]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3_enet.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <net/gre.h>
19 #include <net/gro.h>
20 #include <net/ip6_checksum.h>
21 #include <net/page_pool/helpers.h>
22 #include <net/pkt_cls.h>
23 #include <net/pkt_sched.h>
24 #include <net/tcp.h>
25 #include <net/vxlan.h>
26 #include <net/geneve.h>
27
28 #include "hnae3.h"
29 #include "hns3_enet.h"
30 /* All hns3 tracepoints are defined by the include below, which
31 * must be included exactly once across the whole kernel with
32 * CREATE_TRACE_POINTS defined
33 */
34 #define CREATE_TRACE_POINTS
35 #include "hns3_trace.h"
36
37 #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift))
38 #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
39
40 #define hns3_rl_err(fmt, ...) \
41 do { \
42 if (net_ratelimit()) \
43 netdev_err(fmt, ##__VA_ARGS__); \
44 } while (0)
45
46 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
47
48 static const char hns3_driver_name[] = "hns3";
49 static const char hns3_driver_string[] =
50 "Hisilicon Ethernet Network Driver for Hip08 Family";
51 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
52 static struct hnae3_client client;
53
54 static int debug = -1;
55 module_param(debug, int, 0);
56 MODULE_PARM_DESC(debug, " Network interface message level setting");
57
58 static unsigned int tx_sgl = 1;
59 module_param(tx_sgl, uint, 0600);
60 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
61
62 static bool page_pool_enabled = true;
63 module_param(page_pool_enabled, bool, 0400);
64
65 #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \
66 sizeof(struct sg_table))
67 #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
68 dma_get_cache_alignment())
69
70 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
71 NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
72
73 #define HNS3_INNER_VLAN_TAG 1
74 #define HNS3_OUTER_VLAN_TAG 2
75
76 #define HNS3_MIN_TX_LEN 33U
77 #define HNS3_MIN_TUN_PKT_LEN 65U
78
79 /* hns3_pci_tbl - PCI Device ID Table
80 *
81 * Last entry must be all 0s
82 *
83 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
84 * Class, Class Mask, private data (not used) }
85 */
86 static const struct pci_device_id hns3_pci_tbl[] = {
87 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
88 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
89 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
90 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
91 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
92 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
93 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
94 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
95 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
96 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
97 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
98 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
99 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
100 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
101 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
102 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
103 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
104 /* required last entry */
105 {0,}
106 };
107 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
108
109 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \
110 { ptype, \
111 l, \
112 CHECKSUM_##s, \
113 HNS3_L3_TYPE_##t, \
114 1, \
115 h}
116
117 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
118 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \
119 PKT_HASH_TYPE_NONE }
120
121 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
122 HNS3_RX_PTYPE_UNUSED_ENTRY(0),
123 HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE),
124 HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE),
125 HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE),
126 HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
127 HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
128 HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
129 HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE),
130 HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
131 HNS3_RX_PTYPE_UNUSED_ENTRY(9),
132 HNS3_RX_PTYPE_UNUSED_ENTRY(10),
133 HNS3_RX_PTYPE_UNUSED_ENTRY(11),
134 HNS3_RX_PTYPE_UNUSED_ENTRY(12),
135 HNS3_RX_PTYPE_UNUSED_ENTRY(13),
136 HNS3_RX_PTYPE_UNUSED_ENTRY(14),
137 HNS3_RX_PTYPE_UNUSED_ENTRY(15),
138 HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
139 HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
140 HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
141 HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
142 HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
143 HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE),
144 HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
145 HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
146 HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
147 HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
148 HNS3_RX_PTYPE_UNUSED_ENTRY(26),
149 HNS3_RX_PTYPE_UNUSED_ENTRY(27),
150 HNS3_RX_PTYPE_UNUSED_ENTRY(28),
151 HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
152 HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
153 HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
154 HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
155 HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
156 HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
157 HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
158 HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
159 HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
160 HNS3_RX_PTYPE_UNUSED_ENTRY(38),
161 HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
162 HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
163 HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
164 HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
165 HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
166 HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
167 HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
168 HNS3_RX_PTYPE_UNUSED_ENTRY(46),
169 HNS3_RX_PTYPE_UNUSED_ENTRY(47),
170 HNS3_RX_PTYPE_UNUSED_ENTRY(48),
171 HNS3_RX_PTYPE_UNUSED_ENTRY(49),
172 HNS3_RX_PTYPE_UNUSED_ENTRY(50),
173 HNS3_RX_PTYPE_UNUSED_ENTRY(51),
174 HNS3_RX_PTYPE_UNUSED_ENTRY(52),
175 HNS3_RX_PTYPE_UNUSED_ENTRY(53),
176 HNS3_RX_PTYPE_UNUSED_ENTRY(54),
177 HNS3_RX_PTYPE_UNUSED_ENTRY(55),
178 HNS3_RX_PTYPE_UNUSED_ENTRY(56),
179 HNS3_RX_PTYPE_UNUSED_ENTRY(57),
180 HNS3_RX_PTYPE_UNUSED_ENTRY(58),
181 HNS3_RX_PTYPE_UNUSED_ENTRY(59),
182 HNS3_RX_PTYPE_UNUSED_ENTRY(60),
183 HNS3_RX_PTYPE_UNUSED_ENTRY(61),
184 HNS3_RX_PTYPE_UNUSED_ENTRY(62),
185 HNS3_RX_PTYPE_UNUSED_ENTRY(63),
186 HNS3_RX_PTYPE_UNUSED_ENTRY(64),
187 HNS3_RX_PTYPE_UNUSED_ENTRY(65),
188 HNS3_RX_PTYPE_UNUSED_ENTRY(66),
189 HNS3_RX_PTYPE_UNUSED_ENTRY(67),
190 HNS3_RX_PTYPE_UNUSED_ENTRY(68),
191 HNS3_RX_PTYPE_UNUSED_ENTRY(69),
192 HNS3_RX_PTYPE_UNUSED_ENTRY(70),
193 HNS3_RX_PTYPE_UNUSED_ENTRY(71),
194 HNS3_RX_PTYPE_UNUSED_ENTRY(72),
195 HNS3_RX_PTYPE_UNUSED_ENTRY(73),
196 HNS3_RX_PTYPE_UNUSED_ENTRY(74),
197 HNS3_RX_PTYPE_UNUSED_ENTRY(75),
198 HNS3_RX_PTYPE_UNUSED_ENTRY(76),
199 HNS3_RX_PTYPE_UNUSED_ENTRY(77),
200 HNS3_RX_PTYPE_UNUSED_ENTRY(78),
201 HNS3_RX_PTYPE_UNUSED_ENTRY(79),
202 HNS3_RX_PTYPE_UNUSED_ENTRY(80),
203 HNS3_RX_PTYPE_UNUSED_ENTRY(81),
204 HNS3_RX_PTYPE_UNUSED_ENTRY(82),
205 HNS3_RX_PTYPE_UNUSED_ENTRY(83),
206 HNS3_RX_PTYPE_UNUSED_ENTRY(84),
207 HNS3_RX_PTYPE_UNUSED_ENTRY(85),
208 HNS3_RX_PTYPE_UNUSED_ENTRY(86),
209 HNS3_RX_PTYPE_UNUSED_ENTRY(87),
210 HNS3_RX_PTYPE_UNUSED_ENTRY(88),
211 HNS3_RX_PTYPE_UNUSED_ENTRY(89),
212 HNS3_RX_PTYPE_UNUSED_ENTRY(90),
213 HNS3_RX_PTYPE_UNUSED_ENTRY(91),
214 HNS3_RX_PTYPE_UNUSED_ENTRY(92),
215 HNS3_RX_PTYPE_UNUSED_ENTRY(93),
216 HNS3_RX_PTYPE_UNUSED_ENTRY(94),
217 HNS3_RX_PTYPE_UNUSED_ENTRY(95),
218 HNS3_RX_PTYPE_UNUSED_ENTRY(96),
219 HNS3_RX_PTYPE_UNUSED_ENTRY(97),
220 HNS3_RX_PTYPE_UNUSED_ENTRY(98),
221 HNS3_RX_PTYPE_UNUSED_ENTRY(99),
222 HNS3_RX_PTYPE_UNUSED_ENTRY(100),
223 HNS3_RX_PTYPE_UNUSED_ENTRY(101),
224 HNS3_RX_PTYPE_UNUSED_ENTRY(102),
225 HNS3_RX_PTYPE_UNUSED_ENTRY(103),
226 HNS3_RX_PTYPE_UNUSED_ENTRY(104),
227 HNS3_RX_PTYPE_UNUSED_ENTRY(105),
228 HNS3_RX_PTYPE_UNUSED_ENTRY(106),
229 HNS3_RX_PTYPE_UNUSED_ENTRY(107),
230 HNS3_RX_PTYPE_UNUSED_ENTRY(108),
231 HNS3_RX_PTYPE_UNUSED_ENTRY(109),
232 HNS3_RX_PTYPE_UNUSED_ENTRY(110),
233 HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
234 HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
235 HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
236 HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
237 HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
238 HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
239 HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
240 HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
241 HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
242 HNS3_RX_PTYPE_UNUSED_ENTRY(120),
243 HNS3_RX_PTYPE_UNUSED_ENTRY(121),
244 HNS3_RX_PTYPE_UNUSED_ENTRY(122),
245 HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
246 HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
247 HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
248 HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
249 HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
250 HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
251 HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
252 HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
253 HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
254 HNS3_RX_PTYPE_UNUSED_ENTRY(132),
255 HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
256 HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
257 HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
258 HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
259 HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
260 HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
261 HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
262 HNS3_RX_PTYPE_UNUSED_ENTRY(140),
263 HNS3_RX_PTYPE_UNUSED_ENTRY(141),
264 HNS3_RX_PTYPE_UNUSED_ENTRY(142),
265 HNS3_RX_PTYPE_UNUSED_ENTRY(143),
266 HNS3_RX_PTYPE_UNUSED_ENTRY(144),
267 HNS3_RX_PTYPE_UNUSED_ENTRY(145),
268 HNS3_RX_PTYPE_UNUSED_ENTRY(146),
269 HNS3_RX_PTYPE_UNUSED_ENTRY(147),
270 HNS3_RX_PTYPE_UNUSED_ENTRY(148),
271 HNS3_RX_PTYPE_UNUSED_ENTRY(149),
272 HNS3_RX_PTYPE_UNUSED_ENTRY(150),
273 HNS3_RX_PTYPE_UNUSED_ENTRY(151),
274 HNS3_RX_PTYPE_UNUSED_ENTRY(152),
275 HNS3_RX_PTYPE_UNUSED_ENTRY(153),
276 HNS3_RX_PTYPE_UNUSED_ENTRY(154),
277 HNS3_RX_PTYPE_UNUSED_ENTRY(155),
278 HNS3_RX_PTYPE_UNUSED_ENTRY(156),
279 HNS3_RX_PTYPE_UNUSED_ENTRY(157),
280 HNS3_RX_PTYPE_UNUSED_ENTRY(158),
281 HNS3_RX_PTYPE_UNUSED_ENTRY(159),
282 HNS3_RX_PTYPE_UNUSED_ENTRY(160),
283 HNS3_RX_PTYPE_UNUSED_ENTRY(161),
284 HNS3_RX_PTYPE_UNUSED_ENTRY(162),
285 HNS3_RX_PTYPE_UNUSED_ENTRY(163),
286 HNS3_RX_PTYPE_UNUSED_ENTRY(164),
287 HNS3_RX_PTYPE_UNUSED_ENTRY(165),
288 HNS3_RX_PTYPE_UNUSED_ENTRY(166),
289 HNS3_RX_PTYPE_UNUSED_ENTRY(167),
290 HNS3_RX_PTYPE_UNUSED_ENTRY(168),
291 HNS3_RX_PTYPE_UNUSED_ENTRY(169),
292 HNS3_RX_PTYPE_UNUSED_ENTRY(170),
293 HNS3_RX_PTYPE_UNUSED_ENTRY(171),
294 HNS3_RX_PTYPE_UNUSED_ENTRY(172),
295 HNS3_RX_PTYPE_UNUSED_ENTRY(173),
296 HNS3_RX_PTYPE_UNUSED_ENTRY(174),
297 HNS3_RX_PTYPE_UNUSED_ENTRY(175),
298 HNS3_RX_PTYPE_UNUSED_ENTRY(176),
299 HNS3_RX_PTYPE_UNUSED_ENTRY(177),
300 HNS3_RX_PTYPE_UNUSED_ENTRY(178),
301 HNS3_RX_PTYPE_UNUSED_ENTRY(179),
302 HNS3_RX_PTYPE_UNUSED_ENTRY(180),
303 HNS3_RX_PTYPE_UNUSED_ENTRY(181),
304 HNS3_RX_PTYPE_UNUSED_ENTRY(182),
305 HNS3_RX_PTYPE_UNUSED_ENTRY(183),
306 HNS3_RX_PTYPE_UNUSED_ENTRY(184),
307 HNS3_RX_PTYPE_UNUSED_ENTRY(185),
308 HNS3_RX_PTYPE_UNUSED_ENTRY(186),
309 HNS3_RX_PTYPE_UNUSED_ENTRY(187),
310 HNS3_RX_PTYPE_UNUSED_ENTRY(188),
311 HNS3_RX_PTYPE_UNUSED_ENTRY(189),
312 HNS3_RX_PTYPE_UNUSED_ENTRY(190),
313 HNS3_RX_PTYPE_UNUSED_ENTRY(191),
314 HNS3_RX_PTYPE_UNUSED_ENTRY(192),
315 HNS3_RX_PTYPE_UNUSED_ENTRY(193),
316 HNS3_RX_PTYPE_UNUSED_ENTRY(194),
317 HNS3_RX_PTYPE_UNUSED_ENTRY(195),
318 HNS3_RX_PTYPE_UNUSED_ENTRY(196),
319 HNS3_RX_PTYPE_UNUSED_ENTRY(197),
320 HNS3_RX_PTYPE_UNUSED_ENTRY(198),
321 HNS3_RX_PTYPE_UNUSED_ENTRY(199),
322 HNS3_RX_PTYPE_UNUSED_ENTRY(200),
323 HNS3_RX_PTYPE_UNUSED_ENTRY(201),
324 HNS3_RX_PTYPE_UNUSED_ENTRY(202),
325 HNS3_RX_PTYPE_UNUSED_ENTRY(203),
326 HNS3_RX_PTYPE_UNUSED_ENTRY(204),
327 HNS3_RX_PTYPE_UNUSED_ENTRY(205),
328 HNS3_RX_PTYPE_UNUSED_ENTRY(206),
329 HNS3_RX_PTYPE_UNUSED_ENTRY(207),
330 HNS3_RX_PTYPE_UNUSED_ENTRY(208),
331 HNS3_RX_PTYPE_UNUSED_ENTRY(209),
332 HNS3_RX_PTYPE_UNUSED_ENTRY(210),
333 HNS3_RX_PTYPE_UNUSED_ENTRY(211),
334 HNS3_RX_PTYPE_UNUSED_ENTRY(212),
335 HNS3_RX_PTYPE_UNUSED_ENTRY(213),
336 HNS3_RX_PTYPE_UNUSED_ENTRY(214),
337 HNS3_RX_PTYPE_UNUSED_ENTRY(215),
338 HNS3_RX_PTYPE_UNUSED_ENTRY(216),
339 HNS3_RX_PTYPE_UNUSED_ENTRY(217),
340 HNS3_RX_PTYPE_UNUSED_ENTRY(218),
341 HNS3_RX_PTYPE_UNUSED_ENTRY(219),
342 HNS3_RX_PTYPE_UNUSED_ENTRY(220),
343 HNS3_RX_PTYPE_UNUSED_ENTRY(221),
344 HNS3_RX_PTYPE_UNUSED_ENTRY(222),
345 HNS3_RX_PTYPE_UNUSED_ENTRY(223),
346 HNS3_RX_PTYPE_UNUSED_ENTRY(224),
347 HNS3_RX_PTYPE_UNUSED_ENTRY(225),
348 HNS3_RX_PTYPE_UNUSED_ENTRY(226),
349 HNS3_RX_PTYPE_UNUSED_ENTRY(227),
350 HNS3_RX_PTYPE_UNUSED_ENTRY(228),
351 HNS3_RX_PTYPE_UNUSED_ENTRY(229),
352 HNS3_RX_PTYPE_UNUSED_ENTRY(230),
353 HNS3_RX_PTYPE_UNUSED_ENTRY(231),
354 HNS3_RX_PTYPE_UNUSED_ENTRY(232),
355 HNS3_RX_PTYPE_UNUSED_ENTRY(233),
356 HNS3_RX_PTYPE_UNUSED_ENTRY(234),
357 HNS3_RX_PTYPE_UNUSED_ENTRY(235),
358 HNS3_RX_PTYPE_UNUSED_ENTRY(236),
359 HNS3_RX_PTYPE_UNUSED_ENTRY(237),
360 HNS3_RX_PTYPE_UNUSED_ENTRY(238),
361 HNS3_RX_PTYPE_UNUSED_ENTRY(239),
362 HNS3_RX_PTYPE_UNUSED_ENTRY(240),
363 HNS3_RX_PTYPE_UNUSED_ENTRY(241),
364 HNS3_RX_PTYPE_UNUSED_ENTRY(242),
365 HNS3_RX_PTYPE_UNUSED_ENTRY(243),
366 HNS3_RX_PTYPE_UNUSED_ENTRY(244),
367 HNS3_RX_PTYPE_UNUSED_ENTRY(245),
368 HNS3_RX_PTYPE_UNUSED_ENTRY(246),
369 HNS3_RX_PTYPE_UNUSED_ENTRY(247),
370 HNS3_RX_PTYPE_UNUSED_ENTRY(248),
371 HNS3_RX_PTYPE_UNUSED_ENTRY(249),
372 HNS3_RX_PTYPE_UNUSED_ENTRY(250),
373 HNS3_RX_PTYPE_UNUSED_ENTRY(251),
374 HNS3_RX_PTYPE_UNUSED_ENTRY(252),
375 HNS3_RX_PTYPE_UNUSED_ENTRY(253),
376 HNS3_RX_PTYPE_UNUSED_ENTRY(254),
377 HNS3_RX_PTYPE_UNUSED_ENTRY(255),
378 };
379
380 #define HNS3_INVALID_PTYPE \
381 ARRAY_SIZE(hns3_rx_ptype_tbl)
382
383 static irqreturn_t hns3_irq_handle(int irq, void *vector)
384 {
385 struct hns3_enet_tqp_vector *tqp_vector = vector;
386
387 napi_schedule_irqoff(&tqp_vector->napi);
388 tqp_vector->event_cnt++;
389
390 return IRQ_HANDLED;
391 }
392
393 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
394 {
395 struct hns3_enet_tqp_vector *tqp_vectors;
396 unsigned int i;
397
398 for (i = 0; i < priv->vector_num; i++) {
399 tqp_vectors = &priv->tqp_vector[i];
400
401 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
402 continue;
403
404 /* clear the affinity mask */
405 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
406
407 /* release the irq resource */
408 free_irq(tqp_vectors->vector_irq, tqp_vectors);
409 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
410 }
411 }
412
413 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
414 {
415 struct hns3_enet_tqp_vector *tqp_vectors;
416 int txrx_int_idx = 0;
417 int rx_int_idx = 0;
418 int tx_int_idx = 0;
419 unsigned int i;
420 int ret;
421
422 for (i = 0; i < priv->vector_num; i++) {
423 tqp_vectors = &priv->tqp_vector[i];
424
425 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
426 continue;
427
428 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
429 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
430 "%s-%s-%s-%d", hns3_driver_name,
431 pci_name(priv->ae_handle->pdev),
432 "TxRx", txrx_int_idx++);
433 txrx_int_idx++;
434 } else if (tqp_vectors->rx_group.ring) {
435 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
436 "%s-%s-%s-%d", hns3_driver_name,
437 pci_name(priv->ae_handle->pdev),
438 "Rx", rx_int_idx++);
439 } else if (tqp_vectors->tx_group.ring) {
440 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
441 "%s-%s-%s-%d", hns3_driver_name,
442 pci_name(priv->ae_handle->pdev),
443 "Tx", tx_int_idx++);
444 } else {
445 /* Skip this unused q_vector */
446 continue;
447 }
448
449 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
450
451 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
452 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
453 tqp_vectors->name, tqp_vectors);
454 if (ret) {
455 netdev_err(priv->netdev, "request irq(%d) fail\n",
456 tqp_vectors->vector_irq);
457 hns3_nic_uninit_irq(priv);
458 return ret;
459 }
460
461 irq_set_affinity_hint(tqp_vectors->vector_irq,
462 &tqp_vectors->affinity_mask);
463
464 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
465 }
466
467 return 0;
468 }
469
470 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
471 u32 mask_en)
472 {
473 writel(mask_en, tqp_vector->mask_addr);
474 }
475
476 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
477 {
478 napi_enable(&tqp_vector->napi);
479 enable_irq(tqp_vector->vector_irq);
480
481 /* enable vector */
482 hns3_mask_vector_irq(tqp_vector, 1);
483 }
484
485 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
486 {
487 /* disable vector */
488 hns3_mask_vector_irq(tqp_vector, 0);
489
490 disable_irq(tqp_vector->vector_irq);
491 napi_disable(&tqp_vector->napi);
492 cancel_work_sync(&tqp_vector->rx_group.dim.work);
493 cancel_work_sync(&tqp_vector->tx_group.dim.work);
494 }
495
496 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
497 u32 rl_value)
498 {
499 u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
500
501 /* this defines the configuration for RL (Interrupt Rate Limiter).
502 * Rl defines rate of interrupts i.e. number of interrupts-per-second
503 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
504 */
505 if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
506 !tqp_vector->rx_group.coal.adapt_enable)
507 /* According to the hardware, the range of rl_reg is
508 * 0-59 and the unit is 4.
509 */
510 rl_reg |= HNS3_INT_RL_ENABLE_MASK;
511
512 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
513 }
514
515 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
516 u32 gl_value)
517 {
518 u32 new_val;
519
520 if (tqp_vector->rx_group.coal.unit_1us)
521 new_val = gl_value | HNS3_INT_GL_1US;
522 else
523 new_val = hns3_gl_usec_to_reg(gl_value);
524
525 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
526 }
527
528 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
529 u32 gl_value)
530 {
531 u32 new_val;
532
533 if (tqp_vector->tx_group.coal.unit_1us)
534 new_val = gl_value | HNS3_INT_GL_1US;
535 else
536 new_val = hns3_gl_usec_to_reg(gl_value);
537
538 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
539 }
540
541 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
542 u32 ql_value)
543 {
544 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
545 }
546
547 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
548 u32 ql_value)
549 {
550 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
551 }
552
553 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
554 struct hns3_nic_priv *priv)
555 {
556 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
557 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
558 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
559 struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
560 struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
561
562 tx_coal->adapt_enable = ptx_coal->adapt_enable;
563 rx_coal->adapt_enable = prx_coal->adapt_enable;
564
565 tx_coal->int_gl = ptx_coal->int_gl;
566 rx_coal->int_gl = prx_coal->int_gl;
567
568 rx_coal->flow_level = prx_coal->flow_level;
569 tx_coal->flow_level = ptx_coal->flow_level;
570
571 /* device version above V3(include V3), GL can configure 1us
572 * unit, so uses 1us unit.
573 */
574 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
575 tx_coal->unit_1us = 1;
576 rx_coal->unit_1us = 1;
577 }
578
579 if (ae_dev->dev_specs.int_ql_max) {
580 tx_coal->ql_enable = 1;
581 rx_coal->ql_enable = 1;
582 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
583 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
584 tx_coal->int_ql = ptx_coal->int_ql;
585 rx_coal->int_ql = prx_coal->int_ql;
586 }
587 }
588
589 static void
590 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
591 struct hns3_nic_priv *priv)
592 {
593 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
594 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
595 struct hnae3_handle *h = priv->ae_handle;
596
597 hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
598 hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
599 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
600
601 if (tx_coal->ql_enable)
602 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
603
604 if (rx_coal->ql_enable)
605 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
606 }
607
608 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
609 {
610 struct hnae3_handle *h = hns3_get_handle(netdev);
611 struct hnae3_knic_private_info *kinfo = &h->kinfo;
612 struct hnae3_tc_info *tc_info = &kinfo->tc_info;
613 unsigned int queue_size = kinfo->num_tqps;
614 int i, ret;
615
616 if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
617 netdev_reset_tc(netdev);
618 } else {
619 ret = netdev_set_num_tc(netdev, tc_info->num_tc);
620 if (ret) {
621 netdev_err(netdev,
622 "netdev_set_num_tc fail, ret=%d!\n", ret);
623 return ret;
624 }
625
626 for (i = 0; i < tc_info->num_tc; i++)
627 netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
628 tc_info->tqp_offset[i]);
629 }
630
631 ret = netif_set_real_num_tx_queues(netdev, queue_size);
632 if (ret) {
633 netdev_err(netdev,
634 "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
635 return ret;
636 }
637
638 ret = netif_set_real_num_rx_queues(netdev, queue_size);
639 if (ret) {
640 netdev_err(netdev,
641 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
642 return ret;
643 }
644
645 return 0;
646 }
647
648 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
649 {
650 u16 alloc_tqps, max_rss_size, rss_size;
651
652 h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
653 rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
654
655 return min_t(u16, rss_size, max_rss_size);
656 }
657
658 static void hns3_tqp_enable(struct hnae3_queue *tqp)
659 {
660 u32 rcb_reg;
661
662 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
663 rcb_reg |= BIT(HNS3_RING_EN_B);
664 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
665 }
666
667 static void hns3_tqp_disable(struct hnae3_queue *tqp)
668 {
669 u32 rcb_reg;
670
671 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
672 rcb_reg &= ~BIT(HNS3_RING_EN_B);
673 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
674 }
675
676 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
677 {
678 #ifdef CONFIG_RFS_ACCEL
679 free_irq_cpu_rmap(netdev->rx_cpu_rmap);
680 netdev->rx_cpu_rmap = NULL;
681 #endif
682 }
683
684 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
685 {
686 #ifdef CONFIG_RFS_ACCEL
687 struct hns3_nic_priv *priv = netdev_priv(netdev);
688 struct hns3_enet_tqp_vector *tqp_vector;
689 int i, ret;
690
691 if (!netdev->rx_cpu_rmap) {
692 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
693 if (!netdev->rx_cpu_rmap)
694 return -ENOMEM;
695 }
696
697 for (i = 0; i < priv->vector_num; i++) {
698 tqp_vector = &priv->tqp_vector[i];
699 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
700 tqp_vector->vector_irq);
701 if (ret) {
702 hns3_free_rx_cpu_rmap(netdev);
703 return ret;
704 }
705 }
706 #endif
707 return 0;
708 }
709
710 static int hns3_nic_net_up(struct net_device *netdev)
711 {
712 struct hns3_nic_priv *priv = netdev_priv(netdev);
713 struct hnae3_handle *h = priv->ae_handle;
714 int i, j;
715 int ret;
716
717 ret = hns3_nic_reset_all_ring(h);
718 if (ret)
719 return ret;
720
721 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
722
723 /* enable the vectors */
724 for (i = 0; i < priv->vector_num; i++)
725 hns3_vector_enable(&priv->tqp_vector[i]);
726
727 /* enable rcb */
728 for (j = 0; j < h->kinfo.num_tqps; j++)
729 hns3_tqp_enable(h->kinfo.tqp[j]);
730
731 /* start the ae_dev */
732 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
733 if (ret) {
734 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
735 while (j--)
736 hns3_tqp_disable(h->kinfo.tqp[j]);
737
738 for (j = i - 1; j >= 0; j--)
739 hns3_vector_disable(&priv->tqp_vector[j]);
740 }
741
742 return ret;
743 }
744
745 static void hns3_config_xps(struct hns3_nic_priv *priv)
746 {
747 int i;
748
749 for (i = 0; i < priv->vector_num; i++) {
750 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
751 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
752
753 while (ring) {
754 int ret;
755
756 ret = netif_set_xps_queue(priv->netdev,
757 &tqp_vector->affinity_mask,
758 ring->tqp->tqp_index);
759 if (ret)
760 netdev_warn(priv->netdev,
761 "set xps queue failed: %d", ret);
762
763 ring = ring->next;
764 }
765 }
766 }
767
768 static int hns3_nic_net_open(struct net_device *netdev)
769 {
770 struct hns3_nic_priv *priv = netdev_priv(netdev);
771 struct hnae3_handle *h = hns3_get_handle(netdev);
772 struct hnae3_knic_private_info *kinfo;
773 int i, ret;
774
775 if (hns3_nic_resetting(netdev))
776 return -EBUSY;
777
778 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
779 netdev_warn(netdev, "net open repeatedly!\n");
780 return 0;
781 }
782
783 netif_carrier_off(netdev);
784
785 ret = hns3_nic_set_real_num_queue(netdev);
786 if (ret)
787 return ret;
788
789 ret = hns3_nic_net_up(netdev);
790 if (ret) {
791 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
792 return ret;
793 }
794
795 kinfo = &h->kinfo;
796 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
797 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
798
799 if (h->ae_algo->ops->set_timer_task)
800 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
801
802 hns3_config_xps(priv);
803
804 netif_dbg(h, drv, netdev, "net open\n");
805
806 return 0;
807 }
808
809 static void hns3_reset_tx_queue(struct hnae3_handle *h)
810 {
811 struct net_device *ndev = h->kinfo.netdev;
812 struct hns3_nic_priv *priv = netdev_priv(ndev);
813 struct netdev_queue *dev_queue;
814 u32 i;
815
816 for (i = 0; i < h->kinfo.num_tqps; i++) {
817 dev_queue = netdev_get_tx_queue(ndev,
818 priv->ring[i].queue_index);
819 netdev_tx_reset_queue(dev_queue);
820 }
821 }
822
823 static void hns3_nic_net_down(struct net_device *netdev)
824 {
825 struct hns3_nic_priv *priv = netdev_priv(netdev);
826 struct hnae3_handle *h = hns3_get_handle(netdev);
827 const struct hnae3_ae_ops *ops;
828 int i;
829
830 /* disable vectors */
831 for (i = 0; i < priv->vector_num; i++)
832 hns3_vector_disable(&priv->tqp_vector[i]);
833
834 /* disable rcb */
835 for (i = 0; i < h->kinfo.num_tqps; i++)
836 hns3_tqp_disable(h->kinfo.tqp[i]);
837
838 /* stop ae_dev */
839 ops = priv->ae_handle->ae_algo->ops;
840 if (ops->stop)
841 ops->stop(priv->ae_handle);
842
843 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
844 * during reset process, because driver may not be able
845 * to disable the ring through firmware when downing the netdev.
846 */
847 if (!hns3_nic_resetting(netdev))
848 hns3_clear_all_ring(priv->ae_handle, false);
849
850 hns3_reset_tx_queue(priv->ae_handle);
851 }
852
853 static int hns3_nic_net_stop(struct net_device *netdev)
854 {
855 struct hns3_nic_priv *priv = netdev_priv(netdev);
856 struct hnae3_handle *h = hns3_get_handle(netdev);
857
858 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
859 return 0;
860
861 netif_dbg(h, drv, netdev, "net stop\n");
862
863 if (h->ae_algo->ops->set_timer_task)
864 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
865
866 netif_carrier_off(netdev);
867 netif_tx_disable(netdev);
868
869 hns3_nic_net_down(netdev);
870
871 return 0;
872 }
873
874 static int hns3_nic_uc_sync(struct net_device *netdev,
875 const unsigned char *addr)
876 {
877 struct hnae3_handle *h = hns3_get_handle(netdev);
878
879 if (h->ae_algo->ops->add_uc_addr)
880 return h->ae_algo->ops->add_uc_addr(h, addr);
881
882 return 0;
883 }
884
885 static int hns3_nic_uc_unsync(struct net_device *netdev,
886 const unsigned char *addr)
887 {
888 struct hnae3_handle *h = hns3_get_handle(netdev);
889
890 /* need ignore the request of removing device address, because
891 * we store the device address and other addresses of uc list
892 * in the function's mac filter list.
893 */
894 if (ether_addr_equal(addr, netdev->dev_addr))
895 return 0;
896
897 if (h->ae_algo->ops->rm_uc_addr)
898 return h->ae_algo->ops->rm_uc_addr(h, addr);
899
900 return 0;
901 }
902
903 static int hns3_nic_mc_sync(struct net_device *netdev,
904 const unsigned char *addr)
905 {
906 struct hnae3_handle *h = hns3_get_handle(netdev);
907
908 if (h->ae_algo->ops->add_mc_addr)
909 return h->ae_algo->ops->add_mc_addr(h, addr);
910
911 return 0;
912 }
913
914 static int hns3_nic_mc_unsync(struct net_device *netdev,
915 const unsigned char *addr)
916 {
917 struct hnae3_handle *h = hns3_get_handle(netdev);
918
919 if (h->ae_algo->ops->rm_mc_addr)
920 return h->ae_algo->ops->rm_mc_addr(h, addr);
921
922 return 0;
923 }
924
925 static u8 hns3_get_netdev_flags(struct net_device *netdev)
926 {
927 u8 flags = 0;
928
929 if (netdev->flags & IFF_PROMISC)
930 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
931 else if (netdev->flags & IFF_ALLMULTI)
932 flags = HNAE3_USER_MPE;
933
934 return flags;
935 }
936
937 static void hns3_nic_set_rx_mode(struct net_device *netdev)
938 {
939 struct hnae3_handle *h = hns3_get_handle(netdev);
940 u8 new_flags;
941
942 new_flags = hns3_get_netdev_flags(netdev);
943
944 __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
945 __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
946
947 /* User mode Promisc mode enable and vlan filtering is disabled to
948 * let all packets in.
949 */
950 h->netdev_flags = new_flags;
951 hns3_request_update_promisc_mode(h);
952 }
953
954 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
955 {
956 const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
957
958 if (ops->request_update_promisc_mode)
959 ops->request_update_promisc_mode(handle);
960 }
961
962 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
963 {
964 struct hns3_tx_spare *tx_spare = ring->tx_spare;
965 u32 ntc, ntu;
966
967 /* This smp_load_acquire() pairs with smp_store_release() in
968 * hns3_tx_spare_update() called in tx desc cleaning process.
969 */
970 ntc = smp_load_acquire(&tx_spare->last_to_clean);
971 ntu = tx_spare->next_to_use;
972
973 if (ntc > ntu)
974 return ntc - ntu - 1;
975
976 /* The free tx buffer is divided into two part, so pick the
977 * larger one.
978 */
979 return max(ntc, tx_spare->len - ntu) - 1;
980 }
981
982 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
983 {
984 struct hns3_tx_spare *tx_spare = ring->tx_spare;
985
986 if (!tx_spare ||
987 tx_spare->last_to_clean == tx_spare->next_to_clean)
988 return;
989
990 /* This smp_store_release() pairs with smp_load_acquire() in
991 * hns3_tx_spare_space() called in xmit process.
992 */
993 smp_store_release(&tx_spare->last_to_clean,
994 tx_spare->next_to_clean);
995 }
996
997 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
998 struct sk_buff *skb,
999 u32 space)
1000 {
1001 u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1002 skb_headlen(skb);
1003
1004 if (len > ring->tx_copybreak)
1005 return false;
1006
1007 if (ALIGN(len, dma_get_cache_alignment()) > space) {
1008 hns3_ring_stats_update(ring, tx_spare_full);
1009 return false;
1010 }
1011
1012 return true;
1013 }
1014
1015 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1016 struct sk_buff *skb,
1017 u32 space)
1018 {
1019 if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1020 (!skb_has_frag_list(skb) &&
1021 skb_shinfo(skb)->nr_frags < tx_sgl))
1022 return false;
1023
1024 if (space < HNS3_MAX_SGL_SIZE) {
1025 hns3_ring_stats_update(ring, tx_spare_full);
1026 return false;
1027 }
1028
1029 return true;
1030 }
1031
1032 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1033 {
1034 u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1035 struct hns3_tx_spare *tx_spare;
1036 struct page *page;
1037 dma_addr_t dma;
1038 int order;
1039
1040 if (!alloc_size)
1041 return;
1042
1043 order = get_order(alloc_size);
1044 if (order > MAX_ORDER) {
1045 if (net_ratelimit())
1046 dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
1047 return;
1048 }
1049
1050 tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1051 GFP_KERNEL);
1052 if (!tx_spare) {
1053 /* The driver still work without the tx spare buffer */
1054 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1055 goto devm_kzalloc_error;
1056 }
1057
1058 page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1059 GFP_KERNEL, order);
1060 if (!page) {
1061 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1062 goto alloc_pages_error;
1063 }
1064
1065 dma = dma_map_page(ring_to_dev(ring), page, 0,
1066 PAGE_SIZE << order, DMA_TO_DEVICE);
1067 if (dma_mapping_error(ring_to_dev(ring), dma)) {
1068 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1069 goto dma_mapping_error;
1070 }
1071
1072 tx_spare->dma = dma;
1073 tx_spare->buf = page_address(page);
1074 tx_spare->len = PAGE_SIZE << order;
1075 ring->tx_spare = tx_spare;
1076 return;
1077
1078 dma_mapping_error:
1079 put_page(page);
1080 alloc_pages_error:
1081 devm_kfree(ring_to_dev(ring), tx_spare);
1082 devm_kzalloc_error:
1083 ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
1084 }
1085
1086 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1087 * before calling below function to allocate tx buffer.
1088 */
1089 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1090 unsigned int size, dma_addr_t *dma,
1091 u32 *cb_len)
1092 {
1093 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1094 u32 ntu = tx_spare->next_to_use;
1095
1096 size = ALIGN(size, dma_get_cache_alignment());
1097 *cb_len = size;
1098
1099 /* Tx spare buffer wraps back here because the end of
1100 * freed tx buffer is not enough.
1101 */
1102 if (ntu + size > tx_spare->len) {
1103 *cb_len += (tx_spare->len - ntu);
1104 ntu = 0;
1105 }
1106
1107 tx_spare->next_to_use = ntu + size;
1108 if (tx_spare->next_to_use == tx_spare->len)
1109 tx_spare->next_to_use = 0;
1110
1111 *dma = tx_spare->dma + ntu;
1112
1113 return tx_spare->buf + ntu;
1114 }
1115
1116 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1117 {
1118 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1119
1120 if (len > tx_spare->next_to_use) {
1121 len -= tx_spare->next_to_use;
1122 tx_spare->next_to_use = tx_spare->len - len;
1123 } else {
1124 tx_spare->next_to_use -= len;
1125 }
1126 }
1127
1128 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1129 struct hns3_desc_cb *cb)
1130 {
1131 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1132 u32 ntc = tx_spare->next_to_clean;
1133 u32 len = cb->length;
1134
1135 tx_spare->next_to_clean += len;
1136
1137 if (tx_spare->next_to_clean >= tx_spare->len) {
1138 tx_spare->next_to_clean -= tx_spare->len;
1139
1140 if (tx_spare->next_to_clean) {
1141 ntc = 0;
1142 len = tx_spare->next_to_clean;
1143 }
1144 }
1145
1146 /* This tx spare buffer is only really reclaimed after calling
1147 * hns3_tx_spare_update(), so it is still safe to use the info in
1148 * the tx buffer to do the dma sync or sg unmapping after
1149 * tx_spare->next_to_clean is moved forword.
1150 */
1151 if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1152 dma_addr_t dma = tx_spare->dma + ntc;
1153
1154 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1155 DMA_TO_DEVICE);
1156 } else {
1157 struct sg_table *sgt = tx_spare->buf + ntc;
1158
1159 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1160 DMA_TO_DEVICE);
1161 }
1162 }
1163
1164 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1165 u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1166 {
1167 u32 l4_offset, hdr_len;
1168 union l3_hdr_info l3;
1169 union l4_hdr_info l4;
1170 u32 l4_paylen;
1171 int ret;
1172
1173 if (!skb_is_gso(skb))
1174 return 0;
1175
1176 ret = skb_cow_head(skb, 0);
1177 if (unlikely(ret < 0))
1178 return ret;
1179
1180 l3.hdr = skb_network_header(skb);
1181 l4.hdr = skb_transport_header(skb);
1182
1183 /* Software should clear the IPv4's checksum field when tso is
1184 * needed.
1185 */
1186 if (l3.v4->version == 4)
1187 l3.v4->check = 0;
1188
1189 /* tunnel packet */
1190 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1191 SKB_GSO_GRE_CSUM |
1192 SKB_GSO_UDP_TUNNEL |
1193 SKB_GSO_UDP_TUNNEL_CSUM)) {
1194 /* reset l3&l4 pointers from outer to inner headers */
1195 l3.hdr = skb_inner_network_header(skb);
1196 l4.hdr = skb_inner_transport_header(skb);
1197
1198 /* Software should clear the IPv4's checksum field when
1199 * tso is needed.
1200 */
1201 if (l3.v4->version == 4)
1202 l3.v4->check = 0;
1203 }
1204
1205 /* normal or tunnel packet */
1206 l4_offset = l4.hdr - skb->data;
1207
1208 /* remove payload length from inner pseudo checksum when tso */
1209 l4_paylen = skb->len - l4_offset;
1210
1211 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1212 hdr_len = sizeof(*l4.udp) + l4_offset;
1213 csum_replace_by_diff(&l4.udp->check,
1214 (__force __wsum)htonl(l4_paylen));
1215 } else {
1216 hdr_len = (l4.tcp->doff << 2) + l4_offset;
1217 csum_replace_by_diff(&l4.tcp->check,
1218 (__force __wsum)htonl(l4_paylen));
1219 }
1220
1221 *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1222
1223 /* find the txbd field values */
1224 *paylen_fdop_ol4cs = skb->len - hdr_len;
1225 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1226
1227 /* offload outer UDP header checksum */
1228 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1229 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1230
1231 /* get MSS for TSO */
1232 *mss = skb_shinfo(skb)->gso_size;
1233
1234 trace_hns3_tso(skb);
1235
1236 return 0;
1237 }
1238
1239 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1240 u8 *il4_proto)
1241 {
1242 union l3_hdr_info l3;
1243 unsigned char *l4_hdr;
1244 unsigned char *exthdr;
1245 u8 l4_proto_tmp;
1246 __be16 frag_off;
1247
1248 /* find outer header point */
1249 l3.hdr = skb_network_header(skb);
1250 l4_hdr = skb_transport_header(skb);
1251
1252 if (skb->protocol == htons(ETH_P_IPV6)) {
1253 exthdr = l3.hdr + sizeof(*l3.v6);
1254 l4_proto_tmp = l3.v6->nexthdr;
1255 if (l4_hdr != exthdr)
1256 ipv6_skip_exthdr(skb, exthdr - skb->data,
1257 &l4_proto_tmp, &frag_off);
1258 } else if (skb->protocol == htons(ETH_P_IP)) {
1259 l4_proto_tmp = l3.v4->protocol;
1260 } else {
1261 return -EINVAL;
1262 }
1263
1264 *ol4_proto = l4_proto_tmp;
1265
1266 /* tunnel packet */
1267 if (!skb->encapsulation) {
1268 *il4_proto = 0;
1269 return 0;
1270 }
1271
1272 /* find inner header point */
1273 l3.hdr = skb_inner_network_header(skb);
1274 l4_hdr = skb_inner_transport_header(skb);
1275
1276 if (l3.v6->version == 6) {
1277 exthdr = l3.hdr + sizeof(*l3.v6);
1278 l4_proto_tmp = l3.v6->nexthdr;
1279 if (l4_hdr != exthdr)
1280 ipv6_skip_exthdr(skb, exthdr - skb->data,
1281 &l4_proto_tmp, &frag_off);
1282 } else if (l3.v4->version == 4) {
1283 l4_proto_tmp = l3.v4->protocol;
1284 }
1285
1286 *il4_proto = l4_proto_tmp;
1287
1288 return 0;
1289 }
1290
1291 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1292 * and it is udp packet, which has a dest port as the IANA assigned.
1293 * the hardware is expected to do the checksum offload, but the
1294 * hardware will not do the checksum offload when udp dest port is
1295 * 4789, 4790 or 6081.
1296 */
1297 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1298 {
1299 struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1300 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1301 union l4_hdr_info l4;
1302
1303 /* device version above V3(include V3), the hardware can
1304 * do this checksum offload.
1305 */
1306 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1307 return false;
1308
1309 l4.hdr = skb_transport_header(skb);
1310
1311 if (!(!skb->encapsulation &&
1312 (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1313 l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1314 l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1315 return false;
1316
1317 return true;
1318 }
1319
1320 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1321 u32 *ol_type_vlan_len_msec)
1322 {
1323 u32 l2_len, l3_len, l4_len;
1324 unsigned char *il2_hdr;
1325 union l3_hdr_info l3;
1326 union l4_hdr_info l4;
1327
1328 l3.hdr = skb_network_header(skb);
1329 l4.hdr = skb_transport_header(skb);
1330
1331 /* compute OL2 header size, defined in 2 Bytes */
1332 l2_len = l3.hdr - skb->data;
1333 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1334
1335 /* compute OL3 header size, defined in 4 Bytes */
1336 l3_len = l4.hdr - l3.hdr;
1337 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1338
1339 il2_hdr = skb_inner_mac_header(skb);
1340 /* compute OL4 header size, defined in 4 Bytes */
1341 l4_len = il2_hdr - l4.hdr;
1342 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1343
1344 /* define outer network header type */
1345 if (skb->protocol == htons(ETH_P_IP)) {
1346 if (skb_is_gso(skb))
1347 hns3_set_field(*ol_type_vlan_len_msec,
1348 HNS3_TXD_OL3T_S,
1349 HNS3_OL3T_IPV4_CSUM);
1350 else
1351 hns3_set_field(*ol_type_vlan_len_msec,
1352 HNS3_TXD_OL3T_S,
1353 HNS3_OL3T_IPV4_NO_CSUM);
1354 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1355 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1356 HNS3_OL3T_IPV6);
1357 }
1358
1359 if (ol4_proto == IPPROTO_UDP)
1360 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1361 HNS3_TUN_MAC_IN_UDP);
1362 else if (ol4_proto == IPPROTO_GRE)
1363 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1364 HNS3_TUN_NVGRE);
1365 }
1366
1367 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1368 u32 *type_cs_vlan_tso)
1369 {
1370 if (l3.v4->version == 4) {
1371 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1372 HNS3_L3T_IPV4);
1373
1374 /* the stack computes the IP header already, the only time we
1375 * need the hardware to recompute it is in the case of TSO.
1376 */
1377 if (skb_is_gso(skb))
1378 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1379 } else if (l3.v6->version == 6) {
1380 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1381 HNS3_L3T_IPV6);
1382 }
1383 }
1384
1385 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1386 u32 l4_proto, u32 *type_cs_vlan_tso)
1387 {
1388 /* compute inner(/normal) L4 header size, defined in 4 Bytes */
1389 switch (l4_proto) {
1390 case IPPROTO_TCP:
1391 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1392 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1393 HNS3_L4T_TCP);
1394 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1395 l4.tcp->doff);
1396 break;
1397 case IPPROTO_UDP:
1398 if (hns3_tunnel_csum_bug(skb)) {
1399 int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1400
1401 return ret ? ret : skb_checksum_help(skb);
1402 }
1403
1404 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1405 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1406 HNS3_L4T_UDP);
1407 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1408 (sizeof(struct udphdr) >> 2));
1409 break;
1410 case IPPROTO_SCTP:
1411 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1412 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1413 HNS3_L4T_SCTP);
1414 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1415 (sizeof(struct sctphdr) >> 2));
1416 break;
1417 default:
1418 /* drop the skb tunnel packet if hardware don't support,
1419 * because hardware can't calculate csum when TSO.
1420 */
1421 if (skb_is_gso(skb))
1422 return -EDOM;
1423
1424 /* the stack computes the IP header already,
1425 * driver calculate l4 checksum when not TSO.
1426 */
1427 return skb_checksum_help(skb);
1428 }
1429
1430 return 0;
1431 }
1432
1433 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1434 u8 il4_proto, u32 *type_cs_vlan_tso,
1435 u32 *ol_type_vlan_len_msec)
1436 {
1437 unsigned char *l2_hdr = skb->data;
1438 u32 l4_proto = ol4_proto;
1439 union l4_hdr_info l4;
1440 union l3_hdr_info l3;
1441 u32 l2_len, l3_len;
1442
1443 l4.hdr = skb_transport_header(skb);
1444 l3.hdr = skb_network_header(skb);
1445
1446 /* handle encapsulation skb */
1447 if (skb->encapsulation) {
1448 /* If this is a not UDP/GRE encapsulation skb */
1449 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1450 /* drop the skb tunnel packet if hardware don't support,
1451 * because hardware can't calculate csum when TSO.
1452 */
1453 if (skb_is_gso(skb))
1454 return -EDOM;
1455
1456 /* the stack computes the IP header already,
1457 * driver calculate l4 checksum when not TSO.
1458 */
1459 return skb_checksum_help(skb);
1460 }
1461
1462 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1463
1464 /* switch to inner header */
1465 l2_hdr = skb_inner_mac_header(skb);
1466 l3.hdr = skb_inner_network_header(skb);
1467 l4.hdr = skb_inner_transport_header(skb);
1468 l4_proto = il4_proto;
1469 }
1470
1471 hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1472
1473 /* compute inner(/normal) L2 header size, defined in 2 Bytes */
1474 l2_len = l3.hdr - l2_hdr;
1475 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1476
1477 /* compute inner(/normal) L3 header size, defined in 4 Bytes */
1478 l3_len = l4.hdr - l3.hdr;
1479 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1480
1481 return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1482 }
1483
1484 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1485 struct sk_buff *skb)
1486 {
1487 struct hnae3_handle *handle = tx_ring->tqp->handle;
1488 struct hnae3_ae_dev *ae_dev;
1489 struct vlan_ethhdr *vhdr;
1490 int rc;
1491
1492 if (!(skb->protocol == htons(ETH_P_8021Q) ||
1493 skb_vlan_tag_present(skb)))
1494 return 0;
1495
1496 /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1497 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1498 * will cause RAS error.
1499 */
1500 ae_dev = pci_get_drvdata(handle->pdev);
1501 if (unlikely(skb_vlan_tagged_multi(skb) &&
1502 ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1503 handle->port_base_vlan_state ==
1504 HNAE3_PORT_BASE_VLAN_ENABLE))
1505 return -EINVAL;
1506
1507 if (skb->protocol == htons(ETH_P_8021Q) &&
1508 !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1509 /* When HW VLAN acceleration is turned off, and the stack
1510 * sets the protocol to 802.1q, the driver just need to
1511 * set the protocol to the encapsulated ethertype.
1512 */
1513 skb->protocol = vlan_get_protocol(skb);
1514 return 0;
1515 }
1516
1517 if (skb_vlan_tag_present(skb)) {
1518 /* Based on hw strategy, use out_vtag in two layer tag case,
1519 * and use inner_vtag in one tag case.
1520 */
1521 if (skb->protocol == htons(ETH_P_8021Q) &&
1522 handle->port_base_vlan_state ==
1523 HNAE3_PORT_BASE_VLAN_DISABLE)
1524 rc = HNS3_OUTER_VLAN_TAG;
1525 else
1526 rc = HNS3_INNER_VLAN_TAG;
1527
1528 skb->protocol = vlan_get_protocol(skb);
1529 return rc;
1530 }
1531
1532 rc = skb_cow_head(skb, 0);
1533 if (unlikely(rc < 0))
1534 return rc;
1535
1536 vhdr = skb_vlan_eth_hdr(skb);
1537 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1538 & VLAN_PRIO_MASK);
1539
1540 skb->protocol = vlan_get_protocol(skb);
1541 return 0;
1542 }
1543
1544 /* check if the hardware is capable of checksum offloading */
1545 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1546 {
1547 struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1548
1549 /* Kindly note, due to backward compatibility of the TX descriptor,
1550 * HW checksum of the non-IP packets and GSO packets is handled at
1551 * different place in the following code
1552 */
1553 if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1554 !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1555 return false;
1556
1557 return true;
1558 }
1559
1560 struct hns3_desc_param {
1561 u32 paylen_ol4cs;
1562 u32 ol_type_vlan_len_msec;
1563 u32 type_cs_vlan_tso;
1564 u16 mss_hw_csum;
1565 u16 inner_vtag;
1566 u16 out_vtag;
1567 };
1568
1569 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1570 {
1571 pa->paylen_ol4cs = skb->len;
1572 pa->ol_type_vlan_len_msec = 0;
1573 pa->type_cs_vlan_tso = 0;
1574 pa->mss_hw_csum = 0;
1575 pa->inner_vtag = 0;
1576 pa->out_vtag = 0;
1577 }
1578
1579 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1580 struct sk_buff *skb,
1581 struct hns3_desc_param *param)
1582 {
1583 int ret;
1584
1585 ret = hns3_handle_vtags(ring, skb);
1586 if (unlikely(ret < 0)) {
1587 hns3_ring_stats_update(ring, tx_vlan_err);
1588 return ret;
1589 } else if (ret == HNS3_INNER_VLAN_TAG) {
1590 param->inner_vtag = skb_vlan_tag_get(skb);
1591 param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1592 VLAN_PRIO_MASK;
1593 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1594 } else if (ret == HNS3_OUTER_VLAN_TAG) {
1595 param->out_vtag = skb_vlan_tag_get(skb);
1596 param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1597 VLAN_PRIO_MASK;
1598 hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1599 1);
1600 }
1601 return 0;
1602 }
1603
1604 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1605 struct sk_buff *skb,
1606 struct hns3_desc_cb *desc_cb,
1607 struct hns3_desc_param *param)
1608 {
1609 u8 ol4_proto, il4_proto;
1610 int ret;
1611
1612 if (hns3_check_hw_tx_csum(skb)) {
1613 /* set checksum start and offset, defined in 2 Bytes */
1614 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1615 skb_checksum_start_offset(skb) >> 1);
1616 hns3_set_field(param->ol_type_vlan_len_msec,
1617 HNS3_TXD_CSUM_OFFSET_S,
1618 skb->csum_offset >> 1);
1619 param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1620 return 0;
1621 }
1622
1623 skb_reset_mac_len(skb);
1624
1625 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1626 if (unlikely(ret < 0)) {
1627 hns3_ring_stats_update(ring, tx_l4_proto_err);
1628 return ret;
1629 }
1630
1631 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1632 &param->type_cs_vlan_tso,
1633 &param->ol_type_vlan_len_msec);
1634 if (unlikely(ret < 0)) {
1635 hns3_ring_stats_update(ring, tx_l2l3l4_err);
1636 return ret;
1637 }
1638
1639 ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
1640 &param->type_cs_vlan_tso, &desc_cb->send_bytes);
1641 if (unlikely(ret < 0)) {
1642 hns3_ring_stats_update(ring, tx_tso_err);
1643 return ret;
1644 }
1645 return 0;
1646 }
1647
1648 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1649 struct sk_buff *skb, struct hns3_desc *desc,
1650 struct hns3_desc_cb *desc_cb)
1651 {
1652 struct hns3_desc_param param;
1653 int ret;
1654
1655 hns3_init_desc_data(skb, &param);
1656 ret = hns3_handle_vlan_info(ring, skb, &param);
1657 if (unlikely(ret < 0))
1658 return ret;
1659
1660 desc_cb->send_bytes = skb->len;
1661
1662 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1663 ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
1664 if (ret)
1665 return ret;
1666 }
1667
1668 /* Set txbd */
1669 desc->tx.ol_type_vlan_len_msec =
1670 cpu_to_le32(param.ol_type_vlan_len_msec);
1671 desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1672 desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1673 desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1674 desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1675 desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1676
1677 return 0;
1678 }
1679
1680 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1681 unsigned int size)
1682 {
1683 #define HNS3_LIKELY_BD_NUM 1
1684
1685 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1686 unsigned int frag_buf_num;
1687 int k, sizeoflast;
1688
1689 if (likely(size <= HNS3_MAX_BD_SIZE)) {
1690 desc->addr = cpu_to_le64(dma);
1691 desc->tx.send_size = cpu_to_le16(size);
1692 desc->tx.bdtp_fe_sc_vld_ra_ri =
1693 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1694
1695 trace_hns3_tx_desc(ring, ring->next_to_use);
1696 ring_ptr_move_fw(ring, next_to_use);
1697 return HNS3_LIKELY_BD_NUM;
1698 }
1699
1700 frag_buf_num = hns3_tx_bd_count(size);
1701 sizeoflast = size % HNS3_MAX_BD_SIZE;
1702 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1703
1704 /* When frag size is bigger than hardware limit, split this frag */
1705 for (k = 0; k < frag_buf_num; k++) {
1706 /* now, fill the descriptor */
1707 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1708 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1709 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1710 desc->tx.bdtp_fe_sc_vld_ra_ri =
1711 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1712
1713 trace_hns3_tx_desc(ring, ring->next_to_use);
1714 /* move ring pointer to next */
1715 ring_ptr_move_fw(ring, next_to_use);
1716
1717 desc = &ring->desc[ring->next_to_use];
1718 }
1719
1720 return frag_buf_num;
1721 }
1722
1723 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1724 unsigned int type)
1725 {
1726 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1727 struct device *dev = ring_to_dev(ring);
1728 unsigned int size;
1729 dma_addr_t dma;
1730
1731 if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1732 struct sk_buff *skb = (struct sk_buff *)priv;
1733
1734 size = skb_headlen(skb);
1735 if (!size)
1736 return 0;
1737
1738 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1739 } else if (type & DESC_TYPE_BOUNCE_HEAD) {
1740 /* Head data has been filled in hns3_handle_tx_bounce(),
1741 * just return 0 here.
1742 */
1743 return 0;
1744 } else {
1745 skb_frag_t *frag = (skb_frag_t *)priv;
1746
1747 size = skb_frag_size(frag);
1748 if (!size)
1749 return 0;
1750
1751 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1752 }
1753
1754 if (unlikely(dma_mapping_error(dev, dma))) {
1755 hns3_ring_stats_update(ring, sw_err_cnt);
1756 return -ENOMEM;
1757 }
1758
1759 desc_cb->priv = priv;
1760 desc_cb->length = size;
1761 desc_cb->dma = dma;
1762 desc_cb->type = type;
1763
1764 return hns3_fill_desc(ring, dma, size);
1765 }
1766
1767 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1768 unsigned int bd_num)
1769 {
1770 unsigned int size;
1771 int i;
1772
1773 size = skb_headlen(skb);
1774 while (size > HNS3_MAX_BD_SIZE) {
1775 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1776 size -= HNS3_MAX_BD_SIZE;
1777
1778 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1779 return bd_num;
1780 }
1781
1782 if (size) {
1783 bd_size[bd_num++] = size;
1784 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1785 return bd_num;
1786 }
1787
1788 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1789 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1790 size = skb_frag_size(frag);
1791 if (!size)
1792 continue;
1793
1794 while (size > HNS3_MAX_BD_SIZE) {
1795 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1796 size -= HNS3_MAX_BD_SIZE;
1797
1798 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1799 return bd_num;
1800 }
1801
1802 bd_size[bd_num++] = size;
1803 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1804 return bd_num;
1805 }
1806
1807 return bd_num;
1808 }
1809
1810 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1811 u8 max_non_tso_bd_num, unsigned int bd_num,
1812 unsigned int recursion_level)
1813 {
1814 #define HNS3_MAX_RECURSION_LEVEL 24
1815
1816 struct sk_buff *frag_skb;
1817
1818 /* If the total len is within the max bd limit */
1819 if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1820 !skb_has_frag_list(skb) &&
1821 skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1822 return skb_shinfo(skb)->nr_frags + 1U;
1823
1824 if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1825 return UINT_MAX;
1826
1827 bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1828 if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1829 return bd_num;
1830
1831 skb_walk_frags(skb, frag_skb) {
1832 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1833 bd_num, recursion_level + 1);
1834 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1835 return bd_num;
1836 }
1837
1838 return bd_num;
1839 }
1840
1841 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1842 {
1843 if (!skb->encapsulation)
1844 return skb_tcp_all_headers(skb);
1845
1846 return skb_inner_tcp_all_headers(skb);
1847 }
1848
1849 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1850 * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1851 * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1852 * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1853 * than MSS except the last max_non_tso_bd_num - 1 frags.
1854 */
1855 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1856 unsigned int bd_num, u8 max_non_tso_bd_num)
1857 {
1858 unsigned int tot_len = 0;
1859 int i;
1860
1861 for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1862 tot_len += bd_size[i];
1863
1864 /* ensure the first max_non_tso_bd_num frags is greater than
1865 * mss + header
1866 */
1867 if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1868 skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1869 return true;
1870
1871 /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1872 * than mss except the last one.
1873 */
1874 for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1875 tot_len -= bd_size[i];
1876 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1877
1878 if (tot_len < skb_shinfo(skb)->gso_size)
1879 return true;
1880 }
1881
1882 return false;
1883 }
1884
1885 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1886 {
1887 int i;
1888
1889 for (i = 0; i < MAX_SKB_FRAGS; i++)
1890 size[i] = skb_frag_size(&shinfo->frags[i]);
1891 }
1892
1893 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1894 struct sk_buff *skb,
1895 unsigned int bd_num)
1896 {
1897 /* 'bd_num == UINT_MAX' means the skb' fraglist has a
1898 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1899 */
1900 if (bd_num == UINT_MAX) {
1901 hns3_ring_stats_update(ring, over_max_recursion);
1902 return -ENOMEM;
1903 }
1904
1905 /* The skb->len has exceeded the hw limitation, linearization
1906 * will not help.
1907 */
1908 if (skb->len > HNS3_MAX_TSO_SIZE ||
1909 (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1910 hns3_ring_stats_update(ring, hw_limitation);
1911 return -ENOMEM;
1912 }
1913
1914 if (__skb_linearize(skb)) {
1915 hns3_ring_stats_update(ring, sw_err_cnt);
1916 return -ENOMEM;
1917 }
1918
1919 return 0;
1920 }
1921
1922 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1923 struct net_device *netdev,
1924 struct sk_buff *skb)
1925 {
1926 struct hns3_nic_priv *priv = netdev_priv(netdev);
1927 u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1928 unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1929 unsigned int bd_num;
1930
1931 bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1932 if (unlikely(bd_num > max_non_tso_bd_num)) {
1933 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1934 !hns3_skb_need_linearized(skb, bd_size, bd_num,
1935 max_non_tso_bd_num)) {
1936 trace_hns3_over_max_bd(skb);
1937 goto out;
1938 }
1939
1940 if (hns3_skb_linearize(ring, skb, bd_num))
1941 return -ENOMEM;
1942
1943 bd_num = hns3_tx_bd_count(skb->len);
1944
1945 hns3_ring_stats_update(ring, tx_copy);
1946 }
1947
1948 out:
1949 if (likely(ring_space(ring) >= bd_num))
1950 return bd_num;
1951
1952 netif_stop_subqueue(netdev, ring->queue_index);
1953 smp_mb(); /* Memory barrier before checking ring_space */
1954
1955 /* Start queue in case hns3_clean_tx_ring has just made room
1956 * available and has not seen the queue stopped state performed
1957 * by netif_stop_subqueue above.
1958 */
1959 if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1960 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1961 netif_start_subqueue(netdev, ring->queue_index);
1962 return bd_num;
1963 }
1964
1965 hns3_ring_stats_update(ring, tx_busy);
1966
1967 return -EBUSY;
1968 }
1969
1970 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1971 {
1972 struct device *dev = ring_to_dev(ring);
1973 unsigned int i;
1974
1975 for (i = 0; i < ring->desc_num; i++) {
1976 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1977 struct hns3_desc_cb *desc_cb;
1978
1979 memset(desc, 0, sizeof(*desc));
1980
1981 /* check if this is where we started */
1982 if (ring->next_to_use == next_to_use_orig)
1983 break;
1984
1985 /* rollback one */
1986 ring_ptr_move_bw(ring, next_to_use);
1987
1988 desc_cb = &ring->desc_cb[ring->next_to_use];
1989
1990 if (!desc_cb->dma)
1991 continue;
1992
1993 /* unmap the descriptor dma address */
1994 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1995 dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1996 DMA_TO_DEVICE);
1997 else if (desc_cb->type &
1998 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1999 hns3_tx_spare_rollback(ring, desc_cb->length);
2000 else if (desc_cb->length)
2001 dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
2002 DMA_TO_DEVICE);
2003
2004 desc_cb->length = 0;
2005 desc_cb->dma = 0;
2006 desc_cb->type = DESC_TYPE_UNKNOWN;
2007 }
2008 }
2009
2010 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
2011 struct sk_buff *skb, unsigned int type)
2012 {
2013 struct sk_buff *frag_skb;
2014 int i, ret, bd_num = 0;
2015
2016 ret = hns3_map_and_fill_desc(ring, skb, type);
2017 if (unlikely(ret < 0))
2018 return ret;
2019
2020 bd_num += ret;
2021
2022 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2023 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2024
2025 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2026 if (unlikely(ret < 0))
2027 return ret;
2028
2029 bd_num += ret;
2030 }
2031
2032 skb_walk_frags(skb, frag_skb) {
2033 ret = hns3_fill_skb_to_desc(ring, frag_skb,
2034 DESC_TYPE_FRAGLIST_SKB);
2035 if (unlikely(ret < 0))
2036 return ret;
2037
2038 bd_num += ret;
2039 }
2040
2041 return bd_num;
2042 }
2043
2044 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
2045 {
2046 #define HNS3_BYTES_PER_64BIT 8
2047
2048 struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
2049 int offset = 0;
2050
2051 /* make sure everything is visible to device before
2052 * excuting tx push or updating doorbell
2053 */
2054 dma_wmb();
2055
2056 do {
2057 int idx = (ring->next_to_use - num + ring->desc_num) %
2058 ring->desc_num;
2059
2060 u64_stats_update_begin(&ring->syncp);
2061 ring->stats.tx_push++;
2062 u64_stats_update_end(&ring->syncp);
2063 memcpy(&desc[offset], &ring->desc[idx],
2064 sizeof(struct hns3_desc));
2065 offset++;
2066 } while (--num);
2067
2068 __iowrite64_copy(ring->tqp->mem_base, desc,
2069 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
2070 HNS3_BYTES_PER_64BIT);
2071
2072 io_stop_wc();
2073 }
2074
2075 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
2076 {
2077 #define HNS3_MEM_DOORBELL_OFFSET 64
2078
2079 __le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
2080
2081 /* make sure everything is visible to device before
2082 * excuting tx push or updating doorbell
2083 */
2084 dma_wmb();
2085
2086 __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
2087 &bd_num, 1);
2088 u64_stats_update_begin(&ring->syncp);
2089 ring->stats.tx_mem_doorbell += ring->pending_buf;
2090 u64_stats_update_end(&ring->syncp);
2091
2092 io_stop_wc();
2093 }
2094
2095 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2096 bool doorbell)
2097 {
2098 struct net_device *netdev = ring_to_netdev(ring);
2099 struct hns3_nic_priv *priv = netdev_priv(netdev);
2100
2101 /* when tx push is enabled, the packet whose number of BD below
2102 * HNS3_MAX_PUSH_BD_NUM can be pushed directly.
2103 */
2104 if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
2105 !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
2106 /* This smp_store_release() pairs with smp_load_aquire() in
2107 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit
2108 * is updated.
2109 */
2110 smp_store_release(&ring->last_to_use, ring->next_to_use);
2111 hns3_tx_push_bd(ring, num);
2112 return;
2113 }
2114
2115 ring->pending_buf += num;
2116
2117 if (!doorbell) {
2118 hns3_ring_stats_update(ring, tx_more);
2119 return;
2120 }
2121
2122 /* This smp_store_release() pairs with smp_load_aquire() in
2123 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated.
2124 */
2125 smp_store_release(&ring->last_to_use, ring->next_to_use);
2126
2127 if (ring->tqp->mem_base)
2128 hns3_tx_mem_doorbell(ring);
2129 else
2130 writel(ring->pending_buf,
2131 ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2132
2133 ring->pending_buf = 0;
2134 }
2135
2136 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2137 struct hns3_desc *desc)
2138 {
2139 struct hnae3_handle *h = hns3_get_handle(netdev);
2140
2141 if (!(h->ae_algo->ops->set_tx_hwts_info &&
2142 h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2143 return;
2144
2145 desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2146 }
2147
2148 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2149 struct sk_buff *skb)
2150 {
2151 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2152 unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2153 unsigned int size = skb_headlen(skb);
2154 dma_addr_t dma;
2155 int bd_num = 0;
2156 u32 cb_len;
2157 void *buf;
2158 int ret;
2159
2160 if (skb->len <= ring->tx_copybreak) {
2161 size = skb->len;
2162 type = DESC_TYPE_BOUNCE_ALL;
2163 }
2164
2165 /* hns3_can_use_tx_bounce() is called to ensure the below
2166 * function can always return the tx buffer.
2167 */
2168 buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2169
2170 ret = skb_copy_bits(skb, 0, buf, size);
2171 if (unlikely(ret < 0)) {
2172 hns3_tx_spare_rollback(ring, cb_len);
2173 hns3_ring_stats_update(ring, copy_bits_err);
2174 return ret;
2175 }
2176
2177 desc_cb->priv = skb;
2178 desc_cb->length = cb_len;
2179 desc_cb->dma = dma;
2180 desc_cb->type = type;
2181
2182 bd_num += hns3_fill_desc(ring, dma, size);
2183
2184 if (type == DESC_TYPE_BOUNCE_HEAD) {
2185 ret = hns3_fill_skb_to_desc(ring, skb,
2186 DESC_TYPE_BOUNCE_HEAD);
2187 if (unlikely(ret < 0))
2188 return ret;
2189
2190 bd_num += ret;
2191 }
2192
2193 dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2194 DMA_TO_DEVICE);
2195
2196 hns3_ring_stats_update(ring, tx_bounce);
2197
2198 return bd_num;
2199 }
2200
2201 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2202 struct sk_buff *skb)
2203 {
2204 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2205 u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2206 struct sg_table *sgt;
2207 int i, bd_num = 0;
2208 dma_addr_t dma;
2209 u32 cb_len;
2210 int nents;
2211
2212 if (skb_has_frag_list(skb))
2213 nfrag = HNS3_MAX_TSO_BD_NUM;
2214
2215 /* hns3_can_use_tx_sgl() is called to ensure the below
2216 * function can always return the tx buffer.
2217 */
2218 sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2219 &dma, &cb_len);
2220
2221 /* scatterlist follows by the sg table */
2222 sgt->sgl = (struct scatterlist *)(sgt + 1);
2223 sg_init_table(sgt->sgl, nfrag);
2224 nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2225 if (unlikely(nents < 0)) {
2226 hns3_tx_spare_rollback(ring, cb_len);
2227 hns3_ring_stats_update(ring, skb2sgl_err);
2228 return -ENOMEM;
2229 }
2230
2231 sgt->orig_nents = nents;
2232 sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2233 DMA_TO_DEVICE);
2234 if (unlikely(!sgt->nents)) {
2235 hns3_tx_spare_rollback(ring, cb_len);
2236 hns3_ring_stats_update(ring, map_sg_err);
2237 return -ENOMEM;
2238 }
2239
2240 desc_cb->priv = skb;
2241 desc_cb->length = cb_len;
2242 desc_cb->dma = dma;
2243 desc_cb->type = DESC_TYPE_SGL_SKB;
2244
2245 for (i = 0; i < sgt->nents; i++)
2246 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2247 sg_dma_len(sgt->sgl + i));
2248 hns3_ring_stats_update(ring, tx_sgl);
2249
2250 return bd_num;
2251 }
2252
2253 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2254 struct sk_buff *skb)
2255 {
2256 u32 space;
2257
2258 if (!ring->tx_spare)
2259 goto out;
2260
2261 space = hns3_tx_spare_space(ring);
2262
2263 if (hns3_can_use_tx_sgl(ring, skb, space))
2264 return hns3_handle_tx_sgl(ring, skb);
2265
2266 if (hns3_can_use_tx_bounce(ring, skb, space))
2267 return hns3_handle_tx_bounce(ring, skb);
2268
2269 out:
2270 return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2271 }
2272
2273 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2274 struct sk_buff *skb,
2275 struct hns3_desc_cb *desc_cb,
2276 int next_to_use_head)
2277 {
2278 int ret;
2279
2280 ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2281 desc_cb);
2282 if (unlikely(ret < 0))
2283 goto fill_err;
2284
2285 /* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2286 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2287 * need to be notified to the hw.
2288 */
2289 ret = hns3_handle_desc_filling(ring, skb);
2290 if (likely(ret > 0))
2291 return ret;
2292
2293 fill_err:
2294 hns3_clear_desc(ring, next_to_use_head);
2295 return ret;
2296 }
2297
2298 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2299 {
2300 struct hns3_nic_priv *priv = netdev_priv(netdev);
2301 struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2302 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2303 struct netdev_queue *dev_queue;
2304 int pre_ntu, ret;
2305 bool doorbell;
2306
2307 /* Hardware can only handle short frames above 32 bytes */
2308 if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2309 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2310
2311 hns3_ring_stats_update(ring, sw_err_cnt);
2312
2313 return NETDEV_TX_OK;
2314 }
2315
2316 /* Prefetch the data used later */
2317 prefetch(skb->data);
2318
2319 ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2320 if (unlikely(ret <= 0)) {
2321 if (ret == -EBUSY) {
2322 hns3_tx_doorbell(ring, 0, true);
2323 return NETDEV_TX_BUSY;
2324 }
2325
2326 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2327 goto out_err_tx_ok;
2328 }
2329
2330 ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2331 if (unlikely(ret <= 0))
2332 goto out_err_tx_ok;
2333
2334 pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2335 (ring->desc_num - 1);
2336
2337 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2338 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2339
2340 ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2341 cpu_to_le16(BIT(HNS3_TXD_FE_B));
2342 trace_hns3_tx_desc(ring, pre_ntu);
2343
2344 skb_tx_timestamp(skb);
2345
2346 /* Complete translate all packets */
2347 dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2348 doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2349 netdev_xmit_more());
2350 hns3_tx_doorbell(ring, ret, doorbell);
2351
2352 return NETDEV_TX_OK;
2353
2354 out_err_tx_ok:
2355 dev_kfree_skb_any(skb);
2356 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2357 return NETDEV_TX_OK;
2358 }
2359
2360 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2361 {
2362 char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2363 char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2364 struct hnae3_handle *h = hns3_get_handle(netdev);
2365 struct sockaddr *mac_addr = p;
2366 int ret;
2367
2368 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2369 return -EADDRNOTAVAIL;
2370
2371 if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2372 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2373 netdev_info(netdev, "already using mac address %s\n",
2374 format_mac_addr_sa);
2375 return 0;
2376 }
2377
2378 /* For VF device, if there is a perm_addr, then the user will not
2379 * be allowed to change the address.
2380 */
2381 if (!hns3_is_phys_func(h->pdev) &&
2382 !is_zero_ether_addr(netdev->perm_addr)) {
2383 hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2384 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2385 netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2386 format_mac_addr_perm, format_mac_addr_sa);
2387 return -EPERM;
2388 }
2389
2390 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2391 if (ret) {
2392 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2393 return ret;
2394 }
2395
2396 eth_hw_addr_set(netdev, mac_addr->sa_data);
2397
2398 return 0;
2399 }
2400
2401 static int hns3_nic_do_ioctl(struct net_device *netdev,
2402 struct ifreq *ifr, int cmd)
2403 {
2404 struct hnae3_handle *h = hns3_get_handle(netdev);
2405
2406 if (!netif_running(netdev))
2407 return -EINVAL;
2408
2409 if (!h->ae_algo->ops->do_ioctl)
2410 return -EOPNOTSUPP;
2411
2412 return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2413 }
2414
2415 static int hns3_nic_set_features(struct net_device *netdev,
2416 netdev_features_t features)
2417 {
2418 netdev_features_t changed = netdev->features ^ features;
2419 struct hns3_nic_priv *priv = netdev_priv(netdev);
2420 struct hnae3_handle *h = priv->ae_handle;
2421 bool enable;
2422 int ret;
2423
2424 if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2425 enable = !!(features & NETIF_F_GRO_HW);
2426 ret = h->ae_algo->ops->set_gro_en(h, enable);
2427 if (ret)
2428 return ret;
2429 }
2430
2431 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2432 h->ae_algo->ops->enable_hw_strip_rxvtag) {
2433 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2434 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2435 if (ret)
2436 return ret;
2437 }
2438
2439 if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2440 enable = !!(features & NETIF_F_NTUPLE);
2441 h->ae_algo->ops->enable_fd(h, enable);
2442 }
2443
2444 if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2445 h->ae_algo->ops->cls_flower_active(h)) {
2446 netdev_err(netdev,
2447 "there are offloaded TC filters active, cannot disable HW TC offload");
2448 return -EINVAL;
2449 }
2450
2451 if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2452 h->ae_algo->ops->enable_vlan_filter) {
2453 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2454 ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2455 if (ret)
2456 return ret;
2457 }
2458
2459 netdev->features = features;
2460 return 0;
2461 }
2462
2463 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2464 struct net_device *dev,
2465 netdev_features_t features)
2466 {
2467 #define HNS3_MAX_HDR_LEN 480U
2468 #define HNS3_MAX_L4_HDR_LEN 60U
2469
2470 size_t len;
2471
2472 if (skb->ip_summed != CHECKSUM_PARTIAL)
2473 return features;
2474
2475 if (skb->encapsulation)
2476 len = skb_inner_transport_header(skb) - skb->data;
2477 else
2478 len = skb_transport_header(skb) - skb->data;
2479
2480 /* Assume L4 is 60 byte as TCP is the only protocol with a
2481 * a flexible value, and it's max len is 60 bytes.
2482 */
2483 len += HNS3_MAX_L4_HDR_LEN;
2484
2485 /* Hardware only supports checksum on the skb with a max header
2486 * len of 480 bytes.
2487 */
2488 if (len > HNS3_MAX_HDR_LEN)
2489 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2490
2491 return features;
2492 }
2493
2494 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2495 struct hns3_enet_ring *ring, bool is_tx)
2496 {
2497 unsigned int start;
2498
2499 do {
2500 start = u64_stats_fetch_begin(&ring->syncp);
2501 if (is_tx) {
2502 stats->tx_bytes += ring->stats.tx_bytes;
2503 stats->tx_packets += ring->stats.tx_pkts;
2504 stats->tx_dropped += ring->stats.sw_err_cnt;
2505 stats->tx_dropped += ring->stats.tx_vlan_err;
2506 stats->tx_dropped += ring->stats.tx_l4_proto_err;
2507 stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2508 stats->tx_dropped += ring->stats.tx_tso_err;
2509 stats->tx_dropped += ring->stats.over_max_recursion;
2510 stats->tx_dropped += ring->stats.hw_limitation;
2511 stats->tx_dropped += ring->stats.copy_bits_err;
2512 stats->tx_dropped += ring->stats.skb2sgl_err;
2513 stats->tx_dropped += ring->stats.map_sg_err;
2514 stats->tx_errors += ring->stats.sw_err_cnt;
2515 stats->tx_errors += ring->stats.tx_vlan_err;
2516 stats->tx_errors += ring->stats.tx_l4_proto_err;
2517 stats->tx_errors += ring->stats.tx_l2l3l4_err;
2518 stats->tx_errors += ring->stats.tx_tso_err;
2519 stats->tx_errors += ring->stats.over_max_recursion;
2520 stats->tx_errors += ring->stats.hw_limitation;
2521 stats->tx_errors += ring->stats.copy_bits_err;
2522 stats->tx_errors += ring->stats.skb2sgl_err;
2523 stats->tx_errors += ring->stats.map_sg_err;
2524 } else {
2525 stats->rx_bytes += ring->stats.rx_bytes;
2526 stats->rx_packets += ring->stats.rx_pkts;
2527 stats->rx_dropped += ring->stats.l2_err;
2528 stats->rx_errors += ring->stats.l2_err;
2529 stats->rx_errors += ring->stats.l3l4_csum_err;
2530 stats->rx_crc_errors += ring->stats.l2_err;
2531 stats->multicast += ring->stats.rx_multicast;
2532 stats->rx_length_errors += ring->stats.err_pkt_len;
2533 }
2534 } while (u64_stats_fetch_retry(&ring->syncp, start));
2535 }
2536
2537 static void hns3_nic_get_stats64(struct net_device *netdev,
2538 struct rtnl_link_stats64 *stats)
2539 {
2540 struct hns3_nic_priv *priv = netdev_priv(netdev);
2541 int queue_num = priv->ae_handle->kinfo.num_tqps;
2542 struct hnae3_handle *handle = priv->ae_handle;
2543 struct rtnl_link_stats64 ring_total_stats;
2544 struct hns3_enet_ring *ring;
2545 unsigned int idx;
2546
2547 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2548 return;
2549
2550 handle->ae_algo->ops->update_stats(handle);
2551
2552 memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2553 for (idx = 0; idx < queue_num; idx++) {
2554 /* fetch the tx stats */
2555 ring = &priv->ring[idx];
2556 hns3_fetch_stats(&ring_total_stats, ring, true);
2557
2558 /* fetch the rx stats */
2559 ring = &priv->ring[idx + queue_num];
2560 hns3_fetch_stats(&ring_total_stats, ring, false);
2561 }
2562
2563 stats->tx_bytes = ring_total_stats.tx_bytes;
2564 stats->tx_packets = ring_total_stats.tx_packets;
2565 stats->rx_bytes = ring_total_stats.rx_bytes;
2566 stats->rx_packets = ring_total_stats.rx_packets;
2567
2568 stats->rx_errors = ring_total_stats.rx_errors;
2569 stats->multicast = ring_total_stats.multicast;
2570 stats->rx_length_errors = ring_total_stats.rx_length_errors;
2571 stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2572 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2573
2574 stats->tx_errors = ring_total_stats.tx_errors;
2575 stats->rx_dropped = ring_total_stats.rx_dropped;
2576 stats->tx_dropped = ring_total_stats.tx_dropped;
2577 stats->collisions = netdev->stats.collisions;
2578 stats->rx_over_errors = netdev->stats.rx_over_errors;
2579 stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2580 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2581 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2582 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2583 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2584 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2585 stats->tx_window_errors = netdev->stats.tx_window_errors;
2586 stats->rx_compressed = netdev->stats.rx_compressed;
2587 stats->tx_compressed = netdev->stats.tx_compressed;
2588 }
2589
2590 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2591 {
2592 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2593 struct hnae3_knic_private_info *kinfo;
2594 u8 tc = mqprio_qopt->qopt.num_tc;
2595 u16 mode = mqprio_qopt->mode;
2596 u8 hw = mqprio_qopt->qopt.hw;
2597 struct hnae3_handle *h;
2598
2599 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2600 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2601 return -EOPNOTSUPP;
2602
2603 if (tc > HNAE3_MAX_TC)
2604 return -EINVAL;
2605
2606 if (!netdev)
2607 return -EINVAL;
2608
2609 h = hns3_get_handle(netdev);
2610 kinfo = &h->kinfo;
2611
2612 netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2613
2614 return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2615 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2616 }
2617
2618 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2619 struct flow_cls_offload *flow)
2620 {
2621 int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2622 struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2623
2624 switch (flow->command) {
2625 case FLOW_CLS_REPLACE:
2626 if (h->ae_algo->ops->add_cls_flower)
2627 return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2628 break;
2629 case FLOW_CLS_DESTROY:
2630 if (h->ae_algo->ops->del_cls_flower)
2631 return h->ae_algo->ops->del_cls_flower(h, flow);
2632 break;
2633 default:
2634 break;
2635 }
2636
2637 return -EOPNOTSUPP;
2638 }
2639
2640 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2641 void *cb_priv)
2642 {
2643 struct hns3_nic_priv *priv = cb_priv;
2644
2645 if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2646 return -EOPNOTSUPP;
2647
2648 switch (type) {
2649 case TC_SETUP_CLSFLOWER:
2650 return hns3_setup_tc_cls_flower(priv, type_data);
2651 default:
2652 return -EOPNOTSUPP;
2653 }
2654 }
2655
2656 static LIST_HEAD(hns3_block_cb_list);
2657
2658 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2659 void *type_data)
2660 {
2661 struct hns3_nic_priv *priv = netdev_priv(dev);
2662 int ret;
2663
2664 switch (type) {
2665 case TC_SETUP_QDISC_MQPRIO:
2666 ret = hns3_setup_tc(dev, type_data);
2667 break;
2668 case TC_SETUP_BLOCK:
2669 ret = flow_block_cb_setup_simple(type_data,
2670 &hns3_block_cb_list,
2671 hns3_setup_tc_block_cb,
2672 priv, priv, true);
2673 break;
2674 default:
2675 return -EOPNOTSUPP;
2676 }
2677
2678 return ret;
2679 }
2680
2681 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2682 __be16 proto, u16 vid)
2683 {
2684 struct hnae3_handle *h = hns3_get_handle(netdev);
2685 int ret = -EIO;
2686
2687 if (h->ae_algo->ops->set_vlan_filter)
2688 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2689
2690 return ret;
2691 }
2692
2693 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2694 __be16 proto, u16 vid)
2695 {
2696 struct hnae3_handle *h = hns3_get_handle(netdev);
2697 int ret = -EIO;
2698
2699 if (h->ae_algo->ops->set_vlan_filter)
2700 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2701
2702 return ret;
2703 }
2704
2705 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2706 u8 qos, __be16 vlan_proto)
2707 {
2708 struct hnae3_handle *h = hns3_get_handle(netdev);
2709 int ret = -EIO;
2710
2711 netif_dbg(h, drv, netdev,
2712 "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2713 vf, vlan, qos, ntohs(vlan_proto));
2714
2715 if (h->ae_algo->ops->set_vf_vlan_filter)
2716 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2717 qos, vlan_proto);
2718
2719 return ret;
2720 }
2721
2722 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2723 {
2724 struct hnae3_handle *handle = hns3_get_handle(netdev);
2725
2726 if (hns3_nic_resetting(netdev))
2727 return -EBUSY;
2728
2729 if (!handle->ae_algo->ops->set_vf_spoofchk)
2730 return -EOPNOTSUPP;
2731
2732 return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2733 }
2734
2735 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2736 {
2737 struct hnae3_handle *handle = hns3_get_handle(netdev);
2738
2739 if (!handle->ae_algo->ops->set_vf_trust)
2740 return -EOPNOTSUPP;
2741
2742 return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2743 }
2744
2745 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2746 {
2747 struct hnae3_handle *h = hns3_get_handle(netdev);
2748 int ret;
2749
2750 if (hns3_nic_resetting(netdev))
2751 return -EBUSY;
2752
2753 if (!h->ae_algo->ops->set_mtu)
2754 return -EOPNOTSUPP;
2755
2756 netif_dbg(h, drv, netdev,
2757 "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2758
2759 ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2760 if (ret)
2761 netdev_err(netdev, "failed to change MTU in hardware %d\n",
2762 ret);
2763 else
2764 netdev->mtu = new_mtu;
2765
2766 return ret;
2767 }
2768
2769 static int hns3_get_timeout_queue(struct net_device *ndev)
2770 {
2771 int i;
2772
2773 /* Find the stopped queue the same way the stack does */
2774 for (i = 0; i < ndev->num_tx_queues; i++) {
2775 struct netdev_queue *q;
2776 unsigned long trans_start;
2777
2778 q = netdev_get_tx_queue(ndev, i);
2779 trans_start = READ_ONCE(q->trans_start);
2780 if (netif_xmit_stopped(q) &&
2781 time_after(jiffies,
2782 (trans_start + ndev->watchdog_timeo))) {
2783 #ifdef CONFIG_BQL
2784 struct dql *dql = &q->dql;
2785
2786 netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2787 dql->last_obj_cnt, dql->num_queued,
2788 dql->adj_limit, dql->num_completed);
2789 #endif
2790 netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2791 q->state,
2792 jiffies_to_msecs(jiffies - trans_start));
2793 break;
2794 }
2795 }
2796
2797 return i;
2798 }
2799
2800 static void hns3_dump_queue_stats(struct net_device *ndev,
2801 struct hns3_enet_ring *tx_ring,
2802 int timeout_queue)
2803 {
2804 struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2805 struct hns3_nic_priv *priv = netdev_priv(ndev);
2806
2807 netdev_info(ndev,
2808 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2809 priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2810 tx_ring->next_to_clean, napi->state);
2811
2812 netdev_info(ndev,
2813 "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2814 tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2815 tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2816
2817 netdev_info(ndev,
2818 "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2819 tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2820 tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2821
2822 netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
2823 tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
2824 }
2825
2826 static void hns3_dump_queue_reg(struct net_device *ndev,
2827 struct hns3_enet_ring *tx_ring)
2828 {
2829 netdev_info(ndev,
2830 "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2831 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2832 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2833 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2834 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2835 readl(tx_ring->tqp_vector->mask_addr));
2836 netdev_info(ndev,
2837 "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2838 hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2839 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2840 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2841 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2842 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2843 hns3_tqp_read_reg(tx_ring,
2844 HNS3_RING_TX_RING_EBD_OFFSET_REG));
2845 }
2846
2847 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2848 {
2849 struct hns3_nic_priv *priv = netdev_priv(ndev);
2850 struct hnae3_handle *h = hns3_get_handle(ndev);
2851 struct hns3_enet_ring *tx_ring;
2852 int timeout_queue;
2853
2854 timeout_queue = hns3_get_timeout_queue(ndev);
2855 if (timeout_queue >= ndev->num_tx_queues) {
2856 netdev_info(ndev,
2857 "no netdev TX timeout queue found, timeout count: %llu\n",
2858 priv->tx_timeout_count);
2859 return false;
2860 }
2861
2862 priv->tx_timeout_count++;
2863
2864 tx_ring = &priv->ring[timeout_queue];
2865 hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2866
2867 /* When mac received many pause frames continuous, it's unable to send
2868 * packets, which may cause tx timeout
2869 */
2870 if (h->ae_algo->ops->get_mac_stats) {
2871 struct hns3_mac_stats mac_stats;
2872
2873 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2874 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2875 mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2876 }
2877
2878 hns3_dump_queue_reg(ndev, tx_ring);
2879
2880 return true;
2881 }
2882
2883 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2884 {
2885 struct hns3_nic_priv *priv = netdev_priv(ndev);
2886 struct hnae3_handle *h = priv->ae_handle;
2887
2888 if (!hns3_get_tx_timeo_queue_info(ndev))
2889 return;
2890
2891 /* request the reset, and let the hclge to determine
2892 * which reset level should be done
2893 */
2894 if (h->ae_algo->ops->reset_event)
2895 h->ae_algo->ops->reset_event(h->pdev, h);
2896 }
2897
2898 #ifdef CONFIG_RFS_ACCEL
2899 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2900 u16 rxq_index, u32 flow_id)
2901 {
2902 struct hnae3_handle *h = hns3_get_handle(dev);
2903 struct flow_keys fkeys;
2904
2905 if (!h->ae_algo->ops->add_arfs_entry)
2906 return -EOPNOTSUPP;
2907
2908 if (skb->encapsulation)
2909 return -EPROTONOSUPPORT;
2910
2911 if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2912 return -EPROTONOSUPPORT;
2913
2914 if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2915 fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2916 (fkeys.basic.ip_proto != IPPROTO_TCP &&
2917 fkeys.basic.ip_proto != IPPROTO_UDP))
2918 return -EPROTONOSUPPORT;
2919
2920 return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2921 }
2922 #endif
2923
2924 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2925 struct ifla_vf_info *ivf)
2926 {
2927 struct hnae3_handle *h = hns3_get_handle(ndev);
2928
2929 if (!h->ae_algo->ops->get_vf_config)
2930 return -EOPNOTSUPP;
2931
2932 return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2933 }
2934
2935 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2936 int link_state)
2937 {
2938 struct hnae3_handle *h = hns3_get_handle(ndev);
2939
2940 if (!h->ae_algo->ops->set_vf_link_state)
2941 return -EOPNOTSUPP;
2942
2943 return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2944 }
2945
2946 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2947 int min_tx_rate, int max_tx_rate)
2948 {
2949 struct hnae3_handle *h = hns3_get_handle(ndev);
2950
2951 if (!h->ae_algo->ops->set_vf_rate)
2952 return -EOPNOTSUPP;
2953
2954 return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2955 false);
2956 }
2957
2958 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2959 {
2960 struct hnae3_handle *h = hns3_get_handle(netdev);
2961 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2962
2963 if (!h->ae_algo->ops->set_vf_mac)
2964 return -EOPNOTSUPP;
2965
2966 if (is_multicast_ether_addr(mac)) {
2967 hnae3_format_mac_addr(format_mac_addr, mac);
2968 netdev_err(netdev,
2969 "Invalid MAC:%s specified. Could not set MAC\n",
2970 format_mac_addr);
2971 return -EINVAL;
2972 }
2973
2974 return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2975 }
2976
2977 #define HNS3_INVALID_DSCP 0xff
2978 #define HNS3_DSCP_SHIFT 2
2979
2980 static u8 hns3_get_skb_dscp(struct sk_buff *skb)
2981 {
2982 __be16 protocol = skb->protocol;
2983 u8 dscp = HNS3_INVALID_DSCP;
2984
2985 if (protocol == htons(ETH_P_8021Q))
2986 protocol = vlan_get_protocol(skb);
2987
2988 if (protocol == htons(ETH_P_IP))
2989 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT;
2990 else if (protocol == htons(ETH_P_IPV6))
2991 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT;
2992
2993 return dscp;
2994 }
2995
2996 static u16 hns3_nic_select_queue(struct net_device *netdev,
2997 struct sk_buff *skb,
2998 struct net_device *sb_dev)
2999 {
3000 struct hnae3_handle *h = hns3_get_handle(netdev);
3001 u8 dscp;
3002
3003 if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP ||
3004 !h->ae_algo->ops->get_dscp_prio)
3005 goto out;
3006
3007 dscp = hns3_get_skb_dscp(skb);
3008 if (unlikely(dscp >= HNAE3_MAX_DSCP))
3009 goto out;
3010
3011 skb->priority = h->kinfo.dscp_prio[dscp];
3012 if (skb->priority == HNAE3_PRIO_ID_INVALID)
3013 skb->priority = 0;
3014
3015 out:
3016 return netdev_pick_tx(netdev, skb, sb_dev);
3017 }
3018
3019 static const struct net_device_ops hns3_nic_netdev_ops = {
3020 .ndo_open = hns3_nic_net_open,
3021 .ndo_stop = hns3_nic_net_stop,
3022 .ndo_start_xmit = hns3_nic_net_xmit,
3023 .ndo_tx_timeout = hns3_nic_net_timeout,
3024 .ndo_set_mac_address = hns3_nic_net_set_mac_address,
3025 .ndo_eth_ioctl = hns3_nic_do_ioctl,
3026 .ndo_change_mtu = hns3_nic_change_mtu,
3027 .ndo_set_features = hns3_nic_set_features,
3028 .ndo_features_check = hns3_features_check,
3029 .ndo_get_stats64 = hns3_nic_get_stats64,
3030 .ndo_setup_tc = hns3_nic_setup_tc,
3031 .ndo_set_rx_mode = hns3_nic_set_rx_mode,
3032 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid,
3033 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid,
3034 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan,
3035 .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk,
3036 .ndo_set_vf_trust = hns3_set_vf_trust,
3037 #ifdef CONFIG_RFS_ACCEL
3038 .ndo_rx_flow_steer = hns3_rx_flow_steer,
3039 #endif
3040 .ndo_get_vf_config = hns3_nic_get_vf_config,
3041 .ndo_set_vf_link_state = hns3_nic_set_vf_link_state,
3042 .ndo_set_vf_rate = hns3_nic_set_vf_rate,
3043 .ndo_set_vf_mac = hns3_nic_set_vf_mac,
3044 .ndo_select_queue = hns3_nic_select_queue,
3045 };
3046
3047 bool hns3_is_phys_func(struct pci_dev *pdev)
3048 {
3049 u32 dev_id = pdev->device;
3050
3051 switch (dev_id) {
3052 case HNAE3_DEV_ID_GE:
3053 case HNAE3_DEV_ID_25GE:
3054 case HNAE3_DEV_ID_25GE_RDMA:
3055 case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
3056 case HNAE3_DEV_ID_50GE_RDMA:
3057 case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
3058 case HNAE3_DEV_ID_100G_RDMA_MACSEC:
3059 case HNAE3_DEV_ID_200G_RDMA:
3060 return true;
3061 case HNAE3_DEV_ID_VF:
3062 case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
3063 return false;
3064 default:
3065 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
3066 dev_id);
3067 }
3068
3069 return false;
3070 }
3071
3072 static void hns3_disable_sriov(struct pci_dev *pdev)
3073 {
3074 /* If our VFs are assigned we cannot shut down SR-IOV
3075 * without causing issues, so just leave the hardware
3076 * available but disabled
3077 */
3078 if (pci_vfs_assigned(pdev)) {
3079 dev_warn(&pdev->dev,
3080 "disabling driver while VFs are assigned\n");
3081 return;
3082 }
3083
3084 pci_disable_sriov(pdev);
3085 }
3086
3087 /* hns3_probe - Device initialization routine
3088 * @pdev: PCI device information struct
3089 * @ent: entry in hns3_pci_tbl
3090 *
3091 * hns3_probe initializes a PF identified by a pci_dev structure.
3092 * The OS initialization, configuring of the PF private structure,
3093 * and a hardware reset occur.
3094 *
3095 * Returns 0 on success, negative on failure
3096 */
3097 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3098 {
3099 struct hnae3_ae_dev *ae_dev;
3100 int ret;
3101
3102 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
3103 if (!ae_dev)
3104 return -ENOMEM;
3105
3106 ae_dev->pdev = pdev;
3107 ae_dev->flag = ent->driver_data;
3108 pci_set_drvdata(pdev, ae_dev);
3109
3110 ret = hnae3_register_ae_dev(ae_dev);
3111 if (ret)
3112 pci_set_drvdata(pdev, NULL);
3113
3114 return ret;
3115 }
3116
3117 /**
3118 * hns3_clean_vf_config
3119 * @pdev: pointer to a pci_dev structure
3120 * @num_vfs: number of VFs allocated
3121 *
3122 * Clean residual vf config after disable sriov
3123 **/
3124 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
3125 {
3126 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3127
3128 if (ae_dev->ops->clean_vf_config)
3129 ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
3130 }
3131
3132 /* hns3_remove - Device removal routine
3133 * @pdev: PCI device information struct
3134 */
3135 static void hns3_remove(struct pci_dev *pdev)
3136 {
3137 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3138
3139 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
3140 hns3_disable_sriov(pdev);
3141
3142 hnae3_unregister_ae_dev(ae_dev);
3143 pci_set_drvdata(pdev, NULL);
3144 }
3145
3146 /**
3147 * hns3_pci_sriov_configure
3148 * @pdev: pointer to a pci_dev structure
3149 * @num_vfs: number of VFs to allocate
3150 *
3151 * Enable or change the number of VFs. Called when the user updates the number
3152 * of VFs in sysfs.
3153 **/
3154 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3155 {
3156 int ret;
3157
3158 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3159 dev_warn(&pdev->dev, "Can not config SRIOV\n");
3160 return -EINVAL;
3161 }
3162
3163 if (num_vfs) {
3164 ret = pci_enable_sriov(pdev, num_vfs);
3165 if (ret)
3166 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3167 else
3168 return num_vfs;
3169 } else if (!pci_vfs_assigned(pdev)) {
3170 int num_vfs_pre = pci_num_vf(pdev);
3171
3172 pci_disable_sriov(pdev);
3173 hns3_clean_vf_config(pdev, num_vfs_pre);
3174 } else {
3175 dev_warn(&pdev->dev,
3176 "Unable to free VFs because some are assigned to VMs.\n");
3177 }
3178
3179 return 0;
3180 }
3181
3182 static void hns3_shutdown(struct pci_dev *pdev)
3183 {
3184 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3185
3186 hnae3_unregister_ae_dev(ae_dev);
3187 pci_set_drvdata(pdev, NULL);
3188
3189 if (system_state == SYSTEM_POWER_OFF)
3190 pci_set_power_state(pdev, PCI_D3hot);
3191 }
3192
3193 static int __maybe_unused hns3_suspend(struct device *dev)
3194 {
3195 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3196
3197 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3198 dev_info(dev, "Begin to suspend.\n");
3199 if (ae_dev->ops && ae_dev->ops->reset_prepare)
3200 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3201 }
3202
3203 return 0;
3204 }
3205
3206 static int __maybe_unused hns3_resume(struct device *dev)
3207 {
3208 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3209
3210 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3211 dev_info(dev, "Begin to resume.\n");
3212 if (ae_dev->ops && ae_dev->ops->reset_done)
3213 ae_dev->ops->reset_done(ae_dev);
3214 }
3215
3216 return 0;
3217 }
3218
3219 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3220 pci_channel_state_t state)
3221 {
3222 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3223 pci_ers_result_t ret;
3224
3225 dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3226
3227 if (state == pci_channel_io_perm_failure)
3228 return PCI_ERS_RESULT_DISCONNECT;
3229
3230 if (!ae_dev || !ae_dev->ops) {
3231 dev_err(&pdev->dev,
3232 "Can't recover - error happened before device initialized\n");
3233 return PCI_ERS_RESULT_NONE;
3234 }
3235
3236 if (ae_dev->ops->handle_hw_ras_error)
3237 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3238 else
3239 return PCI_ERS_RESULT_NONE;
3240
3241 return ret;
3242 }
3243
3244 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3245 {
3246 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3247 const struct hnae3_ae_ops *ops;
3248 enum hnae3_reset_type reset_type;
3249 struct device *dev = &pdev->dev;
3250
3251 if (!ae_dev || !ae_dev->ops)
3252 return PCI_ERS_RESULT_NONE;
3253
3254 ops = ae_dev->ops;
3255 /* request the reset */
3256 if (ops->reset_event && ops->get_reset_level &&
3257 ops->set_default_reset_request) {
3258 if (ae_dev->hw_err_reset_req) {
3259 reset_type = ops->get_reset_level(ae_dev,
3260 &ae_dev->hw_err_reset_req);
3261 ops->set_default_reset_request(ae_dev, reset_type);
3262 dev_info(dev, "requesting reset due to PCI error\n");
3263 ops->reset_event(pdev, NULL);
3264 }
3265
3266 return PCI_ERS_RESULT_RECOVERED;
3267 }
3268
3269 return PCI_ERS_RESULT_DISCONNECT;
3270 }
3271
3272 static void hns3_reset_prepare(struct pci_dev *pdev)
3273 {
3274 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3275
3276 dev_info(&pdev->dev, "FLR prepare\n");
3277 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3278 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3279 }
3280
3281 static void hns3_reset_done(struct pci_dev *pdev)
3282 {
3283 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3284
3285 dev_info(&pdev->dev, "FLR done\n");
3286 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3287 ae_dev->ops->reset_done(ae_dev);
3288 }
3289
3290 static const struct pci_error_handlers hns3_err_handler = {
3291 .error_detected = hns3_error_detected,
3292 .slot_reset = hns3_slot_reset,
3293 .reset_prepare = hns3_reset_prepare,
3294 .reset_done = hns3_reset_done,
3295 };
3296
3297 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3298
3299 static struct pci_driver hns3_driver = {
3300 .name = hns3_driver_name,
3301 .id_table = hns3_pci_tbl,
3302 .probe = hns3_probe,
3303 .remove = hns3_remove,
3304 .shutdown = hns3_shutdown,
3305 .driver.pm = &hns3_pm_ops,
3306 .sriov_configure = hns3_pci_sriov_configure,
3307 .err_handler = &hns3_err_handler,
3308 };
3309
3310 /* set default feature to hns3 */
3311 static void hns3_set_default_feature(struct net_device *netdev)
3312 {
3313 struct hnae3_handle *h = hns3_get_handle(netdev);
3314 struct pci_dev *pdev = h->pdev;
3315 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3316
3317 netdev->priv_flags |= IFF_UNICAST_FLT;
3318
3319 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3320 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3321 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3322 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3323 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3324 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3325
3326 if (hnae3_ae_dev_gro_supported(ae_dev))
3327 netdev->features |= NETIF_F_GRO_HW;
3328
3329 if (hnae3_ae_dev_fd_supported(ae_dev))
3330 netdev->features |= NETIF_F_NTUPLE;
3331
3332 if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3333 netdev->features |= NETIF_F_GSO_UDP_L4;
3334
3335 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3336 netdev->features |= NETIF_F_HW_CSUM;
3337 else
3338 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3339
3340 if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3341 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3342
3343 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3344 netdev->features |= NETIF_F_HW_TC;
3345
3346 netdev->hw_features |= netdev->features;
3347 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3348 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3349
3350 netdev->vlan_features |= netdev->features &
3351 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3352 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3353 NETIF_F_HW_TC);
3354
3355 netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3356 }
3357
3358 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3359 struct hns3_desc_cb *cb)
3360 {
3361 unsigned int order = hns3_page_order(ring);
3362 struct page *p;
3363
3364 if (ring->page_pool) {
3365 p = page_pool_dev_alloc_frag(ring->page_pool,
3366 &cb->page_offset,
3367 hns3_buf_size(ring));
3368 if (unlikely(!p))
3369 return -ENOMEM;
3370
3371 cb->priv = p;
3372 cb->buf = page_address(p);
3373 cb->dma = page_pool_get_dma_addr(p);
3374 cb->type = DESC_TYPE_PP_FRAG;
3375 cb->reuse_flag = 0;
3376 return 0;
3377 }
3378
3379 p = dev_alloc_pages(order);
3380 if (!p)
3381 return -ENOMEM;
3382
3383 cb->priv = p;
3384 cb->page_offset = 0;
3385 cb->reuse_flag = 0;
3386 cb->buf = page_address(p);
3387 cb->length = hns3_page_size(ring);
3388 cb->type = DESC_TYPE_PAGE;
3389 page_ref_add(p, USHRT_MAX - 1);
3390 cb->pagecnt_bias = USHRT_MAX;
3391
3392 return 0;
3393 }
3394
3395 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3396 struct hns3_desc_cb *cb, int budget)
3397 {
3398 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3399 DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3400 napi_consume_skb(cb->priv, budget);
3401 else if (!HNAE3_IS_TX_RING(ring)) {
3402 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3403 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3404 else if (cb->type & DESC_TYPE_PP_FRAG)
3405 page_pool_put_full_page(ring->page_pool, cb->priv,
3406 false);
3407 }
3408 memset(cb, 0, sizeof(*cb));
3409 }
3410
3411 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3412 {
3413 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3414 cb->length, ring_to_dma_dir(ring));
3415
3416 if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3417 return -EIO;
3418
3419 return 0;
3420 }
3421
3422 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3423 struct hns3_desc_cb *cb)
3424 {
3425 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3426 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3427 ring_to_dma_dir(ring));
3428 else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3429 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3430 ring_to_dma_dir(ring));
3431 else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3432 DESC_TYPE_SGL_SKB))
3433 hns3_tx_spare_reclaim_cb(ring, cb);
3434 }
3435
3436 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3437 {
3438 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3439 ring->desc[i].addr = 0;
3440 ring->desc_cb[i].refill = 0;
3441 }
3442
3443 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3444 int budget)
3445 {
3446 struct hns3_desc_cb *cb = &ring->desc_cb[i];
3447
3448 if (!ring->desc_cb[i].dma)
3449 return;
3450
3451 hns3_buffer_detach(ring, i);
3452 hns3_free_buffer(ring, cb, budget);
3453 }
3454
3455 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3456 {
3457 int i;
3458
3459 for (i = 0; i < ring->desc_num; i++)
3460 hns3_free_buffer_detach(ring, i, 0);
3461 }
3462
3463 /* free desc along with its attached buffer */
3464 static void hns3_free_desc(struct hns3_enet_ring *ring)
3465 {
3466 int size = ring->desc_num * sizeof(ring->desc[0]);
3467
3468 hns3_free_buffers(ring);
3469
3470 if (ring->desc) {
3471 dma_free_coherent(ring_to_dev(ring), size,
3472 ring->desc, ring->desc_dma_addr);
3473 ring->desc = NULL;
3474 }
3475 }
3476
3477 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3478 {
3479 int size = ring->desc_num * sizeof(ring->desc[0]);
3480
3481 ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3482 &ring->desc_dma_addr, GFP_KERNEL);
3483 if (!ring->desc)
3484 return -ENOMEM;
3485
3486 return 0;
3487 }
3488
3489 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3490 struct hns3_desc_cb *cb)
3491 {
3492 int ret;
3493
3494 ret = hns3_alloc_buffer(ring, cb);
3495 if (ret || ring->page_pool)
3496 goto out;
3497
3498 ret = hns3_map_buffer(ring, cb);
3499 if (ret)
3500 goto out_with_buf;
3501
3502 return 0;
3503
3504 out_with_buf:
3505 hns3_free_buffer(ring, cb, 0);
3506 out:
3507 return ret;
3508 }
3509
3510 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3511 {
3512 int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3513
3514 if (ret)
3515 return ret;
3516
3517 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3518 ring->desc_cb[i].page_offset);
3519 ring->desc_cb[i].refill = 1;
3520
3521 return 0;
3522 }
3523
3524 /* Allocate memory for raw pkg, and map with dma */
3525 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3526 {
3527 int i, j, ret;
3528
3529 for (i = 0; i < ring->desc_num; i++) {
3530 ret = hns3_alloc_and_attach_buffer(ring, i);
3531 if (ret)
3532 goto out_buffer_fail;
3533 }
3534
3535 return 0;
3536
3537 out_buffer_fail:
3538 for (j = i - 1; j >= 0; j--)
3539 hns3_free_buffer_detach(ring, j, 0);
3540 return ret;
3541 }
3542
3543 /* detach a in-used buffer and replace with a reserved one */
3544 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3545 struct hns3_desc_cb *res_cb)
3546 {
3547 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3548 ring->desc_cb[i] = *res_cb;
3549 ring->desc_cb[i].refill = 1;
3550 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3551 ring->desc_cb[i].page_offset);
3552 ring->desc[i].rx.bd_base_info = 0;
3553 }
3554
3555 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3556 {
3557 ring->desc_cb[i].reuse_flag = 0;
3558 ring->desc_cb[i].refill = 1;
3559 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3560 ring->desc_cb[i].page_offset);
3561 ring->desc[i].rx.bd_base_info = 0;
3562
3563 dma_sync_single_for_device(ring_to_dev(ring),
3564 ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3565 hns3_buf_size(ring),
3566 DMA_FROM_DEVICE);
3567 }
3568
3569 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3570 int *bytes, int *pkts, int budget)
3571 {
3572 /* This smp_load_acquire() pairs with smp_store_release() in
3573 * hns3_tx_doorbell().
3574 */
3575 int ltu = smp_load_acquire(&ring->last_to_use);
3576 int ntc = ring->next_to_clean;
3577 struct hns3_desc_cb *desc_cb;
3578 bool reclaimed = false;
3579 struct hns3_desc *desc;
3580
3581 while (ltu != ntc) {
3582 desc = &ring->desc[ntc];
3583
3584 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3585 BIT(HNS3_TXD_VLD_B))
3586 break;
3587
3588 desc_cb = &ring->desc_cb[ntc];
3589
3590 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3591 DESC_TYPE_BOUNCE_HEAD |
3592 DESC_TYPE_SGL_SKB)) {
3593 (*pkts)++;
3594 (*bytes) += desc_cb->send_bytes;
3595 }
3596
3597 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3598 hns3_free_buffer_detach(ring, ntc, budget);
3599
3600 if (++ntc == ring->desc_num)
3601 ntc = 0;
3602
3603 /* Issue prefetch for next Tx descriptor */
3604 prefetch(&ring->desc_cb[ntc]);
3605 reclaimed = true;
3606 }
3607
3608 if (unlikely(!reclaimed))
3609 return false;
3610
3611 /* This smp_store_release() pairs with smp_load_acquire() in
3612 * ring_space called by hns3_nic_net_xmit.
3613 */
3614 smp_store_release(&ring->next_to_clean, ntc);
3615
3616 hns3_tx_spare_update(ring);
3617
3618 return true;
3619 }
3620
3621 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3622 {
3623 struct net_device *netdev = ring_to_netdev(ring);
3624 struct hns3_nic_priv *priv = netdev_priv(netdev);
3625 struct netdev_queue *dev_queue;
3626 int bytes, pkts;
3627
3628 bytes = 0;
3629 pkts = 0;
3630
3631 if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3632 return;
3633
3634 ring->tqp_vector->tx_group.total_bytes += bytes;
3635 ring->tqp_vector->tx_group.total_packets += pkts;
3636
3637 u64_stats_update_begin(&ring->syncp);
3638 ring->stats.tx_bytes += bytes;
3639 ring->stats.tx_pkts += pkts;
3640 u64_stats_update_end(&ring->syncp);
3641
3642 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3643 netdev_tx_completed_queue(dev_queue, pkts, bytes);
3644
3645 if (unlikely(netif_carrier_ok(netdev) &&
3646 ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3647 /* Make sure that anybody stopping the queue after this
3648 * sees the new next_to_clean.
3649 */
3650 smp_mb();
3651 if (netif_tx_queue_stopped(dev_queue) &&
3652 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3653 netif_tx_wake_queue(dev_queue);
3654 ring->stats.restart_queue++;
3655 }
3656 }
3657 }
3658
3659 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3660 {
3661 int ntc = ring->next_to_clean;
3662 int ntu = ring->next_to_use;
3663
3664 if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3665 return ring->desc_num;
3666
3667 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3668 }
3669
3670 /* Return true if there is any allocation failure */
3671 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3672 int cleand_count)
3673 {
3674 struct hns3_desc_cb *desc_cb;
3675 struct hns3_desc_cb res_cbs;
3676 int i, ret;
3677
3678 for (i = 0; i < cleand_count; i++) {
3679 desc_cb = &ring->desc_cb[ring->next_to_use];
3680 if (desc_cb->reuse_flag) {
3681 hns3_ring_stats_update(ring, reuse_pg_cnt);
3682
3683 hns3_reuse_buffer(ring, ring->next_to_use);
3684 } else {
3685 ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3686 if (ret) {
3687 hns3_ring_stats_update(ring, sw_err_cnt);
3688
3689 hns3_rl_err(ring_to_netdev(ring),
3690 "alloc rx buffer failed: %d\n",
3691 ret);
3692
3693 writel(i, ring->tqp->io_base +
3694 HNS3_RING_RX_RING_HEAD_REG);
3695 return true;
3696 }
3697 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3698
3699 hns3_ring_stats_update(ring, non_reuse_pg);
3700 }
3701
3702 ring_ptr_move_fw(ring, next_to_use);
3703 }
3704
3705 writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3706 return false;
3707 }
3708
3709 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3710 {
3711 return page_count(cb->priv) == cb->pagecnt_bias;
3712 }
3713
3714 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3715 struct hns3_enet_ring *ring,
3716 int pull_len,
3717 struct hns3_desc_cb *desc_cb)
3718 {
3719 struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3720 u32 frag_offset = desc_cb->page_offset + pull_len;
3721 int size = le16_to_cpu(desc->rx.size);
3722 u32 frag_size = size - pull_len;
3723 void *frag = napi_alloc_frag(frag_size);
3724
3725 if (unlikely(!frag)) {
3726 hns3_ring_stats_update(ring, frag_alloc_err);
3727
3728 hns3_rl_err(ring_to_netdev(ring),
3729 "failed to allocate rx frag\n");
3730 return -ENOMEM;
3731 }
3732
3733 desc_cb->reuse_flag = 1;
3734 memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3735 skb_add_rx_frag(skb, i, virt_to_page(frag),
3736 offset_in_page(frag), frag_size, frag_size);
3737
3738 hns3_ring_stats_update(ring, frag_alloc);
3739 return 0;
3740 }
3741
3742 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3743 struct hns3_enet_ring *ring, int pull_len,
3744 struct hns3_desc_cb *desc_cb)
3745 {
3746 struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3747 u32 frag_offset = desc_cb->page_offset + pull_len;
3748 int size = le16_to_cpu(desc->rx.size);
3749 u32 truesize = hns3_buf_size(ring);
3750 u32 frag_size = size - pull_len;
3751 int ret = 0;
3752 bool reused;
3753
3754 if (ring->page_pool) {
3755 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3756 frag_size, truesize);
3757 return;
3758 }
3759
3760 /* Avoid re-using remote or pfmem page */
3761 if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3762 goto out;
3763
3764 reused = hns3_can_reuse_page(desc_cb);
3765
3766 /* Rx page can be reused when:
3767 * 1. Rx page is only owned by the driver when page_offset
3768 * is zero, which means 0 @ truesize will be used by
3769 * stack after skb_add_rx_frag() is called, and the rest
3770 * of rx page can be reused by driver.
3771 * Or
3772 * 2. Rx page is only owned by the driver when page_offset
3773 * is non-zero, which means page_offset @ truesize will
3774 * be used by stack after skb_add_rx_frag() is called,
3775 * and 0 @ truesize can be reused by driver.
3776 */
3777 if ((!desc_cb->page_offset && reused) ||
3778 ((desc_cb->page_offset + truesize + truesize) <=
3779 hns3_page_size(ring) && desc_cb->page_offset)) {
3780 desc_cb->page_offset += truesize;
3781 desc_cb->reuse_flag = 1;
3782 } else if (desc_cb->page_offset && reused) {
3783 desc_cb->page_offset = 0;
3784 desc_cb->reuse_flag = 1;
3785 } else if (frag_size <= ring->rx_copybreak) {
3786 ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3787 if (!ret)
3788 return;
3789 }
3790
3791 out:
3792 desc_cb->pagecnt_bias--;
3793
3794 if (unlikely(!desc_cb->pagecnt_bias)) {
3795 page_ref_add(desc_cb->priv, USHRT_MAX);
3796 desc_cb->pagecnt_bias = USHRT_MAX;
3797 }
3798
3799 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3800 frag_size, truesize);
3801
3802 if (unlikely(!desc_cb->reuse_flag))
3803 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3804 }
3805
3806 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3807 {
3808 __be16 type = skb->protocol;
3809 struct tcphdr *th;
3810 int depth = 0;
3811
3812 while (eth_type_vlan(type)) {
3813 struct vlan_hdr *vh;
3814
3815 if ((depth + VLAN_HLEN) > skb_headlen(skb))
3816 return -EFAULT;
3817
3818 vh = (struct vlan_hdr *)(skb->data + depth);
3819 type = vh->h_vlan_encapsulated_proto;
3820 depth += VLAN_HLEN;
3821 }
3822
3823 skb_set_network_header(skb, depth);
3824
3825 if (type == htons(ETH_P_IP)) {
3826 const struct iphdr *iph = ip_hdr(skb);
3827
3828 depth += sizeof(struct iphdr);
3829 skb_set_transport_header(skb, depth);
3830 th = tcp_hdr(skb);
3831 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3832 iph->daddr, 0);
3833 } else if (type == htons(ETH_P_IPV6)) {
3834 const struct ipv6hdr *iph = ipv6_hdr(skb);
3835
3836 depth += sizeof(struct ipv6hdr);
3837 skb_set_transport_header(skb, depth);
3838 th = tcp_hdr(skb);
3839 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3840 &iph->daddr, 0);
3841 } else {
3842 hns3_rl_err(skb->dev,
3843 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3844 be16_to_cpu(type), depth);
3845 return -EFAULT;
3846 }
3847
3848 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3849 if (th->cwr)
3850 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3851
3852 if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3853 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3854
3855 skb->csum_start = (unsigned char *)th - skb->head;
3856 skb->csum_offset = offsetof(struct tcphdr, check);
3857 skb->ip_summed = CHECKSUM_PARTIAL;
3858
3859 trace_hns3_gro(skb);
3860
3861 return 0;
3862 }
3863
3864 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
3865 struct sk_buff *skb, u32 ptype, u16 csum)
3866 {
3867 if (ptype == HNS3_INVALID_PTYPE ||
3868 hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3869 return;
3870
3871 hns3_ring_stats_update(ring, csum_complete);
3872 skb->ip_summed = CHECKSUM_COMPLETE;
3873 skb->csum = csum_unfold((__force __sum16)csum);
3874 }
3875
3876 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3877 u32 ol_info, u32 ptype)
3878 {
3879 int l3_type, l4_type;
3880 int ol4_type;
3881
3882 if (ptype != HNS3_INVALID_PTYPE) {
3883 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3884 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3885
3886 return;
3887 }
3888
3889 ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3890 HNS3_RXD_OL4ID_S);
3891 switch (ol4_type) {
3892 case HNS3_OL4_TYPE_MAC_IN_UDP:
3893 case HNS3_OL4_TYPE_NVGRE:
3894 skb->csum_level = 1;
3895 fallthrough;
3896 case HNS3_OL4_TYPE_NO_TUN:
3897 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3898 HNS3_RXD_L3ID_S);
3899 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3900 HNS3_RXD_L4ID_S);
3901 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3902 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3903 l3_type == HNS3_L3_TYPE_IPV6) &&
3904 (l4_type == HNS3_L4_TYPE_UDP ||
3905 l4_type == HNS3_L4_TYPE_TCP ||
3906 l4_type == HNS3_L4_TYPE_SCTP))
3907 skb->ip_summed = CHECKSUM_UNNECESSARY;
3908 break;
3909 default:
3910 break;
3911 }
3912 }
3913
3914 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3915 u32 l234info, u32 bd_base_info, u32 ol_info,
3916 u16 csum)
3917 {
3918 struct net_device *netdev = ring_to_netdev(ring);
3919 struct hns3_nic_priv *priv = netdev_priv(netdev);
3920 u32 ptype = HNS3_INVALID_PTYPE;
3921
3922 skb->ip_summed = CHECKSUM_NONE;
3923
3924 skb_checksum_none_assert(skb);
3925
3926 if (!(netdev->features & NETIF_F_RXCSUM))
3927 return;
3928
3929 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3930 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3931 HNS3_RXD_PTYPE_S);
3932
3933 hns3_checksum_complete(ring, skb, ptype, csum);
3934
3935 /* check if hardware has done checksum */
3936 if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3937 return;
3938
3939 if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3940 BIT(HNS3_RXD_OL3E_B) |
3941 BIT(HNS3_RXD_OL4E_B)))) {
3942 skb->ip_summed = CHECKSUM_NONE;
3943 hns3_ring_stats_update(ring, l3l4_csum_err);
3944
3945 return;
3946 }
3947
3948 hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3949 }
3950
3951 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3952 {
3953 if (skb_has_frag_list(skb))
3954 napi_gro_flush(&ring->tqp_vector->napi, false);
3955
3956 napi_gro_receive(&ring->tqp_vector->napi, skb);
3957 }
3958
3959 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3960 struct hns3_desc *desc, u32 l234info,
3961 u16 *vlan_tag)
3962 {
3963 struct hnae3_handle *handle = ring->tqp->handle;
3964 struct pci_dev *pdev = ring->tqp->handle->pdev;
3965 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3966
3967 if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3968 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3969 if (!(*vlan_tag & VLAN_VID_MASK))
3970 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3971
3972 return (*vlan_tag != 0);
3973 }
3974
3975 #define HNS3_STRP_OUTER_VLAN 0x1
3976 #define HNS3_STRP_INNER_VLAN 0x2
3977 #define HNS3_STRP_BOTH 0x3
3978
3979 /* Hardware always insert VLAN tag into RX descriptor when
3980 * remove the tag from packet, driver needs to determine
3981 * reporting which tag to stack.
3982 */
3983 switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3984 HNS3_RXD_STRP_TAGP_S)) {
3985 case HNS3_STRP_OUTER_VLAN:
3986 if (handle->port_base_vlan_state !=
3987 HNAE3_PORT_BASE_VLAN_DISABLE)
3988 return false;
3989
3990 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3991 return true;
3992 case HNS3_STRP_INNER_VLAN:
3993 if (handle->port_base_vlan_state !=
3994 HNAE3_PORT_BASE_VLAN_DISABLE)
3995 return false;
3996
3997 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3998 return true;
3999 case HNS3_STRP_BOTH:
4000 if (handle->port_base_vlan_state ==
4001 HNAE3_PORT_BASE_VLAN_DISABLE)
4002 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4003 else
4004 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4005
4006 return true;
4007 default:
4008 return false;
4009 }
4010 }
4011
4012 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
4013 {
4014 ring->desc[ring->next_to_clean].rx.bd_base_info &=
4015 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
4016 ring->desc_cb[ring->next_to_clean].refill = 0;
4017 ring->next_to_clean += 1;
4018
4019 if (unlikely(ring->next_to_clean == ring->desc_num))
4020 ring->next_to_clean = 0;
4021 }
4022
4023 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
4024 unsigned char *va)
4025 {
4026 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
4027 struct net_device *netdev = ring_to_netdev(ring);
4028 struct sk_buff *skb;
4029
4030 ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
4031 skb = ring->skb;
4032 if (unlikely(!skb)) {
4033 hns3_rl_err(netdev, "alloc rx skb fail\n");
4034 hns3_ring_stats_update(ring, sw_err_cnt);
4035
4036 return -ENOMEM;
4037 }
4038
4039 trace_hns3_rx_desc(ring);
4040 prefetchw(skb->data);
4041
4042 ring->pending_buf = 1;
4043 ring->frag_num = 0;
4044 ring->tail_skb = NULL;
4045 if (length <= HNS3_RX_HEAD_SIZE) {
4046 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
4047
4048 /* We can reuse buffer as-is, just make sure it is reusable */
4049 if (dev_page_is_reusable(desc_cb->priv))
4050 desc_cb->reuse_flag = 1;
4051 else if (desc_cb->type & DESC_TYPE_PP_FRAG)
4052 page_pool_put_full_page(ring->page_pool, desc_cb->priv,
4053 false);
4054 else /* This page cannot be reused so discard it */
4055 __page_frag_cache_drain(desc_cb->priv,
4056 desc_cb->pagecnt_bias);
4057
4058 hns3_rx_ring_move_fw(ring);
4059 return 0;
4060 }
4061
4062 if (ring->page_pool)
4063 skb_mark_for_recycle(skb);
4064
4065 hns3_ring_stats_update(ring, seg_pkt_cnt);
4066
4067 ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
4068 __skb_put(skb, ring->pull_len);
4069 hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
4070 desc_cb);
4071 hns3_rx_ring_move_fw(ring);
4072
4073 return 0;
4074 }
4075
4076 static int hns3_add_frag(struct hns3_enet_ring *ring)
4077 {
4078 struct sk_buff *skb = ring->skb;
4079 struct sk_buff *head_skb = skb;
4080 struct sk_buff *new_skb;
4081 struct hns3_desc_cb *desc_cb;
4082 struct hns3_desc *desc;
4083 u32 bd_base_info;
4084
4085 do {
4086 desc = &ring->desc[ring->next_to_clean];
4087 desc_cb = &ring->desc_cb[ring->next_to_clean];
4088 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4089 /* make sure HW write desc complete */
4090 dma_rmb();
4091 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4092 return -ENXIO;
4093
4094 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
4095 new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
4096 if (unlikely(!new_skb)) {
4097 hns3_rl_err(ring_to_netdev(ring),
4098 "alloc rx fraglist skb fail\n");
4099 return -ENXIO;
4100 }
4101
4102 if (ring->page_pool)
4103 skb_mark_for_recycle(new_skb);
4104
4105 ring->frag_num = 0;
4106
4107 if (ring->tail_skb) {
4108 ring->tail_skb->next = new_skb;
4109 ring->tail_skb = new_skb;
4110 } else {
4111 skb_shinfo(skb)->frag_list = new_skb;
4112 ring->tail_skb = new_skb;
4113 }
4114 }
4115
4116 if (ring->tail_skb) {
4117 head_skb->truesize += hns3_buf_size(ring);
4118 head_skb->data_len += le16_to_cpu(desc->rx.size);
4119 head_skb->len += le16_to_cpu(desc->rx.size);
4120 skb = ring->tail_skb;
4121 }
4122
4123 dma_sync_single_for_cpu(ring_to_dev(ring),
4124 desc_cb->dma + desc_cb->page_offset,
4125 hns3_buf_size(ring),
4126 DMA_FROM_DEVICE);
4127
4128 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
4129 trace_hns3_rx_desc(ring);
4130 hns3_rx_ring_move_fw(ring);
4131 ring->pending_buf++;
4132 } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
4133
4134 return 0;
4135 }
4136
4137 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
4138 struct sk_buff *skb, u32 l234info,
4139 u32 bd_base_info, u32 ol_info, u16 csum)
4140 {
4141 struct net_device *netdev = ring_to_netdev(ring);
4142 struct hns3_nic_priv *priv = netdev_priv(netdev);
4143 u32 l3_type;
4144
4145 skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4146 HNS3_RXD_GRO_SIZE_M,
4147 HNS3_RXD_GRO_SIZE_S);
4148 /* if there is no HW GRO, do not set gro params */
4149 if (!skb_shinfo(skb)->gso_size) {
4150 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4151 csum);
4152 return 0;
4153 }
4154
4155 NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4156 HNS3_RXD_GRO_COUNT_M,
4157 HNS3_RXD_GRO_COUNT_S);
4158
4159 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4160 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4161 HNS3_RXD_PTYPE_S);
4162
4163 l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4164 } else {
4165 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4166 HNS3_RXD_L3ID_S);
4167 }
4168
4169 if (l3_type == HNS3_L3_TYPE_IPV4)
4170 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4171 else if (l3_type == HNS3_L3_TYPE_IPV6)
4172 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4173 else
4174 return -EFAULT;
4175
4176 return hns3_gro_complete(skb, l234info);
4177 }
4178
4179 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4180 struct sk_buff *skb, u32 rss_hash,
4181 u32 l234info, u32 ol_info)
4182 {
4183 enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE;
4184 struct net_device *netdev = ring_to_netdev(ring);
4185 struct hns3_nic_priv *priv = netdev_priv(netdev);
4186
4187 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4188 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4189 HNS3_RXD_PTYPE_S);
4190
4191 rss_type = hns3_rx_ptype_tbl[ptype].hash_type;
4192 } else {
4193 int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4194 HNS3_RXD_L3ID_S);
4195 int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
4196 HNS3_RXD_L4ID_S);
4197
4198 if (l3_type == HNS3_L3_TYPE_IPV4 ||
4199 l3_type == HNS3_L3_TYPE_IPV6) {
4200 if (l4_type == HNS3_L4_TYPE_UDP ||
4201 l4_type == HNS3_L4_TYPE_TCP ||
4202 l4_type == HNS3_L4_TYPE_SCTP)
4203 rss_type = PKT_HASH_TYPE_L4;
4204 else if (l4_type == HNS3_L4_TYPE_IGMP ||
4205 l4_type == HNS3_L4_TYPE_ICMP)
4206 rss_type = PKT_HASH_TYPE_L3;
4207 }
4208 }
4209
4210 skb_set_hash(skb, rss_hash, rss_type);
4211 }
4212
4213 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4214 struct hns3_desc *desc, struct sk_buff *skb,
4215 u32 bd_base_info)
4216 {
4217 if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4218 struct hnae3_handle *h = hns3_get_handle(netdev);
4219 u32 nsec = le32_to_cpu(desc->ts_nsec);
4220 u32 sec = le32_to_cpu(desc->ts_sec);
4221
4222 if (h->ae_algo->ops->get_rx_hwts)
4223 h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4224 }
4225 }
4226
4227 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4228 struct hns3_desc *desc, struct sk_buff *skb,
4229 u32 l234info)
4230 {
4231 struct net_device *netdev = ring_to_netdev(ring);
4232
4233 /* Based on hw strategy, the tag offloaded will be stored at
4234 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4235 * in one layer tag case.
4236 */
4237 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4238 u16 vlan_tag;
4239
4240 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4241 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4242 vlan_tag);
4243 }
4244 }
4245
4246 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4247 {
4248 struct net_device *netdev = ring_to_netdev(ring);
4249 enum hns3_pkt_l2t_type l2_frame_type;
4250 u32 bd_base_info, l234info, ol_info;
4251 struct hns3_desc *desc;
4252 unsigned int len;
4253 int pre_ntc, ret;
4254 u16 csum;
4255
4256 /* bdinfo handled below is only valid on the last BD of the
4257 * current packet, and ring->next_to_clean indicates the first
4258 * descriptor of next packet, so need - 1 below.
4259 */
4260 pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4261 (ring->desc_num - 1);
4262 desc = &ring->desc[pre_ntc];
4263 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4264 l234info = le32_to_cpu(desc->rx.l234_info);
4265 ol_info = le32_to_cpu(desc->rx.ol_info);
4266 csum = le16_to_cpu(desc->csum);
4267
4268 hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4269
4270 hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4271
4272 if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4273 BIT(HNS3_RXD_L2E_B))))) {
4274 u64_stats_update_begin(&ring->syncp);
4275 if (l234info & BIT(HNS3_RXD_L2E_B))
4276 ring->stats.l2_err++;
4277 else
4278 ring->stats.err_pkt_len++;
4279 u64_stats_update_end(&ring->syncp);
4280
4281 return -EFAULT;
4282 }
4283
4284 len = skb->len;
4285
4286 /* Do update ip stack process */
4287 skb->protocol = eth_type_trans(skb, netdev);
4288
4289 /* This is needed in order to enable forwarding support */
4290 ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4291 bd_base_info, ol_info, csum);
4292 if (unlikely(ret)) {
4293 hns3_ring_stats_update(ring, rx_err_cnt);
4294 return ret;
4295 }
4296
4297 l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4298 HNS3_RXD_DMAC_S);
4299
4300 u64_stats_update_begin(&ring->syncp);
4301 ring->stats.rx_pkts++;
4302 ring->stats.rx_bytes += len;
4303
4304 if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4305 ring->stats.rx_multicast++;
4306
4307 u64_stats_update_end(&ring->syncp);
4308
4309 ring->tqp_vector->rx_group.total_bytes += len;
4310
4311 hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash),
4312 l234info, ol_info);
4313 return 0;
4314 }
4315
4316 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4317 {
4318 struct sk_buff *skb = ring->skb;
4319 struct hns3_desc_cb *desc_cb;
4320 struct hns3_desc *desc;
4321 unsigned int length;
4322 u32 bd_base_info;
4323 int ret;
4324
4325 desc = &ring->desc[ring->next_to_clean];
4326 desc_cb = &ring->desc_cb[ring->next_to_clean];
4327
4328 prefetch(desc);
4329
4330 if (!skb) {
4331 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4332 /* Check valid BD */
4333 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4334 return -ENXIO;
4335
4336 dma_rmb();
4337 length = le16_to_cpu(desc->rx.size);
4338
4339 ring->va = desc_cb->buf + desc_cb->page_offset;
4340
4341 dma_sync_single_for_cpu(ring_to_dev(ring),
4342 desc_cb->dma + desc_cb->page_offset,
4343 hns3_buf_size(ring),
4344 DMA_FROM_DEVICE);
4345
4346 /* Prefetch first cache line of first page.
4347 * Idea is to cache few bytes of the header of the packet.
4348 * Our L1 Cache line size is 64B so need to prefetch twice to make
4349 * it 128B. But in actual we can have greater size of caches with
4350 * 128B Level 1 cache lines. In such a case, single fetch would
4351 * suffice to cache in the relevant part of the header.
4352 */
4353 net_prefetch(ring->va);
4354
4355 ret = hns3_alloc_skb(ring, length, ring->va);
4356 skb = ring->skb;
4357
4358 if (ret < 0) /* alloc buffer fail */
4359 return ret;
4360 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4361 ret = hns3_add_frag(ring);
4362 if (ret)
4363 return ret;
4364 }
4365 } else {
4366 ret = hns3_add_frag(ring);
4367 if (ret)
4368 return ret;
4369 }
4370
4371 /* As the head data may be changed when GRO enable, copy
4372 * the head data in after other data rx completed
4373 */
4374 if (skb->len > HNS3_RX_HEAD_SIZE)
4375 memcpy(skb->data, ring->va,
4376 ALIGN(ring->pull_len, sizeof(long)));
4377
4378 ret = hns3_handle_bdinfo(ring, skb);
4379 if (unlikely(ret)) {
4380 dev_kfree_skb_any(skb);
4381 return ret;
4382 }
4383
4384 skb_record_rx_queue(skb, ring->tqp->tqp_index);
4385 return 0;
4386 }
4387
4388 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4389 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4390 {
4391 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4392 int unused_count = hns3_desc_unused(ring);
4393 bool failure = false;
4394 int recv_pkts = 0;
4395 int err;
4396
4397 unused_count -= ring->pending_buf;
4398
4399 while (recv_pkts < budget) {
4400 /* Reuse or realloc buffers */
4401 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4402 failure = failure ||
4403 hns3_nic_alloc_rx_buffers(ring, unused_count);
4404 unused_count = 0;
4405 }
4406
4407 /* Poll one pkt */
4408 err = hns3_handle_rx_bd(ring);
4409 /* Do not get FE for the packet or failed to alloc skb */
4410 if (unlikely(!ring->skb || err == -ENXIO)) {
4411 goto out;
4412 } else if (likely(!err)) {
4413 rx_fn(ring, ring->skb);
4414 recv_pkts++;
4415 }
4416
4417 unused_count += ring->pending_buf;
4418 ring->skb = NULL;
4419 ring->pending_buf = 0;
4420 }
4421
4422 out:
4423 /* sync head pointer before exiting, since hardware will calculate
4424 * FBD number with head pointer
4425 */
4426 if (unused_count > 0)
4427 failure = failure ||
4428 hns3_nic_alloc_rx_buffers(ring, unused_count);
4429
4430 return failure ? budget : recv_pkts;
4431 }
4432
4433 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4434 {
4435 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4436 struct dim_sample sample = {};
4437
4438 if (!rx_group->coal.adapt_enable)
4439 return;
4440
4441 dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4442 rx_group->total_bytes, &sample);
4443 net_dim(&rx_group->dim, sample);
4444 }
4445
4446 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4447 {
4448 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4449 struct dim_sample sample = {};
4450
4451 if (!tx_group->coal.adapt_enable)
4452 return;
4453
4454 dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4455 tx_group->total_bytes, &sample);
4456 net_dim(&tx_group->dim, sample);
4457 }
4458
4459 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4460 {
4461 struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4462 struct hns3_enet_ring *ring;
4463 int rx_pkt_total = 0;
4464
4465 struct hns3_enet_tqp_vector *tqp_vector =
4466 container_of(napi, struct hns3_enet_tqp_vector, napi);
4467 bool clean_complete = true;
4468 int rx_budget = budget;
4469
4470 if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4471 napi_complete(napi);
4472 return 0;
4473 }
4474
4475 /* Since the actual Tx work is minimal, we can give the Tx a larger
4476 * budget and be more aggressive about cleaning up the Tx descriptors.
4477 */
4478 hns3_for_each_ring(ring, tqp_vector->tx_group)
4479 hns3_clean_tx_ring(ring, budget);
4480
4481 /* make sure rx ring budget not smaller than 1 */
4482 if (tqp_vector->num_tqps > 1)
4483 rx_budget = max(budget / tqp_vector->num_tqps, 1);
4484
4485 hns3_for_each_ring(ring, tqp_vector->rx_group) {
4486 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4487 hns3_rx_skb);
4488 if (rx_cleaned >= rx_budget)
4489 clean_complete = false;
4490
4491 rx_pkt_total += rx_cleaned;
4492 }
4493
4494 tqp_vector->rx_group.total_packets += rx_pkt_total;
4495
4496 if (!clean_complete)
4497 return budget;
4498
4499 if (napi_complete(napi) &&
4500 likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4501 hns3_update_rx_int_coalesce(tqp_vector);
4502 hns3_update_tx_int_coalesce(tqp_vector);
4503
4504 hns3_mask_vector_irq(tqp_vector, 1);
4505 }
4506
4507 return rx_pkt_total;
4508 }
4509
4510 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4511 struct hnae3_ring_chain_node **head,
4512 bool is_tx)
4513 {
4514 u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4515 u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4516 struct hnae3_ring_chain_node *cur_chain = *head;
4517 struct pci_dev *pdev = tqp_vector->handle->pdev;
4518 struct hnae3_ring_chain_node *chain;
4519 struct hns3_enet_ring *ring;
4520
4521 ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4522
4523 if (cur_chain) {
4524 while (cur_chain->next)
4525 cur_chain = cur_chain->next;
4526 }
4527
4528 while (ring) {
4529 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4530 if (!chain)
4531 return -ENOMEM;
4532 if (cur_chain)
4533 cur_chain->next = chain;
4534 else
4535 *head = chain;
4536 chain->tqp_index = ring->tqp->tqp_index;
4537 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4538 bit_value);
4539 hnae3_set_field(chain->int_gl_idx,
4540 HNAE3_RING_GL_IDX_M,
4541 HNAE3_RING_GL_IDX_S, field_value);
4542
4543 cur_chain = chain;
4544
4545 ring = ring->next;
4546 }
4547
4548 return 0;
4549 }
4550
4551 static struct hnae3_ring_chain_node *
4552 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4553 {
4554 struct pci_dev *pdev = tqp_vector->handle->pdev;
4555 struct hnae3_ring_chain_node *cur_chain = NULL;
4556 struct hnae3_ring_chain_node *chain;
4557
4558 if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4559 goto err_free_chain;
4560
4561 if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4562 goto err_free_chain;
4563
4564 return cur_chain;
4565
4566 err_free_chain:
4567 while (cur_chain) {
4568 chain = cur_chain->next;
4569 devm_kfree(&pdev->dev, cur_chain);
4570 cur_chain = chain;
4571 }
4572
4573 return NULL;
4574 }
4575
4576 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4577 struct hnae3_ring_chain_node *head)
4578 {
4579 struct pci_dev *pdev = tqp_vector->handle->pdev;
4580 struct hnae3_ring_chain_node *chain_tmp, *chain;
4581
4582 chain = head;
4583
4584 while (chain) {
4585 chain_tmp = chain->next;
4586 devm_kfree(&pdev->dev, chain);
4587 chain = chain_tmp;
4588 }
4589 }
4590
4591 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4592 struct hns3_enet_ring *ring)
4593 {
4594 ring->next = group->ring;
4595 group->ring = ring;
4596
4597 group->count++;
4598 }
4599
4600 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4601 {
4602 struct pci_dev *pdev = priv->ae_handle->pdev;
4603 struct hns3_enet_tqp_vector *tqp_vector;
4604 int num_vectors = priv->vector_num;
4605 int numa_node;
4606 int vector_i;
4607
4608 numa_node = dev_to_node(&pdev->dev);
4609
4610 for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4611 tqp_vector = &priv->tqp_vector[vector_i];
4612 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4613 &tqp_vector->affinity_mask);
4614 }
4615 }
4616
4617 static void hns3_rx_dim_work(struct work_struct *work)
4618 {
4619 struct dim *dim = container_of(work, struct dim, work);
4620 struct hns3_enet_ring_group *group = container_of(dim,
4621 struct hns3_enet_ring_group, dim);
4622 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4623 struct dim_cq_moder cur_moder =
4624 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4625
4626 hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4627 tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4628
4629 if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4630 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4631 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4632 }
4633
4634 dim->state = DIM_START_MEASURE;
4635 }
4636
4637 static void hns3_tx_dim_work(struct work_struct *work)
4638 {
4639 struct dim *dim = container_of(work, struct dim, work);
4640 struct hns3_enet_ring_group *group = container_of(dim,
4641 struct hns3_enet_ring_group, dim);
4642 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4643 struct dim_cq_moder cur_moder =
4644 net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4645
4646 hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4647 tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4648
4649 if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4650 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4651 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4652 }
4653
4654 dim->state = DIM_START_MEASURE;
4655 }
4656
4657 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4658 {
4659 INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4660 INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4661 }
4662
4663 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4664 {
4665 struct hnae3_handle *h = priv->ae_handle;
4666 struct hns3_enet_tqp_vector *tqp_vector;
4667 int ret;
4668 int i;
4669
4670 hns3_nic_set_cpumask(priv);
4671
4672 for (i = 0; i < priv->vector_num; i++) {
4673 tqp_vector = &priv->tqp_vector[i];
4674 hns3_vector_coalesce_init_hw(tqp_vector, priv);
4675 tqp_vector->num_tqps = 0;
4676 hns3_nic_init_dim(tqp_vector);
4677 }
4678
4679 for (i = 0; i < h->kinfo.num_tqps; i++) {
4680 u16 vector_i = i % priv->vector_num;
4681 u16 tqp_num = h->kinfo.num_tqps;
4682
4683 tqp_vector = &priv->tqp_vector[vector_i];
4684
4685 hns3_add_ring_to_group(&tqp_vector->tx_group,
4686 &priv->ring[i]);
4687
4688 hns3_add_ring_to_group(&tqp_vector->rx_group,
4689 &priv->ring[i + tqp_num]);
4690
4691 priv->ring[i].tqp_vector = tqp_vector;
4692 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4693 tqp_vector->num_tqps++;
4694 }
4695
4696 for (i = 0; i < priv->vector_num; i++) {
4697 struct hnae3_ring_chain_node *vector_ring_chain;
4698
4699 tqp_vector = &priv->tqp_vector[i];
4700
4701 tqp_vector->rx_group.total_bytes = 0;
4702 tqp_vector->rx_group.total_packets = 0;
4703 tqp_vector->tx_group.total_bytes = 0;
4704 tqp_vector->tx_group.total_packets = 0;
4705 tqp_vector->handle = h;
4706
4707 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4708 if (!vector_ring_chain) {
4709 ret = -ENOMEM;
4710 goto map_ring_fail;
4711 }
4712
4713 ret = h->ae_algo->ops->map_ring_to_vector(h,
4714 tqp_vector->vector_irq, vector_ring_chain);
4715
4716 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4717
4718 if (ret)
4719 goto map_ring_fail;
4720
4721 netif_napi_add(priv->netdev, &tqp_vector->napi,
4722 hns3_nic_common_poll);
4723 }
4724
4725 return 0;
4726
4727 map_ring_fail:
4728 while (i--)
4729 netif_napi_del(&priv->tqp_vector[i].napi);
4730
4731 return ret;
4732 }
4733
4734 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4735 {
4736 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4737 struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4738 struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4739
4740 /* initialize the configuration for interrupt coalescing.
4741 * 1. GL (Interrupt Gap Limiter)
4742 * 2. RL (Interrupt Rate Limiter)
4743 * 3. QL (Interrupt Quantity Limiter)
4744 *
4745 * Default: enable interrupt coalescing self-adaptive and GL
4746 */
4747 tx_coal->adapt_enable = 1;
4748 rx_coal->adapt_enable = 1;
4749
4750 tx_coal->int_gl = HNS3_INT_GL_50K;
4751 rx_coal->int_gl = HNS3_INT_GL_50K;
4752
4753 rx_coal->flow_level = HNS3_FLOW_LOW;
4754 tx_coal->flow_level = HNS3_FLOW_LOW;
4755
4756 if (ae_dev->dev_specs.int_ql_max) {
4757 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4758 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4759 }
4760 }
4761
4762 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4763 {
4764 struct hnae3_handle *h = priv->ae_handle;
4765 struct hns3_enet_tqp_vector *tqp_vector;
4766 struct hnae3_vector_info *vector;
4767 struct pci_dev *pdev = h->pdev;
4768 u16 tqp_num = h->kinfo.num_tqps;
4769 u16 vector_num;
4770 int ret = 0;
4771 u16 i;
4772
4773 /* RSS size, cpu online and vector_num should be the same */
4774 /* Should consider 2p/4p later */
4775 vector_num = min_t(u16, num_online_cpus(), tqp_num);
4776
4777 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4778 GFP_KERNEL);
4779 if (!vector)
4780 return -ENOMEM;
4781
4782 /* save the actual available vector number */
4783 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4784
4785 priv->vector_num = vector_num;
4786 priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4787 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4788 GFP_KERNEL);
4789 if (!priv->tqp_vector) {
4790 ret = -ENOMEM;
4791 goto out;
4792 }
4793
4794 for (i = 0; i < priv->vector_num; i++) {
4795 tqp_vector = &priv->tqp_vector[i];
4796 tqp_vector->idx = i;
4797 tqp_vector->mask_addr = vector[i].io_addr;
4798 tqp_vector->vector_irq = vector[i].vector;
4799 hns3_vector_coalesce_init(tqp_vector, priv);
4800 }
4801
4802 out:
4803 devm_kfree(&pdev->dev, vector);
4804 return ret;
4805 }
4806
4807 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4808 {
4809 group->ring = NULL;
4810 group->count = 0;
4811 }
4812
4813 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4814 {
4815 struct hnae3_ring_chain_node *vector_ring_chain;
4816 struct hnae3_handle *h = priv->ae_handle;
4817 struct hns3_enet_tqp_vector *tqp_vector;
4818 int i;
4819
4820 for (i = 0; i < priv->vector_num; i++) {
4821 tqp_vector = &priv->tqp_vector[i];
4822
4823 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4824 continue;
4825
4826 /* Since the mapping can be overwritten, when fail to get the
4827 * chain between vector and ring, we should go on to deal with
4828 * the remaining options.
4829 */
4830 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4831 if (!vector_ring_chain)
4832 dev_warn(priv->dev, "failed to get ring chain\n");
4833
4834 h->ae_algo->ops->unmap_ring_from_vector(h,
4835 tqp_vector->vector_irq, vector_ring_chain);
4836
4837 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4838
4839 hns3_clear_ring_group(&tqp_vector->rx_group);
4840 hns3_clear_ring_group(&tqp_vector->tx_group);
4841 netif_napi_del(&priv->tqp_vector[i].napi);
4842 }
4843 }
4844
4845 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4846 {
4847 struct hnae3_handle *h = priv->ae_handle;
4848 struct pci_dev *pdev = h->pdev;
4849 int i, ret;
4850
4851 for (i = 0; i < priv->vector_num; i++) {
4852 struct hns3_enet_tqp_vector *tqp_vector;
4853
4854 tqp_vector = &priv->tqp_vector[i];
4855 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4856 if (ret)
4857 return;
4858 }
4859
4860 devm_kfree(&pdev->dev, priv->tqp_vector);
4861 }
4862
4863 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4864 unsigned int ring_type)
4865 {
4866 int queue_num = priv->ae_handle->kinfo.num_tqps;
4867 struct hns3_enet_ring *ring;
4868 int desc_num;
4869
4870 if (ring_type == HNAE3_RING_TYPE_TX) {
4871 ring = &priv->ring[q->tqp_index];
4872 desc_num = priv->ae_handle->kinfo.num_tx_desc;
4873 ring->queue_index = q->tqp_index;
4874 ring->tx_copybreak = priv->tx_copybreak;
4875 ring->last_to_use = 0;
4876 } else {
4877 ring = &priv->ring[q->tqp_index + queue_num];
4878 desc_num = priv->ae_handle->kinfo.num_rx_desc;
4879 ring->queue_index = q->tqp_index;
4880 ring->rx_copybreak = priv->rx_copybreak;
4881 }
4882
4883 hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4884
4885 ring->tqp = q;
4886 ring->desc = NULL;
4887 ring->desc_cb = NULL;
4888 ring->dev = priv->dev;
4889 ring->desc_dma_addr = 0;
4890 ring->buf_size = q->buf_size;
4891 ring->desc_num = desc_num;
4892 ring->next_to_use = 0;
4893 ring->next_to_clean = 0;
4894 }
4895
4896 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4897 struct hns3_nic_priv *priv)
4898 {
4899 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4900 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4901 }
4902
4903 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4904 {
4905 struct hnae3_handle *h = priv->ae_handle;
4906 struct pci_dev *pdev = h->pdev;
4907 int i;
4908
4909 priv->ring = devm_kzalloc(&pdev->dev,
4910 array3_size(h->kinfo.num_tqps,
4911 sizeof(*priv->ring), 2),
4912 GFP_KERNEL);
4913 if (!priv->ring)
4914 return -ENOMEM;
4915
4916 for (i = 0; i < h->kinfo.num_tqps; i++)
4917 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4918
4919 return 0;
4920 }
4921
4922 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4923 {
4924 if (!priv->ring)
4925 return;
4926
4927 devm_kfree(priv->dev, priv->ring);
4928 priv->ring = NULL;
4929 }
4930
4931 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4932 {
4933 struct page_pool_params pp_params = {
4934 .flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG |
4935 PP_FLAG_DMA_SYNC_DEV,
4936 .order = hns3_page_order(ring),
4937 .pool_size = ring->desc_num * hns3_buf_size(ring) /
4938 (PAGE_SIZE << hns3_page_order(ring)),
4939 .nid = dev_to_node(ring_to_dev(ring)),
4940 .dev = ring_to_dev(ring),
4941 .dma_dir = DMA_FROM_DEVICE,
4942 .offset = 0,
4943 .max_len = PAGE_SIZE << hns3_page_order(ring),
4944 };
4945
4946 ring->page_pool = page_pool_create(&pp_params);
4947 if (IS_ERR(ring->page_pool)) {
4948 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4949 PTR_ERR(ring->page_pool));
4950 ring->page_pool = NULL;
4951 }
4952 }
4953
4954 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4955 {
4956 int ret;
4957
4958 if (ring->desc_num <= 0 || ring->buf_size <= 0)
4959 return -EINVAL;
4960
4961 ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4962 sizeof(ring->desc_cb[0]), GFP_KERNEL);
4963 if (!ring->desc_cb) {
4964 ret = -ENOMEM;
4965 goto out;
4966 }
4967
4968 ret = hns3_alloc_desc(ring);
4969 if (ret)
4970 goto out_with_desc_cb;
4971
4972 if (!HNAE3_IS_TX_RING(ring)) {
4973 if (page_pool_enabled)
4974 hns3_alloc_page_pool(ring);
4975
4976 ret = hns3_alloc_ring_buffers(ring);
4977 if (ret)
4978 goto out_with_desc;
4979 } else {
4980 hns3_init_tx_spare_buffer(ring);
4981 }
4982
4983 return 0;
4984
4985 out_with_desc:
4986 hns3_free_desc(ring);
4987 out_with_desc_cb:
4988 devm_kfree(ring_to_dev(ring), ring->desc_cb);
4989 ring->desc_cb = NULL;
4990 out:
4991 return ret;
4992 }
4993
4994 void hns3_fini_ring(struct hns3_enet_ring *ring)
4995 {
4996 hns3_free_desc(ring);
4997 devm_kfree(ring_to_dev(ring), ring->desc_cb);
4998 ring->desc_cb = NULL;
4999 ring->next_to_clean = 0;
5000 ring->next_to_use = 0;
5001 ring->last_to_use = 0;
5002 ring->pending_buf = 0;
5003 if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
5004 dev_kfree_skb_any(ring->skb);
5005 ring->skb = NULL;
5006 } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
5007 struct hns3_tx_spare *tx_spare = ring->tx_spare;
5008
5009 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
5010 DMA_TO_DEVICE);
5011 free_pages((unsigned long)tx_spare->buf,
5012 get_order(tx_spare->len));
5013 devm_kfree(ring_to_dev(ring), tx_spare);
5014 ring->tx_spare = NULL;
5015 }
5016
5017 if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
5018 page_pool_destroy(ring->page_pool);
5019 ring->page_pool = NULL;
5020 }
5021 }
5022
5023 static int hns3_buf_size2type(u32 buf_size)
5024 {
5025 int bd_size_type;
5026
5027 switch (buf_size) {
5028 case 512:
5029 bd_size_type = HNS3_BD_SIZE_512_TYPE;
5030 break;
5031 case 1024:
5032 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
5033 break;
5034 case 2048:
5035 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5036 break;
5037 case 4096:
5038 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
5039 break;
5040 default:
5041 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5042 }
5043
5044 return bd_size_type;
5045 }
5046
5047 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
5048 {
5049 dma_addr_t dma = ring->desc_dma_addr;
5050 struct hnae3_queue *q = ring->tqp;
5051
5052 if (!HNAE3_IS_TX_RING(ring)) {
5053 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
5054 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
5055 (u32)((dma >> 31) >> 1));
5056
5057 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
5058 hns3_buf_size2type(ring->buf_size));
5059 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
5060 ring->desc_num / 8 - 1);
5061 } else {
5062 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
5063 (u32)dma);
5064 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
5065 (u32)((dma >> 31) >> 1));
5066
5067 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
5068 ring->desc_num / 8 - 1);
5069 }
5070 }
5071
5072 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
5073 {
5074 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5075 struct hnae3_tc_info *tc_info = &kinfo->tc_info;
5076 int i;
5077
5078 for (i = 0; i < tc_info->num_tc; i++) {
5079 int j;
5080
5081 for (j = 0; j < tc_info->tqp_count[i]; j++) {
5082 struct hnae3_queue *q;
5083
5084 q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
5085 hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
5086 }
5087 }
5088 }
5089
5090 int hns3_init_all_ring(struct hns3_nic_priv *priv)
5091 {
5092 struct hnae3_handle *h = priv->ae_handle;
5093 int ring_num = h->kinfo.num_tqps * 2;
5094 int i, j;
5095 int ret;
5096
5097 for (i = 0; i < ring_num; i++) {
5098 ret = hns3_alloc_ring_memory(&priv->ring[i]);
5099 if (ret) {
5100 dev_err(priv->dev,
5101 "Alloc ring memory fail! ret=%d\n", ret);
5102 goto out_when_alloc_ring_memory;
5103 }
5104
5105 u64_stats_init(&priv->ring[i].syncp);
5106 }
5107
5108 return 0;
5109
5110 out_when_alloc_ring_memory:
5111 for (j = i - 1; j >= 0; j--)
5112 hns3_fini_ring(&priv->ring[j]);
5113
5114 return -ENOMEM;
5115 }
5116
5117 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
5118 {
5119 struct hnae3_handle *h = priv->ae_handle;
5120 int i;
5121
5122 for (i = 0; i < h->kinfo.num_tqps; i++) {
5123 hns3_fini_ring(&priv->ring[i]);
5124 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
5125 }
5126 }
5127
5128 /* Set mac addr if it is configured. or leave it to the AE driver */
5129 static int hns3_init_mac_addr(struct net_device *netdev)
5130 {
5131 struct hns3_nic_priv *priv = netdev_priv(netdev);
5132 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5133 struct hnae3_handle *h = priv->ae_handle;
5134 u8 mac_addr_temp[ETH_ALEN];
5135 int ret = 0;
5136
5137 if (h->ae_algo->ops->get_mac_addr)
5138 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
5139
5140 /* Check if the MAC address is valid, if not get a random one */
5141 if (!is_valid_ether_addr(mac_addr_temp)) {
5142 eth_hw_addr_random(netdev);
5143 hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
5144 dev_warn(priv->dev, "using random MAC address %s\n",
5145 format_mac_addr);
5146 } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
5147 eth_hw_addr_set(netdev, mac_addr_temp);
5148 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
5149 } else {
5150 return 0;
5151 }
5152
5153 if (h->ae_algo->ops->set_mac_addr)
5154 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
5155
5156 return ret;
5157 }
5158
5159 static int hns3_init_phy(struct net_device *netdev)
5160 {
5161 struct hnae3_handle *h = hns3_get_handle(netdev);
5162 int ret = 0;
5163
5164 if (h->ae_algo->ops->mac_connect_phy)
5165 ret = h->ae_algo->ops->mac_connect_phy(h);
5166
5167 return ret;
5168 }
5169
5170 static void hns3_uninit_phy(struct net_device *netdev)
5171 {
5172 struct hnae3_handle *h = hns3_get_handle(netdev);
5173
5174 if (h->ae_algo->ops->mac_disconnect_phy)
5175 h->ae_algo->ops->mac_disconnect_phy(h);
5176 }
5177
5178 static int hns3_client_start(struct hnae3_handle *handle)
5179 {
5180 if (!handle->ae_algo->ops->client_start)
5181 return 0;
5182
5183 return handle->ae_algo->ops->client_start(handle);
5184 }
5185
5186 static void hns3_client_stop(struct hnae3_handle *handle)
5187 {
5188 if (!handle->ae_algo->ops->client_stop)
5189 return;
5190
5191 handle->ae_algo->ops->client_stop(handle);
5192 }
5193
5194 static void hns3_info_show(struct hns3_nic_priv *priv)
5195 {
5196 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5197 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5198
5199 hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5200 dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5201 dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5202 dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5203 dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5204 dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5205 dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5206 dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5207 dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5208 kinfo->tc_info.num_tc);
5209 dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5210 }
5211
5212 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5213 enum dim_cq_period_mode mode, bool is_tx)
5214 {
5215 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5216 struct hnae3_handle *handle = priv->ae_handle;
5217 int i;
5218
5219 if (is_tx) {
5220 priv->tx_cqe_mode = mode;
5221
5222 for (i = 0; i < priv->vector_num; i++)
5223 priv->tqp_vector[i].tx_group.dim.mode = mode;
5224 } else {
5225 priv->rx_cqe_mode = mode;
5226
5227 for (i = 0; i < priv->vector_num; i++)
5228 priv->tqp_vector[i].rx_group.dim.mode = mode;
5229 }
5230
5231 if (hnae3_ae_dev_cq_supported(ae_dev)) {
5232 u32 new_mode;
5233 u64 reg;
5234
5235 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5236 HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5237 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5238
5239 writel(new_mode, handle->kinfo.io_base + reg);
5240 }
5241 }
5242
5243 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5244 enum dim_cq_period_mode tx_mode,
5245 enum dim_cq_period_mode rx_mode)
5246 {
5247 hns3_set_cq_period_mode(priv, tx_mode, true);
5248 hns3_set_cq_period_mode(priv, rx_mode, false);
5249 }
5250
5251 static void hns3_state_init(struct hnae3_handle *handle)
5252 {
5253 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5254 struct net_device *netdev = handle->kinfo.netdev;
5255 struct hns3_nic_priv *priv = netdev_priv(netdev);
5256
5257 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5258
5259 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
5260 set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
5261
5262 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5263 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5264
5265 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5266 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5267
5268 if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5269 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5270 }
5271
5272 static void hns3_state_uninit(struct hnae3_handle *handle)
5273 {
5274 struct hns3_nic_priv *priv = handle->priv;
5275
5276 clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
5277 }
5278
5279 static int hns3_client_init(struct hnae3_handle *handle)
5280 {
5281 struct pci_dev *pdev = handle->pdev;
5282 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5283 u16 alloc_tqps, max_rss_size;
5284 struct hns3_nic_priv *priv;
5285 struct net_device *netdev;
5286 int ret;
5287
5288 handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5289 &max_rss_size);
5290 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5291 if (!netdev)
5292 return -ENOMEM;
5293
5294 priv = netdev_priv(netdev);
5295 priv->dev = &pdev->dev;
5296 priv->netdev = netdev;
5297 priv->ae_handle = handle;
5298 priv->tx_timeout_count = 0;
5299 priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5300 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5301
5302 handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5303
5304 handle->kinfo.netdev = netdev;
5305 handle->priv = (void *)priv;
5306
5307 hns3_init_mac_addr(netdev);
5308
5309 hns3_set_default_feature(netdev);
5310
5311 netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5312 netdev->priv_flags |= IFF_UNICAST_FLT;
5313 netdev->netdev_ops = &hns3_nic_netdev_ops;
5314 SET_NETDEV_DEV(netdev, &pdev->dev);
5315 hns3_ethtool_set_ops(netdev);
5316
5317 /* Carrier off reporting is important to ethtool even BEFORE open */
5318 netif_carrier_off(netdev);
5319
5320 ret = hns3_get_ring_config(priv);
5321 if (ret) {
5322 ret = -ENOMEM;
5323 goto out_get_ring_cfg;
5324 }
5325
5326 hns3_nic_init_coal_cfg(priv);
5327
5328 ret = hns3_nic_alloc_vector_data(priv);
5329 if (ret) {
5330 ret = -ENOMEM;
5331 goto out_alloc_vector_data;
5332 }
5333
5334 ret = hns3_nic_init_vector_data(priv);
5335 if (ret) {
5336 ret = -ENOMEM;
5337 goto out_init_vector_data;
5338 }
5339
5340 ret = hns3_init_all_ring(priv);
5341 if (ret) {
5342 ret = -ENOMEM;
5343 goto out_init_ring;
5344 }
5345
5346 hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5347 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5348
5349 ret = hns3_init_phy(netdev);
5350 if (ret)
5351 goto out_init_phy;
5352
5353 /* the device can work without cpu rmap, only aRFS needs it */
5354 ret = hns3_set_rx_cpu_rmap(netdev);
5355 if (ret)
5356 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5357
5358 ret = hns3_nic_init_irq(priv);
5359 if (ret) {
5360 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5361 hns3_free_rx_cpu_rmap(netdev);
5362 goto out_init_irq_fail;
5363 }
5364
5365 ret = hns3_client_start(handle);
5366 if (ret) {
5367 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5368 goto out_client_start;
5369 }
5370
5371 hns3_dcbnl_setup(handle);
5372
5373 ret = hns3_dbg_init(handle);
5374 if (ret) {
5375 dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5376 ret);
5377 goto out_client_start;
5378 }
5379
5380 netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5381
5382 hns3_state_init(handle);
5383
5384 ret = register_netdev(netdev);
5385 if (ret) {
5386 dev_err(priv->dev, "probe register netdev fail!\n");
5387 goto out_reg_netdev_fail;
5388 }
5389
5390 if (netif_msg_drv(handle))
5391 hns3_info_show(priv);
5392
5393 return ret;
5394
5395 out_reg_netdev_fail:
5396 hns3_state_uninit(handle);
5397 hns3_dbg_uninit(handle);
5398 hns3_client_stop(handle);
5399 out_client_start:
5400 hns3_free_rx_cpu_rmap(netdev);
5401 hns3_nic_uninit_irq(priv);
5402 out_init_irq_fail:
5403 hns3_uninit_phy(netdev);
5404 out_init_phy:
5405 hns3_uninit_all_ring(priv);
5406 out_init_ring:
5407 hns3_nic_uninit_vector_data(priv);
5408 out_init_vector_data:
5409 hns3_nic_dealloc_vector_data(priv);
5410 out_alloc_vector_data:
5411 priv->ring = NULL;
5412 out_get_ring_cfg:
5413 priv->ae_handle = NULL;
5414 free_netdev(netdev);
5415 return ret;
5416 }
5417
5418 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5419 {
5420 struct net_device *netdev = handle->kinfo.netdev;
5421 struct hns3_nic_priv *priv = netdev_priv(netdev);
5422
5423 if (netdev->reg_state != NETREG_UNINITIALIZED)
5424 unregister_netdev(netdev);
5425
5426 hns3_client_stop(handle);
5427
5428 hns3_uninit_phy(netdev);
5429
5430 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5431 netdev_warn(netdev, "already uninitialized\n");
5432 goto out_netdev_free;
5433 }
5434
5435 hns3_free_rx_cpu_rmap(netdev);
5436
5437 hns3_nic_uninit_irq(priv);
5438
5439 hns3_clear_all_ring(handle, true);
5440
5441 hns3_nic_uninit_vector_data(priv);
5442
5443 hns3_nic_dealloc_vector_data(priv);
5444
5445 hns3_uninit_all_ring(priv);
5446
5447 hns3_put_ring_config(priv);
5448
5449 out_netdev_free:
5450 hns3_dbg_uninit(handle);
5451 free_netdev(netdev);
5452 }
5453
5454 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5455 {
5456 struct net_device *netdev = handle->kinfo.netdev;
5457
5458 if (!netdev)
5459 return;
5460
5461 if (linkup) {
5462 netif_tx_wake_all_queues(netdev);
5463 netif_carrier_on(netdev);
5464 if (netif_msg_link(handle))
5465 netdev_info(netdev, "link up\n");
5466 } else {
5467 netif_carrier_off(netdev);
5468 netif_tx_stop_all_queues(netdev);
5469 if (netif_msg_link(handle))
5470 netdev_info(netdev, "link down\n");
5471 }
5472 }
5473
5474 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5475 {
5476 while (ring->next_to_clean != ring->next_to_use) {
5477 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5478 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5479 ring_ptr_move_fw(ring, next_to_clean);
5480 }
5481
5482 ring->pending_buf = 0;
5483 }
5484
5485 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5486 {
5487 struct hns3_desc_cb res_cbs;
5488 int ret;
5489
5490 while (ring->next_to_use != ring->next_to_clean) {
5491 /* When a buffer is not reused, it's memory has been
5492 * freed in hns3_handle_rx_bd or will be freed by
5493 * stack, so we need to replace the buffer here.
5494 */
5495 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5496 ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5497 if (ret) {
5498 hns3_ring_stats_update(ring, sw_err_cnt);
5499 /* if alloc new buffer fail, exit directly
5500 * and reclear in up flow.
5501 */
5502 netdev_warn(ring_to_netdev(ring),
5503 "reserve buffer map failed, ret = %d\n",
5504 ret);
5505 return ret;
5506 }
5507 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5508 }
5509 ring_ptr_move_fw(ring, next_to_use);
5510 }
5511
5512 /* Free the pending skb in rx ring */
5513 if (ring->skb) {
5514 dev_kfree_skb_any(ring->skb);
5515 ring->skb = NULL;
5516 ring->pending_buf = 0;
5517 }
5518
5519 return 0;
5520 }
5521
5522 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5523 {
5524 while (ring->next_to_use != ring->next_to_clean) {
5525 /* When a buffer is not reused, it's memory has been
5526 * freed in hns3_handle_rx_bd or will be freed by
5527 * stack, so only need to unmap the buffer here.
5528 */
5529 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5530 hns3_unmap_buffer(ring,
5531 &ring->desc_cb[ring->next_to_use]);
5532 ring->desc_cb[ring->next_to_use].dma = 0;
5533 }
5534
5535 ring_ptr_move_fw(ring, next_to_use);
5536 }
5537 }
5538
5539 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5540 {
5541 struct net_device *ndev = h->kinfo.netdev;
5542 struct hns3_nic_priv *priv = netdev_priv(ndev);
5543 u32 i;
5544
5545 for (i = 0; i < h->kinfo.num_tqps; i++) {
5546 struct hns3_enet_ring *ring;
5547
5548 ring = &priv->ring[i];
5549 hns3_clear_tx_ring(ring);
5550
5551 ring = &priv->ring[i + h->kinfo.num_tqps];
5552 /* Continue to clear other rings even if clearing some
5553 * rings failed.
5554 */
5555 if (force)
5556 hns3_force_clear_rx_ring(ring);
5557 else
5558 hns3_clear_rx_ring(ring);
5559 }
5560 }
5561
5562 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5563 {
5564 struct net_device *ndev = h->kinfo.netdev;
5565 struct hns3_nic_priv *priv = netdev_priv(ndev);
5566 struct hns3_enet_ring *rx_ring;
5567 int i, j;
5568 int ret;
5569
5570 ret = h->ae_algo->ops->reset_queue(h);
5571 if (ret)
5572 return ret;
5573
5574 for (i = 0; i < h->kinfo.num_tqps; i++) {
5575 hns3_init_ring_hw(&priv->ring[i]);
5576
5577 /* We need to clear tx ring here because self test will
5578 * use the ring and will not run down before up
5579 */
5580 hns3_clear_tx_ring(&priv->ring[i]);
5581 priv->ring[i].next_to_clean = 0;
5582 priv->ring[i].next_to_use = 0;
5583 priv->ring[i].last_to_use = 0;
5584
5585 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5586 hns3_init_ring_hw(rx_ring);
5587 ret = hns3_clear_rx_ring(rx_ring);
5588 if (ret)
5589 return ret;
5590
5591 /* We can not know the hardware head and tail when this
5592 * function is called in reset flow, so we reuse all desc.
5593 */
5594 for (j = 0; j < rx_ring->desc_num; j++)
5595 hns3_reuse_buffer(rx_ring, j);
5596
5597 rx_ring->next_to_clean = 0;
5598 rx_ring->next_to_use = 0;
5599 }
5600
5601 hns3_init_tx_ring_tc(priv);
5602
5603 return 0;
5604 }
5605
5606 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5607 {
5608 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5609 struct net_device *ndev = kinfo->netdev;
5610 struct hns3_nic_priv *priv = netdev_priv(ndev);
5611
5612 if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5613 return 0;
5614
5615 if (!netif_running(ndev))
5616 return 0;
5617
5618 return hns3_nic_net_stop(ndev);
5619 }
5620
5621 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5622 {
5623 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5624 struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5625 int ret = 0;
5626
5627 if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5628 netdev_err(kinfo->netdev, "device is not initialized yet\n");
5629 return -EFAULT;
5630 }
5631
5632 clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5633
5634 if (netif_running(kinfo->netdev)) {
5635 ret = hns3_nic_net_open(kinfo->netdev);
5636 if (ret) {
5637 set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5638 netdev_err(kinfo->netdev,
5639 "net up fail, ret=%d!\n", ret);
5640 return ret;
5641 }
5642 }
5643
5644 return ret;
5645 }
5646
5647 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5648 {
5649 struct net_device *netdev = handle->kinfo.netdev;
5650 struct hns3_nic_priv *priv = netdev_priv(netdev);
5651 int ret;
5652
5653 /* Carrier off reporting is important to ethtool even BEFORE open */
5654 netif_carrier_off(netdev);
5655
5656 ret = hns3_get_ring_config(priv);
5657 if (ret)
5658 return ret;
5659
5660 ret = hns3_nic_alloc_vector_data(priv);
5661 if (ret)
5662 goto err_put_ring;
5663
5664 ret = hns3_nic_init_vector_data(priv);
5665 if (ret)
5666 goto err_dealloc_vector;
5667
5668 ret = hns3_init_all_ring(priv);
5669 if (ret)
5670 goto err_uninit_vector;
5671
5672 hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5673
5674 /* the device can work without cpu rmap, only aRFS needs it */
5675 ret = hns3_set_rx_cpu_rmap(netdev);
5676 if (ret)
5677 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5678
5679 ret = hns3_nic_init_irq(priv);
5680 if (ret) {
5681 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5682 hns3_free_rx_cpu_rmap(netdev);
5683 goto err_init_irq_fail;
5684 }
5685
5686 if (!hns3_is_phys_func(handle->pdev))
5687 hns3_init_mac_addr(netdev);
5688
5689 ret = hns3_client_start(handle);
5690 if (ret) {
5691 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5692 goto err_client_start_fail;
5693 }
5694
5695 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5696
5697 return ret;
5698
5699 err_client_start_fail:
5700 hns3_free_rx_cpu_rmap(netdev);
5701 hns3_nic_uninit_irq(priv);
5702 err_init_irq_fail:
5703 hns3_uninit_all_ring(priv);
5704 err_uninit_vector:
5705 hns3_nic_uninit_vector_data(priv);
5706 err_dealloc_vector:
5707 hns3_nic_dealloc_vector_data(priv);
5708 err_put_ring:
5709 hns3_put_ring_config(priv);
5710
5711 return ret;
5712 }
5713
5714 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5715 {
5716 struct net_device *netdev = handle->kinfo.netdev;
5717 struct hns3_nic_priv *priv = netdev_priv(netdev);
5718
5719 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5720 netdev_warn(netdev, "already uninitialized\n");
5721 return 0;
5722 }
5723
5724 hns3_free_rx_cpu_rmap(netdev);
5725 hns3_nic_uninit_irq(priv);
5726 hns3_clear_all_ring(handle, true);
5727 hns3_reset_tx_queue(priv->ae_handle);
5728
5729 hns3_nic_uninit_vector_data(priv);
5730
5731 hns3_nic_dealloc_vector_data(priv);
5732
5733 hns3_uninit_all_ring(priv);
5734
5735 hns3_put_ring_config(priv);
5736
5737 return 0;
5738 }
5739
5740 int hns3_reset_notify(struct hnae3_handle *handle,
5741 enum hnae3_reset_notify_type type)
5742 {
5743 int ret = 0;
5744
5745 switch (type) {
5746 case HNAE3_UP_CLIENT:
5747 ret = hns3_reset_notify_up_enet(handle);
5748 break;
5749 case HNAE3_DOWN_CLIENT:
5750 ret = hns3_reset_notify_down_enet(handle);
5751 break;
5752 case HNAE3_INIT_CLIENT:
5753 ret = hns3_reset_notify_init_enet(handle);
5754 break;
5755 case HNAE3_UNINIT_CLIENT:
5756 ret = hns3_reset_notify_uninit_enet(handle);
5757 break;
5758 default:
5759 break;
5760 }
5761
5762 return ret;
5763 }
5764
5765 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5766 bool rxfh_configured)
5767 {
5768 int ret;
5769
5770 ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5771 rxfh_configured);
5772 if (ret) {
5773 dev_err(&handle->pdev->dev,
5774 "Change tqp num(%u) fail.\n", new_tqp_num);
5775 return ret;
5776 }
5777
5778 ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5779 if (ret)
5780 return ret;
5781
5782 ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5783 if (ret)
5784 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5785
5786 return ret;
5787 }
5788
5789 int hns3_set_channels(struct net_device *netdev,
5790 struct ethtool_channels *ch)
5791 {
5792 struct hnae3_handle *h = hns3_get_handle(netdev);
5793 struct hnae3_knic_private_info *kinfo = &h->kinfo;
5794 bool rxfh_configured = netif_is_rxfh_configured(netdev);
5795 u32 new_tqp_num = ch->combined_count;
5796 u16 org_tqp_num;
5797 int ret;
5798
5799 if (hns3_nic_resetting(netdev))
5800 return -EBUSY;
5801
5802 if (ch->rx_count || ch->tx_count)
5803 return -EINVAL;
5804
5805 if (kinfo->tc_info.mqprio_active) {
5806 dev_err(&netdev->dev,
5807 "it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5808 return -EINVAL;
5809 }
5810
5811 if (new_tqp_num > hns3_get_max_available_channels(h) ||
5812 new_tqp_num < 1) {
5813 dev_err(&netdev->dev,
5814 "Change tqps fail, the tqp range is from 1 to %u",
5815 hns3_get_max_available_channels(h));
5816 return -EINVAL;
5817 }
5818
5819 if (kinfo->rss_size == new_tqp_num)
5820 return 0;
5821
5822 netif_dbg(h, drv, netdev,
5823 "set channels: tqp_num=%u, rxfh=%d\n",
5824 new_tqp_num, rxfh_configured);
5825
5826 ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5827 if (ret)
5828 return ret;
5829
5830 ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5831 if (ret)
5832 return ret;
5833
5834 org_tqp_num = h->kinfo.num_tqps;
5835 ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5836 if (ret) {
5837 int ret1;
5838
5839 netdev_warn(netdev,
5840 "Change channels fail, revert to old value\n");
5841 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5842 if (ret1) {
5843 netdev_err(netdev,
5844 "revert to old channel fail\n");
5845 return ret1;
5846 }
5847
5848 return ret;
5849 }
5850
5851 return 0;
5852 }
5853
5854 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running)
5855 {
5856 struct hns3_nic_priv *priv = netdev_priv(ndev);
5857 struct hnae3_handle *h = priv->ae_handle;
5858 int i;
5859
5860 if (!if_running)
5861 return;
5862
5863 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5864 return;
5865
5866 netif_carrier_off(ndev);
5867 netif_tx_disable(ndev);
5868
5869 for (i = 0; i < priv->vector_num; i++)
5870 hns3_vector_disable(&priv->tqp_vector[i]);
5871
5872 for (i = 0; i < h->kinfo.num_tqps; i++)
5873 hns3_tqp_disable(h->kinfo.tqp[i]);
5874
5875 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
5876 * during reset process, because driver may not be able
5877 * to disable the ring through firmware when downing the netdev.
5878 */
5879 if (!hns3_nic_resetting(ndev))
5880 hns3_nic_reset_all_ring(priv->ae_handle);
5881
5882 hns3_reset_tx_queue(priv->ae_handle);
5883 }
5884
5885 void hns3_external_lb_restore(struct net_device *ndev, bool if_running)
5886 {
5887 struct hns3_nic_priv *priv = netdev_priv(ndev);
5888 struct hnae3_handle *h = priv->ae_handle;
5889 int i;
5890
5891 if (!if_running)
5892 return;
5893
5894 if (hns3_nic_resetting(ndev))
5895 return;
5896
5897 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5898 return;
5899
5900 if (hns3_nic_reset_all_ring(priv->ae_handle))
5901 return;
5902
5903 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5904
5905 for (i = 0; i < priv->vector_num; i++)
5906 hns3_vector_enable(&priv->tqp_vector[i]);
5907
5908 for (i = 0; i < h->kinfo.num_tqps; i++)
5909 hns3_tqp_enable(h->kinfo.tqp[i]);
5910
5911 netif_tx_wake_all_queues(ndev);
5912
5913 if (h->ae_algo->ops->get_status(h))
5914 netif_carrier_on(ndev);
5915 }
5916
5917 static const struct hns3_hw_error_info hns3_hw_err[] = {
5918 { .type = HNAE3_PPU_POISON_ERROR,
5919 .msg = "PPU poison" },
5920 { .type = HNAE3_CMDQ_ECC_ERROR,
5921 .msg = "IMP CMDQ error" },
5922 { .type = HNAE3_IMP_RD_POISON_ERROR,
5923 .msg = "IMP RD poison" },
5924 { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5925 .msg = "ROCEE AXI RESP error" },
5926 };
5927
5928 static void hns3_process_hw_error(struct hnae3_handle *handle,
5929 enum hnae3_hw_error_type type)
5930 {
5931 int i;
5932
5933 for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5934 if (hns3_hw_err[i].type == type) {
5935 dev_err(&handle->pdev->dev, "Detected %s!\n",
5936 hns3_hw_err[i].msg);
5937 break;
5938 }
5939 }
5940 }
5941
5942 static const struct hnae3_client_ops client_ops = {
5943 .init_instance = hns3_client_init,
5944 .uninit_instance = hns3_client_uninit,
5945 .link_status_change = hns3_link_status_change,
5946 .reset_notify = hns3_reset_notify,
5947 .process_hw_error = hns3_process_hw_error,
5948 };
5949
5950 /* hns3_init_module - Driver registration routine
5951 * hns3_init_module is the first routine called when the driver is
5952 * loaded. All it does is register with the PCI subsystem.
5953 */
5954 static int __init hns3_init_module(void)
5955 {
5956 int ret;
5957
5958 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5959 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5960
5961 client.type = HNAE3_CLIENT_KNIC;
5962 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5963 hns3_driver_name);
5964
5965 client.ops = &client_ops;
5966
5967 INIT_LIST_HEAD(&client.node);
5968
5969 hns3_dbg_register_debugfs(hns3_driver_name);
5970
5971 ret = hnae3_register_client(&client);
5972 if (ret)
5973 goto err_reg_client;
5974
5975 ret = pci_register_driver(&hns3_driver);
5976 if (ret)
5977 goto err_reg_driver;
5978
5979 return ret;
5980
5981 err_reg_driver:
5982 hnae3_unregister_client(&client);
5983 err_reg_client:
5984 hns3_dbg_unregister_debugfs();
5985 return ret;
5986 }
5987 module_init(hns3_init_module);
5988
5989 /* hns3_exit_module - Driver exit cleanup routine
5990 * hns3_exit_module is called just before the driver is removed
5991 * from memory.
5992 */
5993 static void __exit hns3_exit_module(void)
5994 {
5995 pci_unregister_driver(&hns3_driver);
5996 hnae3_unregister_client(&client);
5997 hns3_dbg_unregister_debugfs();
5998 }
5999 module_exit(hns3_exit_module);
6000
6001 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
6002 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
6003 MODULE_LICENSE("GPL");
6004 MODULE_ALIAS("pci:hns-nic");