]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/net/ethernet/ethoc.c
c044667a0a25ec6e5973f4ba1d15c4eb54b829d2
[people/arne_f/kernel.git] / drivers / net / ethernet / ethoc.c
1 /*
2 * linux/drivers/net/ethernet/ethoc.c
3 *
4 * Copyright (C) 2007-2008 Avionic Design Development GmbH
5 * Copyright (C) 2008-2009 Avionic Design GmbH
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Written by Thierry Reding <thierry.reding@avionic-design.de>
12 */
13
14 #include <linux/dma-mapping.h>
15 #include <linux/etherdevice.h>
16 #include <linux/clk.h>
17 #include <linux/crc32.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/mii.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/module.h>
27 #include <net/ethoc.h>
28
29 static int buffer_size = 0x8000; /* 32 KBytes */
30 module_param(buffer_size, int, 0);
31 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size");
32
33 /* register offsets */
34 #define MODER 0x00
35 #define INT_SOURCE 0x04
36 #define INT_MASK 0x08
37 #define IPGT 0x0c
38 #define IPGR1 0x10
39 #define IPGR2 0x14
40 #define PACKETLEN 0x18
41 #define COLLCONF 0x1c
42 #define TX_BD_NUM 0x20
43 #define CTRLMODER 0x24
44 #define MIIMODER 0x28
45 #define MIICOMMAND 0x2c
46 #define MIIADDRESS 0x30
47 #define MIITX_DATA 0x34
48 #define MIIRX_DATA 0x38
49 #define MIISTATUS 0x3c
50 #define MAC_ADDR0 0x40
51 #define MAC_ADDR1 0x44
52 #define ETH_HASH0 0x48
53 #define ETH_HASH1 0x4c
54 #define ETH_TXCTRL 0x50
55 #define ETH_END 0x54
56
57 /* mode register */
58 #define MODER_RXEN (1 << 0) /* receive enable */
59 #define MODER_TXEN (1 << 1) /* transmit enable */
60 #define MODER_NOPRE (1 << 2) /* no preamble */
61 #define MODER_BRO (1 << 3) /* broadcast address */
62 #define MODER_IAM (1 << 4) /* individual address mode */
63 #define MODER_PRO (1 << 5) /* promiscuous mode */
64 #define MODER_IFG (1 << 6) /* interframe gap for incoming frames */
65 #define MODER_LOOP (1 << 7) /* loopback */
66 #define MODER_NBO (1 << 8) /* no back-off */
67 #define MODER_EDE (1 << 9) /* excess defer enable */
68 #define MODER_FULLD (1 << 10) /* full duplex */
69 #define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */
70 #define MODER_DCRC (1 << 12) /* delayed CRC enable */
71 #define MODER_CRC (1 << 13) /* CRC enable */
72 #define MODER_HUGE (1 << 14) /* huge packets enable */
73 #define MODER_PAD (1 << 15) /* padding enabled */
74 #define MODER_RSM (1 << 16) /* receive small packets */
75
76 /* interrupt source and mask registers */
77 #define INT_MASK_TXF (1 << 0) /* transmit frame */
78 #define INT_MASK_TXE (1 << 1) /* transmit error */
79 #define INT_MASK_RXF (1 << 2) /* receive frame */
80 #define INT_MASK_RXE (1 << 3) /* receive error */
81 #define INT_MASK_BUSY (1 << 4)
82 #define INT_MASK_TXC (1 << 5) /* transmit control frame */
83 #define INT_MASK_RXC (1 << 6) /* receive control frame */
84
85 #define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE)
86 #define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE)
87
88 #define INT_MASK_ALL ( \
89 INT_MASK_TXF | INT_MASK_TXE | \
90 INT_MASK_RXF | INT_MASK_RXE | \
91 INT_MASK_TXC | INT_MASK_RXC | \
92 INT_MASK_BUSY \
93 )
94
95 /* packet length register */
96 #define PACKETLEN_MIN(min) (((min) & 0xffff) << 16)
97 #define PACKETLEN_MAX(max) (((max) & 0xffff) << 0)
98 #define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \
99 PACKETLEN_MAX(max))
100
101 /* transmit buffer number register */
102 #define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80)
103
104 /* control module mode register */
105 #define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */
106 #define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */
107 #define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */
108
109 /* MII mode register */
110 #define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */
111 #define MIIMODER_NOPRE (1 << 8) /* no preamble */
112
113 /* MII command register */
114 #define MIICOMMAND_SCAN (1 << 0) /* scan status */
115 #define MIICOMMAND_READ (1 << 1) /* read status */
116 #define MIICOMMAND_WRITE (1 << 2) /* write control data */
117
118 /* MII address register */
119 #define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0)
120 #define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8)
121 #define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \
122 MIIADDRESS_RGAD(reg))
123
124 /* MII transmit data register */
125 #define MIITX_DATA_VAL(x) ((x) & 0xffff)
126
127 /* MII receive data register */
128 #define MIIRX_DATA_VAL(x) ((x) & 0xffff)
129
130 /* MII status register */
131 #define MIISTATUS_LINKFAIL (1 << 0)
132 #define MIISTATUS_BUSY (1 << 1)
133 #define MIISTATUS_INVALID (1 << 2)
134
135 /* TX buffer descriptor */
136 #define TX_BD_CS (1 << 0) /* carrier sense lost */
137 #define TX_BD_DF (1 << 1) /* defer indication */
138 #define TX_BD_LC (1 << 2) /* late collision */
139 #define TX_BD_RL (1 << 3) /* retransmission limit */
140 #define TX_BD_RETRY_MASK (0x00f0)
141 #define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4)
142 #define TX_BD_UR (1 << 8) /* transmitter underrun */
143 #define TX_BD_CRC (1 << 11) /* TX CRC enable */
144 #define TX_BD_PAD (1 << 12) /* pad enable for short packets */
145 #define TX_BD_WRAP (1 << 13)
146 #define TX_BD_IRQ (1 << 14) /* interrupt request enable */
147 #define TX_BD_READY (1 << 15) /* TX buffer ready */
148 #define TX_BD_LEN(x) (((x) & 0xffff) << 16)
149 #define TX_BD_LEN_MASK (0xffff << 16)
150
151 #define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \
152 TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR)
153
154 /* RX buffer descriptor */
155 #define RX_BD_LC (1 << 0) /* late collision */
156 #define RX_BD_CRC (1 << 1) /* RX CRC error */
157 #define RX_BD_SF (1 << 2) /* short frame */
158 #define RX_BD_TL (1 << 3) /* too long */
159 #define RX_BD_DN (1 << 4) /* dribble nibble */
160 #define RX_BD_IS (1 << 5) /* invalid symbol */
161 #define RX_BD_OR (1 << 6) /* receiver overrun */
162 #define RX_BD_MISS (1 << 7)
163 #define RX_BD_CF (1 << 8) /* control frame */
164 #define RX_BD_WRAP (1 << 13)
165 #define RX_BD_IRQ (1 << 14) /* interrupt request enable */
166 #define RX_BD_EMPTY (1 << 15)
167 #define RX_BD_LEN(x) (((x) & 0xffff) << 16)
168
169 #define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \
170 RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS)
171
172 #define ETHOC_BUFSIZ 1536
173 #define ETHOC_ZLEN 64
174 #define ETHOC_BD_BASE 0x400
175 #define ETHOC_TIMEOUT (HZ / 2)
176 #define ETHOC_MII_TIMEOUT (1 + (HZ / 5))
177
178 /**
179 * struct ethoc - driver-private device structure
180 * @iobase: pointer to I/O memory region
181 * @membase: pointer to buffer memory region
182 * @dma_alloc: dma allocated buffer size
183 * @io_region_size: I/O memory region size
184 * @num_bd: number of buffer descriptors
185 * @num_tx: number of send buffers
186 * @cur_tx: last send buffer written
187 * @dty_tx: last buffer actually sent
188 * @num_rx: number of receive buffers
189 * @cur_rx: current receive buffer
190 * @vma: pointer to array of virtual memory addresses for buffers
191 * @netdev: pointer to network device structure
192 * @napi: NAPI structure
193 * @msg_enable: device state flags
194 * @lock: device lock
195 * @mdio: MDIO bus for PHY access
196 * @phy_id: address of attached PHY
197 */
198 struct ethoc {
199 void __iomem *iobase;
200 void __iomem *membase;
201 int dma_alloc;
202 resource_size_t io_region_size;
203 bool big_endian;
204
205 unsigned int num_bd;
206 unsigned int num_tx;
207 unsigned int cur_tx;
208 unsigned int dty_tx;
209
210 unsigned int num_rx;
211 unsigned int cur_rx;
212
213 void **vma;
214
215 struct net_device *netdev;
216 struct napi_struct napi;
217 u32 msg_enable;
218
219 spinlock_t lock;
220
221 struct mii_bus *mdio;
222 struct clk *clk;
223 s8 phy_id;
224 };
225
226 /**
227 * struct ethoc_bd - buffer descriptor
228 * @stat: buffer statistics
229 * @addr: physical memory address
230 */
231 struct ethoc_bd {
232 u32 stat;
233 u32 addr;
234 };
235
236 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset)
237 {
238 if (dev->big_endian)
239 return ioread32be(dev->iobase + offset);
240 else
241 return ioread32(dev->iobase + offset);
242 }
243
244 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data)
245 {
246 if (dev->big_endian)
247 iowrite32be(data, dev->iobase + offset);
248 else
249 iowrite32(data, dev->iobase + offset);
250 }
251
252 static inline void ethoc_read_bd(struct ethoc *dev, int index,
253 struct ethoc_bd *bd)
254 {
255 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
256 bd->stat = ethoc_read(dev, offset + 0);
257 bd->addr = ethoc_read(dev, offset + 4);
258 }
259
260 static inline void ethoc_write_bd(struct ethoc *dev, int index,
261 const struct ethoc_bd *bd)
262 {
263 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
264 ethoc_write(dev, offset + 0, bd->stat);
265 ethoc_write(dev, offset + 4, bd->addr);
266 }
267
268 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask)
269 {
270 u32 imask = ethoc_read(dev, INT_MASK);
271 imask |= mask;
272 ethoc_write(dev, INT_MASK, imask);
273 }
274
275 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask)
276 {
277 u32 imask = ethoc_read(dev, INT_MASK);
278 imask &= ~mask;
279 ethoc_write(dev, INT_MASK, imask);
280 }
281
282 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask)
283 {
284 ethoc_write(dev, INT_SOURCE, mask);
285 }
286
287 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev)
288 {
289 u32 mode = ethoc_read(dev, MODER);
290 mode |= MODER_RXEN | MODER_TXEN;
291 ethoc_write(dev, MODER, mode);
292 }
293
294 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev)
295 {
296 u32 mode = ethoc_read(dev, MODER);
297 mode &= ~(MODER_RXEN | MODER_TXEN);
298 ethoc_write(dev, MODER, mode);
299 }
300
301 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start)
302 {
303 struct ethoc_bd bd;
304 int i;
305 void *vma;
306
307 dev->cur_tx = 0;
308 dev->dty_tx = 0;
309 dev->cur_rx = 0;
310
311 ethoc_write(dev, TX_BD_NUM, dev->num_tx);
312
313 /* setup transmission buffers */
314 bd.addr = mem_start;
315 bd.stat = TX_BD_IRQ | TX_BD_CRC;
316 vma = dev->membase;
317
318 for (i = 0; i < dev->num_tx; i++) {
319 if (i == dev->num_tx - 1)
320 bd.stat |= TX_BD_WRAP;
321
322 ethoc_write_bd(dev, i, &bd);
323 bd.addr += ETHOC_BUFSIZ;
324
325 dev->vma[i] = vma;
326 vma += ETHOC_BUFSIZ;
327 }
328
329 bd.stat = RX_BD_EMPTY | RX_BD_IRQ;
330
331 for (i = 0; i < dev->num_rx; i++) {
332 if (i == dev->num_rx - 1)
333 bd.stat |= RX_BD_WRAP;
334
335 ethoc_write_bd(dev, dev->num_tx + i, &bd);
336 bd.addr += ETHOC_BUFSIZ;
337
338 dev->vma[dev->num_tx + i] = vma;
339 vma += ETHOC_BUFSIZ;
340 }
341
342 return 0;
343 }
344
345 static int ethoc_reset(struct ethoc *dev)
346 {
347 u32 mode;
348
349 /* TODO: reset controller? */
350
351 ethoc_disable_rx_and_tx(dev);
352
353 /* TODO: setup registers */
354
355 /* enable FCS generation and automatic padding */
356 mode = ethoc_read(dev, MODER);
357 mode |= MODER_CRC | MODER_PAD;
358 ethoc_write(dev, MODER, mode);
359
360 /* set full-duplex mode */
361 mode = ethoc_read(dev, MODER);
362 mode |= MODER_FULLD;
363 ethoc_write(dev, MODER, mode);
364 ethoc_write(dev, IPGT, 0x15);
365
366 ethoc_ack_irq(dev, INT_MASK_ALL);
367 ethoc_enable_irq(dev, INT_MASK_ALL);
368 ethoc_enable_rx_and_tx(dev);
369 return 0;
370 }
371
372 static unsigned int ethoc_update_rx_stats(struct ethoc *dev,
373 struct ethoc_bd *bd)
374 {
375 struct net_device *netdev = dev->netdev;
376 unsigned int ret = 0;
377
378 if (bd->stat & RX_BD_TL) {
379 dev_err(&netdev->dev, "RX: frame too long\n");
380 netdev->stats.rx_length_errors++;
381 ret++;
382 }
383
384 if (bd->stat & RX_BD_SF) {
385 dev_err(&netdev->dev, "RX: frame too short\n");
386 netdev->stats.rx_length_errors++;
387 ret++;
388 }
389
390 if (bd->stat & RX_BD_DN) {
391 dev_err(&netdev->dev, "RX: dribble nibble\n");
392 netdev->stats.rx_frame_errors++;
393 }
394
395 if (bd->stat & RX_BD_CRC) {
396 dev_err(&netdev->dev, "RX: wrong CRC\n");
397 netdev->stats.rx_crc_errors++;
398 ret++;
399 }
400
401 if (bd->stat & RX_BD_OR) {
402 dev_err(&netdev->dev, "RX: overrun\n");
403 netdev->stats.rx_over_errors++;
404 ret++;
405 }
406
407 if (bd->stat & RX_BD_MISS)
408 netdev->stats.rx_missed_errors++;
409
410 if (bd->stat & RX_BD_LC) {
411 dev_err(&netdev->dev, "RX: late collision\n");
412 netdev->stats.collisions++;
413 ret++;
414 }
415
416 return ret;
417 }
418
419 static int ethoc_rx(struct net_device *dev, int limit)
420 {
421 struct ethoc *priv = netdev_priv(dev);
422 int count;
423
424 for (count = 0; count < limit; ++count) {
425 unsigned int entry;
426 struct ethoc_bd bd;
427
428 entry = priv->num_tx + priv->cur_rx;
429 ethoc_read_bd(priv, entry, &bd);
430 if (bd.stat & RX_BD_EMPTY) {
431 ethoc_ack_irq(priv, INT_MASK_RX);
432 /* If packet (interrupt) came in between checking
433 * BD_EMTPY and clearing the interrupt source, then we
434 * risk missing the packet as the RX interrupt won't
435 * trigger right away when we reenable it; hence, check
436 * BD_EMTPY here again to make sure there isn't such a
437 * packet waiting for us...
438 */
439 ethoc_read_bd(priv, entry, &bd);
440 if (bd.stat & RX_BD_EMPTY)
441 break;
442 }
443
444 if (ethoc_update_rx_stats(priv, &bd) == 0) {
445 int size = bd.stat >> 16;
446 struct sk_buff *skb;
447
448 size -= 4; /* strip the CRC */
449 skb = netdev_alloc_skb_ip_align(dev, size);
450
451 if (likely(skb)) {
452 void *src = priv->vma[entry];
453 memcpy_fromio(skb_put(skb, size), src, size);
454 skb->protocol = eth_type_trans(skb, dev);
455 dev->stats.rx_packets++;
456 dev->stats.rx_bytes += size;
457 netif_receive_skb(skb);
458 } else {
459 if (net_ratelimit())
460 dev_warn(&dev->dev,
461 "low on memory - packet dropped\n");
462
463 dev->stats.rx_dropped++;
464 break;
465 }
466 }
467
468 /* clear the buffer descriptor so it can be reused */
469 bd.stat &= ~RX_BD_STATS;
470 bd.stat |= RX_BD_EMPTY;
471 ethoc_write_bd(priv, entry, &bd);
472 if (++priv->cur_rx == priv->num_rx)
473 priv->cur_rx = 0;
474 }
475
476 return count;
477 }
478
479 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd)
480 {
481 struct net_device *netdev = dev->netdev;
482
483 if (bd->stat & TX_BD_LC) {
484 dev_err(&netdev->dev, "TX: late collision\n");
485 netdev->stats.tx_window_errors++;
486 }
487
488 if (bd->stat & TX_BD_RL) {
489 dev_err(&netdev->dev, "TX: retransmit limit\n");
490 netdev->stats.tx_aborted_errors++;
491 }
492
493 if (bd->stat & TX_BD_UR) {
494 dev_err(&netdev->dev, "TX: underrun\n");
495 netdev->stats.tx_fifo_errors++;
496 }
497
498 if (bd->stat & TX_BD_CS) {
499 dev_err(&netdev->dev, "TX: carrier sense lost\n");
500 netdev->stats.tx_carrier_errors++;
501 }
502
503 if (bd->stat & TX_BD_STATS)
504 netdev->stats.tx_errors++;
505
506 netdev->stats.collisions += (bd->stat >> 4) & 0xf;
507 netdev->stats.tx_bytes += bd->stat >> 16;
508 netdev->stats.tx_packets++;
509 }
510
511 static int ethoc_tx(struct net_device *dev, int limit)
512 {
513 struct ethoc *priv = netdev_priv(dev);
514 int count;
515 struct ethoc_bd bd;
516
517 for (count = 0; count < limit; ++count) {
518 unsigned int entry;
519
520 entry = priv->dty_tx & (priv->num_tx-1);
521
522 ethoc_read_bd(priv, entry, &bd);
523
524 if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) {
525 ethoc_ack_irq(priv, INT_MASK_TX);
526 /* If interrupt came in between reading in the BD
527 * and clearing the interrupt source, then we risk
528 * missing the event as the TX interrupt won't trigger
529 * right away when we reenable it; hence, check
530 * BD_EMPTY here again to make sure there isn't such an
531 * event pending...
532 */
533 ethoc_read_bd(priv, entry, &bd);
534 if (bd.stat & TX_BD_READY ||
535 (priv->dty_tx == priv->cur_tx))
536 break;
537 }
538
539 ethoc_update_tx_stats(priv, &bd);
540 priv->dty_tx++;
541 }
542
543 if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2))
544 netif_wake_queue(dev);
545
546 return count;
547 }
548
549 static irqreturn_t ethoc_interrupt(int irq, void *dev_id)
550 {
551 struct net_device *dev = dev_id;
552 struct ethoc *priv = netdev_priv(dev);
553 u32 pending;
554 u32 mask;
555
556 /* Figure out what triggered the interrupt...
557 * The tricky bit here is that the interrupt source bits get
558 * set in INT_SOURCE for an event regardless of whether that
559 * event is masked or not. Thus, in order to figure out what
560 * triggered the interrupt, we need to remove the sources
561 * for all events that are currently masked. This behaviour
562 * is not particularly well documented but reasonable...
563 */
564 mask = ethoc_read(priv, INT_MASK);
565 pending = ethoc_read(priv, INT_SOURCE);
566 pending &= mask;
567
568 if (unlikely(pending == 0))
569 return IRQ_NONE;
570
571 ethoc_ack_irq(priv, pending);
572
573 /* We always handle the dropped packet interrupt */
574 if (pending & INT_MASK_BUSY) {
575 dev_err(&dev->dev, "packet dropped\n");
576 dev->stats.rx_dropped++;
577 }
578
579 /* Handle receive/transmit event by switching to polling */
580 if (pending & (INT_MASK_TX | INT_MASK_RX)) {
581 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
582 napi_schedule(&priv->napi);
583 }
584
585 return IRQ_HANDLED;
586 }
587
588 static int ethoc_get_mac_address(struct net_device *dev, void *addr)
589 {
590 struct ethoc *priv = netdev_priv(dev);
591 u8 *mac = (u8 *)addr;
592 u32 reg;
593
594 reg = ethoc_read(priv, MAC_ADDR0);
595 mac[2] = (reg >> 24) & 0xff;
596 mac[3] = (reg >> 16) & 0xff;
597 mac[4] = (reg >> 8) & 0xff;
598 mac[5] = (reg >> 0) & 0xff;
599
600 reg = ethoc_read(priv, MAC_ADDR1);
601 mac[0] = (reg >> 8) & 0xff;
602 mac[1] = (reg >> 0) & 0xff;
603
604 return 0;
605 }
606
607 static int ethoc_poll(struct napi_struct *napi, int budget)
608 {
609 struct ethoc *priv = container_of(napi, struct ethoc, napi);
610 int rx_work_done = 0;
611 int tx_work_done = 0;
612
613 rx_work_done = ethoc_rx(priv->netdev, budget);
614 tx_work_done = ethoc_tx(priv->netdev, budget);
615
616 if (rx_work_done < budget && tx_work_done < budget) {
617 napi_complete(napi);
618 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
619 }
620
621 return rx_work_done;
622 }
623
624 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg)
625 {
626 struct ethoc *priv = bus->priv;
627 int i;
628
629 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
630 ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ);
631
632 for (i = 0; i < 5; i++) {
633 u32 status = ethoc_read(priv, MIISTATUS);
634 if (!(status & MIISTATUS_BUSY)) {
635 u32 data = ethoc_read(priv, MIIRX_DATA);
636 /* reset MII command register */
637 ethoc_write(priv, MIICOMMAND, 0);
638 return data;
639 }
640 usleep_range(100, 200);
641 }
642
643 return -EBUSY;
644 }
645
646 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
647 {
648 struct ethoc *priv = bus->priv;
649 int i;
650
651 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
652 ethoc_write(priv, MIITX_DATA, val);
653 ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE);
654
655 for (i = 0; i < 5; i++) {
656 u32 stat = ethoc_read(priv, MIISTATUS);
657 if (!(stat & MIISTATUS_BUSY)) {
658 /* reset MII command register */
659 ethoc_write(priv, MIICOMMAND, 0);
660 return 0;
661 }
662 usleep_range(100, 200);
663 }
664
665 return -EBUSY;
666 }
667
668 static void ethoc_mdio_poll(struct net_device *dev)
669 {
670 }
671
672 static int ethoc_mdio_probe(struct net_device *dev)
673 {
674 struct ethoc *priv = netdev_priv(dev);
675 struct phy_device *phy;
676 int err;
677
678 if (priv->phy_id != -1)
679 phy = mdiobus_get_phy(priv->mdio, priv->phy_id);
680 else
681 phy = phy_find_first(priv->mdio);
682
683 if (!phy) {
684 dev_err(&dev->dev, "no PHY found\n");
685 return -ENXIO;
686 }
687
688 err = phy_connect_direct(dev, phy, ethoc_mdio_poll,
689 PHY_INTERFACE_MODE_GMII);
690 if (err) {
691 dev_err(&dev->dev, "could not attach to PHY\n");
692 return err;
693 }
694
695 phy->advertising &= ~(ADVERTISED_1000baseT_Full |
696 ADVERTISED_1000baseT_Half);
697 phy->supported &= ~(SUPPORTED_1000baseT_Full |
698 SUPPORTED_1000baseT_Half);
699
700 return 0;
701 }
702
703 static int ethoc_open(struct net_device *dev)
704 {
705 struct ethoc *priv = netdev_priv(dev);
706 int ret;
707
708 ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED,
709 dev->name, dev);
710 if (ret)
711 return ret;
712
713 ethoc_init_ring(priv, dev->mem_start);
714 ethoc_reset(priv);
715
716 if (netif_queue_stopped(dev)) {
717 dev_dbg(&dev->dev, " resuming queue\n");
718 netif_wake_queue(dev);
719 } else {
720 dev_dbg(&dev->dev, " starting queue\n");
721 netif_start_queue(dev);
722 }
723
724 phy_start(dev->phydev);
725 napi_enable(&priv->napi);
726
727 if (netif_msg_ifup(priv)) {
728 dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n",
729 dev->base_addr, dev->mem_start, dev->mem_end);
730 }
731
732 return 0;
733 }
734
735 static int ethoc_stop(struct net_device *dev)
736 {
737 struct ethoc *priv = netdev_priv(dev);
738
739 napi_disable(&priv->napi);
740
741 if (dev->phydev)
742 phy_stop(dev->phydev);
743
744 ethoc_disable_rx_and_tx(priv);
745 free_irq(dev->irq, dev);
746
747 if (!netif_queue_stopped(dev))
748 netif_stop_queue(dev);
749
750 return 0;
751 }
752
753 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
754 {
755 struct ethoc *priv = netdev_priv(dev);
756 struct mii_ioctl_data *mdio = if_mii(ifr);
757 struct phy_device *phy = NULL;
758
759 if (!netif_running(dev))
760 return -EINVAL;
761
762 if (cmd != SIOCGMIIPHY) {
763 if (mdio->phy_id >= PHY_MAX_ADDR)
764 return -ERANGE;
765
766 phy = mdiobus_get_phy(priv->mdio, mdio->phy_id);
767 if (!phy)
768 return -ENODEV;
769 } else {
770 phy = dev->phydev;
771 }
772
773 return phy_mii_ioctl(phy, ifr, cmd);
774 }
775
776 static void ethoc_do_set_mac_address(struct net_device *dev)
777 {
778 struct ethoc *priv = netdev_priv(dev);
779 unsigned char *mac = dev->dev_addr;
780
781 ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) |
782 (mac[4] << 8) | (mac[5] << 0));
783 ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0));
784 }
785
786 static int ethoc_set_mac_address(struct net_device *dev, void *p)
787 {
788 const struct sockaddr *addr = p;
789
790 if (!is_valid_ether_addr(addr->sa_data))
791 return -EADDRNOTAVAIL;
792 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
793 ethoc_do_set_mac_address(dev);
794 return 0;
795 }
796
797 static void ethoc_set_multicast_list(struct net_device *dev)
798 {
799 struct ethoc *priv = netdev_priv(dev);
800 u32 mode = ethoc_read(priv, MODER);
801 struct netdev_hw_addr *ha;
802 u32 hash[2] = { 0, 0 };
803
804 /* set loopback mode if requested */
805 if (dev->flags & IFF_LOOPBACK)
806 mode |= MODER_LOOP;
807 else
808 mode &= ~MODER_LOOP;
809
810 /* receive broadcast frames if requested */
811 if (dev->flags & IFF_BROADCAST)
812 mode &= ~MODER_BRO;
813 else
814 mode |= MODER_BRO;
815
816 /* enable promiscuous mode if requested */
817 if (dev->flags & IFF_PROMISC)
818 mode |= MODER_PRO;
819 else
820 mode &= ~MODER_PRO;
821
822 ethoc_write(priv, MODER, mode);
823
824 /* receive multicast frames */
825 if (dev->flags & IFF_ALLMULTI) {
826 hash[0] = 0xffffffff;
827 hash[1] = 0xffffffff;
828 } else {
829 netdev_for_each_mc_addr(ha, dev) {
830 u32 crc = ether_crc(ETH_ALEN, ha->addr);
831 int bit = (crc >> 26) & 0x3f;
832 hash[bit >> 5] |= 1 << (bit & 0x1f);
833 }
834 }
835
836 ethoc_write(priv, ETH_HASH0, hash[0]);
837 ethoc_write(priv, ETH_HASH1, hash[1]);
838 }
839
840 static int ethoc_change_mtu(struct net_device *dev, int new_mtu)
841 {
842 return -ENOSYS;
843 }
844
845 static void ethoc_tx_timeout(struct net_device *dev)
846 {
847 struct ethoc *priv = netdev_priv(dev);
848 u32 pending = ethoc_read(priv, INT_SOURCE);
849 if (likely(pending))
850 ethoc_interrupt(dev->irq, dev);
851 }
852
853 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev)
854 {
855 struct ethoc *priv = netdev_priv(dev);
856 struct ethoc_bd bd;
857 unsigned int entry;
858 void *dest;
859
860 if (skb_put_padto(skb, ETHOC_ZLEN)) {
861 dev->stats.tx_errors++;
862 goto out_no_free;
863 }
864
865 if (unlikely(skb->len > ETHOC_BUFSIZ)) {
866 dev->stats.tx_errors++;
867 goto out;
868 }
869
870 entry = priv->cur_tx % priv->num_tx;
871 spin_lock_irq(&priv->lock);
872 priv->cur_tx++;
873
874 ethoc_read_bd(priv, entry, &bd);
875 if (unlikely(skb->len < ETHOC_ZLEN))
876 bd.stat |= TX_BD_PAD;
877 else
878 bd.stat &= ~TX_BD_PAD;
879
880 dest = priv->vma[entry];
881 memcpy_toio(dest, skb->data, skb->len);
882
883 bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK);
884 bd.stat |= TX_BD_LEN(skb->len);
885 ethoc_write_bd(priv, entry, &bd);
886
887 bd.stat |= TX_BD_READY;
888 ethoc_write_bd(priv, entry, &bd);
889
890 if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) {
891 dev_dbg(&dev->dev, "stopping queue\n");
892 netif_stop_queue(dev);
893 }
894
895 spin_unlock_irq(&priv->lock);
896 skb_tx_timestamp(skb);
897 out:
898 dev_kfree_skb(skb);
899 out_no_free:
900 return NETDEV_TX_OK;
901 }
902
903 static int ethoc_get_regs_len(struct net_device *netdev)
904 {
905 return ETH_END;
906 }
907
908 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs,
909 void *p)
910 {
911 struct ethoc *priv = netdev_priv(dev);
912 u32 *regs_buff = p;
913 unsigned i;
914
915 regs->version = 0;
916 for (i = 0; i < ETH_END / sizeof(u32); ++i)
917 regs_buff[i] = ethoc_read(priv, i * sizeof(u32));
918 }
919
920 static void ethoc_get_ringparam(struct net_device *dev,
921 struct ethtool_ringparam *ring)
922 {
923 struct ethoc *priv = netdev_priv(dev);
924
925 ring->rx_max_pending = priv->num_bd - 1;
926 ring->rx_mini_max_pending = 0;
927 ring->rx_jumbo_max_pending = 0;
928 ring->tx_max_pending = priv->num_bd - 1;
929
930 ring->rx_pending = priv->num_rx;
931 ring->rx_mini_pending = 0;
932 ring->rx_jumbo_pending = 0;
933 ring->tx_pending = priv->num_tx;
934 }
935
936 static int ethoc_set_ringparam(struct net_device *dev,
937 struct ethtool_ringparam *ring)
938 {
939 struct ethoc *priv = netdev_priv(dev);
940
941 if (ring->tx_pending < 1 || ring->rx_pending < 1 ||
942 ring->tx_pending + ring->rx_pending > priv->num_bd)
943 return -EINVAL;
944 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
945 return -EINVAL;
946
947 if (netif_running(dev)) {
948 netif_tx_disable(dev);
949 ethoc_disable_rx_and_tx(priv);
950 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
951 synchronize_irq(dev->irq);
952 }
953
954 priv->num_tx = rounddown_pow_of_two(ring->tx_pending);
955 priv->num_rx = ring->rx_pending;
956 ethoc_init_ring(priv, dev->mem_start);
957
958 if (netif_running(dev)) {
959 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
960 ethoc_enable_rx_and_tx(priv);
961 netif_wake_queue(dev);
962 }
963 return 0;
964 }
965
966 const struct ethtool_ops ethoc_ethtool_ops = {
967 .get_regs_len = ethoc_get_regs_len,
968 .get_regs = ethoc_get_regs,
969 .get_link = ethtool_op_get_link,
970 .get_ringparam = ethoc_get_ringparam,
971 .set_ringparam = ethoc_set_ringparam,
972 .get_ts_info = ethtool_op_get_ts_info,
973 .get_link_ksettings = phy_ethtool_get_link_ksettings,
974 .set_link_ksettings = phy_ethtool_set_link_ksettings,
975 };
976
977 static const struct net_device_ops ethoc_netdev_ops = {
978 .ndo_open = ethoc_open,
979 .ndo_stop = ethoc_stop,
980 .ndo_do_ioctl = ethoc_ioctl,
981 .ndo_set_mac_address = ethoc_set_mac_address,
982 .ndo_set_rx_mode = ethoc_set_multicast_list,
983 .ndo_change_mtu = ethoc_change_mtu,
984 .ndo_tx_timeout = ethoc_tx_timeout,
985 .ndo_start_xmit = ethoc_start_xmit,
986 };
987
988 /**
989 * ethoc_probe - initialize OpenCores ethernet MAC
990 * pdev: platform device
991 */
992 static int ethoc_probe(struct platform_device *pdev)
993 {
994 struct net_device *netdev = NULL;
995 struct resource *res = NULL;
996 struct resource *mmio = NULL;
997 struct resource *mem = NULL;
998 struct ethoc *priv = NULL;
999 int num_bd;
1000 int ret = 0;
1001 bool random_mac = false;
1002 struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev);
1003 u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0;
1004
1005 /* allocate networking device */
1006 netdev = alloc_etherdev(sizeof(struct ethoc));
1007 if (!netdev) {
1008 ret = -ENOMEM;
1009 goto out;
1010 }
1011
1012 SET_NETDEV_DEV(netdev, &pdev->dev);
1013 platform_set_drvdata(pdev, netdev);
1014
1015 /* obtain I/O memory space */
1016 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1017 if (!res) {
1018 dev_err(&pdev->dev, "cannot obtain I/O memory space\n");
1019 ret = -ENXIO;
1020 goto free;
1021 }
1022
1023 mmio = devm_request_mem_region(&pdev->dev, res->start,
1024 resource_size(res), res->name);
1025 if (!mmio) {
1026 dev_err(&pdev->dev, "cannot request I/O memory space\n");
1027 ret = -ENXIO;
1028 goto free;
1029 }
1030
1031 netdev->base_addr = mmio->start;
1032
1033 /* obtain buffer memory space */
1034 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1035 if (res) {
1036 mem = devm_request_mem_region(&pdev->dev, res->start,
1037 resource_size(res), res->name);
1038 if (!mem) {
1039 dev_err(&pdev->dev, "cannot request memory space\n");
1040 ret = -ENXIO;
1041 goto free;
1042 }
1043
1044 netdev->mem_start = mem->start;
1045 netdev->mem_end = mem->end;
1046 }
1047
1048
1049 /* obtain device IRQ number */
1050 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1051 if (!res) {
1052 dev_err(&pdev->dev, "cannot obtain IRQ\n");
1053 ret = -ENXIO;
1054 goto free;
1055 }
1056
1057 netdev->irq = res->start;
1058
1059 /* setup driver-private data */
1060 priv = netdev_priv(netdev);
1061 priv->netdev = netdev;
1062 priv->dma_alloc = 0;
1063 priv->io_region_size = resource_size(mmio);
1064
1065 priv->iobase = devm_ioremap_nocache(&pdev->dev, netdev->base_addr,
1066 resource_size(mmio));
1067 if (!priv->iobase) {
1068 dev_err(&pdev->dev, "cannot remap I/O memory space\n");
1069 ret = -ENXIO;
1070 goto free;
1071 }
1072
1073 if (netdev->mem_end) {
1074 priv->membase = devm_ioremap_nocache(&pdev->dev,
1075 netdev->mem_start, resource_size(mem));
1076 if (!priv->membase) {
1077 dev_err(&pdev->dev, "cannot remap memory space\n");
1078 ret = -ENXIO;
1079 goto free;
1080 }
1081 } else {
1082 /* Allocate buffer memory */
1083 priv->membase = dmam_alloc_coherent(&pdev->dev,
1084 buffer_size, (void *)&netdev->mem_start,
1085 GFP_KERNEL);
1086 if (!priv->membase) {
1087 dev_err(&pdev->dev, "cannot allocate %dB buffer\n",
1088 buffer_size);
1089 ret = -ENOMEM;
1090 goto free;
1091 }
1092 netdev->mem_end = netdev->mem_start + buffer_size;
1093 priv->dma_alloc = buffer_size;
1094 }
1095
1096 priv->big_endian = pdata ? pdata->big_endian :
1097 of_device_is_big_endian(pdev->dev.of_node);
1098
1099 /* calculate the number of TX/RX buffers, maximum 128 supported */
1100 num_bd = min_t(unsigned int,
1101 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ);
1102 if (num_bd < 4) {
1103 ret = -ENODEV;
1104 goto free;
1105 }
1106 priv->num_bd = num_bd;
1107 /* num_tx must be a power of two */
1108 priv->num_tx = rounddown_pow_of_two(num_bd >> 1);
1109 priv->num_rx = num_bd - priv->num_tx;
1110
1111 dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n",
1112 priv->num_tx, priv->num_rx);
1113
1114 priv->vma = devm_kzalloc(&pdev->dev, num_bd*sizeof(void *), GFP_KERNEL);
1115 if (!priv->vma) {
1116 ret = -ENOMEM;
1117 goto free;
1118 }
1119
1120 /* Allow the platform setup code to pass in a MAC address. */
1121 if (pdata) {
1122 memcpy(netdev->dev_addr, pdata->hwaddr, IFHWADDRLEN);
1123 priv->phy_id = pdata->phy_id;
1124 } else {
1125 const uint8_t *mac;
1126
1127 mac = of_get_property(pdev->dev.of_node,
1128 "local-mac-address",
1129 NULL);
1130 if (mac)
1131 memcpy(netdev->dev_addr, mac, IFHWADDRLEN);
1132 priv->phy_id = -1;
1133 }
1134
1135 /* Check that the given MAC address is valid. If it isn't, read the
1136 * current MAC from the controller.
1137 */
1138 if (!is_valid_ether_addr(netdev->dev_addr))
1139 ethoc_get_mac_address(netdev, netdev->dev_addr);
1140
1141 /* Check the MAC again for validity, if it still isn't choose and
1142 * program a random one.
1143 */
1144 if (!is_valid_ether_addr(netdev->dev_addr)) {
1145 eth_random_addr(netdev->dev_addr);
1146 random_mac = true;
1147 }
1148
1149 ethoc_do_set_mac_address(netdev);
1150
1151 if (random_mac)
1152 netdev->addr_assign_type = NET_ADDR_RANDOM;
1153
1154 /* Allow the platform setup code to adjust MII management bus clock. */
1155 if (!eth_clkfreq) {
1156 struct clk *clk = devm_clk_get(&pdev->dev, NULL);
1157
1158 if (!IS_ERR(clk)) {
1159 priv->clk = clk;
1160 clk_prepare_enable(clk);
1161 eth_clkfreq = clk_get_rate(clk);
1162 }
1163 }
1164 if (eth_clkfreq) {
1165 u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1);
1166
1167 if (!clkdiv)
1168 clkdiv = 2;
1169 dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv);
1170 ethoc_write(priv, MIIMODER,
1171 (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) |
1172 clkdiv);
1173 }
1174
1175 /* register MII bus */
1176 priv->mdio = mdiobus_alloc();
1177 if (!priv->mdio) {
1178 ret = -ENOMEM;
1179 goto free2;
1180 }
1181
1182 priv->mdio->name = "ethoc-mdio";
1183 snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d",
1184 priv->mdio->name, pdev->id);
1185 priv->mdio->read = ethoc_mdio_read;
1186 priv->mdio->write = ethoc_mdio_write;
1187 priv->mdio->priv = priv;
1188
1189 ret = mdiobus_register(priv->mdio);
1190 if (ret) {
1191 dev_err(&netdev->dev, "failed to register MDIO bus\n");
1192 goto free2;
1193 }
1194
1195 ret = ethoc_mdio_probe(netdev);
1196 if (ret) {
1197 dev_err(&netdev->dev, "failed to probe MDIO bus\n");
1198 goto error;
1199 }
1200
1201 /* setup the net_device structure */
1202 netdev->netdev_ops = &ethoc_netdev_ops;
1203 netdev->watchdog_timeo = ETHOC_TIMEOUT;
1204 netdev->features |= 0;
1205 netdev->ethtool_ops = &ethoc_ethtool_ops;
1206
1207 /* setup NAPI */
1208 netif_napi_add(netdev, &priv->napi, ethoc_poll, 64);
1209
1210 spin_lock_init(&priv->lock);
1211
1212 ret = register_netdev(netdev);
1213 if (ret < 0) {
1214 dev_err(&netdev->dev, "failed to register interface\n");
1215 goto error2;
1216 }
1217
1218 goto out;
1219
1220 error2:
1221 netif_napi_del(&priv->napi);
1222 error:
1223 mdiobus_unregister(priv->mdio);
1224 mdiobus_free(priv->mdio);
1225 free2:
1226 if (priv->clk)
1227 clk_disable_unprepare(priv->clk);
1228 free:
1229 free_netdev(netdev);
1230 out:
1231 return ret;
1232 }
1233
1234 /**
1235 * ethoc_remove - shutdown OpenCores ethernet MAC
1236 * @pdev: platform device
1237 */
1238 static int ethoc_remove(struct platform_device *pdev)
1239 {
1240 struct net_device *netdev = platform_get_drvdata(pdev);
1241 struct ethoc *priv = netdev_priv(netdev);
1242
1243 if (netdev) {
1244 netif_napi_del(&priv->napi);
1245 phy_disconnect(netdev->phydev);
1246
1247 if (priv->mdio) {
1248 mdiobus_unregister(priv->mdio);
1249 mdiobus_free(priv->mdio);
1250 }
1251 if (priv->clk)
1252 clk_disable_unprepare(priv->clk);
1253 unregister_netdev(netdev);
1254 free_netdev(netdev);
1255 }
1256
1257 return 0;
1258 }
1259
1260 #ifdef CONFIG_PM
1261 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state)
1262 {
1263 return -ENOSYS;
1264 }
1265
1266 static int ethoc_resume(struct platform_device *pdev)
1267 {
1268 return -ENOSYS;
1269 }
1270 #else
1271 # define ethoc_suspend NULL
1272 # define ethoc_resume NULL
1273 #endif
1274
1275 static const struct of_device_id ethoc_match[] = {
1276 { .compatible = "opencores,ethoc", },
1277 {},
1278 };
1279 MODULE_DEVICE_TABLE(of, ethoc_match);
1280
1281 static struct platform_driver ethoc_driver = {
1282 .probe = ethoc_probe,
1283 .remove = ethoc_remove,
1284 .suspend = ethoc_suspend,
1285 .resume = ethoc_resume,
1286 .driver = {
1287 .name = "ethoc",
1288 .of_match_table = ethoc_match,
1289 },
1290 };
1291
1292 module_platform_driver(ethoc_driver);
1293
1294 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
1295 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver");
1296 MODULE_LICENSE("GPL v2");
1297