1895
1896 /* If there's a VLAN tag present, add that to the list of things to
1897 * do in this Work Request.
1898 */
1899 if (skb_vlan_tag_present(skb)) {
1900 txq->vlan_ins++;
1901 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1902 }
1903
1904 /* Fill in the TX Packet CPL message header. */
1905 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1906 TXPKT_INTF_V(pi->port_id) |
1907 TXPKT_PF_V(0));
1908 cpl->pack = cpu_to_be16(0);
1909 cpl->len = cpu_to_be16(skb->len);
1910 cpl->ctrl1 = cpu_to_be64(cntrl);
1911
1912 /* Fill in the body of the TX Packet CPL message with either in-lined
1913 * data or a Scatter/Gather List.
1914 */
1915 if (t4vf_is_eth_imm(skb)) {
1916 /* In-line the packet's data and free the skb since we don't
1917 * need it any longer.
1918 */
1919 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1920 dev_consume_skb_any(skb);
1921 } else {
1922 /* Write the skb's Scatter/Gather list into the TX Packet CPL
1923 * message and retain a pointer to the skb so we can free it
1924 * later when its DMA completes. (We store the skb pointer
1925 * in the Software Descriptor corresponding to the last TX
1926 * Descriptor used by the Work Request.)
1927 *
1928 * The retained skb will be freed when the corresponding TX
1929 * Descriptors are reclaimed after their DMAs complete.
1930 * However, this could take quite a while since, in general,
1931 * the hardware is set up to be lazy about sending DMA
1932 * completion notifications to us and we mostly perform TX
1933 * reclaims in the transmit routine.
1934 *
1935 * This is good for performamce but means that we rely on new
1936 * TX packets arriving to run the destructors of completed
1937 * packets, which open up space in their sockets' send queues.
1938 * Sometimes we do not get such new packets causing TX to
1939 * stall. A single UDP transmitter is a good example of this
1940 * situation. We have a clean up timer that periodically
1941 * reclaims completed packets but it doesn't run often enough
1942 * (nor do we want it to) to prevent lengthy stalls. A
1943 * solution to this problem is to run the destructor early,
1944 * after the packet is queued but before it's DMAd. A con is
1945 * that we lie to socket memory accounting, but the amount of
1946 * extra memory is reasonable (limited by the number of TX
1947 * descriptors), the packets do actually get freed quickly by
1948 * new packets almost always, and for protocols like TCP that
1949 * wait for acks to really free up the data the extra memory
1950 * is even less. On the positive side we run the destructors
1951 * on the sending CPU rather than on a potentially different
1952 * completing CPU, usually a good thing.
1953 *
1954 * Run the destructor before telling the DMA engine about the
1955 * packet to make sure it doesn't complete and get freed
1956 * prematurely.
1957 */
1958 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1959 struct sge_txq *tq = &txq->q;
1960
1961 /* If the Work Request header was an exact multiple of our TX
1962 * Descriptor length, then it's possible that the starting SGL
1963 * pointer lines up exactly with the end of our TX Descriptor
1964 * ring. If that's the case, wrap around to the beginning
1965 * here ...
1966 */
1967 if (unlikely((void *)sgl == (void *)tq->stat)) {
1968 sgl = (void *)tq->desc;
1969 end = (void *)((void *)tq->desc +
1970 ((void *)end - (void *)tq->stat));
1971 }
1972
1973 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
1974 skb_orphan(skb);
1975 sgl_sdesc->skb = skb;
1976 }
1977
1978 /* Advance our internal TX Queue state, tell the hardware about
1979 * the new TX descriptors and return success.
1980 */
1981 txq_advance(&txq->q, ndesc);
1982
1983 cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1984 return NETDEV_TX_OK;
1985
1986 out_free:
1987 /* An error of some sort happened. Free the TX skb and tell the
1988 * OS that we've "dealt" with the packet ...
1989 */
1990 dev_kfree_skb_any(skb);
1991 return NETDEV_TX_OK;
1992 }
1993
1994 /**
1995 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1996 * @q: the SGE control Tx queue
1997 *
1998 * This is a variant of cxgb4_reclaim_completed_tx() that is used
1999 * for Tx queues that send only immediate data (presently just
2000 * the control queues) and thus do not have any sk_buffs to release.
2001 */
2002 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2003 {
2004 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2005 int reclaim = hw_cidx - q->cidx;
2006
2007 if (reclaim < 0)
2008 reclaim += q->size;
2009
2010 q->in_use -= reclaim;
2011 q->cidx = hw_cidx;
2012 }
2013
2014 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2015 {
2016 u32 val = *idx + n;
2017
2018 if (val >= max)
2019 val -= max;
2020
2021 *idx = val;
2022 }
2023
2024 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2025 struct sge_eosw_txq *eosw_txq, u32 ndesc)
2026 {
2027 struct tx_sw_desc *d;
2028
2029 d = &eosw_txq->desc[eosw_txq->last_cidx];
2030 while (ndesc--) {
2031 if (d->skb) {
2032 if (d->addr[0]) {
2033 unmap_skb(adap->pdev_dev, d->skb, d->addr);
2034 memset(d->addr, 0, sizeof(d->addr));
2035 }
2036 dev_consume_skb_any(d->skb);
2037 d->skb = NULL;
2038 }
2039 eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2040 eosw_txq->ndesc);
2041 d = &eosw_txq->desc[eosw_txq->last_cidx];
2042 }
2043 }
2044
2045 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2046 {
2047 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2048 eosw_txq->inuse += n;
2049 }
2050
2051 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2052 struct sk_buff *skb)
2053 {
2054 if (eosw_txq->inuse == eosw_txq->ndesc)
2055 return -ENOMEM;
2056
2057 eosw_txq->desc[eosw_txq->pidx].skb = skb;
2058 return 0;
2059 }
2060
2061 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2062 {
2063 return eosw_txq->desc[eosw_txq->last_pidx].skb;
2064 }
2065
2066 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2067 struct sk_buff *skb, u32 hdr_len)
2068 {
2069 u8 flits, nsgl = 0;
2070 u32 wrlen;
2071
2072 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2073 if (skb_shinfo(skb)->gso_size &&
2074 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2075 wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2076
2077 wrlen += roundup(hdr_len, 16);
2078
2079 /* Packet headers + WR + CPLs */
2080 flits = DIV_ROUND_UP(wrlen, 8);
2081
2082 if (skb_shinfo(skb)->nr_frags > 0) {
2083 if (skb_headlen(skb) - hdr_len)
2084 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2085 else
2086 nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2087 } else if (skb->len - hdr_len) {
2088 nsgl = sgl_len(1);
2089 }
2090
2091 return flits + nsgl;
2092 }
2093
2094 static inline void *write_eo_wr(struct adapter *adap,
2095 struct sge_eosw_txq *eosw_txq,
2096 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2097 u32 hdr_len, u32 wrlen)
2098 {
2099 const struct skb_shared_info *ssi = skb_shinfo(skb);
2100 struct cpl_tx_pkt_core *cpl;
2101 u32 immd_len, wrlen16;
2102 bool compl = false;
2103 u8 ver, proto;
2104
2105 ver = ip_hdr(skb)->version;
2106 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2107
2108 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2109 immd_len = sizeof(struct cpl_tx_pkt_core);
2110 if (skb_shinfo(skb)->gso_size &&
2111 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2112 immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2113 immd_len += hdr_len;
2114
2115 if (!eosw_txq->ncompl ||
2116 eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) {
2117 compl = true;
2118 eosw_txq->ncompl++;
2119 eosw_txq->last_compl = 0;
2120 }
2121
2122 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2123 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2124 FW_WR_COMPL_V(compl));
2125 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2126 FW_WR_FLOWID_V(eosw_txq->hwtid));
2127 wr->r3 = 0;
2128 if (proto == IPPROTO_UDP) {
2129 cpl = write_eo_udp_wr(skb, wr, hdr_len);
2130 } else {
2131 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2132 wr->u.tcpseg.ethlen = skb_network_offset(skb);
2133 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2134 wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2135 wr->u.tcpseg.tsclk_tsoff = 0;
2136 wr->u.tcpseg.r4 = 0;
2137 wr->u.tcpseg.r5 = 0;
2138 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2139
2140 if (ssi->gso_size) {
2141 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2142
2143 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2144 cpl = write_tso_wr(adap, skb, lso);
2145 } else {
2146 wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2147 cpl = (void *)(wr + 1);
2148 }
2149 }
2150
2151 eosw_txq->cred -= wrlen16;
2152 eosw_txq->last_compl += wrlen16;
2153 return cpl;
2154 }
2155
2156 static void ethofld_hard_xmit(struct net_device *dev,
2157 struct sge_eosw_txq *eosw_txq)
2158 {
2159 struct port_info *pi = netdev2pinfo(dev);
2160 struct adapter *adap = netdev2adap(dev);
2161 u32 wrlen, wrlen16, hdr_len, data_len;
2162 enum sge_eosw_state next_state;
2163 u64 cntrl, *start, *end, *sgl;
2164 struct sge_eohw_txq *eohw_txq;
2165 struct cpl_tx_pkt_core *cpl;
2166 struct fw_eth_tx_eo_wr *wr;
2167 bool skip_eotx_wr = false;
2168 struct tx_sw_desc *d;
2169 struct sk_buff *skb;
2170 u8 flits, ndesc;
2171 int left;
2172
2173 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2174 spin_lock(&eohw_txq->lock);
2175 reclaim_completed_tx_imm(&eohw_txq->q);
2176
2177 d = &eosw_txq->desc[eosw_txq->last_pidx];
2178 skb = d->skb;
2179 skb_tx_timestamp(skb);
2180
2181 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2182 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2183 eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2184 hdr_len = skb->len;
2185 data_len = 0;
2186 flits = DIV_ROUND_UP(hdr_len, 8);
2187 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2188 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2189 else
2190 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2191 skip_eotx_wr = true;
2192 } else {
2193 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2194 data_len = skb->len - hdr_len;
2195 flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2196 }
2197 ndesc = flits_to_desc(flits);
2198 wrlen = flits * 8;
2199 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2200
2201 /* If there are no CPL credits, then wait for credits
2202 * to come back and retry again
2203 */
2204 if (unlikely(wrlen16 > eosw_txq->cred))
2205 goto out_unlock;
2206
2207 if (unlikely(skip_eotx_wr)) {
2208 start = (u64 *)wr;
2209 eosw_txq->state = next_state;
2210 goto write_wr_headers;
2211 }
2212
2213 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2214 cntrl = hwcsum(adap->params.chip, skb);
2215 if (skb_vlan_tag_present(skb))
2216 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2217
2218 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2219 TXPKT_INTF_V(pi->tx_chan) |
2220 TXPKT_PF_V(adap->pf));
2221 cpl->pack = 0;
2222 cpl->len = cpu_to_be16(skb->len);
2223 cpl->ctrl1 = cpu_to_be64(cntrl);
2224
2225 start = (u64 *)(cpl + 1);
2226
2227 write_wr_headers:
2228 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2229 hdr_len);
2230 if (data_len) {
2231 if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) {
2232 memset(d->addr, 0, sizeof(d->addr));
2233 eohw_txq->mapping_err++;
2234 goto out_unlock;
2235 }
2236
2237 end = (u64 *)wr + flits;
2238 if (unlikely(start > sgl)) {
2239 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2240 end = (void *)eohw_txq->q.desc + left;
2241 }
2242
2243 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2244 /* If current position is already at the end of the
2245 * txq, reset the current to point to start of the queue
2246 * and update the end ptr as well.
2247 */
2248 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2249
2250 end = (void *)eohw_txq->q.desc + left;
2251 sgl = (void *)eohw_txq->q.desc;
2252 }
2253
2254 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2255 d->addr);
2256 }
2257
2258 if (skb_shinfo(skb)->gso_size) {
2259 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2260 eohw_txq->uso++;
2261 else
2262 eohw_txq->tso++;
2263 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2264 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2265 eohw_txq->tx_cso++;
2266 }
2267
2268 if (skb_vlan_tag_present(skb))
2269 eohw_txq->vlan_ins++;
2270
2271 txq_advance(&eohw_txq->q, ndesc);
2272 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2273 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2274
2275 out_unlock:
2276 spin_unlock(&eohw_txq->lock);
2277 }
2278
2279 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2280 {
2281 struct sk_buff *skb;
2282 int pktcount;
2283
2284 switch (eosw_txq->state) {
2285 case CXGB4_EO_STATE_ACTIVE:
2286 case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2287 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2288 pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2289 if (pktcount < 0)
2290 pktcount += eosw_txq->ndesc;
2291 break;
2292 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2293 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2294 case CXGB4_EO_STATE_CLOSED:
2295 default:
2296 return;
2297 }
2298
2299 while (pktcount--) {
2300 skb = eosw_txq_peek(eosw_txq);
2301 if (!skb) {
2302 eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2303 eosw_txq->ndesc);
2304 continue;
2305 }
2306
2307 ethofld_hard_xmit(dev, eosw_txq);
2308 }
2309 }
2310
2311 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2312 struct net_device *dev)
2313 {
2314 struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2315 struct port_info *pi = netdev2pinfo(dev);
2316 struct adapter *adap = netdev2adap(dev);
2317 struct sge_eosw_txq *eosw_txq;
2318 u32 qid;
2319 int ret;
2320
2321 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2322 if (ret)
2323 goto out_free;
2324
2325 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2326 qid = skb_get_queue_mapping(skb) - pi->nqsets;
2327 eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2328 spin_lock_bh(&eosw_txq->lock);
2329 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2330 goto out_unlock;
2331
2332 ret = eosw_txq_enqueue(eosw_txq, skb);
2333 if (ret)
2334 goto out_unlock;
2335
2336 /* SKB is queued for processing until credits are available.
2337 * So, call the destructor now and we'll free the skb later
2338 * after it has been successfully transmitted.
2339 */
2340 skb_orphan(skb);
2341
2342 eosw_txq_advance(eosw_txq, 1);
2343 ethofld_xmit(dev, eosw_txq);
2344 spin_unlock_bh(&eosw_txq->lock);
2345 return NETDEV_TX_OK;
2346
2347 out_unlock:
2348 spin_unlock_bh(&eosw_txq->lock);
2349 out_free:
2350 dev_kfree_skb_any(skb);
2351 return NETDEV_TX_OK;
2352 }
2353
2354 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2355 {
2356 struct port_info *pi = netdev_priv(dev);
2357 u16 qid = skb_get_queue_mapping(skb);
2358
2359 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2360 return cxgb4_vf_eth_xmit(skb, dev);
2361
2362 if (unlikely(qid >= pi->nqsets))
2363 return cxgb4_ethofld_xmit(skb, dev);
2364
2365 return cxgb4_eth_xmit(skb, dev);
2366 }
2367
2368 /**
2369 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2370 * @dev - netdevice
2371 * @eotid - ETHOFLD tid to bind/unbind
2372 * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2373 *
2374 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2375 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2376 * a traffic class.
2377 */
2378 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2379 {
2380 struct port_info *pi = netdev2pinfo(dev);
2381 struct adapter *adap = netdev2adap(dev);
2382 enum sge_eosw_state next_state;
2383 struct sge_eosw_txq *eosw_txq;
2384 u32 len, len16, nparams = 6;
2385 struct fw_flowc_wr *flowc;
2386 struct eotid_entry *entry;
2387 struct sge_ofld_rxq *rxq;
2388 struct sk_buff *skb;
2389 int ret = 0;
2390
2391 len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams;
2392 len16 = DIV_ROUND_UP(len, 16);
2393
2394 entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2395 if (!entry)
2396 return -ENOMEM;
2397
2398 eosw_txq = (struct sge_eosw_txq *)entry->data;
2399 if (!eosw_txq)
2400 return -ENOMEM;
2401
2402 skb = alloc_skb(len, GFP_KERNEL);
2403 if (!skb)
2404 return -ENOMEM;
2405
2406 spin_lock_bh(&eosw_txq->lock);
2407 if (tc != FW_SCHED_CLS_NONE) {
2408 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2409 goto out_unlock;
2410
2411 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2412 } else {
2413 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2414 goto out_unlock;
2415
2416 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2417 }
2418
2419 flowc = __skb_put(skb, len);
2420 memset(flowc, 0, len);
2421
2422 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2423 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2424 FW_WR_FLOWID_V(eosw_txq->hwtid));
2425 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2426 FW_FLOWC_WR_NPARAMS_V(nparams) |
2427 FW_WR_COMPL_V(1));
2428 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2429 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2430 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2431 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2432 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2433 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2434 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2435 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2436 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2437 flowc->mnemval[4].val = cpu_to_be32(tc);
2438 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2439 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2440 FW_FLOWC_MNEM_EOSTATE_CLOSING :
2441 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2442
2443 eosw_txq->cred -= len16;
2444 eosw_txq->ncompl++;
2445 eosw_txq->last_compl = 0;
2446
2447 ret = eosw_txq_enqueue(eosw_txq, skb);
2448 if (ret) {
2449 dev_consume_skb_any(skb);
2450 goto out_unlock;
2451 }
2452
2453 eosw_txq->state = next_state;
2454 eosw_txq->flowc_idx = eosw_txq->pidx;
2455 eosw_txq_advance(eosw_txq, 1);
2456 ethofld_xmit(dev, eosw_txq);
2457
2458 out_unlock:
2459 spin_unlock_bh(&eosw_txq->lock);
2460 return ret;
2461 }
2462
2463 /**
2464 * is_imm - check whether a packet can be sent as immediate data
2465 * @skb: the packet
2466 *
2467 * Returns true if a packet can be sent as a WR with immediate data.
2468 */
2469 static inline int is_imm(const struct sk_buff *skb)
2470 {
2471 return skb->len <= MAX_CTRL_WR_LEN;
2472 }
2473
2474 /**
2475 * ctrlq_check_stop - check if a control queue is full and should stop
2476 * @q: the queue
2477 * @wr: most recent WR written to the queue
2478 *
2479 * Check if a control queue has become full and should be stopped.
2480 * We clean up control queue descriptors very lazily, only when we are out.
2481 * If the queue is still full after reclaiming any completed descriptors
2482 * we suspend it and have the last WR wake it up.
2483 */
2484 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2485 {
2486 reclaim_completed_tx_imm(&q->q);
2487 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2488 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2489 q->q.stops++;
2490 q->full = 1;
2491 }
2492 }
2493
2494 /**
2495 * ctrl_xmit - send a packet through an SGE control Tx queue
2496 * @q: the control queue
2497 * @skb: the packet
2498 *
2499 * Send a packet through an SGE control Tx queue. Packets sent through
2500 * a control queue must fit entirely as immediate data.
2501 */
2502 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2503 {
2504 unsigned int ndesc;
2505 struct fw_wr_hdr *wr;
2506
2507 if (unlikely(!is_imm(skb))) {
2508 WARN_ON(1);
2509 dev_kfree_skb(skb);
2510 return NET_XMIT_DROP;
2511 }
2512
2513 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2514 spin_lock(&q->sendq.lock);
2515
2516 if (unlikely(q->full)) {
2517 skb->priority = ndesc; /* save for restart */
2518 __skb_queue_tail(&q->sendq, skb);
2519 spin_unlock(&q->sendq.lock);
2520 return NET_XMIT_CN;
2521 }
2522
2523 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2524 cxgb4_inline_tx_skb(skb, &q->q, wr);
2525
2526 txq_advance(&q->q, ndesc);
2527 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2528 ctrlq_check_stop(q, wr);
2529
2530 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2531 spin_unlock(&q->sendq.lock);
2532
2533 kfree_skb(skb);
2534 return NET_XMIT_SUCCESS;
2535 }
2536
2537 /**
2538 * restart_ctrlq - restart a suspended control queue
2539 * @data: the control queue to restart
2540 *
2541 * Resumes transmission on a suspended Tx control queue.
2542 */
2543 static void restart_ctrlq(unsigned long data)
2544 {
2545 struct sk_buff *skb;
2546 unsigned int written = 0;
2547 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2548
2549 spin_lock(&q->sendq.lock);
2550 reclaim_completed_tx_imm(&q->q);
2551 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
2552
2553 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2554 struct fw_wr_hdr *wr;
2555 unsigned int ndesc = skb->priority; /* previously saved */
2556
2557 written += ndesc;
2558 /* Write descriptors and free skbs outside the lock to limit
2559 * wait times. q->full is still set so new skbs will be queued.
2560 */
2561 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2562 txq_advance(&q->q, ndesc);
2563 spin_unlock(&q->sendq.lock);
2564
2565 cxgb4_inline_tx_skb(skb, &q->q, wr);
2566 kfree_skb(skb);
2567
2568 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2569 unsigned long old = q->q.stops;
2570
2571 ctrlq_check_stop(q, wr);
2572 if (q->q.stops != old) { /* suspended anew */
2573 spin_lock(&q->sendq.lock);
2574 goto ringdb;
2575 }
2576 }
2577 if (written > 16) {
2578 cxgb4_ring_tx_db(q->adap, &q->q, written);
2579 written = 0;
2580 }
2581 spin_lock(&q->sendq.lock);
2582 }
2583 q->full = 0;
2584 ringdb:
2585 if (written)
2586 cxgb4_ring_tx_db(q->adap, &q->q, written);
2587 spin_unlock(&q->sendq.lock);
2588 }
2589
2590 /**
2591 * t4_mgmt_tx - send a management message
2592 * @adap: the adapter
2593 * @skb: the packet containing the management message
2594 *
2595 * Send a management message through control queue 0.
2596 */
2597 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2598 {
2599 int ret;
2600
2601 local_bh_disable();
2602 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2603 local_bh_enable();
2604 return ret;
2605 }
2606
2607 /**
2608 * is_ofld_imm - check whether a packet can be sent as immediate data
2609 * @skb: the packet
2610 *
2611 * Returns true if a packet can be sent as an offload WR with immediate
2612 * data. We currently use the same limit as for Ethernet packets.
2613 */
2614 static inline int is_ofld_imm(const struct sk_buff *skb)
2615 {
2616 struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2617 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2618
2619 if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2620 return skb->len <= SGE_MAX_WR_LEN;
2621 else
2622 return skb->len <= MAX_IMM_TX_PKT_LEN;
2623 }
2624
2625 /**
2626 * calc_tx_flits_ofld - calculate # of flits for an offload packet
2627 * @skb: the packet
2628 *
2629 * Returns the number of flits needed for the given offload packet.
2630 * These packets are already fully constructed and no additional headers
2631 * will be added.
2632 */
2633 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2634 {
2635 unsigned int flits, cnt;
2636
2637 if (is_ofld_imm(skb))
2638 return DIV_ROUND_UP(skb->len, 8);
2639
2640 flits = skb_transport_offset(skb) / 8U; /* headers */
2641 cnt = skb_shinfo(skb)->nr_frags;
2642 if (skb_tail_pointer(skb) != skb_transport_header(skb))
2643 cnt++;
2644 return flits + sgl_len(cnt);
2645 }
2646
2647 /**
2648 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2649 * @adap: the adapter
2650 * @q: the queue to stop
2651 *
2652 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2653 * inability to map packets. A periodic timer attempts to restart
2654 * queues so marked.
2655 */
2656 static void txq_stop_maperr(struct sge_uld_txq *q)
2657 {
2658 q->mapping_err++;
2659 q->q.stops++;
2660 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2661 q->adap->sge.txq_maperr);
2662 }
2663
2664 /**
2665 * ofldtxq_stop - stop an offload Tx queue that has become full
2666 * @q: the queue to stop
2667 * @wr: the Work Request causing the queue to become full
2668 *
2669 * Stops an offload Tx queue that has become full and modifies the packet
2670 * being written to request a wakeup.
2671 */
2672 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2673 {
2674 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2675 q->q.stops++;
2676 q->full = 1;
2677 }
2678
2679 /**
2680 * service_ofldq - service/restart a suspended offload queue
2681 * @q: the offload queue
2682 *
2683 * Services an offload Tx queue by moving packets from its Pending Send
2684 * Queue to the Hardware TX ring. The function starts and ends with the
2685 * Send Queue locked, but drops the lock while putting the skb at the
2686 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
2687 * allows more skbs to be added to the Send Queue by other threads.
2688 * The packet being processed at the head of the Pending Send Queue is
2689 * left on the queue in case we experience DMA Mapping errors, etc.
2690 * and need to give up and restart later.
2691 *
2692 * service_ofldq() can be thought of as a task which opportunistically
2693 * uses other threads execution contexts. We use the Offload Queue
2694 * boolean "service_ofldq_running" to make sure that only one instance
2695 * is ever running at a time ...
2696 */
2697 static void service_ofldq(struct sge_uld_txq *q)
2698 {
2699 u64 *pos, *before, *end;
2700 int credits;
2701 struct sk_buff *skb;
2702 struct sge_txq *txq;
2703 unsigned int left;
2704 unsigned int written = 0;
2705 unsigned int flits, ndesc;
2706
2707 /* If another thread is currently in service_ofldq() processing the
2708 * Pending Send Queue then there's nothing to do. Otherwise, flag
2709 * that we're doing the work and continue. Examining/modifying
2710 * the Offload Queue boolean "service_ofldq_running" must be done
2711 * while holding the Pending Send Queue Lock.
2712 */
2713 if (q->service_ofldq_running)
2714 return;
2715 q->service_ofldq_running = true;
2716
2717 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2718 /* We drop the lock while we're working with the skb at the
2719 * head of the Pending Send Queue. This allows more skbs to
2720 * be added to the Pending Send Queue while we're working on
2721 * this one. We don't need to lock to guard the TX Ring
2722 * updates because only one thread of execution is ever
2723 * allowed into service_ofldq() at a time.
2724 */
2725 spin_unlock(&q->sendq.lock);
2726
2727 cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2728
2729 flits = skb->priority; /* previously saved */
2730 ndesc = flits_to_desc(flits);
2731 credits = txq_avail(&q->q) - ndesc;
2732 BUG_ON(credits < 0);
2733 if (unlikely(credits < TXQ_STOP_THRES))
2734 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2735
2736 pos = (u64 *)&q->q.desc[q->q.pidx];
2737 if (is_ofld_imm(skb))
2738 cxgb4_inline_tx_skb(skb, &q->q, pos);
2739 else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2740 (dma_addr_t *)skb->head)) {
2741 txq_stop_maperr(q);
2742 spin_lock(&q->sendq.lock);
2743 break;
2744 } else {
2745 int last_desc, hdr_len = skb_transport_offset(skb);
2746
2747 /* The WR headers may not fit within one descriptor.
2748 * So we need to deal with wrap-around here.
2749 */
2750 before = (u64 *)pos;
2751 end = (u64 *)pos + flits;
2752 txq = &q->q;
2753 pos = (void *)inline_tx_skb_header(skb, &q->q,
2754 (void *)pos,
2755 hdr_len);
2756 if (before > (u64 *)pos) {
2757 left = (u8 *)end - (u8 *)txq->stat;
2758 end = (void *)txq->desc + left;
2759 }
2760
2761 /* If current position is already at the end of the
2762 * ofld queue, reset the current to point to
2763 * start of the queue and update the end ptr as well.
2764 */
2765 if (pos == (u64 *)txq->stat) {
2766 left = (u8 *)end - (u8 *)txq->stat;
2767 end = (void *)txq->desc + left;
2768 pos = (void *)txq->desc;
2769 }
2770
2771 cxgb4_write_sgl(skb, &q->q, (void *)pos,
2772 end, hdr_len,
2773 (dma_addr_t *)skb->head);
2774 #ifdef CONFIG_NEED_DMA_MAP_STATE
2775 skb->dev = q->adap->port[0];
2776 skb->destructor = deferred_unmap_destructor;
2777 #endif
2778 last_desc = q->q.pidx + ndesc - 1;
2779 if (last_desc >= q->q.size)
2780 last_desc -= q->q.size;
2781 q->q.sdesc[last_desc].skb = skb;
2782 }
2783
2784 txq_advance(&q->q, ndesc);
2785 written += ndesc;
2786 if (unlikely(written > 32)) {
2787 cxgb4_ring_tx_db(q->adap, &q->q, written);
2788 written = 0;
2789 }
2790
2791 /* Reacquire the Pending Send Queue Lock so we can unlink the
2792 * skb we've just successfully transferred to the TX Ring and
2793 * loop for the next skb which may be at the head of the
2794 * Pending Send Queue.
2795 */
2796 spin_lock(&q->sendq.lock);
2797 __skb_unlink(skb, &q->sendq);
2798 if (is_ofld_imm(skb))
2799 kfree_skb(skb);
2800 }
2801 if (likely(written))
2802 cxgb4_ring_tx_db(q->adap, &q->q, written);
2803
2804 /*Indicate that no thread is processing the Pending Send Queue
2805 * currently.
2806 */
2807 q->service_ofldq_running = false;
2808 }
2809
2810 /**
2811 * ofld_xmit - send a packet through an offload queue
2812 * @q: the Tx offload queue
2813 * @skb: the packet
2814 *
2815 * Send an offload packet through an SGE offload queue.
2816 */
2817 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2818 {
2819 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
2820 spin_lock(&q->sendq.lock);
2821
2822 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
2823 * that results in this new skb being the only one on the queue, start
2824 * servicing it. If there are other skbs already on the list, then
2825 * either the queue is currently being processed or it's been stopped
2826 * for some reason and it'll be restarted at a later time. Restart
2827 * paths are triggered by events like experiencing a DMA Mapping Error
2828 * or filling the Hardware TX Ring.
2829 */
2830 __skb_queue_tail(&q->sendq, skb);
2831 if (q->sendq.qlen == 1)
2832 service_ofldq(q);
2833
2834 spin_unlock(&q->sendq.lock);
2835 return NET_XMIT_SUCCESS;
2836 }
2837
2838 /**
2839 * restart_ofldq - restart a suspended offload queue
2840 * @data: the offload queue to restart
2841 *
2842 * Resumes transmission on a suspended Tx offload queue.
2843 */
2844 static void restart_ofldq(unsigned long data)
2845 {
2846 struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2847
2848 spin_lock(&q->sendq.lock);
2849 q->full = 0; /* the queue actually is completely empty now */
2850 service_ofldq(q);
2851 spin_unlock(&q->sendq.lock);
2852 }
2853
2854 /**
2855 * skb_txq - return the Tx queue an offload packet should use
2856 * @skb: the packet
2857 *
2858 * Returns the Tx queue an offload packet should use as indicated by bits
2859 * 1-15 in the packet's queue_mapping.
2860 */
2861 static inline unsigned int skb_txq(const struct sk_buff *skb)
2862 {
2863 return skb->queue_mapping >> 1;
2864 }
2865
2866 /**
2867 * is_ctrl_pkt - return whether an offload packet is a control packet
2868 * @skb: the packet
2869 *
2870 * Returns whether an offload packet should use an OFLD or a CTRL
2871 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
2872 */
2873 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2874 {
2875 return skb->queue_mapping & 1;
2876 }
2877
2878 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2879 unsigned int tx_uld_type)
2880 {
2881 struct sge_uld_txq_info *txq_info;
2882 struct sge_uld_txq *txq;
2883 unsigned int idx = skb_txq(skb);
2884
2885 if (unlikely(is_ctrl_pkt(skb))) {
2886 /* Single ctrl queue is a requirement for LE workaround path */
2887 if (adap->tids.nsftids)
2888 idx = 0;
2889 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2890 }
2891
2892 txq_info = adap->sge.uld_txq_info[tx_uld_type];
2893 if (unlikely(!txq_info)) {
2894 WARN_ON(true);
2895 return NET_XMIT_DROP;
2896 }
2897
2898 txq = &txq_info->uldtxq[idx];
2899 return ofld_xmit(txq, skb);
2900 }
2901
2902 /**
2903 * t4_ofld_send - send an offload packet
2904 * @adap: the adapter
2905 * @skb: the packet
2906 *
2907 * Sends an offload packet. We use the packet queue_mapping to select the
2908 * appropriate Tx queue as follows: bit 0 indicates whether the packet
2909 * should be sent as regular or control, bits 1-15 select the queue.
2910 */
2911 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2912 {
2913 int ret;
2914
2915 local_bh_disable();
2916 ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2917 local_bh_enable();
2918 return ret;
2919 }
2920
2921 /**
2922 * cxgb4_ofld_send - send an offload packet
2923 * @dev: the net device
2924 * @skb: the packet
2925 *
2926 * Sends an offload packet. This is an exported version of @t4_ofld_send,
2927 * intended for ULDs.
2928 */
2929 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2930 {
2931 return t4_ofld_send(netdev2adap(dev), skb);
2932 }
2933 EXPORT_SYMBOL(cxgb4_ofld_send);
2934
2935 static void *inline_tx_header(const void *src,
2936 const struct sge_txq *q,
2937 void *pos, int length)
2938 {
2939 int left = (void *)q->stat - pos;
2940 u64 *p;
2941
2942 if (likely(length <= left)) {
2943 memcpy(pos, src, length);
2944 pos += length;
2945 } else {
2946 memcpy(pos, src, left);
2947 memcpy(q->desc, src + left, length - left);
2948 pos = (void *)q->desc + (length - left);
2949 }
2950 /* 0-pad to multiple of 16 */
2951 p = PTR_ALIGN(pos, 8);
2952 if ((uintptr_t)p & 8) {
2953 *p = 0;
2954 return p + 1;
2955 }
2956 return p;
2957 }
2958
2959 /**
2960 * ofld_xmit_direct - copy a WR into offload queue
2961 * @q: the Tx offload queue
2962 * @src: location of WR
2963 * @len: WR length
2964 *
2965 * Copy an immediate WR into an uncontended SGE offload queue.
2966 */
2967 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2968 unsigned int len)
2969 {
2970 unsigned int ndesc;
2971 int credits;
2972 u64 *pos;
2973
2974 /* Use the lower limit as the cut-off */
2975 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2976 WARN_ON(1);
2977 return NET_XMIT_DROP;
2978 }
2979
2980 /* Don't return NET_XMIT_CN here as the current
2981 * implementation doesn't queue the request
2982 * using an skb when the following conditions not met
2983 */
2984 if (!spin_trylock(&q->sendq.lock))
2985 return NET_XMIT_DROP;
2986
2987 if (q->full || !skb_queue_empty(&q->sendq) ||
2988 q->service_ofldq_running) {
2989 spin_unlock(&q->sendq.lock);
2990 return NET_XMIT_DROP;
2991 }
2992 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
2993 credits = txq_avail(&q->q) - ndesc;
2994 pos = (u64 *)&q->q.desc[q->q.pidx];
2995
2996 /* ofldtxq_stop modifies WR header in-situ */
2997 inline_tx_header(src, &q->q, pos, len);
2998 if (unlikely(credits < TXQ_STOP_THRES))
2999 ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3000 txq_advance(&q->q, ndesc);
3001 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3002
3003 spin_unlock(&q->sendq.lock);
3004 return NET_XMIT_SUCCESS;
3005 }
3006
3007 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3008 const void *src, unsigned int len)
3009 {
3010 struct sge_uld_txq_info *txq_info;
3011 struct sge_uld_txq *txq;
3012 struct adapter *adap;
3013 int ret;
3014
3015 adap = netdev2adap(dev);
3016
3017 local_bh_disable();
3018 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3019 if (unlikely(!txq_info)) {
3020 WARN_ON(true);
3021 local_bh_enable();
3022 return NET_XMIT_DROP;
3023 }
3024 txq = &txq_info->uldtxq[idx];
3025
3026 ret = ofld_xmit_direct(txq, src, len);
3027 local_bh_enable();
3028 return net_xmit_eval(ret);
3029 }
3030 EXPORT_SYMBOL(cxgb4_immdata_send);
3031
3032 /**
3033 * t4_crypto_send - send crypto packet
3034 * @adap: the adapter
3035 * @skb: the packet
3036 *
3037 * Sends crypto packet. We use the packet queue_mapping to select the
3038 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3039 * should be sent as regular or control, bits 1-15 select the queue.
3040 */
3041 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3042 {
3043 int ret;
3044
3045 local_bh_disable();
3046 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3047 local_bh_enable();
3048 return ret;
3049 }
3050
3051 /**
3052 * cxgb4_crypto_send - send crypto packet
3053 * @dev: the net device
3054 * @skb: the packet
3055 *
3056 * Sends crypto packet. This is an exported version of @t4_crypto_send,
3057 * intended for ULDs.
3058 */
3059 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3060 {
3061 return t4_crypto_send(netdev2adap(dev), skb);
3062 }
3063 EXPORT_SYMBOL(cxgb4_crypto_send);
3064
3065 static inline void copy_frags(struct sk_buff *skb,
3066 const struct pkt_gl *gl, unsigned int offset)
3067 {
3068 int i;
3069
3070 /* usually there's just one frag */
3071 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
3072 gl->frags[0].offset + offset,
3073 gl->frags[0].size - offset);
3074 skb_shinfo(skb)->nr_frags = gl->nfrags;
3075 for (i = 1; i < gl->nfrags; i++)
3076 __skb_fill_page_desc(skb, i, gl->frags[i].page,
3077 gl->frags[i].offset,
3078 gl->frags[i].size);
3079
3080 /* get a reference to the last page, we don't own it */
3081 get_page(gl->frags[gl->nfrags - 1].page);
3082 }
3083
3084 /**
3085 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3086 * @gl: the gather list
3087 * @skb_len: size of sk_buff main body if it carries fragments
3088 * @pull_len: amount of data to move to the sk_buff's main body
3089 *
3090 * Builds an sk_buff from the given packet gather list. Returns the
3091 * sk_buff or %NULL if sk_buff allocation failed.
3092 */
3093 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3094 unsigned int skb_len, unsigned int pull_len)
3095 {
3096 struct sk_buff *skb;
3097
3098 /*
3099 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3100 * size, which is expected since buffers are at least PAGE_SIZEd.
3101 * In this case packets up to RX_COPY_THRES have only one fragment.
3102 */
3103 if (gl->tot_len <= RX_COPY_THRES) {
3104 skb = dev_alloc_skb(gl->tot_len);
3105 if (unlikely(!skb))
3106 goto out;
3107 __skb_put(skb, gl->tot_len);
3108 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3109 } else {
3110 skb = dev_alloc_skb(skb_len);
3111 if (unlikely(!skb))
3112 goto out;
3113 __skb_put(skb, pull_len);
3114 skb_copy_to_linear_data(skb, gl->va, pull_len);
3115
3116 copy_frags(skb, gl, pull_len);
3117 skb->len = gl->tot_len;
3118 skb->data_len = skb->len - pull_len;
3119 skb->truesize += skb->data_len;
3120 }
3121 out: return skb;
3122 }
3123 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3124
3125 /**
3126 * t4_pktgl_free - free a packet gather list
3127 * @gl: the gather list
3128 *
3129 * Releases the pages of a packet gather list. We do not own the last
3130 * page on the list and do not free it.
3131 */
3132 static void t4_pktgl_free(const struct pkt_gl *gl)
3133 {
3134 int n;
3135 const struct page_frag *p;
3136
3137 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3138 put_page(p->page);
3139 }
3140
3141 /*
3142 * Process an MPS trace packet. Give it an unused protocol number so it won't
3143 * be delivered to anyone and send it to the stack for capture.
3144 */
3145 static noinline int handle_trace_pkt(struct adapter *adap,
3146 const struct pkt_gl *gl)
3147 {
3148 struct sk_buff *skb;
3149
3150 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3151 if (unlikely(!skb)) {
3152 t4_pktgl_free(gl);
3153 return 0;
3154 }
3155
3156 if (is_t4(adap->params.chip))
3157 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
3158 else
3159 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3160
3161 skb_reset_mac_header(skb);
3162 skb->protocol = htons(0xffff);
3163 skb->dev = adap->port[0];
3164 netif_receive_skb(skb);
3165 return 0;
3166 }
3167
3168 /**
3169 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3170 * @adap: the adapter
3171 * @hwtstamps: time stamp structure to update
3172 * @sgetstamp: 60bit iqe timestamp
3173 *
3174 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3175 * which is in Core Clock ticks into ktime_t and assign it
3176 **/
3177 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3178 struct skb_shared_hwtstamps *hwtstamps,
3179 u64 sgetstamp)
3180 {
3181 u64 ns;
3182 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3183
3184 ns = div_u64(tmp, adap->params.vpd.cclk);
3185
3186 memset(hwtstamps, 0, sizeof(*hwtstamps));
3187 hwtstamps->hwtstamp = ns_to_ktime(ns);
3188 }
3189
3190 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3191 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3192 {
3193 struct adapter *adapter = rxq->rspq.adap;
3194 struct sge *s = &adapter->sge;
3195 struct port_info *pi;
3196 int ret;
3197 struct sk_buff *skb;
3198
3199 skb = napi_get_frags(&rxq->rspq.napi);
3200 if (unlikely(!skb)) {
3201 t4_pktgl_free(gl);
3202 rxq->stats.rx_drops++;
3203 return;
3204 }
3205
3206 copy_frags(skb, gl, s->pktshift);
3207 if (tnl_hdr_len)
3208 skb->csum_level = 1;
3209 skb->len = gl->tot_len - s->pktshift;
3210 skb->data_len = skb->len;
3211 skb->truesize += skb->data_len;
3212 skb->ip_summed = CHECKSUM_UNNECESSARY;
3213 skb_record_rx_queue(skb, rxq->rspq.idx);
3214 pi = netdev_priv(skb->dev);
3215 if (pi->rxtstamp)
3216 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3217 gl->sgetstamp);
3218 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3219 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3220 PKT_HASH_TYPE_L3);
3221
3222 if (unlikely(pkt->vlan_ex)) {
3223 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3224 rxq->stats.vlan_ex++;
3225 }
3226 ret = napi_gro_frags(&rxq->rspq.napi);
3227 if (ret == GRO_HELD)
3228 rxq->stats.lro_pkts++;
3229 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3230 rxq->stats.lro_merged++;
3231 rxq->stats.pkts++;
3232 rxq->stats.rx_cso++;
3233 }
3234
3235 enum {
3236 RX_NON_PTP_PKT = 0,
3237 RX_PTP_PKT_SUC = 1,
3238 RX_PTP_PKT_ERR = 2
3239 };
3240
3241 /**
3242 * t4_systim_to_hwstamp - read hardware time stamp
3243 * @adap: the adapter
3244 * @skb: the packet
3245 *
3246 * Read Time Stamp from MPS packet and insert in skb which
3247 * is forwarded to PTP application
3248 */
3249 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3250 struct sk_buff *skb)
3251 {
3252 struct skb_shared_hwtstamps *hwtstamps;
3253 struct cpl_rx_mps_pkt *cpl = NULL;
3254 unsigned char *data;
3255 int offset;
3256
3257 cpl = (struct cpl_rx_mps_pkt *)skb->data;
3258 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3259 X_CPL_RX_MPS_PKT_TYPE_PTP))
3260 return RX_PTP_PKT_ERR;
3261
3262 data = skb->data + sizeof(*cpl);
3263 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3264 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3265 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3266 return RX_PTP_PKT_ERR;
3267
3268 hwtstamps = skb_hwtstamps(skb);
3269 memset(hwtstamps, 0, sizeof(*hwtstamps));
3270 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
3271
3272 return RX_PTP_PKT_SUC;
3273 }
3274
3275 /**
3276 * t4_rx_hststamp - Recv PTP Event Message
3277 * @adap: the adapter
3278 * @rsp: the response queue descriptor holding the RX_PKT message
3279 * @skb: the packet
3280 *
3281 * PTP enabled and MPS packet, read HW timestamp
3282 */
3283 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3284 struct sge_eth_rxq *rxq, struct sk_buff *skb)
3285 {
3286 int ret;
3287
3288 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3289 !is_t4(adapter->params.chip))) {
3290 ret = t4_systim_to_hwstamp(adapter, skb);
3291 if (ret == RX_PTP_PKT_ERR) {
3292 kfree_skb(skb);
3293 rxq->stats.rx_drops++;
3294 }
3295 return ret;
3296 }
3297 return RX_NON_PTP_PKT;
3298 }
3299
3300 /**
3301 * t4_tx_hststamp - Loopback PTP Transmit Event Message
3302 * @adap: the adapter
3303 * @skb: the packet
3304 * @dev: the ingress net device
3305 *
3306 * Read hardware timestamp for the loopback PTP Tx event message
3307 */
3308 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3309 struct net_device *dev)
3310 {
3311 struct port_info *pi = netdev_priv(dev);
3312
3313 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3314 cxgb4_ptp_read_hwstamp(adapter, pi);
3315 kfree_skb(skb);
3316 return 0;
3317 }
3318 return 1;
3319 }
3320
3321 /**
3322 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3323 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3324 * @rsp: Response Entry pointer into Response Queue
3325 * @gl: Gather List pointer
3326 *
3327 * For adapters which support the SGE Doorbell Queue Timer facility,
3328 * we configure the Ethernet TX Queues to send CIDX Updates to the
3329 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3330 * messages. This adds a small load to PCIe Link RX bandwidth and,
3331 * potentially, higher CPU Interrupt load, but allows us to respond
3332 * much more quickly to the CIDX Updates. This is important for
3333 * Upper Layer Software which isn't willing to have a large amount
3334 * of TX Data outstanding before receiving DMA Completions.
3335 */
3336 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3337 const __be64 *rsp,
3338 const struct pkt_gl *gl)
3339 {
3340 u8 opcode = ((const struct rss_header *)rsp)->opcode;
3341 struct port_info *pi = netdev_priv(rspq->netdev);
3342 struct adapter *adapter = rspq->adap;
3343 struct sge *s = &adapter->sge;
3344 struct sge_eth_txq *txq;
3345
3346 /* skip RSS header */
3347 rsp++;
3348
3349 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3350 */
3351 if (unlikely(opcode == CPL_FW4_MSG &&
3352 ((const struct cpl_fw4_msg *)rsp)->type ==
3353 FW_TYPE_RSSCPL)) {
3354 rsp++;
3355 opcode = ((const struct rss_header *)rsp)->opcode;
3356 rsp++;
3357 }
3358
3359 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3360 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3361 __func__, opcode);
3362 return;
3363 }
3364
3365 txq = &s->ethtxq[pi->first_qset + rspq->idx];
3366 t4_sge_eth_txq_egress_update(adapter, txq, -1);
3367 }
3368
3369 /**
3370 * t4_ethrx_handler - process an ingress ethernet packet
3371 * @q: the response queue that received the packet
3372 * @rsp: the response queue descriptor holding the RX_PKT message
3373 * @si: the gather list of packet fragments
3374 *
3375 * Process an ingress ethernet packet and deliver it to the stack.
3376 */
3377 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3378 const struct pkt_gl *si)
3379 {
3380 bool csum_ok;
3381 struct sk_buff *skb;
3382 const struct cpl_rx_pkt *pkt;
3383 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3384 struct adapter *adapter = q->adap;
3385 struct sge *s = &q->adap->sge;
3386 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3387 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3388 u16 err_vec, tnl_hdr_len = 0;
3389 struct port_info *pi;
3390 int ret = 0;
3391
3392 /* If we're looking at TX Queue CIDX Update, handle that separately
3393 * and return.
3394 */
3395 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3396 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3397 t4_tx_completion_handler(q, rsp, si);
3398 return 0;
3399 }
3400
3401 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3402 return handle_trace_pkt(q->adap, si);
3403
3404 pkt = (const struct cpl_rx_pkt *)rsp;
3405 /* Compressed error vector is enabled for T6 only */
3406 if (q->adap->params.tp.rx_pkt_encap) {
3407 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3408 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3409 } else {
3410 err_vec = be16_to_cpu(pkt->err_vec);
3411 }
3412
3413 csum_ok = pkt->csum_calc && !err_vec &&
3414 (q->netdev->features & NETIF_F_RXCSUM);
3415
3416 if (err_vec)
3417 rxq->stats.bad_rx_pkts++;
3418
3419 if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3420 tnl_hdr_len) &&
3421 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3422 do_gro(rxq, si, pkt, tnl_hdr_len);
3423 return 0;
3424 }
3425
3426 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3427 if (unlikely(!skb)) {
3428 t4_pktgl_free(si);
3429 rxq->stats.rx_drops++;
3430 return 0;
3431 }
3432 pi = netdev_priv(q->netdev);
3433
3434 /* Handle PTP Event Rx packet */
3435 if (unlikely(pi->ptp_enable)) {
3436 ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3437 if (ret == RX_PTP_PKT_ERR)
3438 return 0;
3439 }
3440 if (likely(!ret))
3441 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3442
3443 /* Handle the PTP Event Tx Loopback packet */
3444 if (unlikely(pi->ptp_enable && !ret &&
3445 (pkt->l2info & htonl(RXF_UDP_F)) &&
3446 cxgb4_ptp_is_ptp_rx(skb))) {
3447 if (!t4_tx_hststamp(adapter, skb, q->netdev))
3448 return 0;
3449 }
3450
3451 skb->protocol = eth_type_trans(skb, q->netdev);
3452 skb_record_rx_queue(skb, q->idx);
3453 if (skb->dev->features & NETIF_F_RXHASH)
3454 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3455 PKT_HASH_TYPE_L3);
3456
3457 rxq->stats.pkts++;
3458
3459 if (pi->rxtstamp)
3460 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3461 si->sgetstamp);
3462 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3463 if (!pkt->ip_frag) {
3464 skb->ip_summed = CHECKSUM_UNNECESSARY;
3465 rxq->stats.rx_cso++;
3466 } else if (pkt->l2info & htonl(RXF_IP_F)) {
3467 __sum16 c = (__force __sum16)pkt->csum;
3468 skb->csum = csum_unfold(c);
3469
3470 if (tnl_hdr_len) {
3471 skb->ip_summed = CHECKSUM_UNNECESSARY;
3472 skb->csum_level = 1;
3473 } else {
3474 skb->ip_summed = CHECKSUM_COMPLETE;
3475 }
3476 rxq->stats.rx_cso++;
3477 }
3478 } else {
3479 skb_checksum_none_assert(skb);
3480 #ifdef CONFIG_CHELSIO_T4_FCOE
3481 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3482 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3483
3484 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3485 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3486 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3487 if (q->adap->params.tp.rx_pkt_encap)
3488 csum_ok = err_vec &
3489 T6_COMPR_RXERR_SUM_F;
3490 else
3491 csum_ok = err_vec & RXERR_CSUM_F;
3492 if (!csum_ok)
3493 skb->ip_summed = CHECKSUM_UNNECESSARY;
3494 }
3495 }
3496
3497 #undef CPL_RX_PKT_FLAGS
3498 #endif /* CONFIG_CHELSIO_T4_FCOE */
3499 }
3500
3501 if (unlikely(pkt->vlan_ex)) {
3502 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3503 rxq->stats.vlan_ex++;
3504 }
3505 skb_mark_napi_id(skb, &q->napi);
3506 netif_receive_skb(skb);
3507 return 0;
3508 }
3509
3510 /**
3511 * restore_rx_bufs - put back a packet's Rx buffers
3512 * @si: the packet gather list
3513 * @q: the SGE free list
3514 * @frags: number of FL buffers to restore
3515 *
3516 * Puts back on an FL the Rx buffers associated with @si. The buffers
3517 * have already been unmapped and are left unmapped, we mark them so to
3518 * prevent further unmapping attempts.
3519 *
3520 * This function undoes a series of @unmap_rx_buf calls when we find out
3521 * that the current packet can't be processed right away afterall and we
3522 * need to come back to it later. This is a very rare event and there's
3523 * no effort to make this particularly efficient.
3524 */
3525 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3526 int frags)
3527 {
3528 struct rx_sw_desc *d;
3529
3530 while (frags--) {
3531 if (q->cidx == 0)
3532 q->cidx = q->size - 1;
3533 else
3534 q->cidx--;
3535 d = &q->sdesc[q->cidx];
3536 d->page = si->frags[frags].page;
3537 d->dma_addr |= RX_UNMAPPED_BUF;
3538 q->avail++;
3539 }
3540 }
3541
3542 /**
3543 * is_new_response - check if a response is newly written
3544 * @r: the response descriptor
3545 * @q: the response queue
3546 *
3547 * Returns true if a response descriptor contains a yet unprocessed
3548 * response.
3549 */
3550 static inline bool is_new_response(const struct rsp_ctrl *r,
3551 const struct sge_rspq *q)
3552 {
3553 return (r->type_gen >> RSPD_GEN_S) == q->gen;
3554 }
3555
3556 /**
3557 * rspq_next - advance to the next entry in a response queue
3558 * @q: the queue
3559 *
3560 * Updates the state of a response queue to advance it to the next entry.
3561 */
3562 static inline void rspq_next(struct sge_rspq *q)
3563 {
3564 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3565 if (unlikely(++q->cidx == q->size)) {
3566 q->cidx = 0;
3567 q->gen ^= 1;
3568 q->cur_desc = q->desc;
3569 }
3570 }
3571
3572 /**
3573 * process_responses - process responses from an SGE response queue
3574 * @q: the ingress queue to process
3575 * @budget: how many responses can be processed in this round
3576 *
3577 * Process responses from an SGE response queue up to the supplied budget.
3578 * Responses include received packets as well as control messages from FW
3579 * or HW.
3580 *
3581 * Additionally choose the interrupt holdoff time for the next interrupt
3582 * on this queue. If the system is under memory shortage use a fairly
3583 * long delay to help recovery.
3584 */
3585 static int process_responses(struct sge_rspq *q, int budget)
3586 {
3587 int ret, rsp_type;
3588 int budget_left = budget;
3589 const struct rsp_ctrl *rc;
3590 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3591 struct adapter *adapter = q->adap;
3592 struct sge *s = &adapter->sge;
3593
3594 while (likely(budget_left)) {
3595 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3596 if (!is_new_response(rc, q)) {
3597 if (q->flush_handler)
3598 q->flush_handler(q);
3599 break;
3600 }
3601
3602 dma_rmb();
3603 rsp_type = RSPD_TYPE_G(rc->type_gen);
3604 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3605 struct page_frag *fp;
3606 struct pkt_gl si;
3607 const struct rx_sw_desc *rsd;
3608 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3609
3610 if (len & RSPD_NEWBUF_F) {
3611 if (likely(q->offset > 0)) {
3612 free_rx_bufs(q->adap, &rxq->fl, 1);
3613 q->offset = 0;
3614 }
3615 len = RSPD_LEN_G(len);
3616 }
3617 si.tot_len = len;
3618
3619 /* gather packet fragments */
3620 for (frags = 0, fp = si.frags; ; frags++, fp++) {
3621 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3622 bufsz = get_buf_size(adapter, rsd);
3623 fp->page = rsd->page;
3624 fp->offset = q->offset;
3625 fp->size = min(bufsz, len);
3626 len -= fp->size;
3627 if (!len)
3628 break;
3629 unmap_rx_buf(q->adap, &rxq->fl);
3630 }
3631
3632 si.sgetstamp = SGE_TIMESTAMP_G(
3633 be64_to_cpu(rc->last_flit));
3634 /*
3635 * Last buffer remains mapped so explicitly make it
3636 * coherent for CPU access.
3637 */
3638 dma_sync_single_for_cpu(q->adap->pdev_dev,
3639 get_buf_addr(rsd),
3640 fp->size, DMA_FROM_DEVICE);
3641
3642 si.va = page_address(si.frags[0].page) +
3643 si.frags[0].offset;
3644 prefetch(si.va);
3645
3646 si.nfrags = frags + 1;
3647 ret = q->handler(q, q->cur_desc, &si);
3648 if (likely(ret == 0))
3649 q->offset += ALIGN(fp->size, s->fl_align);
3650 else
3651 restore_rx_bufs(&si, &rxq->fl, frags);
3652 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3653 ret = q->handler(q, q->cur_desc, NULL);
3654 } else {
3655 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3656 }
3657
3658 if (unlikely(ret)) {
3659 /* couldn't process descriptor, back off for recovery */
3660 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3661 break;
3662 }
3663
3664 rspq_next(q);
3665 budget_left--;
3666 }
3667
3668 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3669 __refill_fl(q->adap, &rxq->fl);
3670 return budget - budget_left;
3671 }
3672
3673 /**
3674 * napi_rx_handler - the NAPI handler for Rx processing
3675 * @napi: the napi instance
3676 * @budget: how many packets we can process in this round
3677 *
3678 * Handler for new data events when using NAPI. This does not need any
3679 * locking or protection from interrupts as data interrupts are off at
3680 * this point and other adapter interrupts do not interfere (the latter
3681 * in not a concern at all with MSI-X as non-data interrupts then have
3682 * a separate handler).
3683 */
3684 static int napi_rx_handler(struct napi_struct *napi, int budget)
3685 {
3686 unsigned int params;
3687 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3688 int work_done;
3689 u32 val;
3690
3691 work_done = process_responses(q, budget);
3692 if (likely(work_done < budget)) {
3693 int timer_index;
3694
3695 napi_complete_done(napi, work_done);
3696 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3697
3698 if (q->adaptive_rx) {
3699 if (work_done > max(timer_pkt_quota[timer_index],
3700 MIN_NAPI_WORK))
3701 timer_index = (timer_index + 1);
3702 else
3703 timer_index = timer_index - 1;
3704
3705 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3706 q->next_intr_params =
3707 QINTR_TIMER_IDX_V(timer_index) |
3708 QINTR_CNT_EN_V(0);
3709 params = q->next_intr_params;
3710 } else {
3711 params = q->next_intr_params;
3712 q->next_intr_params = q->intr_params;
3713 }
3714 } else
3715 params = QINTR_TIMER_IDX_V(7);
3716
3717 val = CIDXINC_V(work_done) | SEINTARM_V(params);
3718
3719 /* If we don't have access to the new User GTS (T5+), use the old
3720 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3721 */
3722 if (unlikely(q->bar2_addr == NULL)) {
3723 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3724 val | INGRESSQID_V((u32)q->cntxt_id));
3725 } else {
3726 writel(val | INGRESSQID_V(q->bar2_qid),
3727 q->bar2_addr + SGE_UDB_GTS);
3728 wmb();
3729 }
3730 return work_done;
3731 }
3732
3733 void cxgb4_ethofld_restart(unsigned long data)
3734 {
3735 struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
3736 int pktcount;
3737
3738 spin_lock(&eosw_txq->lock);
3739 pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
3740 if (pktcount < 0)
3741 pktcount += eosw_txq->ndesc;
3742
3743 if (pktcount) {
3744 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
3745 eosw_txq, pktcount);
3746 eosw_txq->inuse -= pktcount;
3747 }
3748
3749 /* There may be some packets waiting for completions. So,
3750 * attempt to send these packets now.
3751 */
3752 ethofld_xmit(eosw_txq->netdev, eosw_txq);
3753 spin_unlock(&eosw_txq->lock);
3754 }
3755
3756 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
3757 * @q: the response queue that received the packet
3758 * @rsp: the response queue descriptor holding the CPL message
3759 * @si: the gather list of packet fragments
3760 *
3761 * Process a ETHOFLD Tx completion. Increment the cidx here, but
3762 * free up the descriptors in a tasklet later.
3763 */
3764 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
3765 const struct pkt_gl *si)
3766 {
3767 u8 opcode = ((const struct rss_header *)rsp)->opcode;
3768
3769 /* skip RSS header */
3770 rsp++;
3771
3772 if (opcode == CPL_FW4_ACK) {
3773 const struct cpl_fw4_ack *cpl;
3774 struct sge_eosw_txq *eosw_txq;
3775 struct eotid_entry *entry;
3776 struct sk_buff *skb;
3777 u32 hdr_len, eotid;
3778 u8 flits, wrlen16;
3779 int credits;
3780
3781 cpl = (const struct cpl_fw4_ack *)rsp;
3782 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
3783 q->adap->tids.eotid_base;
3784 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
3785 if (!entry)
3786 goto out_done;
3787
3788 eosw_txq = (struct sge_eosw_txq *)entry->data;
3789 if (!eosw_txq)
3790 goto out_done;
3791
3792 spin_lock(&eosw_txq->lock);
3793 credits = cpl->credits;
3794 while (credits > 0) {
3795 skb = eosw_txq->desc[eosw_txq->cidx].skb;
3796 if (!skb)
3797 break;
3798
3799 if (unlikely((eosw_txq->state ==
3800 CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
3801 eosw_txq->state ==
3802 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
3803 eosw_txq->cidx == eosw_txq->flowc_idx)) {
3804 flits = DIV_ROUND_UP(skb->len, 8);
3805 if (eosw_txq->state ==
3806 CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
3807 eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
3808 else
3809 eosw_txq->state = CXGB4_EO_STATE_CLOSED;
3810 complete(&eosw_txq->completion);
3811 } else {
3812 hdr_len = eth_get_headlen(eosw_txq->netdev,
3813 skb->data,
3814 skb_headlen(skb));
3815 flits = ethofld_calc_tx_flits(q->adap, skb,
3816 hdr_len);
3817 }
3818 eosw_txq_advance_index(&eosw_txq->cidx, 1,
3819 eosw_txq->ndesc);
3820 wrlen16 = DIV_ROUND_UP(flits * 8, 16);
3821 credits -= wrlen16;
3822 }
3823
3824 eosw_txq->cred += cpl->credits;
3825 eosw_txq->ncompl--;
3826
3827 spin_unlock(&eosw_txq->lock);
3828
3829 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
3830 * if there were packets waiting for completion.
3831 */
3832 tasklet_schedule(&eosw_txq->qresume_tsk);
3833 }
3834
3835 out_done:
3836 return 0;
3837 }
3838
3839 /*
3840 * The MSI-X interrupt handler for an SGE response queue.
3841 */
3842 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3843 {
3844 struct sge_rspq *q = cookie;
3845
3846 napi_schedule(&q->napi);
3847 return IRQ_HANDLED;
3848 }
3849
3850 /*
3851 * Process the indirect interrupt entries in the interrupt queue and kick off
3852 * NAPI for each queue that has generated an entry.
3853 */
3854 static unsigned int process_intrq(struct adapter *adap)
3855 {
3856 unsigned int credits;
3857 const struct rsp_ctrl *rc;
3858 struct sge_rspq *q = &adap->sge.intrq;
3859 u32 val;
3860
3861 spin_lock(&adap->sge.intrq_lock);
3862 for (credits = 0; ; credits++) {
3863 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3864 if (!is_new_response(rc, q))
3865 break;
3866
3867 dma_rmb();
3868 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3869 unsigned int qid = ntohl(rc->pldbuflen_qid);
3870
3871 qid -= adap->sge.ingr_start;
3872 napi_schedule(&adap->sge.ingr_map[qid]->napi);
3873 }
3874
3875 rspq_next(q);
3876 }
3877
3878 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3879
3880 /* If we don't have access to the new User GTS (T5+), use the old
3881 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3882 */
3883 if (unlikely(q->bar2_addr == NULL)) {
3884 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3885 val | INGRESSQID_V(q->cntxt_id));
3886 } else {
3887 writel(val | INGRESSQID_V(q->bar2_qid),
3888 q->bar2_addr + SGE_UDB_GTS);
3889 wmb();
3890 }
3891 spin_unlock(&adap->sge.intrq_lock);
3892 return credits;
3893 }
3894
3895 /*
3896 * The MSI interrupt handler, which handles data events from SGE response queues
3897 * as well as error and other async events as they all use the same MSI vector.
3898 */
3899 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3900 {
3901 struct adapter *adap = cookie;
3902
3903 if (adap->flags & CXGB4_MASTER_PF)
3904 t4_slow_intr_handler(adap);
3905 process_intrq(adap);
3906 return IRQ_HANDLED;
3907 }
3908
3909 /*
3910 * Interrupt handler for legacy INTx interrupts.
3911 * Handles data events from SGE response queues as well as error and other
3912 * async events as they all use the same interrupt line.
3913 */
3914 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3915 {
3916 struct adapter *adap = cookie;
3917
3918 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3919 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3920 process_intrq(adap))
3921 return IRQ_HANDLED;
3922 return IRQ_NONE; /* probably shared interrupt */
3923 }
3924
3925 /**
3926 * t4_intr_handler - select the top-level interrupt handler
3927 * @adap: the adapter
3928 *
3929 * Selects the top-level interrupt handler based on the type of interrupts
3930 * (MSI-X, MSI, or INTx).
3931 */
3932 irq_handler_t t4_intr_handler(struct adapter *adap)
3933 {
3934 if (adap->flags & CXGB4_USING_MSIX)
3935 return t4_sge_intr_msix;
3936 if (adap->flags & CXGB4_USING_MSI)
3937 return t4_intr_msi;
3938 return t4_intr_intx;
3939 }
3940
3941 static void sge_rx_timer_cb(struct timer_list *t)
3942 {
3943 unsigned long m;
3944 unsigned int i;
3945 struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3946 struct sge *s = &adap->sge;
3947
3948 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3949 for (m = s->starving_fl[i]; m; m &= m - 1) {
3950 struct sge_eth_rxq *rxq;
3951 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3952 struct sge_fl *fl = s->egr_map[id];
3953
3954 clear_bit(id, s->starving_fl);
3955 smp_mb__after_atomic();
3956
3957 if (fl_starving(adap, fl)) {
3958 rxq = container_of(fl, struct sge_eth_rxq, fl);
3959 if (napi_reschedule(&rxq->rspq.napi))
3960 fl->starving++;
3961 else
3962 set_bit(id, s->starving_fl);
3963 }
3964 }
3965 /* The remainder of the SGE RX Timer Callback routine is dedicated to
3966 * global Master PF activities like checking for chip ingress stalls,
3967 * etc.
3968 */
3969 if (!(adap->flags & CXGB4_MASTER_PF))
3970 goto done;
3971
3972 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
3973
3974 done:
3975 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
3976 }
3977
3978 static void sge_tx_timer_cb(struct timer_list *t)
3979 {
3980 struct adapter *adap = from_timer(adap, t, sge.tx_timer);
3981 struct sge *s = &adap->sge;
3982 unsigned long m, period;
3983 unsigned int i, budget;
3984
3985 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3986 for (m = s->txq_maperr[i]; m; m &= m - 1) {
3987 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
3988 struct sge_uld_txq *txq = s->egr_map[id];
3989
3990 clear_bit(id, s->txq_maperr);
3991 tasklet_schedule(&txq->qresume_tsk);
3992 }
3993
3994 if (!is_t4(adap->params.chip)) {
3995 struct sge_eth_txq *q = &s->ptptxq;
3996 int avail;
3997
3998 spin_lock(&adap->ptp_lock);
3999 avail = reclaimable(&q->q);
4000
4001 if (avail) {
4002 free_tx_desc(adap, &q->q, avail, false);
4003 q->q.in_use -= avail;
4004 }
4005 spin_unlock(&adap->ptp_lock);
4006 }
4007
4008 budget = MAX_TIMER_TX_RECLAIM;
4009 i = s->ethtxq_rover;
4010 do {
4011 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4012 budget);
4013 if (!budget)
4014 break;
4015
4016 if (++i >= s->ethqsets)
4017 i = 0;
4018 } while (i != s->ethtxq_rover);
4019 s->ethtxq_rover = i;
4020
4021 if (budget == 0) {
4022 /* If we found too many reclaimable packets schedule a timer
4023 * in the near future to continue where we left off.
4024 */
4025 period = 2;
4026 } else {
4027 /* We reclaimed all reclaimable TX Descriptors, so reschedule
4028 * at the normal period.
4029 */
4030 period = TX_QCHECK_PERIOD;
4031 }
4032
4033 mod_timer(&s->tx_timer, jiffies + period);
4034 }
4035
4036 /**
4037 * bar2_address - return the BAR2 address for an SGE Queue's Registers
4038 * @adapter: the adapter
4039 * @qid: the SGE Queue ID
4040 * @qtype: the SGE Queue Type (Egress or Ingress)
4041 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4042 *
4043 * Returns the BAR2 address for the SGE Queue Registers associated with
4044 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
4045 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4046 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4047 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
4048 */
4049 static void __iomem *bar2_address(struct adapter *adapter,
4050 unsigned int qid,
4051 enum t4_bar2_qtype qtype,
4052 unsigned int *pbar2_qid)
4053 {
4054 u64 bar2_qoffset;
4055 int ret;
4056
4057 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4058 &bar2_qoffset, pbar2_qid);
4059 if (ret)
4060 return NULL;
4061
4062 return adapter->bar2 + bar2_qoffset;
4063 }
4064
4065 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4066 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4067 */
4068 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4069 struct net_device *dev, int intr_idx,
4070 struct sge_fl *fl, rspq_handler_t hnd,
4071 rspq_flush_handler_t flush_hnd, int cong)
4072 {
4073 int ret, flsz = 0;
4074 struct fw_iq_cmd c;
4075 struct sge *s = &adap->sge;
4076 struct port_info *pi = netdev_priv(dev);
4077 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4078
4079 /* Size needs to be multiple of 16, including status entry. */
4080 iq->size = roundup(iq->size, 16);
4081
4082 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4083 &iq->phys_addr, NULL, 0,
4084 dev_to_node(adap->pdev_dev));
4085 if (!iq->desc)
4086 return -ENOMEM;
4087
4088 memset(&c, 0, sizeof(c));
4089 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4090 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4091 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4092 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4093 FW_LEN16(c));
4094 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4095 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4096 FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4097 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4098 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4099 -intr_idx - 1));
4100 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4101 FW_IQ_CMD_IQGTSMODE_F |
4102 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4103 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4104 c.iqsize = htons(iq->size);
4105 c.iqaddr = cpu_to_be64(iq->phys_addr);
4106 if (cong >= 0)
4107 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4108 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4109 : FW_IQ_IQTYPE_OFLD));
4110
4111 if (fl) {
4112 unsigned int chip_ver =
4113 CHELSIO_CHIP_VERSION(adap->params.chip);
4114
4115 /* Allocate the ring for the hardware free list (with space
4116 * for its status page) along with the associated software
4117 * descriptor ring. The free list size needs to be a multiple
4118 * of the Egress Queue Unit and at least 2 Egress Units larger
4119 * than the SGE's Egress Congrestion Threshold
4120 * (fl_starve_thres - 1).
4121 */
4122 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4123 fl->size = s->fl_starve_thres - 1 + 2 * 8;
4124 fl->size = roundup(fl->size, 8);
4125 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4126 sizeof(struct rx_sw_desc), &fl->addr,
4127 &fl->sdesc, s->stat_len,
4128 dev_to_node(adap->pdev_dev));
4129 if (!fl->desc)
4130 goto fl_nomem;
4131
4132 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4133 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4134 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4135 FW_IQ_CMD_FL0DATARO_V(relaxed) |
4136 FW_IQ_CMD_FL0PADEN_F);
4137 if (cong >= 0)
4138 c.iqns_to_fl0congen |=
4139 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4140 FW_IQ_CMD_FL0CONGCIF_F |
4141 FW_IQ_CMD_FL0CONGEN_F);
4142 /* In T6, for egress queue type FL there is internal overhead
4143 * of 16B for header going into FLM module. Hence the maximum
4144 * allowed burst size is 448 bytes. For T4/T5, the hardware
4145 * doesn't coalesce fetch requests if more than 64 bytes of
4146 * Free List pointers are provided, so we use a 128-byte Fetch
4147 * Burst Minimum there (T6 implements coalescing so we can use
4148 * the smaller 64-byte value there).
4149 */
4150 c.fl0dcaen_to_fl0cidxfthresh =
4151 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4152 FETCHBURSTMIN_128B_X :
4153 FETCHBURSTMIN_64B_T6_X) |
4154 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4155 FETCHBURSTMAX_512B_X :
4156 FETCHBURSTMAX_256B_X));
4157 c.fl0size = htons(flsz);
4158 c.fl0addr = cpu_to_be64(fl->addr);
4159 }
4160
4161 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4162 if (ret)
4163 goto err;
4164
4165 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4166 iq->cur_desc = iq->desc;
4167 iq->cidx = 0;
4168 iq->gen = 1;
4169 iq->next_intr_params = iq->intr_params;
4170 iq->cntxt_id = ntohs(c.iqid);
4171 iq->abs_id = ntohs(c.physiqid);
4172 iq->bar2_addr = bar2_address(adap,
4173 iq->cntxt_id,
4174 T4_BAR2_QTYPE_INGRESS,
4175 &iq->bar2_qid);
4176 iq->size--; /* subtract status entry */
4177 iq->netdev = dev;
4178 iq->handler = hnd;
4179 iq->flush_handler = flush_hnd;
4180
4181 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4182 skb_queue_head_init(&iq->lro_mgr.lroq);
4183
4184 /* set offset to -1 to distinguish ingress queues without FL */
4185 iq->offset = fl ? 0 : -1;
4186
4187 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4188
4189 if (fl) {
4190 fl->cntxt_id = ntohs(c.fl0id);
4191 fl->avail = fl->pend_cred = 0;
4192 fl->pidx = fl->cidx = 0;
4193 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4194 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4195
4196 /* Note, we must initialize the BAR2 Free List User Doorbell
4197 * information before refilling the Free List!
4198 */
4199 fl->bar2_addr = bar2_address(adap,
4200 fl->cntxt_id,
4201 T4_BAR2_QTYPE_EGRESS,
4202 &fl->bar2_qid);
4203 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4204 }
4205
4206 /* For T5 and later we attempt to set up the Congestion Manager values
4207 * of the new RX Ethernet Queue. This should really be handled by
4208 * firmware because it's more complex than any host driver wants to
4209 * get involved with and it's different per chip and this is almost
4210 * certainly wrong. Firmware would be wrong as well, but it would be
4211 * a lot easier to fix in one place ... For now we do something very
4212 * simple (and hopefully less wrong).
4213 */
4214 if (!is_t4(adap->params.chip) && cong >= 0) {
4215 u32 param, val, ch_map = 0;
4216 int i;
4217 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4218
4219 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4220 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4221 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4222 if (cong == 0) {
4223 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4224 } else {
4225 val =
4226 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4227 for (i = 0; i < 4; i++) {
4228 if (cong & (1 << i))
4229 ch_map |= 1 << (i << cng_ch_bits_log);
4230 }
4231 val |= CONMCTXT_CNGCHMAP_V(ch_map);
4232 }
4233 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4234 &param, &val);
4235 if (ret)
4236 dev_warn(adap->pdev_dev, "Failed to set Congestion"
4237 " Manager Context for Ingress Queue %d: %d\n",
4238 iq->cntxt_id, -ret);
4239 }
4240
4241 return 0;
4242
4243 fl_nomem:
4244 ret = -ENOMEM;
4245 err:
4246 if (iq->desc) {
4247 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4248 iq->desc, iq->phys_addr);
4249 iq->desc = NULL;
4250 }
4251 if (fl && fl->desc) {
4252 kfree(fl->sdesc);
4253 fl->sdesc = NULL;
4254 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4255 fl->desc, fl->addr);
4256 fl->desc = NULL;
4257 }
4258 return ret;
4259 }
4260
4261 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4262 {
4263 q->cntxt_id = id;
4264 q->bar2_addr = bar2_address(adap,
4265 q->cntxt_id,
4266 T4_BAR2_QTYPE_EGRESS,
4267 &q->bar2_qid);
4268 q->in_use = 0;
4269 q->cidx = q->pidx = 0;
4270 q->stops = q->restarts = 0;
4271 q->stat = (void *)&q->desc[q->size];
4272 spin_lock_init(&q->db_lock);
4273 adap->sge.egr_map[id - adap->sge.egr_start] = q;
4274 }
4275
4276 /**
4277 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4278 * @adap: the adapter
4279 * @txq: the SGE Ethernet TX Queue to initialize
4280 * @dev: the Linux Network Device
4281 * @netdevq: the corresponding Linux TX Queue
4282 * @iqid: the Ingress Queue to which to deliver CIDX Update messages
4283 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4284 */
4285 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4286 struct net_device *dev, struct netdev_queue *netdevq,
4287 unsigned int iqid, u8 dbqt)
4288 {
4289 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4290 struct port_info *pi = netdev_priv(dev);
4291 struct sge *s = &adap->sge;
4292 struct fw_eq_eth_cmd c;
4293 int ret, nentries;
4294
4295 /* Add status entries */
4296 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4297
4298 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4299 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4300 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4301 netdev_queue_numa_node_read(netdevq));
4302 if (!txq->q.desc)
4303 return -ENOMEM;
4304
4305 memset(&c, 0, sizeof(c));
4306 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4307 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4308 FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4309 FW_EQ_ETH_CMD_VFN_V(0));
4310 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4311 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4312
4313 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4314 * mechanism, we use Ingress Queue messages for Hardware Consumer
4315 * Index Updates on the TX Queue. Otherwise we have the Hardware
4316 * write the CIDX Updates into the Status Page at the end of the
4317 * TX Queue.
4318 */
4319 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4320 FW_EQ_ETH_CMD_VIID_V(pi->viid));
4321
4322 c.fetchszm_to_iqid =
4323 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4324 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4325 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4326
4327 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4328 c.dcaen_to_eqsize =
4329 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4330 ? FETCHBURSTMIN_64B_X
4331 : FETCHBURSTMIN_64B_T6_X) |
4332 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4333 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4334 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4335
4336 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4337
4338 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4339 * currently configured Timer Index. THis can be changed later via an
4340 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE
4341 * Doorbell Queue mode is currently automatically enabled in the
4342 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4343 */
4344 if (dbqt)
4345 c.timeren_timerix =
4346 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4347 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4348
4349 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4350 if (ret) {
4351 kfree(txq->q.sdesc);
4352 txq->q.sdesc = NULL;
4353 dma_free_coherent(adap->pdev_dev,
4354 nentries * sizeof(struct tx_desc),
4355 txq->q.desc, txq->q.phys_addr);
4356 txq->q.desc = NULL;
4357 return ret;
4358 }
4359
4360 txq->q.q_type = CXGB4_TXQ_ETH;
4361 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4362 txq->txq = netdevq;
4363 txq->tso = 0;
4364 txq->uso = 0;
4365 txq->tx_cso = 0;
4366 txq->vlan_ins = 0;
4367 txq->mapping_err = 0;
4368 txq->dbqt = dbqt;
4369
4370 return 0;
4371 }
4372
4373 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4374 struct net_device *dev, unsigned int iqid,
4375 unsigned int cmplqid)
4376 {
4377 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4378 struct port_info *pi = netdev_priv(dev);
4379 struct sge *s = &adap->sge;
4380 struct fw_eq_ctrl_cmd c;
4381 int ret, nentries;
4382
4383 /* Add status entries */
4384 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4385
4386 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4387 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4388 NULL, 0, dev_to_node(adap->pdev_dev));
4389 if (!txq->q.desc)
4390 return -ENOMEM;
4391
4392 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4393 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4394 FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4395 FW_EQ_CTRL_CMD_VFN_V(0));
4396 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4397 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4398 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4399 c.physeqid_pkd = htonl(0);
4400 c.fetchszm_to_iqid =
4401 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4402 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4403 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4404 c.dcaen_to_eqsize =
4405 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4406 ? FETCHBURSTMIN_64B_X
4407 : FETCHBURSTMIN_64B_T6_X) |
4408 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4409 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4410 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4411 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4412
4413 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4414 if (ret) {
4415 dma_free_coherent(adap->pdev_dev,
4416 nentries * sizeof(struct tx_desc),
4417 txq->q.desc, txq->q.phys_addr);
4418 txq->q.desc = NULL;
4419 return ret;
4420 }
4421
4422 txq->q.q_type = CXGB4_TXQ_CTRL;
4423 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4424 txq->adap = adap;
4425 skb_queue_head_init(&txq->sendq);
4426 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
4427 txq->full = 0;
4428 return 0;
4429 }
4430
4431 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4432 unsigned int cmplqid)
4433 {
4434 u32 param, val;
4435
4436 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4437 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4438 FW_PARAMS_PARAM_YZ_V(eqid));
4439 val = cmplqid;
4440 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4441 }
4442
4443 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4444 struct net_device *dev, u32 cmd, u32 iqid)
4445 {
4446 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4447 struct port_info *pi = netdev_priv(dev);
4448 struct sge *s = &adap->sge;
4449 struct fw_eq_ofld_cmd c;
4450 u32 fb_min, nentries;
4451 int ret;
4452
4453 /* Add status entries */
4454 nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4455 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4456 sizeof(struct tx_sw_desc), &q->phys_addr,
4457 &q->sdesc, s->stat_len, NUMA_NO_NODE);
4458 if (!q->desc)
4459 return -ENOMEM;
4460
4461 if (chip_ver <= CHELSIO_T5)
4462 fb_min = FETCHBURSTMIN_64B_X;
4463 else
4464 fb_min = FETCHBURSTMIN_64B_T6_X;
4465
4466 memset(&c, 0, sizeof(c));
4467 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4468 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4469 FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4470 FW_EQ_OFLD_CMD_VFN_V(0));
4471 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4472 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4473 c.fetchszm_to_iqid =
4474 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4475 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4476 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4477 c.dcaen_to_eqsize =
4478 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4479 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4480 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4481 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4482 c.eqaddr = cpu_to_be64(q->phys_addr);
4483
4484 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4485 if (ret) {
4486 kfree(q->sdesc);
4487 q->sdesc = NULL;
4488 dma_free_coherent(adap->pdev_dev,
4489 nentries * sizeof(struct tx_desc),
4490 q->desc, q->phys_addr);
4491 q->desc = NULL;
4492 return ret;
4493 }
4494
4495 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4496 return 0;
4497 }
4498
4499 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4500 struct net_device *dev, unsigned int iqid,
4501 unsigned int uld_type)
4502 {
4503 u32 cmd = FW_EQ_OFLD_CMD;
4504 int ret;
4505
4506 if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4507 cmd = FW_EQ_CTRL_CMD;
4508
4509 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4510 if (ret)
4511 return ret;
4512
4513 txq->q.q_type = CXGB4_TXQ_ULD;
4514 txq->adap = adap;
4515 skb_queue_head_init(&txq->sendq);
4516 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
4517 txq->full = 0;
4518 txq->mapping_err = 0;
4519 return 0;
4520 }
4521
4522 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4523 struct net_device *dev, u32 iqid)
4524 {
4525 int ret;
4526
4527 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4528 if (ret)
4529 return ret;
4530
4531 txq->q.q_type = CXGB4_TXQ_ULD;
4532 spin_lock_init(&txq->lock);
4533 txq->adap = adap;
4534 txq->tso = 0;
4535 txq->uso = 0;
4536 txq->tx_cso = 0;
4537 txq->vlan_ins = 0;
4538 txq->mapping_err = 0;
4539 return 0;
4540 }
4541
4542 void free_txq(struct adapter *adap, struct sge_txq *q)
4543 {
4544 struct sge *s = &adap->sge;
4545
4546 dma_free_coherent(adap->pdev_dev,
4547 q->size * sizeof(struct tx_desc) + s->stat_len,
4548 q->desc, q->phys_addr);
4549 q->cntxt_id = 0;
4550 q->sdesc = NULL;
4551 q->desc = NULL;
4552 }
4553
4554 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4555 struct sge_fl *fl)
4556 {
4557 struct sge *s = &adap->sge;
4558 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4559
4560 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4561 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4562 rq->cntxt_id, fl_id, 0xffff);
4563 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4564 rq->desc, rq->phys_addr);
4565 netif_napi_del(&rq->napi);
4566 rq->netdev = NULL;
4567 rq->cntxt_id = rq->abs_id = 0;
4568 rq->desc = NULL;
4569
4570 if (fl) {
4571 free_rx_bufs(adap, fl, fl->avail);
4572 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4573 fl->desc, fl->addr);
4574 kfree(fl->sdesc);
4575 fl->sdesc = NULL;
4576 fl->cntxt_id = 0;
4577 fl->desc = NULL;
4578 }
4579 }
4580
4581 /**
4582 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
4583 * @adap: the adapter
4584 * @n: number of queues
4585 * @q: pointer to first queue
4586 *
4587 * Release the resources of a consecutive block of offload Rx queues.
4588 */
4589 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4590 {
4591 for ( ; n; n--, q++)
4592 if (q->rspq.desc)
4593 free_rspq_fl(adap, &q->rspq,
4594 q->fl.size ? &q->fl : NULL);
4595 }
4596
4597 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4598 {
4599 if (txq->q.desc) {
4600 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4601 txq->q.cntxt_id);
4602 free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4603 kfree(txq->q.sdesc);
4604 free_txq(adap, &txq->q);
4605 }
4606 }
4607
4608 /**
4609 * t4_free_sge_resources - free SGE resources
4610 * @adap: the adapter
4611 *
4612 * Frees resources used by the SGE queue sets.
4613 */
4614 void t4_free_sge_resources(struct adapter *adap)
4615 {
4616 int i;
4617 struct sge_eth_rxq *eq;
4618 struct sge_eth_txq *etq;
4619
4620 /* stop all Rx queues in order to start them draining */
4621 for (i = 0; i < adap->sge.ethqsets; i++) {
4622 eq = &adap->sge.ethrxq[i];
4623 if (eq->rspq.desc)
4624 t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4625 FW_IQ_TYPE_FL_INT_CAP,
4626 eq->rspq.cntxt_id,
4627 eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4628 0xffff);
4629 }
4630
4631 /* clean up Ethernet Tx/Rx queues */
4632 for (i = 0; i < adap->sge.ethqsets; i++) {
4633 eq = &adap->sge.ethrxq[i];
4634 if (eq->rspq.desc)
4635 free_rspq_fl(adap, &eq->rspq,
4636 eq->fl.size ? &eq->fl : NULL);
4637 if (eq->msix) {
4638 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4639 eq->msix = NULL;
4640 }
4641
4642 etq = &adap->sge.ethtxq[i];
4643 if (etq->q.desc) {
4644 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4645 etq->q.cntxt_id);
4646 __netif_tx_lock_bh(etq->txq);
4647 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4648 __netif_tx_unlock_bh(etq->txq);
4649 kfree(etq->q.sdesc);
4650 free_txq(adap, &etq->q);
4651 }
4652 }
4653
4654 /* clean up control Tx queues */
4655 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4656 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4657
4658 if (cq->q.desc) {
4659 tasklet_kill(&cq->qresume_tsk);
4660 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4661 cq->q.cntxt_id);
4662 __skb_queue_purge(&cq->sendq);
4663 free_txq(adap, &cq->q);
4664 }
4665 }
4666
4667 if (adap->sge.fw_evtq.desc) {
4668 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4669 if (adap->sge.fwevtq_msix_idx >= 0)
4670 cxgb4_free_msix_idx_in_bmap(adap,
4671 adap->sge.fwevtq_msix_idx);
4672 }
4673
4674 if (adap->sge.nd_msix_idx >= 0)
4675 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4676
4677 if (adap->sge.intrq.desc)
4678 free_rspq_fl(adap, &adap->sge.intrq, NULL);
4679
4680 if (!is_t4(adap->params.chip)) {
4681 etq = &adap->sge.ptptxq;
4682 if (etq->q.desc) {
4683 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4684 etq->q.cntxt_id);
4685 spin_lock_bh(&adap->ptp_lock);
4686 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4687 spin_unlock_bh(&adap->ptp_lock);
4688 kfree(etq->q.sdesc);
4689 free_txq(adap, &etq->q);
4690 }
4691 }
4692
4693 /* clear the reverse egress queue map */
4694 memset(adap->sge.egr_map, 0,
4695 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4696 }
4697
4698 void t4_sge_start(struct adapter *adap)
4699 {
4700 adap->sge.ethtxq_rover = 0;
4701 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4702 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4703 }
4704
4705 /**
4706 * t4_sge_stop - disable SGE operation
4707 * @adap: the adapter
4708 *
4709 * Stop tasklets and timers associated with the DMA engine. Note that
4710 * this is effective only if measures have been taken to disable any HW
4711 * events that may restart them.
4712 */
4713 void t4_sge_stop(struct adapter *adap)
4714 {
4715 int i;
4716 struct sge *s = &adap->sge;
4717
4718 if (in_interrupt()) /* actions below require waiting */
4719 return;
4720
4721 if (s->rx_timer.function)
4722 del_timer_sync(&s->rx_timer);
4723 if (s->tx_timer.function)
4724 del_timer_sync(&s->tx_timer);
4725
4726 if (is_offload(adap)) {
4727 struct sge_uld_txq_info *txq_info;
4728
4729 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4730 if (txq_info) {
4731 struct sge_uld_txq *txq = txq_info->uldtxq;
4732
4733 for_each_ofldtxq(&adap->sge, i) {
4734 if (txq->q.desc)
4735 tasklet_kill(&txq->qresume_tsk);
4736 }
4737 }
4738 }
4739
4740 if (is_pci_uld(adap)) {
4741 struct sge_uld_txq_info *txq_info;
4742
4743 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4744 if (txq_info) {
4745 struct sge_uld_txq *txq = txq_info->uldtxq;
4746
4747 for_each_ofldtxq(&adap->sge, i) {
4748 if (txq->q.desc)
4749 tasklet_kill(&txq->qresume_tsk);
4750 }
4751 }
4752 }
4753
4754 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4755 struct sge_ctrl_txq *cq = &s->ctrlq[i];
4756
4757 if (cq->q.desc)
4758 tasklet_kill(&cq->qresume_tsk);
4759 }
4760 }
4761
4762 /**
4763 * t4_sge_init_soft - grab core SGE values needed by SGE code
4764 * @adap: the adapter
4765 *
4766 * We need to grab the SGE operating parameters that we need to have
4767 * in order to do our job and make sure we can live with them.
4768 */
4769
4770 static int t4_sge_init_soft(struct adapter *adap)
4771 {
4772 struct sge *s = &adap->sge;
4773 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4774 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4775 u32 ingress_rx_threshold;
4776
4777 /*
4778 * Verify that CPL messages are going to the Ingress Queue for
4779 * process_responses() and that only packet data is going to the
4780 * Free Lists.
4781 */
4782 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4783 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4784 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4785 return -EINVAL;
4786 }
4787
4788 /*
4789 * Validate the Host Buffer Register Array indices that we want to
4790 * use ...
4791 *
4792 * XXX Note that we should really read through the Host Buffer Size
4793 * XXX register array and find the indices of the Buffer Sizes which
4794 * XXX meet our needs!
4795 */
4796 #define READ_FL_BUF(x) \
4797 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4798
4799 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4800 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4801 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4802 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4803
4804 /* We only bother using the Large Page logic if the Large Page Buffer
4805 * is larger than our Page Size Buffer.
4806 */
4807 if (fl_large_pg <= fl_small_pg)
4808 fl_large_pg = 0;
4809
4810 #undef READ_FL_BUF
4811
4812 /* The Page Size Buffer must be exactly equal to our Page Size and the
4813 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4814 */
4815 if (fl_small_pg != PAGE_SIZE ||
4816 (fl_large_pg & (fl_large_pg-1)) != 0) {
4817 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4818 fl_small_pg, fl_large_pg);
4819 return -EINVAL;
4820 }
4821 if (fl_large_pg)
4822 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4823
4824 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4825 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4826 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4827 fl_small_mtu, fl_large_mtu);
4828 return -EINVAL;
4829 }
4830
4831 /*
4832 * Retrieve our RX interrupt holdoff timer values and counter
4833 * threshold values from the SGE parameters.
4834 */
4835 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4836 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4837 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4838 s->timer_val[0] = core_ticks_to_us(adap,
4839 TIMERVALUE0_G(timer_value_0_and_1));
4840 s->timer_val[1] = core_ticks_to_us(adap,
4841 TIMERVALUE1_G(timer_value_0_and_1));
4842 s->timer_val[2] = core_ticks_to_us(adap,
4843 TIMERVALUE2_G(timer_value_2_and_3));
4844 s->timer_val[3] = core_ticks_to_us(adap,
4845 TIMERVALUE3_G(timer_value_2_and_3));
4846 s->timer_val[4] = core_ticks_to_us(adap,
4847 TIMERVALUE4_G(timer_value_4_and_5));
4848 s->timer_val[5] = core_ticks_to_us(adap,
4849 TIMERVALUE5_G(timer_value_4_and_5));
4850
4851 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4852 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4853 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4854 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4855 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4856
4857 return 0;
4858 }
4859
4860 /**
4861 * t4_sge_init - initialize SGE
4862 * @adap: the adapter
4863 *
4864 * Perform low-level SGE code initialization needed every time after a
4865 * chip reset.
4866 */
4867 int t4_sge_init(struct adapter *adap)
4868 {
4869 struct sge *s = &adap->sge;
4870 u32 sge_control, sge_conm_ctrl;
4871 int ret, egress_threshold;
4872
4873 /*
4874 * Ingress Padding Boundary and Egress Status Page Size are set up by
4875 * t4_fixup_host_params().
4876 */
4877 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4878 s->pktshift = PKTSHIFT_G(sge_control);
4879 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4880
4881 s->fl_align = t4_fl_pkt_align(adap);
4882 ret = t4_sge_init_soft(adap);
4883 if (ret < 0)
4884 return ret;
4885
4886 /*
4887 * A FL with <= fl_starve_thres buffers is starving and a periodic
4888 * timer will attempt to refill it. This needs to be larger than the
4889 * SGE's Egress Congestion Threshold. If it isn't, then we can get
4890 * stuck waiting for new packets while the SGE is waiting for us to
4891 * give it more Free List entries. (Note that the SGE's Egress
4892 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4893 * there was only a single field to control this. For T5 there's the
4894 * original field which now only applies to Unpacked Mode Free List
4895 * buffers and a new field which only applies to Packed Mode Free List
4896 * buffers.
4897 */
4898 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4899 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4900 case CHELSIO_T4:
4901 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4902 break;
4903 case CHELSIO_T5:
4904 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4905 break;
4906 case CHELSIO_T6:
4907 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4908 break;
4909 default:
4910 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4911 CHELSIO_CHIP_VERSION(adap->params.chip));
4912 return -EINVAL;
4913 }
4914 s->fl_starve_thres = 2*egress_threshold + 1;
4915
4916 t4_idma_monitor_init(adap, &s->idma_monitor);
4917
4918 /* Set up timers used for recuring callbacks to process RX and TX
4919 * administrative tasks.
4920 */
4921 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4922 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4923
4924 spin_lock_init(&s->intrq_lock);
4925
4926 return 0;
4927 }