]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/hisilicon/hns/hns_enet.c
Merge tag 'loongarch-kvm-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhu...
[thirdparty/kernel/stable.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 2014-2015 Hisilicon Limited.
4 */
5
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/irq.h>
15 #include <linux/module.h>
16 #include <linux/phy.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19
20 #include "hnae.h"
21 #include "hns_enet.h"
22 #include "hns_dsaf_mac.h"
23
24 #define NIC_MAX_Q_PER_VF 16
25 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
26
27 #define SERVICE_TIMER_HZ (1 * HZ)
28
29 #define RCB_IRQ_NOT_INITED 0
30 #define RCB_IRQ_INITED 1
31 #define HNS_BUFFER_SIZE_2048 2048
32
33 #define BD_MAX_SEND_SIZE 8191
34
35 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
36 int send_sz, dma_addr_t dma, int frag_end,
37 int buf_num, enum hns_desc_type type, int mtu)
38 {
39 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
40 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
41 struct iphdr *iphdr;
42 struct ipv6hdr *ipv6hdr;
43 struct sk_buff *skb;
44 __be16 protocol;
45 u8 bn_pid = 0;
46 u8 rrcfv = 0;
47 u8 ip_offset = 0;
48 u8 tvsvsn = 0;
49 u16 mss = 0;
50 u8 l4_len = 0;
51 u16 paylen = 0;
52
53 desc_cb->priv = priv;
54 desc_cb->length = size;
55 desc_cb->dma = dma;
56 desc_cb->type = type;
57
58 desc->addr = cpu_to_le64(dma);
59 desc->tx.send_size = cpu_to_le16((u16)send_sz);
60
61 /* config bd buffer end */
62 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
63 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
64
65 /* fill port_id in the tx bd for sending management pkts */
66 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
67 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
68
69 if (type == DESC_TYPE_SKB) {
70 skb = (struct sk_buff *)priv;
71
72 if (skb->ip_summed == CHECKSUM_PARTIAL) {
73 skb_reset_mac_len(skb);
74 protocol = skb->protocol;
75 ip_offset = ETH_HLEN;
76
77 if (protocol == htons(ETH_P_8021Q)) {
78 ip_offset += VLAN_HLEN;
79 protocol = vlan_get_protocol(skb);
80 skb->protocol = protocol;
81 }
82
83 if (skb->protocol == htons(ETH_P_IP)) {
84 iphdr = ip_hdr(skb);
85 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
86 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
87
88 /* check for tcp/udp header */
89 if (iphdr->protocol == IPPROTO_TCP &&
90 skb_is_gso(skb)) {
91 hnae_set_bit(tvsvsn,
92 HNSV2_TXD_TSE_B, 1);
93 l4_len = tcp_hdrlen(skb);
94 mss = skb_shinfo(skb)->gso_size;
95 paylen = skb->len - skb_tcp_all_headers(skb);
96 }
97 } else if (skb->protocol == htons(ETH_P_IPV6)) {
98 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
99 ipv6hdr = ipv6_hdr(skb);
100 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
101
102 /* check for tcp/udp header */
103 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
104 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
105 hnae_set_bit(tvsvsn,
106 HNSV2_TXD_TSE_B, 1);
107 l4_len = tcp_hdrlen(skb);
108 mss = skb_shinfo(skb)->gso_size;
109 paylen = skb->len - skb_tcp_all_headers(skb);
110 }
111 }
112 desc->tx.ip_offset = ip_offset;
113 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
114 desc->tx.mss = cpu_to_le16(mss);
115 desc->tx.l4_len = l4_len;
116 desc->tx.paylen = cpu_to_le16(paylen);
117 }
118 }
119
120 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
121
122 desc->tx.bn_pid = bn_pid;
123 desc->tx.ra_ri_cs_fe_vld = rrcfv;
124
125 ring_ptr_move_fw(ring, next_to_use);
126 }
127
128 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
129 int size, dma_addr_t dma, int frag_end,
130 int buf_num, enum hns_desc_type type, int mtu)
131 {
132 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
133 buf_num, type, mtu);
134 }
135
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 { "HISI00C1", 0 },
138 { "HISI00C2", 0 },
139 { },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 int size, dma_addr_t dma, int frag_end,
145 int buf_num, enum hns_desc_type type, int mtu,
146 bool is_gso)
147 {
148 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
149 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
150 struct sk_buff *skb;
151 __be16 protocol;
152 u32 ip_offset;
153 u32 asid_bufnum_pid = 0;
154 u32 flag_ipoffset = 0;
155
156 desc_cb->priv = priv;
157 desc_cb->length = size;
158 desc_cb->dma = dma;
159 desc_cb->type = type;
160
161 desc->addr = cpu_to_le64(dma);
162 desc->tx.send_size = cpu_to_le16((u16)size);
163
164 /*config bd buffer end */
165 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
166
167 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
168
169 if (type == DESC_TYPE_SKB) {
170 skb = (struct sk_buff *)priv;
171
172 if (skb->ip_summed == CHECKSUM_PARTIAL) {
173 protocol = skb->protocol;
174 ip_offset = ETH_HLEN;
175
176 /*if it is a SW VLAN check the next protocol*/
177 if (protocol == htons(ETH_P_8021Q)) {
178 ip_offset += VLAN_HLEN;
179 protocol = vlan_get_protocol(skb);
180 skb->protocol = protocol;
181 }
182
183 if (skb->protocol == htons(ETH_P_IP)) {
184 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
185 /* check for tcp/udp header */
186 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
187
188 } else if (skb->protocol == htons(ETH_P_IPV6)) {
189 /* ipv6 has not l3 cs, check for L4 header */
190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 }
192
193 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
194 }
195 }
196
197 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
198
199 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
200 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
201
202 ring_ptr_move_fw(ring, next_to_use);
203 }
204
205 static void unfill_desc(struct hnae_ring *ring)
206 {
207 ring_ptr_move_bw(ring, next_to_use);
208 }
209
210 static int hns_nic_maybe_stop_tx(
211 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
212 {
213 struct sk_buff *skb = *out_skb;
214 struct sk_buff *new_skb = NULL;
215 int buf_num;
216
217 /* no. of segments (plus a header) */
218 buf_num = skb_shinfo(skb)->nr_frags + 1;
219
220 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
221 if (ring_space(ring) < 1)
222 return -EBUSY;
223
224 new_skb = skb_copy(skb, GFP_ATOMIC);
225 if (!new_skb)
226 return -ENOMEM;
227
228 dev_kfree_skb_any(skb);
229 *out_skb = new_skb;
230 buf_num = 1;
231 } else if (buf_num > ring_space(ring)) {
232 return -EBUSY;
233 }
234
235 *bnum = buf_num;
236 return 0;
237 }
238
239 static int hns_nic_maybe_stop_tso(
240 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
241 {
242 int i;
243 int size;
244 int buf_num;
245 int frag_num;
246 struct sk_buff *skb = *out_skb;
247 struct sk_buff *new_skb = NULL;
248 skb_frag_t *frag;
249
250 size = skb_headlen(skb);
251 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
252
253 frag_num = skb_shinfo(skb)->nr_frags;
254 for (i = 0; i < frag_num; i++) {
255 frag = &skb_shinfo(skb)->frags[i];
256 size = skb_frag_size(frag);
257 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
258 }
259
260 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
261 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 if (ring_space(ring) < buf_num)
263 return -EBUSY;
264 /* manual split the send packet */
265 new_skb = skb_copy(skb, GFP_ATOMIC);
266 if (!new_skb)
267 return -ENOMEM;
268 dev_kfree_skb_any(skb);
269 *out_skb = new_skb;
270
271 } else if (ring_space(ring) < buf_num) {
272 return -EBUSY;
273 }
274
275 *bnum = buf_num;
276 return 0;
277 }
278
279 static int hns_nic_maybe_stop_tx_v2(struct sk_buff **out_skb, int *bnum,
280 struct hnae_ring *ring)
281 {
282 if (skb_is_gso(*out_skb))
283 return hns_nic_maybe_stop_tso(out_skb, bnum, ring);
284 else
285 return hns_nic_maybe_stop_tx(out_skb, bnum, ring);
286 }
287
288 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
289 int size, dma_addr_t dma, int frag_end,
290 int buf_num, enum hns_desc_type type, int mtu)
291 {
292 int frag_buf_num;
293 int sizeoflast;
294 int k;
295
296 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
297 sizeoflast = size % BD_MAX_SEND_SIZE;
298 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
299
300 /* when the frag size is bigger than hardware, split this frag */
301 for (k = 0; k < frag_buf_num; k++)
302 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
303 (k == frag_buf_num - 1) ?
304 sizeoflast : BD_MAX_SEND_SIZE,
305 dma + BD_MAX_SEND_SIZE * k,
306 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
307 buf_num,
308 (type == DESC_TYPE_SKB && !k) ?
309 DESC_TYPE_SKB : DESC_TYPE_PAGE,
310 mtu);
311 }
312
313 static void fill_desc_v2(struct hnae_ring *ring, void *priv,
314 int size, dma_addr_t dma, int frag_end,
315 int buf_num, enum hns_desc_type type, int mtu,
316 bool is_gso)
317 {
318 if (is_gso)
319 fill_tso_desc(ring, priv, size, dma, frag_end, buf_num, type,
320 mtu);
321 else
322 fill_v2_desc(ring, priv, size, dma, frag_end, buf_num, type,
323 mtu);
324 }
325
326 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
327 struct sk_buff *skb,
328 struct hns_nic_ring_data *ring_data)
329 {
330 struct hns_nic_priv *priv = netdev_priv(ndev);
331 struct hnae_ring *ring = ring_data->ring;
332 struct device *dev = ring_to_dev(ring);
333 struct netdev_queue *dev_queue;
334 skb_frag_t *frag;
335 int buf_num;
336 int seg_num;
337 dma_addr_t dma;
338 int size, next_to_use;
339 bool is_gso;
340 int i;
341
342 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
343 case -EBUSY:
344 ring->stats.tx_busy++;
345 goto out_net_tx_busy;
346 case -ENOMEM:
347 ring->stats.sw_err_cnt++;
348 netdev_err(ndev, "no memory to xmit!\n");
349 goto out_err_tx_ok;
350 default:
351 break;
352 }
353
354 /* no. of segments (plus a header) */
355 seg_num = skb_shinfo(skb)->nr_frags + 1;
356 next_to_use = ring->next_to_use;
357
358 /* fill the first part */
359 size = skb_headlen(skb);
360 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
361 if (dma_mapping_error(dev, dma)) {
362 netdev_err(ndev, "TX head DMA map failed\n");
363 ring->stats.sw_err_cnt++;
364 goto out_err_tx_ok;
365 }
366 is_gso = skb_is_gso(skb);
367 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
368 buf_num, DESC_TYPE_SKB, ndev->mtu, is_gso);
369
370 /* fill the fragments */
371 for (i = 1; i < seg_num; i++) {
372 frag = &skb_shinfo(skb)->frags[i - 1];
373 size = skb_frag_size(frag);
374 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
375 if (dma_mapping_error(dev, dma)) {
376 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
377 ring->stats.sw_err_cnt++;
378 goto out_map_frag_fail;
379 }
380 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
381 seg_num - 1 == i ? 1 : 0, buf_num,
382 DESC_TYPE_PAGE, ndev->mtu, is_gso);
383 }
384
385 /*complete translate all packets*/
386 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
387 netdev_tx_sent_queue(dev_queue, skb->len);
388
389 netif_trans_update(ndev);
390 ndev->stats.tx_bytes += skb->len;
391 ndev->stats.tx_packets++;
392
393 wmb(); /* commit all data before submit */
394 assert(skb->queue_mapping < priv->ae_handle->q_num);
395 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
396
397 return NETDEV_TX_OK;
398
399 out_map_frag_fail:
400
401 while (ring->next_to_use != next_to_use) {
402 unfill_desc(ring);
403 if (ring->next_to_use != next_to_use)
404 dma_unmap_page(dev,
405 ring->desc_cb[ring->next_to_use].dma,
406 ring->desc_cb[ring->next_to_use].length,
407 DMA_TO_DEVICE);
408 else
409 dma_unmap_single(dev,
410 ring->desc_cb[next_to_use].dma,
411 ring->desc_cb[next_to_use].length,
412 DMA_TO_DEVICE);
413 }
414
415 out_err_tx_ok:
416
417 dev_kfree_skb_any(skb);
418 return NETDEV_TX_OK;
419
420 out_net_tx_busy:
421
422 netif_stop_subqueue(ndev, skb->queue_mapping);
423
424 /* Herbert's original patch had:
425 * smp_mb__after_netif_stop_queue();
426 * but since that doesn't exist yet, just open code it.
427 */
428 smp_mb();
429 return NETDEV_TX_BUSY;
430 }
431
432 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
433 struct hnae_ring *ring, int pull_len,
434 struct hnae_desc_cb *desc_cb)
435 {
436 struct hnae_desc *desc;
437 u32 truesize;
438 int size;
439 int last_offset;
440 bool twobufs;
441
442 twobufs = ((PAGE_SIZE < 8192) &&
443 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
444
445 desc = &ring->desc[ring->next_to_clean];
446 size = le16_to_cpu(desc->rx.size);
447
448 if (twobufs) {
449 truesize = hnae_buf_size(ring);
450 } else {
451 truesize = ALIGN(size, L1_CACHE_BYTES);
452 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
453 }
454
455 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
456 size - pull_len, truesize);
457
458 /* avoid re-using remote pages,flag default unreuse */
459 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
460 return;
461
462 if (twobufs) {
463 /* if we are only owner of page we can reuse it */
464 if (likely(page_count(desc_cb->priv) == 1)) {
465 /* flip page offset to other buffer */
466 desc_cb->page_offset ^= truesize;
467
468 desc_cb->reuse_flag = 1;
469 /* bump ref count on page before it is given*/
470 get_page(desc_cb->priv);
471 }
472 return;
473 }
474
475 /* move offset up to the next cache line */
476 desc_cb->page_offset += truesize;
477
478 if (desc_cb->page_offset <= last_offset) {
479 desc_cb->reuse_flag = 1;
480 /* bump ref count on page before it is given*/
481 get_page(desc_cb->priv);
482 }
483 }
484
485 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
486 {
487 *out_bnum = hnae_get_field(bnum_flag,
488 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
489 }
490
491 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
492 {
493 *out_bnum = hnae_get_field(bnum_flag,
494 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
495 }
496
497 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
498 struct sk_buff *skb, u32 flag)
499 {
500 struct net_device *netdev = ring_data->napi.dev;
501 u32 l3id;
502 u32 l4id;
503
504 /* check if RX checksum offload is enabled */
505 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
506 return;
507
508 /* In hardware, we only support checksum for the following protocols:
509 * 1) IPv4,
510 * 2) TCP(over IPv4 or IPv6),
511 * 3) UDP(over IPv4 or IPv6),
512 * 4) SCTP(over IPv4 or IPv6)
513 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
514 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
515 *
516 * Hardware limitation:
517 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
518 * Error" bit (which usually can be used to indicate whether checksum
519 * was calculated by the hardware and if there was any error encountered
520 * during checksum calculation).
521 *
522 * Software workaround:
523 * We do get info within the RX descriptor about the kind of L3/L4
524 * protocol coming in the packet and the error status. These errors
525 * might not just be checksum errors but could be related to version,
526 * length of IPv4, UDP, TCP etc.
527 * Because there is no-way of knowing if it is a L3/L4 error due to bad
528 * checksum or any other L3/L4 error, we will not (cannot) convey
529 * checksum status for such cases to upper stack and will not maintain
530 * the RX L3/L4 checksum counters as well.
531 */
532
533 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
534 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
535
536 /* check L3 protocol for which checksum is supported */
537 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
538 return;
539
540 /* check for any(not just checksum)flagged L3 protocol errors */
541 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
542 return;
543
544 /* we do not support checksum of fragmented packets */
545 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
546 return;
547
548 /* check L4 protocol for which checksum is supported */
549 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
550 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
551 (l4id != HNS_RX_FLAG_L4ID_SCTP))
552 return;
553
554 /* check for any(not just checksum)flagged L4 protocol errors */
555 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
556 return;
557
558 /* now, this has to be a packet with valid RX checksum */
559 skb->ip_summed = CHECKSUM_UNNECESSARY;
560 }
561
562 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
563 struct sk_buff **out_skb, int *out_bnum)
564 {
565 struct hnae_ring *ring = ring_data->ring;
566 struct net_device *ndev = ring_data->napi.dev;
567 struct hns_nic_priv *priv = netdev_priv(ndev);
568 struct sk_buff *skb;
569 struct hnae_desc *desc;
570 struct hnae_desc_cb *desc_cb;
571 unsigned char *va;
572 int bnum, length, i;
573 int pull_len;
574 u32 bnum_flag;
575
576 desc = &ring->desc[ring->next_to_clean];
577 desc_cb = &ring->desc_cb[ring->next_to_clean];
578
579 prefetch(desc);
580
581 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
582
583 /* prefetch first cache line of first page */
584 net_prefetch(va);
585
586 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
587 HNS_RX_HEAD_SIZE);
588 if (unlikely(!skb)) {
589 ring->stats.sw_err_cnt++;
590 return -ENOMEM;
591 }
592
593 prefetchw(skb->data);
594 length = le16_to_cpu(desc->rx.pkt_len);
595 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
596 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
597 *out_bnum = bnum;
598
599 if (length <= HNS_RX_HEAD_SIZE) {
600 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
601
602 /* we can reuse buffer as-is, just make sure it is local */
603 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
604 desc_cb->reuse_flag = 1;
605 else /* this page cannot be reused so discard it */
606 put_page(desc_cb->priv);
607
608 ring_ptr_move_fw(ring, next_to_clean);
609
610 if (unlikely(bnum != 1)) { /* check err*/
611 *out_bnum = 1;
612 goto out_bnum_err;
613 }
614 } else {
615 ring->stats.seg_pkt_cnt++;
616
617 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
618 memcpy(__skb_put(skb, pull_len), va,
619 ALIGN(pull_len, sizeof(long)));
620
621 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
622 ring_ptr_move_fw(ring, next_to_clean);
623
624 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
625 *out_bnum = 1;
626 goto out_bnum_err;
627 }
628 for (i = 1; i < bnum; i++) {
629 desc = &ring->desc[ring->next_to_clean];
630 desc_cb = &ring->desc_cb[ring->next_to_clean];
631
632 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
633 ring_ptr_move_fw(ring, next_to_clean);
634 }
635 }
636
637 /* check except process, free skb and jump the desc */
638 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
639 out_bnum_err:
640 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
641 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
642 bnum, ring->max_desc_num_per_pkt,
643 length, (int)MAX_SKB_FRAGS,
644 ((u64 *)desc)[0], ((u64 *)desc)[1]);
645 ring->stats.err_bd_num++;
646 dev_kfree_skb_any(skb);
647 return -EDOM;
648 }
649
650 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
651
652 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
653 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
654 ((u64 *)desc)[0], ((u64 *)desc)[1]);
655 ring->stats.non_vld_descs++;
656 dev_kfree_skb_any(skb);
657 return -EINVAL;
658 }
659
660 if (unlikely((!desc->rx.pkt_len) ||
661 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
662 ring->stats.err_pkt_len++;
663 dev_kfree_skb_any(skb);
664 return -EFAULT;
665 }
666
667 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
668 ring->stats.l2_err++;
669 dev_kfree_skb_any(skb);
670 return -EFAULT;
671 }
672
673 ring->stats.rx_pkts++;
674 ring->stats.rx_bytes += skb->len;
675
676 /* indicate to upper stack if our hardware has already calculated
677 * the RX checksum
678 */
679 hns_nic_rx_checksum(ring_data, skb, bnum_flag);
680
681 return 0;
682 }
683
684 static void
685 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
686 {
687 int i, ret;
688 struct hnae_desc_cb res_cbs;
689 struct hnae_desc_cb *desc_cb;
690 struct hnae_ring *ring = ring_data->ring;
691 struct net_device *ndev = ring_data->napi.dev;
692
693 for (i = 0; i < cleand_count; i++) {
694 desc_cb = &ring->desc_cb[ring->next_to_use];
695 if (desc_cb->reuse_flag) {
696 ring->stats.reuse_pg_cnt++;
697 hnae_reuse_buffer(ring, ring->next_to_use);
698 } else {
699 ret = hnae_reserve_buffer_map(ring, &res_cbs);
700 if (ret) {
701 ring->stats.sw_err_cnt++;
702 netdev_err(ndev, "hnae reserve buffer map failed.\n");
703 break;
704 }
705 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
706 }
707
708 ring_ptr_move_fw(ring, next_to_use);
709 }
710
711 wmb(); /* make all data has been write before submit */
712 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
713 }
714
715 /* return error number for error or number of desc left to take
716 */
717 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
718 struct sk_buff *skb)
719 {
720 struct net_device *ndev = ring_data->napi.dev;
721
722 skb->protocol = eth_type_trans(skb, ndev);
723 napi_gro_receive(&ring_data->napi, skb);
724 }
725
726 static int hns_desc_unused(struct hnae_ring *ring)
727 {
728 int ntc = ring->next_to_clean;
729 int ntu = ring->next_to_use;
730
731 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
732 }
733
734 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */
735 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */
736
737 #define HNS_COAL_BDNUM 3
738
739 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
740 {
741 bool coal_enable = ring->q->handle->coal_adapt_en;
742
743 if (coal_enable &&
744 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
745 return HNS_COAL_BDNUM;
746 else
747 return 0;
748 }
749
750 static void hns_update_rx_rate(struct hnae_ring *ring)
751 {
752 bool coal_enable = ring->q->handle->coal_adapt_en;
753 u32 time_passed_ms;
754 u64 total_bytes;
755
756 if (!coal_enable ||
757 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
758 return;
759
760 /* ring->stats.rx_bytes overflowed */
761 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
762 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
763 ring->coal_last_jiffies = jiffies;
764 return;
765 }
766
767 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
768 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
769 do_div(total_bytes, time_passed_ms);
770 ring->coal_rx_rate = total_bytes >> 10;
771
772 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
773 ring->coal_last_jiffies = jiffies;
774 }
775
776 /**
777 * smooth_alg - smoothing algrithm for adjusting coalesce parameter
778 * @new_param: new value
779 * @old_param: old value
780 **/
781 static u32 smooth_alg(u32 new_param, u32 old_param)
782 {
783 u32 gap = (new_param > old_param) ? new_param - old_param
784 : old_param - new_param;
785
786 if (gap > 8)
787 gap >>= 3;
788
789 if (new_param > old_param)
790 return old_param + gap;
791 else
792 return old_param - gap;
793 }
794
795 /**
796 * hns_nic_adpt_coalesce - self adapte coalesce according to rx rate
797 * @ring_data: pointer to hns_nic_ring_data
798 **/
799 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
800 {
801 struct hnae_ring *ring = ring_data->ring;
802 struct hnae_handle *handle = ring->q->handle;
803 u32 new_coal_param, old_coal_param = ring->coal_param;
804
805 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
806 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
807 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
808 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
809 else
810 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
811
812 if (new_coal_param == old_coal_param &&
813 new_coal_param == handle->coal_param)
814 return;
815
816 new_coal_param = smooth_alg(new_coal_param, old_coal_param);
817 ring->coal_param = new_coal_param;
818
819 /**
820 * Because all ring in one port has one coalesce param, when one ring
821 * calculate its own coalesce param, it cannot write to hardware at
822 * once. There are three conditions as follows:
823 * 1. current ring's coalesce param is larger than the hardware.
824 * 2. or ring which adapt last time can change again.
825 * 3. timeout.
826 */
827 if (new_coal_param == handle->coal_param) {
828 handle->coal_last_jiffies = jiffies;
829 handle->coal_ring_idx = ring_data->queue_index;
830 } else if (new_coal_param > handle->coal_param ||
831 handle->coal_ring_idx == ring_data->queue_index ||
832 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
833 handle->dev->ops->set_coalesce_usecs(handle,
834 new_coal_param);
835 handle->dev->ops->set_coalesce_frames(handle,
836 1, new_coal_param);
837 handle->coal_param = new_coal_param;
838 handle->coal_ring_idx = ring_data->queue_index;
839 handle->coal_last_jiffies = jiffies;
840 }
841 }
842
843 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
844 int budget, void *v)
845 {
846 struct hnae_ring *ring = ring_data->ring;
847 struct sk_buff *skb;
848 int num, bnum;
849 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
850 int recv_pkts, recv_bds, clean_count, err;
851 int unused_count = hns_desc_unused(ring);
852
853 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
854 rmb(); /* make sure num taken effect before the other data is touched */
855
856 recv_pkts = 0, recv_bds = 0, clean_count = 0;
857 num -= unused_count;
858
859 while (recv_pkts < budget && recv_bds < num) {
860 /* reuse or realloc buffers */
861 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
862 hns_nic_alloc_rx_buffers(ring_data,
863 clean_count + unused_count);
864 clean_count = 0;
865 unused_count = hns_desc_unused(ring);
866 }
867
868 /* poll one pkt */
869 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
870 if (unlikely(!skb)) /* this fault cannot be repaired */
871 goto out;
872
873 recv_bds += bnum;
874 clean_count += bnum;
875 if (unlikely(err)) { /* do jump the err */
876 recv_pkts++;
877 continue;
878 }
879
880 /* do update ip stack process*/
881 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
882 ring_data, skb);
883 recv_pkts++;
884 }
885
886 out:
887 /* make all data has been write before submit */
888 if (clean_count + unused_count > 0)
889 hns_nic_alloc_rx_buffers(ring_data,
890 clean_count + unused_count);
891
892 return recv_pkts;
893 }
894
895 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
896 {
897 struct hnae_ring *ring = ring_data->ring;
898 int num;
899 bool rx_stopped;
900
901 hns_update_rx_rate(ring);
902
903 /* for hardware bug fixed */
904 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
905 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
906
907 if (num <= hns_coal_rx_bdnum(ring)) {
908 if (ring->q->handle->coal_adapt_en)
909 hns_nic_adpt_coalesce(ring_data);
910
911 rx_stopped = true;
912 } else {
913 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
914 ring_data->ring, 1);
915
916 rx_stopped = false;
917 }
918
919 return rx_stopped;
920 }
921
922 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
923 {
924 struct hnae_ring *ring = ring_data->ring;
925 int num;
926
927 hns_update_rx_rate(ring);
928 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
929
930 if (num <= hns_coal_rx_bdnum(ring)) {
931 if (ring->q->handle->coal_adapt_en)
932 hns_nic_adpt_coalesce(ring_data);
933
934 return true;
935 }
936
937 return false;
938 }
939
940 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
941 int *bytes, int *pkts)
942 {
943 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
944
945 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
946 (*bytes) += desc_cb->length;
947 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
948 hnae_free_buffer_detach(ring, ring->next_to_clean);
949
950 ring_ptr_move_fw(ring, next_to_clean);
951 }
952
953 static int is_valid_clean_head(struct hnae_ring *ring, int h)
954 {
955 int u = ring->next_to_use;
956 int c = ring->next_to_clean;
957
958 if (unlikely(h > ring->desc_num))
959 return 0;
960
961 assert(u > 0 && u < ring->desc_num);
962 assert(c > 0 && c < ring->desc_num);
963 assert(u != c && h != c); /* must be checked before call this func */
964
965 return u > c ? (h > c && h <= u) : (h > c || h <= u);
966 }
967
968 /* reclaim all desc in one budget
969 * return error or number of desc left
970 */
971 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
972 int budget, void *v)
973 {
974 struct hnae_ring *ring = ring_data->ring;
975 struct net_device *ndev = ring_data->napi.dev;
976 struct netdev_queue *dev_queue;
977 struct hns_nic_priv *priv = netdev_priv(ndev);
978 int head;
979 int bytes, pkts;
980
981 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
982 rmb(); /* make sure head is ready before touch any data */
983
984 if (is_ring_empty(ring) || head == ring->next_to_clean)
985 return 0; /* no data to poll */
986
987 if (!is_valid_clean_head(ring, head)) {
988 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
989 ring->next_to_use, ring->next_to_clean);
990 ring->stats.io_err_cnt++;
991 return -EIO;
992 }
993
994 bytes = 0;
995 pkts = 0;
996 while (head != ring->next_to_clean) {
997 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
998 /* issue prefetch for next Tx descriptor */
999 prefetch(&ring->desc_cb[ring->next_to_clean]);
1000 }
1001 /* update tx ring statistics. */
1002 ring->stats.tx_pkts += pkts;
1003 ring->stats.tx_bytes += bytes;
1004
1005 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1006 netdev_tx_completed_queue(dev_queue, pkts, bytes);
1007
1008 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1009 netif_carrier_on(ndev);
1010
1011 if (unlikely(pkts && netif_carrier_ok(ndev) &&
1012 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1013 /* Make sure that anybody stopping the queue after this
1014 * sees the new next_to_clean.
1015 */
1016 smp_mb();
1017 if (netif_tx_queue_stopped(dev_queue) &&
1018 !test_bit(NIC_STATE_DOWN, &priv->state)) {
1019 netif_tx_wake_queue(dev_queue);
1020 ring->stats.restart_queue++;
1021 }
1022 }
1023 return 0;
1024 }
1025
1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1027 {
1028 struct hnae_ring *ring = ring_data->ring;
1029 int head;
1030
1031 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1032
1033 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1034
1035 if (head != ring->next_to_clean) {
1036 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1037 ring_data->ring, 1);
1038
1039 return false;
1040 } else {
1041 return true;
1042 }
1043 }
1044
1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1046 {
1047 struct hnae_ring *ring = ring_data->ring;
1048 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1049
1050 if (head == ring->next_to_clean)
1051 return true;
1052 else
1053 return false;
1054 }
1055
1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1057 {
1058 struct hnae_ring *ring = ring_data->ring;
1059 struct net_device *ndev = ring_data->napi.dev;
1060 struct netdev_queue *dev_queue;
1061 int head;
1062 int bytes, pkts;
1063
1064 head = ring->next_to_use; /* ntu :soft setted ring position*/
1065 bytes = 0;
1066 pkts = 0;
1067 while (head != ring->next_to_clean)
1068 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1069
1070 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1071 netdev_tx_reset_queue(dev_queue);
1072 }
1073
1074 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1075 {
1076 int clean_complete = 0;
1077 struct hns_nic_ring_data *ring_data =
1078 container_of(napi, struct hns_nic_ring_data, napi);
1079 struct hnae_ring *ring = ring_data->ring;
1080
1081 clean_complete += ring_data->poll_one(
1082 ring_data, budget - clean_complete,
1083 ring_data->ex_process);
1084
1085 if (clean_complete < budget) {
1086 if (ring_data->fini_process(ring_data)) {
1087 napi_complete(napi);
1088 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1089 } else {
1090 return budget;
1091 }
1092 }
1093
1094 return clean_complete;
1095 }
1096
1097 static irqreturn_t hns_irq_handle(int irq, void *dev)
1098 {
1099 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1100
1101 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1102 ring_data->ring, 1);
1103 napi_schedule(&ring_data->napi);
1104
1105 return IRQ_HANDLED;
1106 }
1107
1108 /**
1109 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1110 *@ndev: net device
1111 */
1112 static void hns_nic_adjust_link(struct net_device *ndev)
1113 {
1114 struct hns_nic_priv *priv = netdev_priv(ndev);
1115 struct hnae_handle *h = priv->ae_handle;
1116 int state = 1;
1117
1118 /* If there is no phy, do not need adjust link */
1119 if (ndev->phydev) {
1120 /* When phy link down, do nothing */
1121 if (ndev->phydev->link == 0)
1122 return;
1123
1124 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1125 ndev->phydev->duplex)) {
1126 /* because Hi161X chip don't support to change gmac
1127 * speed and duplex with traffic. Delay 200ms to
1128 * make sure there is no more data in chip FIFO.
1129 */
1130 netif_carrier_off(ndev);
1131 msleep(200);
1132 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1133 ndev->phydev->duplex);
1134 netif_carrier_on(ndev);
1135 }
1136 }
1137
1138 state = state && h->dev->ops->get_status(h);
1139
1140 if (state != priv->link) {
1141 if (state) {
1142 netif_carrier_on(ndev);
1143 netif_tx_wake_all_queues(ndev);
1144 netdev_info(ndev, "link up\n");
1145 } else {
1146 netif_carrier_off(ndev);
1147 netdev_info(ndev, "link down\n");
1148 }
1149 priv->link = state;
1150 }
1151 }
1152
1153 /**
1154 *hns_nic_init_phy - init phy
1155 *@ndev: net device
1156 *@h: ae handle
1157 * Return 0 on success, negative on failure
1158 */
1159 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1160 {
1161 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1162 struct phy_device *phy_dev = h->phy_dev;
1163 int ret;
1164
1165 if (!h->phy_dev)
1166 return 0;
1167
1168 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1169 linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1170 linkmode_copy(phy_dev->advertising, phy_dev->supported);
1171
1172 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1173 phy_dev->autoneg = false;
1174
1175 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1176 phy_dev->dev_flags = 0;
1177
1178 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1179 h->phy_if);
1180 } else {
1181 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1182 }
1183 if (unlikely(ret))
1184 return -ENODEV;
1185
1186 phy_attached_info(phy_dev);
1187
1188 return 0;
1189 }
1190
1191 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1192 {
1193 struct hns_nic_priv *priv = netdev_priv(netdev);
1194 struct hnae_handle *h = priv->ae_handle;
1195
1196 napi_enable(&priv->ring_data[idx].napi);
1197
1198 enable_irq(priv->ring_data[idx].ring->irq);
1199 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1200
1201 return 0;
1202 }
1203
1204 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1205 {
1206 struct hns_nic_priv *priv = netdev_priv(ndev);
1207 struct hnae_handle *h = priv->ae_handle;
1208 struct sockaddr *mac_addr = p;
1209 int ret;
1210
1211 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1212 return -EADDRNOTAVAIL;
1213
1214 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1215 if (ret) {
1216 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1217 return ret;
1218 }
1219
1220 eth_hw_addr_set(ndev, mac_addr->sa_data);
1221
1222 return 0;
1223 }
1224
1225 static void hns_nic_update_stats(struct net_device *netdev)
1226 {
1227 struct hns_nic_priv *priv = netdev_priv(netdev);
1228 struct hnae_handle *h = priv->ae_handle;
1229
1230 h->dev->ops->update_stats(h, &netdev->stats);
1231 }
1232
1233 /* set mac addr if it is configed. or leave it to the AE driver */
1234 static void hns_init_mac_addr(struct net_device *ndev)
1235 {
1236 struct hns_nic_priv *priv = netdev_priv(ndev);
1237
1238 if (device_get_ethdev_address(priv->dev, ndev)) {
1239 eth_hw_addr_random(ndev);
1240 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1241 ndev->dev_addr);
1242 }
1243 }
1244
1245 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1246 {
1247 struct hns_nic_priv *priv = netdev_priv(netdev);
1248 struct hnae_handle *h = priv->ae_handle;
1249
1250 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1251 disable_irq(priv->ring_data[idx].ring->irq);
1252
1253 napi_disable(&priv->ring_data[idx].napi);
1254 }
1255
1256 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1257 struct hnae_ring *ring, cpumask_t *mask)
1258 {
1259 int cpu;
1260
1261 /* Different irq balance between 16core and 32core.
1262 * The cpu mask set by ring index according to the ring flag
1263 * which indicate the ring is tx or rx.
1264 */
1265 if (q_num == num_possible_cpus()) {
1266 if (is_tx_ring(ring))
1267 cpu = ring_idx;
1268 else
1269 cpu = ring_idx - q_num;
1270 } else {
1271 if (is_tx_ring(ring))
1272 cpu = ring_idx * 2;
1273 else
1274 cpu = (ring_idx - q_num) * 2 + 1;
1275 }
1276
1277 cpumask_clear(mask);
1278 cpumask_set_cpu(cpu, mask);
1279
1280 return cpu;
1281 }
1282
1283 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1284 {
1285 int i;
1286
1287 for (i = 0; i < q_num * 2; i++) {
1288 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1289 irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1290 NULL);
1291 free_irq(priv->ring_data[i].ring->irq,
1292 &priv->ring_data[i]);
1293 priv->ring_data[i].ring->irq_init_flag =
1294 RCB_IRQ_NOT_INITED;
1295 }
1296 }
1297 }
1298
1299 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1300 {
1301 struct hnae_handle *h = priv->ae_handle;
1302 struct hns_nic_ring_data *rd;
1303 int i;
1304 int ret;
1305 int cpu;
1306
1307 for (i = 0; i < h->q_num * 2; i++) {
1308 rd = &priv->ring_data[i];
1309
1310 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1311 break;
1312
1313 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1314 "%s-%s%d", priv->netdev->name,
1315 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1316
1317 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1318
1319 irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN);
1320 ret = request_irq(rd->ring->irq,
1321 hns_irq_handle, 0, rd->ring->ring_name, rd);
1322 if (ret) {
1323 netdev_err(priv->netdev, "request irq(%d) fail\n",
1324 rd->ring->irq);
1325 goto out_free_irq;
1326 }
1327
1328 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1329 rd->ring, &rd->mask);
1330
1331 if (cpu_online(cpu))
1332 irq_set_affinity_hint(rd->ring->irq,
1333 &rd->mask);
1334
1335 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1336 }
1337
1338 return 0;
1339
1340 out_free_irq:
1341 hns_nic_free_irq(h->q_num, priv);
1342 return ret;
1343 }
1344
1345 static int hns_nic_net_up(struct net_device *ndev)
1346 {
1347 struct hns_nic_priv *priv = netdev_priv(ndev);
1348 struct hnae_handle *h = priv->ae_handle;
1349 int i, j;
1350 int ret;
1351
1352 if (!test_bit(NIC_STATE_DOWN, &priv->state))
1353 return 0;
1354
1355 ret = hns_nic_init_irq(priv);
1356 if (ret != 0) {
1357 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1358 return ret;
1359 }
1360
1361 for (i = 0; i < h->q_num * 2; i++) {
1362 ret = hns_nic_ring_open(ndev, i);
1363 if (ret)
1364 goto out_has_some_queues;
1365 }
1366
1367 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1368 if (ret)
1369 goto out_set_mac_addr_err;
1370
1371 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1372 if (ret)
1373 goto out_start_err;
1374
1375 if (ndev->phydev)
1376 phy_start(ndev->phydev);
1377
1378 clear_bit(NIC_STATE_DOWN, &priv->state);
1379 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1380
1381 return 0;
1382
1383 out_start_err:
1384 netif_stop_queue(ndev);
1385 out_set_mac_addr_err:
1386 out_has_some_queues:
1387 for (j = i - 1; j >= 0; j--)
1388 hns_nic_ring_close(ndev, j);
1389
1390 hns_nic_free_irq(h->q_num, priv);
1391 set_bit(NIC_STATE_DOWN, &priv->state);
1392
1393 return ret;
1394 }
1395
1396 static void hns_nic_net_down(struct net_device *ndev)
1397 {
1398 int i;
1399 struct hnae_ae_ops *ops;
1400 struct hns_nic_priv *priv = netdev_priv(ndev);
1401
1402 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1403 return;
1404
1405 (void)del_timer_sync(&priv->service_timer);
1406 netif_tx_stop_all_queues(ndev);
1407 netif_carrier_off(ndev);
1408 netif_tx_disable(ndev);
1409 priv->link = 0;
1410
1411 if (ndev->phydev)
1412 phy_stop(ndev->phydev);
1413
1414 ops = priv->ae_handle->dev->ops;
1415
1416 if (ops->stop)
1417 ops->stop(priv->ae_handle);
1418
1419 netif_tx_stop_all_queues(ndev);
1420
1421 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1422 hns_nic_ring_close(ndev, i);
1423 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1424
1425 /* clean tx buffers*/
1426 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1427 }
1428 }
1429
1430 void hns_nic_net_reset(struct net_device *ndev)
1431 {
1432 struct hns_nic_priv *priv = netdev_priv(ndev);
1433 struct hnae_handle *handle = priv->ae_handle;
1434
1435 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1436 usleep_range(1000, 2000);
1437
1438 (void)hnae_reinit_handle(handle);
1439
1440 clear_bit(NIC_STATE_RESETTING, &priv->state);
1441 }
1442
1443 void hns_nic_net_reinit(struct net_device *netdev)
1444 {
1445 struct hns_nic_priv *priv = netdev_priv(netdev);
1446 enum hnae_port_type type = priv->ae_handle->port_type;
1447
1448 netif_trans_update(priv->netdev);
1449 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1450 usleep_range(1000, 2000);
1451
1452 hns_nic_net_down(netdev);
1453
1454 /* Only do hns_nic_net_reset in debug mode
1455 * because of hardware limitation.
1456 */
1457 if (type == HNAE_PORT_DEBUG)
1458 hns_nic_net_reset(netdev);
1459
1460 (void)hns_nic_net_up(netdev);
1461 clear_bit(NIC_STATE_REINITING, &priv->state);
1462 }
1463
1464 static int hns_nic_net_open(struct net_device *ndev)
1465 {
1466 struct hns_nic_priv *priv = netdev_priv(ndev);
1467 struct hnae_handle *h = priv->ae_handle;
1468 int ret;
1469
1470 if (test_bit(NIC_STATE_TESTING, &priv->state))
1471 return -EBUSY;
1472
1473 priv->link = 0;
1474 netif_carrier_off(ndev);
1475
1476 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1477 if (ret < 0) {
1478 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1479 ret);
1480 return ret;
1481 }
1482
1483 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1484 if (ret < 0) {
1485 netdev_err(ndev,
1486 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1487 return ret;
1488 }
1489
1490 ret = hns_nic_net_up(ndev);
1491 if (ret) {
1492 netdev_err(ndev,
1493 "hns net up fail, ret=%d!\n", ret);
1494 return ret;
1495 }
1496
1497 return 0;
1498 }
1499
1500 static int hns_nic_net_stop(struct net_device *ndev)
1501 {
1502 hns_nic_net_down(ndev);
1503
1504 return 0;
1505 }
1506
1507 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1508 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1509 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1510 {
1511 struct hns_nic_priv *priv = netdev_priv(ndev);
1512
1513 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1514 ndev->watchdog_timeo *= 2;
1515 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1516 ndev->watchdog_timeo);
1517 } else {
1518 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1519 hns_tx_timeout_reset(priv);
1520 }
1521 }
1522
1523 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1524 struct net_device *ndev)
1525 {
1526 struct hns_nic_priv *priv = netdev_priv(ndev);
1527
1528 assert(skb->queue_mapping < priv->ae_handle->q_num);
1529
1530 return hns_nic_net_xmit_hw(ndev, skb,
1531 &tx_ring_data(priv, skb->queue_mapping));
1532 }
1533
1534 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1535 struct sk_buff *skb)
1536 {
1537 dev_kfree_skb_any(skb);
1538 }
1539
1540 #define HNS_LB_TX_RING 0
1541 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1542 {
1543 struct sk_buff *skb;
1544 struct ethhdr *ethhdr;
1545 int frame_len;
1546
1547 /* allocate test skb */
1548 skb = alloc_skb(64, GFP_KERNEL);
1549 if (!skb)
1550 return NULL;
1551
1552 skb_put(skb, 64);
1553 skb->dev = ndev;
1554 memset(skb->data, 0xFF, skb->len);
1555
1556 /* must be tcp/ip package */
1557 ethhdr = (struct ethhdr *)skb->data;
1558 ethhdr->h_proto = htons(ETH_P_IP);
1559
1560 frame_len = skb->len & (~1ul);
1561 memset(&skb->data[frame_len / 2], 0xAA,
1562 frame_len / 2 - 1);
1563
1564 skb->queue_mapping = HNS_LB_TX_RING;
1565
1566 return skb;
1567 }
1568
1569 static int hns_enable_serdes_lb(struct net_device *ndev)
1570 {
1571 struct hns_nic_priv *priv = netdev_priv(ndev);
1572 struct hnae_handle *h = priv->ae_handle;
1573 struct hnae_ae_ops *ops = h->dev->ops;
1574 int speed, duplex;
1575 int ret;
1576
1577 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1578 if (ret)
1579 return ret;
1580
1581 ret = ops->start ? ops->start(h) : 0;
1582 if (ret)
1583 return ret;
1584
1585 /* link adjust duplex*/
1586 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1587 speed = 1000;
1588 else
1589 speed = 10000;
1590 duplex = 1;
1591
1592 ops->adjust_link(h, speed, duplex);
1593
1594 /* wait h/w ready */
1595 mdelay(300);
1596
1597 return 0;
1598 }
1599
1600 static void hns_disable_serdes_lb(struct net_device *ndev)
1601 {
1602 struct hns_nic_priv *priv = netdev_priv(ndev);
1603 struct hnae_handle *h = priv->ae_handle;
1604 struct hnae_ae_ops *ops = h->dev->ops;
1605
1606 ops->stop(h);
1607 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1608 }
1609
1610 /**
1611 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1612 *function as follows:
1613 * 1. if one rx ring has found the page_offset is not equal 0 between head
1614 * and tail, it means that the chip fetched the wrong descs for the ring
1615 * which buffer size is 4096.
1616 * 2. we set the chip serdes loopback and set rss indirection to the ring.
1617 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1618 * receiving all packages and it will fetch new descriptions.
1619 * 4. recover to the original state.
1620 *
1621 *@ndev: net device
1622 */
1623 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1624 {
1625 struct hns_nic_priv *priv = netdev_priv(ndev);
1626 struct hnae_handle *h = priv->ae_handle;
1627 struct hnae_ae_ops *ops = h->dev->ops;
1628 struct hns_nic_ring_data *rd;
1629 struct hnae_ring *ring;
1630 struct sk_buff *skb;
1631 u32 *org_indir;
1632 u32 *cur_indir;
1633 int indir_size;
1634 int head, tail;
1635 int fetch_num;
1636 int i, j;
1637 bool found;
1638 int retry_times;
1639 int ret = 0;
1640
1641 /* alloc indir memory */
1642 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1643 org_indir = kzalloc(indir_size, GFP_KERNEL);
1644 if (!org_indir)
1645 return -ENOMEM;
1646
1647 /* store the original indirection */
1648 ops->get_rss(h, org_indir, NULL, NULL);
1649
1650 cur_indir = kzalloc(indir_size, GFP_KERNEL);
1651 if (!cur_indir) {
1652 ret = -ENOMEM;
1653 goto cur_indir_alloc_err;
1654 }
1655
1656 /* set loopback */
1657 if (hns_enable_serdes_lb(ndev)) {
1658 ret = -EINVAL;
1659 goto enable_serdes_lb_err;
1660 }
1661
1662 /* foreach every rx ring to clear fetch desc */
1663 for (i = 0; i < h->q_num; i++) {
1664 ring = &h->qs[i]->rx_ring;
1665 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1666 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1667 found = false;
1668 fetch_num = ring_dist(ring, head, tail);
1669
1670 while (head != tail) {
1671 if (ring->desc_cb[head].page_offset != 0) {
1672 found = true;
1673 break;
1674 }
1675
1676 head++;
1677 if (head == ring->desc_num)
1678 head = 0;
1679 }
1680
1681 if (found) {
1682 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1683 cur_indir[j] = i;
1684 ops->set_rss(h, cur_indir, NULL, 0);
1685
1686 for (j = 0; j < fetch_num; j++) {
1687 /* alloc one skb and init */
1688 skb = hns_assemble_skb(ndev);
1689 if (!skb) {
1690 ret = -ENOMEM;
1691 goto out;
1692 }
1693 rd = &tx_ring_data(priv, skb->queue_mapping);
1694 hns_nic_net_xmit_hw(ndev, skb, rd);
1695
1696 retry_times = 0;
1697 while (retry_times++ < 10) {
1698 mdelay(10);
1699 /* clean rx */
1700 rd = &rx_ring_data(priv, i);
1701 if (rd->poll_one(rd, fetch_num,
1702 hns_nic_drop_rx_fetch))
1703 break;
1704 }
1705
1706 retry_times = 0;
1707 while (retry_times++ < 10) {
1708 mdelay(10);
1709 /* clean tx ring 0 send package */
1710 rd = &tx_ring_data(priv,
1711 HNS_LB_TX_RING);
1712 if (rd->poll_one(rd, fetch_num, NULL))
1713 break;
1714 }
1715 }
1716 }
1717 }
1718
1719 out:
1720 /* restore everything */
1721 ops->set_rss(h, org_indir, NULL, 0);
1722 hns_disable_serdes_lb(ndev);
1723 enable_serdes_lb_err:
1724 kfree(cur_indir);
1725 cur_indir_alloc_err:
1726 kfree(org_indir);
1727
1728 return ret;
1729 }
1730
1731 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1732 {
1733 struct hns_nic_priv *priv = netdev_priv(ndev);
1734 struct hnae_handle *h = priv->ae_handle;
1735 bool if_running = netif_running(ndev);
1736 int ret;
1737
1738 /* MTU < 68 is an error and causes problems on some kernels */
1739 if (new_mtu < 68)
1740 return -EINVAL;
1741
1742 /* MTU no change */
1743 if (new_mtu == ndev->mtu)
1744 return 0;
1745
1746 if (!h->dev->ops->set_mtu)
1747 return -ENOTSUPP;
1748
1749 if (if_running) {
1750 (void)hns_nic_net_stop(ndev);
1751 msleep(100);
1752 }
1753
1754 if (priv->enet_ver != AE_VERSION_1 &&
1755 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1756 new_mtu > BD_SIZE_2048_MAX_MTU) {
1757 /* update desc */
1758 hnae_reinit_all_ring_desc(h);
1759
1760 /* clear the package which the chip has fetched */
1761 ret = hns_nic_clear_all_rx_fetch(ndev);
1762
1763 /* the page offset must be consist with desc */
1764 hnae_reinit_all_ring_page_off(h);
1765
1766 if (ret) {
1767 netdev_err(ndev, "clear the fetched desc fail\n");
1768 goto out;
1769 }
1770 }
1771
1772 ret = h->dev->ops->set_mtu(h, new_mtu);
1773 if (ret) {
1774 netdev_err(ndev, "set mtu fail, return value %d\n",
1775 ret);
1776 goto out;
1777 }
1778
1779 /* finally, set new mtu to netdevice */
1780 ndev->mtu = new_mtu;
1781
1782 out:
1783 if (if_running) {
1784 if (hns_nic_net_open(ndev)) {
1785 netdev_err(ndev, "hns net open fail\n");
1786 ret = -EINVAL;
1787 }
1788 }
1789
1790 return ret;
1791 }
1792
1793 static int hns_nic_set_features(struct net_device *netdev,
1794 netdev_features_t features)
1795 {
1796 struct hns_nic_priv *priv = netdev_priv(netdev);
1797
1798 switch (priv->enet_ver) {
1799 case AE_VERSION_1:
1800 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1801 netdev_info(netdev, "enet v1 do not support tso!\n");
1802 break;
1803 default:
1804 break;
1805 }
1806 netdev->features = features;
1807 return 0;
1808 }
1809
1810 static netdev_features_t hns_nic_fix_features(
1811 struct net_device *netdev, netdev_features_t features)
1812 {
1813 struct hns_nic_priv *priv = netdev_priv(netdev);
1814
1815 switch (priv->enet_ver) {
1816 case AE_VERSION_1:
1817 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1818 NETIF_F_HW_VLAN_CTAG_FILTER);
1819 break;
1820 default:
1821 break;
1822 }
1823 return features;
1824 }
1825
1826 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1827 {
1828 struct hns_nic_priv *priv = netdev_priv(netdev);
1829 struct hnae_handle *h = priv->ae_handle;
1830
1831 if (h->dev->ops->add_uc_addr)
1832 return h->dev->ops->add_uc_addr(h, addr);
1833
1834 return 0;
1835 }
1836
1837 static int hns_nic_uc_unsync(struct net_device *netdev,
1838 const unsigned char *addr)
1839 {
1840 struct hns_nic_priv *priv = netdev_priv(netdev);
1841 struct hnae_handle *h = priv->ae_handle;
1842
1843 if (h->dev->ops->rm_uc_addr)
1844 return h->dev->ops->rm_uc_addr(h, addr);
1845
1846 return 0;
1847 }
1848
1849 /**
1850 * hns_set_multicast_list - set mutl mac address
1851 * @ndev: net device
1852 *
1853 * return void
1854 */
1855 static void hns_set_multicast_list(struct net_device *ndev)
1856 {
1857 struct hns_nic_priv *priv = netdev_priv(ndev);
1858 struct hnae_handle *h = priv->ae_handle;
1859 struct netdev_hw_addr *ha = NULL;
1860
1861 if (!h) {
1862 netdev_err(ndev, "hnae handle is null\n");
1863 return;
1864 }
1865
1866 if (h->dev->ops->clr_mc_addr)
1867 if (h->dev->ops->clr_mc_addr(h))
1868 netdev_err(ndev, "clear multicast address fail\n");
1869
1870 if (h->dev->ops->set_mc_addr) {
1871 netdev_for_each_mc_addr(ha, ndev)
1872 if (h->dev->ops->set_mc_addr(h, ha->addr))
1873 netdev_err(ndev, "set multicast fail\n");
1874 }
1875 }
1876
1877 static void hns_nic_set_rx_mode(struct net_device *ndev)
1878 {
1879 struct hns_nic_priv *priv = netdev_priv(ndev);
1880 struct hnae_handle *h = priv->ae_handle;
1881
1882 if (h->dev->ops->set_promisc_mode) {
1883 if (ndev->flags & IFF_PROMISC)
1884 h->dev->ops->set_promisc_mode(h, 1);
1885 else
1886 h->dev->ops->set_promisc_mode(h, 0);
1887 }
1888
1889 hns_set_multicast_list(ndev);
1890
1891 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1892 netdev_err(ndev, "sync uc address fail\n");
1893 }
1894
1895 static void hns_nic_get_stats64(struct net_device *ndev,
1896 struct rtnl_link_stats64 *stats)
1897 {
1898 int idx;
1899 u64 tx_bytes = 0;
1900 u64 rx_bytes = 0;
1901 u64 tx_pkts = 0;
1902 u64 rx_pkts = 0;
1903 struct hns_nic_priv *priv = netdev_priv(ndev);
1904 struct hnae_handle *h = priv->ae_handle;
1905
1906 for (idx = 0; idx < h->q_num; idx++) {
1907 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1908 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1909 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1910 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1911 }
1912
1913 stats->tx_bytes = tx_bytes;
1914 stats->tx_packets = tx_pkts;
1915 stats->rx_bytes = rx_bytes;
1916 stats->rx_packets = rx_pkts;
1917
1918 stats->rx_errors = ndev->stats.rx_errors;
1919 stats->multicast = ndev->stats.multicast;
1920 stats->rx_length_errors = ndev->stats.rx_length_errors;
1921 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1922 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1923
1924 stats->tx_errors = ndev->stats.tx_errors;
1925 stats->rx_dropped = ndev->stats.rx_dropped;
1926 stats->tx_dropped = ndev->stats.tx_dropped;
1927 stats->collisions = ndev->stats.collisions;
1928 stats->rx_over_errors = ndev->stats.rx_over_errors;
1929 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1930 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1931 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1932 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1933 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1934 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1935 stats->tx_window_errors = ndev->stats.tx_window_errors;
1936 stats->rx_compressed = ndev->stats.rx_compressed;
1937 stats->tx_compressed = ndev->stats.tx_compressed;
1938 }
1939
1940 static u16
1941 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1942 struct net_device *sb_dev)
1943 {
1944 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1945 struct hns_nic_priv *priv = netdev_priv(ndev);
1946
1947 /* fix hardware broadcast/multicast packets queue loopback */
1948 if (!AE_IS_VER1(priv->enet_ver) &&
1949 is_multicast_ether_addr(eth_hdr->h_dest))
1950 return 0;
1951 else
1952 return netdev_pick_tx(ndev, skb, NULL);
1953 }
1954
1955 static const struct net_device_ops hns_nic_netdev_ops = {
1956 .ndo_open = hns_nic_net_open,
1957 .ndo_stop = hns_nic_net_stop,
1958 .ndo_start_xmit = hns_nic_net_xmit,
1959 .ndo_tx_timeout = hns_nic_net_timeout,
1960 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1961 .ndo_change_mtu = hns_nic_change_mtu,
1962 .ndo_eth_ioctl = phy_do_ioctl_running,
1963 .ndo_set_features = hns_nic_set_features,
1964 .ndo_fix_features = hns_nic_fix_features,
1965 .ndo_get_stats64 = hns_nic_get_stats64,
1966 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1967 .ndo_select_queue = hns_nic_select_queue,
1968 };
1969
1970 static void hns_nic_update_link_status(struct net_device *netdev)
1971 {
1972 struct hns_nic_priv *priv = netdev_priv(netdev);
1973
1974 struct hnae_handle *h = priv->ae_handle;
1975
1976 if (h->phy_dev) {
1977 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1978 return;
1979
1980 (void)genphy_read_status(h->phy_dev);
1981 }
1982 hns_nic_adjust_link(netdev);
1983 }
1984
1985 /* for dumping key regs*/
1986 static void hns_nic_dump(struct hns_nic_priv *priv)
1987 {
1988 struct hnae_handle *h = priv->ae_handle;
1989 struct hnae_ae_ops *ops = h->dev->ops;
1990 u32 *data, reg_num, i;
1991
1992 if (ops->get_regs_len && ops->get_regs) {
1993 reg_num = ops->get_regs_len(priv->ae_handle);
1994 reg_num = (reg_num + 3ul) & ~3ul;
1995 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1996 if (data) {
1997 ops->get_regs(priv->ae_handle, data);
1998 for (i = 0; i < reg_num; i += 4)
1999 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2000 i, data[i], data[i + 1],
2001 data[i + 2], data[i + 3]);
2002 kfree(data);
2003 }
2004 }
2005
2006 for (i = 0; i < h->q_num; i++) {
2007 pr_info("tx_queue%d_next_to_clean:%d\n",
2008 i, h->qs[i]->tx_ring.next_to_clean);
2009 pr_info("tx_queue%d_next_to_use:%d\n",
2010 i, h->qs[i]->tx_ring.next_to_use);
2011 pr_info("rx_queue%d_next_to_clean:%d\n",
2012 i, h->qs[i]->rx_ring.next_to_clean);
2013 pr_info("rx_queue%d_next_to_use:%d\n",
2014 i, h->qs[i]->rx_ring.next_to_use);
2015 }
2016 }
2017
2018 /* for resetting subtask */
2019 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2020 {
2021 enum hnae_port_type type = priv->ae_handle->port_type;
2022
2023 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2024 return;
2025 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2026
2027 /* If we're already down, removing or resetting, just bail */
2028 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2029 test_bit(NIC_STATE_REMOVING, &priv->state) ||
2030 test_bit(NIC_STATE_RESETTING, &priv->state))
2031 return;
2032
2033 hns_nic_dump(priv);
2034 netdev_info(priv->netdev, "try to reset %s port!\n",
2035 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2036
2037 rtnl_lock();
2038 /* put off any impending NetWatchDogTimeout */
2039 netif_trans_update(priv->netdev);
2040 hns_nic_net_reinit(priv->netdev);
2041
2042 rtnl_unlock();
2043 }
2044
2045 /* for doing service complete*/
2046 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2047 {
2048 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2049 /* make sure to commit the things */
2050 smp_mb__before_atomic();
2051 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2052 }
2053
2054 static void hns_nic_service_task(struct work_struct *work)
2055 {
2056 struct hns_nic_priv *priv
2057 = container_of(work, struct hns_nic_priv, service_task);
2058 struct hnae_handle *h = priv->ae_handle;
2059
2060 hns_nic_reset_subtask(priv);
2061 hns_nic_update_link_status(priv->netdev);
2062 h->dev->ops->update_led_status(h);
2063 hns_nic_update_stats(priv->netdev);
2064
2065 hns_nic_service_event_complete(priv);
2066 }
2067
2068 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2069 {
2070 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2071 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2072 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2073 (void)schedule_work(&priv->service_task);
2074 }
2075
2076 static void hns_nic_service_timer(struct timer_list *t)
2077 {
2078 struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2079
2080 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2081
2082 hns_nic_task_schedule(priv);
2083 }
2084
2085 /**
2086 * hns_tx_timeout_reset - initiate reset due to Tx timeout
2087 * @priv: driver private struct
2088 **/
2089 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2090 {
2091 /* Do the reset outside of interrupt context */
2092 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2093 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2094 netdev_warn(priv->netdev,
2095 "initiating reset due to tx timeout(%llu,0x%lx)\n",
2096 priv->tx_timeout_count, priv->state);
2097 priv->tx_timeout_count++;
2098 hns_nic_task_schedule(priv);
2099 }
2100 }
2101
2102 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2103 {
2104 struct hnae_handle *h = priv->ae_handle;
2105 struct hns_nic_ring_data *rd;
2106 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2107 int i;
2108
2109 if (h->q_num > NIC_MAX_Q_PER_VF) {
2110 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2111 return -EINVAL;
2112 }
2113
2114 priv->ring_data = kzalloc(array3_size(h->q_num,
2115 sizeof(*priv->ring_data), 2),
2116 GFP_KERNEL);
2117 if (!priv->ring_data)
2118 return -ENOMEM;
2119
2120 for (i = 0; i < h->q_num; i++) {
2121 rd = &priv->ring_data[i];
2122 rd->queue_index = i;
2123 rd->ring = &h->qs[i]->tx_ring;
2124 rd->poll_one = hns_nic_tx_poll_one;
2125 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2126 hns_nic_tx_fini_pro_v2;
2127
2128 netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll);
2129 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2130 }
2131 for (i = h->q_num; i < h->q_num * 2; i++) {
2132 rd = &priv->ring_data[i];
2133 rd->queue_index = i - h->q_num;
2134 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2135 rd->poll_one = hns_nic_rx_poll_one;
2136 rd->ex_process = hns_nic_rx_up_pro;
2137 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2138 hns_nic_rx_fini_pro_v2;
2139
2140 netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll);
2141 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2142 }
2143
2144 return 0;
2145 }
2146
2147 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2148 {
2149 struct hnae_handle *h = priv->ae_handle;
2150 int i;
2151
2152 for (i = 0; i < h->q_num * 2; i++) {
2153 netif_napi_del(&priv->ring_data[i].napi);
2154 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2155 (void)irq_set_affinity_hint(
2156 priv->ring_data[i].ring->irq,
2157 NULL);
2158 free_irq(priv->ring_data[i].ring->irq,
2159 &priv->ring_data[i]);
2160 }
2161
2162 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2163 }
2164 kfree(priv->ring_data);
2165 }
2166
2167 static void hns_nic_set_priv_ops(struct net_device *netdev)
2168 {
2169 struct hns_nic_priv *priv = netdev_priv(netdev);
2170 struct hnae_handle *h = priv->ae_handle;
2171
2172 if (AE_IS_VER1(priv->enet_ver)) {
2173 priv->ops.fill_desc = fill_desc;
2174 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2175 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2176 } else {
2177 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2178 priv->ops.fill_desc = fill_desc_v2;
2179 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx_v2;
2180 netif_set_tso_max_size(netdev, 7 * 4096);
2181 /* enable tso when init
2182 * control tso on/off through TSE bit in bd
2183 */
2184 h->dev->ops->set_tso_stats(h, 1);
2185 }
2186 }
2187
2188 static int hns_nic_try_get_ae(struct net_device *ndev)
2189 {
2190 struct hns_nic_priv *priv = netdev_priv(ndev);
2191 struct hnae_handle *h;
2192 int ret;
2193
2194 h = hnae_get_handle(&priv->netdev->dev,
2195 priv->fwnode, priv->port_id, NULL);
2196 if (IS_ERR_OR_NULL(h)) {
2197 ret = -ENODEV;
2198 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2199 goto out;
2200 }
2201 priv->ae_handle = h;
2202
2203 ret = hns_nic_init_phy(ndev, h);
2204 if (ret) {
2205 dev_err(priv->dev, "probe phy device fail!\n");
2206 goto out_init_phy;
2207 }
2208
2209 ret = hns_nic_init_ring_data(priv);
2210 if (ret) {
2211 ret = -ENOMEM;
2212 goto out_init_ring_data;
2213 }
2214
2215 hns_nic_set_priv_ops(ndev);
2216
2217 ret = register_netdev(ndev);
2218 if (ret) {
2219 dev_err(priv->dev, "probe register netdev fail!\n");
2220 goto out_reg_ndev_fail;
2221 }
2222 return 0;
2223
2224 out_reg_ndev_fail:
2225 hns_nic_uninit_ring_data(priv);
2226 priv->ring_data = NULL;
2227 out_init_phy:
2228 out_init_ring_data:
2229 hnae_put_handle(priv->ae_handle);
2230 priv->ae_handle = NULL;
2231 out:
2232 return ret;
2233 }
2234
2235 static int hns_nic_notifier_action(struct notifier_block *nb,
2236 unsigned long action, void *data)
2237 {
2238 struct hns_nic_priv *priv =
2239 container_of(nb, struct hns_nic_priv, notifier_block);
2240
2241 assert(action == HNAE_AE_REGISTER);
2242
2243 if (!hns_nic_try_get_ae(priv->netdev)) {
2244 hnae_unregister_notifier(&priv->notifier_block);
2245 priv->notifier_block.notifier_call = NULL;
2246 }
2247 return 0;
2248 }
2249
2250 static int hns_nic_dev_probe(struct platform_device *pdev)
2251 {
2252 struct device *dev = &pdev->dev;
2253 struct net_device *ndev;
2254 struct hns_nic_priv *priv;
2255 u32 port_id;
2256 int ret;
2257
2258 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2259 if (!ndev)
2260 return -ENOMEM;
2261
2262 platform_set_drvdata(pdev, ndev);
2263
2264 priv = netdev_priv(ndev);
2265 priv->dev = dev;
2266 priv->netdev = ndev;
2267
2268 if (dev_of_node(dev)) {
2269 struct device_node *ae_node;
2270
2271 if (of_device_is_compatible(dev->of_node,
2272 "hisilicon,hns-nic-v1"))
2273 priv->enet_ver = AE_VERSION_1;
2274 else
2275 priv->enet_ver = AE_VERSION_2;
2276
2277 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2278 if (!ae_node) {
2279 ret = -ENODEV;
2280 dev_err(dev, "not find ae-handle\n");
2281 goto out_read_prop_fail;
2282 }
2283 priv->fwnode = &ae_node->fwnode;
2284 } else if (is_acpi_node(dev->fwnode)) {
2285 struct fwnode_reference_args args;
2286
2287 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2288 priv->enet_ver = AE_VERSION_1;
2289 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2290 priv->enet_ver = AE_VERSION_2;
2291 else {
2292 ret = -ENXIO;
2293 goto out_read_prop_fail;
2294 }
2295
2296 /* try to find port-idx-in-ae first */
2297 ret = acpi_node_get_property_reference(dev->fwnode,
2298 "ae-handle", 0, &args);
2299 if (ret) {
2300 dev_err(dev, "not find ae-handle\n");
2301 goto out_read_prop_fail;
2302 }
2303 if (!is_acpi_device_node(args.fwnode)) {
2304 ret = -EINVAL;
2305 goto out_read_prop_fail;
2306 }
2307 priv->fwnode = args.fwnode;
2308 } else {
2309 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2310 ret = -ENXIO;
2311 goto out_read_prop_fail;
2312 }
2313
2314 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2315 if (ret) {
2316 /* only for old code compatible */
2317 ret = device_property_read_u32(dev, "port-id", &port_id);
2318 if (ret)
2319 goto out_read_prop_fail;
2320 /* for old dts, we need to caculate the port offset */
2321 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2322 : port_id - HNS_SRV_OFFSET;
2323 }
2324 priv->port_id = port_id;
2325
2326 hns_init_mac_addr(ndev);
2327
2328 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2329 ndev->priv_flags |= IFF_UNICAST_FLT;
2330 ndev->netdev_ops = &hns_nic_netdev_ops;
2331 hns_ethtool_set_ops(ndev);
2332
2333 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2334 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2335 NETIF_F_GRO;
2336 ndev->vlan_features |=
2337 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2338 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2339
2340 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2341 ndev->min_mtu = MAC_MIN_MTU;
2342 switch (priv->enet_ver) {
2343 case AE_VERSION_2:
2344 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2345 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2346 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2347 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2348 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2349 ndev->max_mtu = MAC_MAX_MTU_V2 -
2350 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2351 break;
2352 default:
2353 ndev->max_mtu = MAC_MAX_MTU -
2354 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2355 break;
2356 }
2357
2358 SET_NETDEV_DEV(ndev, dev);
2359
2360 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2361 dev_dbg(dev, "set mask to 64bit\n");
2362 else
2363 dev_err(dev, "set mask to 64bit fail!\n");
2364
2365 /* carrier off reporting is important to ethtool even BEFORE open */
2366 netif_carrier_off(ndev);
2367
2368 timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2369 INIT_WORK(&priv->service_task, hns_nic_service_task);
2370
2371 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2372 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2373 set_bit(NIC_STATE_DOWN, &priv->state);
2374
2375 if (hns_nic_try_get_ae(priv->netdev)) {
2376 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2377 ret = hnae_register_notifier(&priv->notifier_block);
2378 if (ret) {
2379 dev_err(dev, "register notifier fail!\n");
2380 goto out_notify_fail;
2381 }
2382 dev_dbg(dev, "has not handle, register notifier!\n");
2383 }
2384
2385 return 0;
2386
2387 out_notify_fail:
2388 (void)cancel_work_sync(&priv->service_task);
2389 out_read_prop_fail:
2390 /* safe for ACPI FW */
2391 of_node_put(to_of_node(priv->fwnode));
2392 free_netdev(ndev);
2393 return ret;
2394 }
2395
2396 static void hns_nic_dev_remove(struct platform_device *pdev)
2397 {
2398 struct net_device *ndev = platform_get_drvdata(pdev);
2399 struct hns_nic_priv *priv = netdev_priv(ndev);
2400
2401 if (ndev->reg_state != NETREG_UNINITIALIZED)
2402 unregister_netdev(ndev);
2403
2404 if (priv->ring_data)
2405 hns_nic_uninit_ring_data(priv);
2406 priv->ring_data = NULL;
2407
2408 if (ndev->phydev)
2409 phy_disconnect(ndev->phydev);
2410
2411 if (!IS_ERR_OR_NULL(priv->ae_handle))
2412 hnae_put_handle(priv->ae_handle);
2413 priv->ae_handle = NULL;
2414 if (priv->notifier_block.notifier_call)
2415 hnae_unregister_notifier(&priv->notifier_block);
2416 priv->notifier_block.notifier_call = NULL;
2417
2418 set_bit(NIC_STATE_REMOVING, &priv->state);
2419 (void)cancel_work_sync(&priv->service_task);
2420
2421 /* safe for ACPI FW */
2422 of_node_put(to_of_node(priv->fwnode));
2423
2424 free_netdev(ndev);
2425 }
2426
2427 static const struct of_device_id hns_enet_of_match[] = {
2428 {.compatible = "hisilicon,hns-nic-v1",},
2429 {.compatible = "hisilicon,hns-nic-v2",},
2430 {},
2431 };
2432
2433 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2434
2435 static struct platform_driver hns_nic_dev_driver = {
2436 .driver = {
2437 .name = "hns-nic",
2438 .of_match_table = hns_enet_of_match,
2439 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2440 },
2441 .probe = hns_nic_dev_probe,
2442 .remove_new = hns_nic_dev_remove,
2443 };
2444
2445 module_platform_driver(hns_nic_dev_driver);
2446
2447 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2448 MODULE_AUTHOR("Hisilicon, Inc.");
2449 MODULE_LICENSE("GPL");
2450 MODULE_ALIAS("platform:hns-nic");