]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3_enet.c
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <net/gre.h>
19 #include <net/gro.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/pkt_sched.h>
23 #include <net/tcp.h>
24 #include <net/vxlan.h>
25 #include <net/geneve.h>
26
27 #include "hnae3.h"
28 #include "hns3_enet.h"
29 /* All hns3 tracepoints are defined by the include below, which
30 * must be included exactly once across the whole kernel with
31 * CREATE_TRACE_POINTS defined
32 */
33 #define CREATE_TRACE_POINTS
34 #include "hns3_trace.h"
35
36 #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift))
37 #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
38
39 #define hns3_rl_err(fmt, ...) \
40 do { \
41 if (net_ratelimit()) \
42 netdev_err(fmt, ##__VA_ARGS__); \
43 } while (0)
44
45 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
46
47 static const char hns3_driver_name[] = "hns3";
48 static const char hns3_driver_string[] =
49 "Hisilicon Ethernet Network Driver for Hip08 Family";
50 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
51 static struct hnae3_client client;
52
53 static int debug = -1;
54 module_param(debug, int, 0);
55 MODULE_PARM_DESC(debug, " Network interface message level setting");
56
57 static unsigned int tx_sgl = 1;
58 module_param(tx_sgl, uint, 0600);
59 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
60
61 static bool page_pool_enabled = true;
62 module_param(page_pool_enabled, bool, 0400);
63
64 #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \
65 sizeof(struct sg_table))
66 #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
67 dma_get_cache_alignment())
68
69 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
71
72 #define HNS3_INNER_VLAN_TAG 1
73 #define HNS3_OUTER_VLAN_TAG 2
74
75 #define HNS3_MIN_TX_LEN 33U
76 #define HNS3_MIN_TUN_PKT_LEN 65U
77
78 /* hns3_pci_tbl - PCI Device ID Table
79 *
80 * Last entry must be all 0s
81 *
82 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
83 * Class, Class Mask, private data (not used) }
84 */
85 static const struct pci_device_id hns3_pci_tbl[] = {
86 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
87 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
88 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
89 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
90 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
91 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
92 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
93 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
94 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
95 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
96 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
97 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
98 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
99 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
100 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
101 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
102 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
103 /* required last entry */
104 {0,}
105 };
106 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
107
108 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \
109 { ptype, \
110 l, \
111 CHECKSUM_##s, \
112 HNS3_L3_TYPE_##t, \
113 1, \
114 h}
115
116 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
117 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \
118 PKT_HASH_TYPE_NONE }
119
120 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
121 HNS3_RX_PTYPE_UNUSED_ENTRY(0),
122 HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE),
123 HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE),
124 HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE),
125 HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
126 HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
127 HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
128 HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE),
129 HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
130 HNS3_RX_PTYPE_UNUSED_ENTRY(9),
131 HNS3_RX_PTYPE_UNUSED_ENTRY(10),
132 HNS3_RX_PTYPE_UNUSED_ENTRY(11),
133 HNS3_RX_PTYPE_UNUSED_ENTRY(12),
134 HNS3_RX_PTYPE_UNUSED_ENTRY(13),
135 HNS3_RX_PTYPE_UNUSED_ENTRY(14),
136 HNS3_RX_PTYPE_UNUSED_ENTRY(15),
137 HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
138 HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
139 HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
140 HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
141 HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
142 HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE),
143 HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
144 HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
145 HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
146 HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
147 HNS3_RX_PTYPE_UNUSED_ENTRY(26),
148 HNS3_RX_PTYPE_UNUSED_ENTRY(27),
149 HNS3_RX_PTYPE_UNUSED_ENTRY(28),
150 HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
151 HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
152 HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
153 HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
154 HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
155 HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
156 HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
157 HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
158 HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
159 HNS3_RX_PTYPE_UNUSED_ENTRY(38),
160 HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
161 HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
162 HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
163 HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
164 HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
165 HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
166 HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
167 HNS3_RX_PTYPE_UNUSED_ENTRY(46),
168 HNS3_RX_PTYPE_UNUSED_ENTRY(47),
169 HNS3_RX_PTYPE_UNUSED_ENTRY(48),
170 HNS3_RX_PTYPE_UNUSED_ENTRY(49),
171 HNS3_RX_PTYPE_UNUSED_ENTRY(50),
172 HNS3_RX_PTYPE_UNUSED_ENTRY(51),
173 HNS3_RX_PTYPE_UNUSED_ENTRY(52),
174 HNS3_RX_PTYPE_UNUSED_ENTRY(53),
175 HNS3_RX_PTYPE_UNUSED_ENTRY(54),
176 HNS3_RX_PTYPE_UNUSED_ENTRY(55),
177 HNS3_RX_PTYPE_UNUSED_ENTRY(56),
178 HNS3_RX_PTYPE_UNUSED_ENTRY(57),
179 HNS3_RX_PTYPE_UNUSED_ENTRY(58),
180 HNS3_RX_PTYPE_UNUSED_ENTRY(59),
181 HNS3_RX_PTYPE_UNUSED_ENTRY(60),
182 HNS3_RX_PTYPE_UNUSED_ENTRY(61),
183 HNS3_RX_PTYPE_UNUSED_ENTRY(62),
184 HNS3_RX_PTYPE_UNUSED_ENTRY(63),
185 HNS3_RX_PTYPE_UNUSED_ENTRY(64),
186 HNS3_RX_PTYPE_UNUSED_ENTRY(65),
187 HNS3_RX_PTYPE_UNUSED_ENTRY(66),
188 HNS3_RX_PTYPE_UNUSED_ENTRY(67),
189 HNS3_RX_PTYPE_UNUSED_ENTRY(68),
190 HNS3_RX_PTYPE_UNUSED_ENTRY(69),
191 HNS3_RX_PTYPE_UNUSED_ENTRY(70),
192 HNS3_RX_PTYPE_UNUSED_ENTRY(71),
193 HNS3_RX_PTYPE_UNUSED_ENTRY(72),
194 HNS3_RX_PTYPE_UNUSED_ENTRY(73),
195 HNS3_RX_PTYPE_UNUSED_ENTRY(74),
196 HNS3_RX_PTYPE_UNUSED_ENTRY(75),
197 HNS3_RX_PTYPE_UNUSED_ENTRY(76),
198 HNS3_RX_PTYPE_UNUSED_ENTRY(77),
199 HNS3_RX_PTYPE_UNUSED_ENTRY(78),
200 HNS3_RX_PTYPE_UNUSED_ENTRY(79),
201 HNS3_RX_PTYPE_UNUSED_ENTRY(80),
202 HNS3_RX_PTYPE_UNUSED_ENTRY(81),
203 HNS3_RX_PTYPE_UNUSED_ENTRY(82),
204 HNS3_RX_PTYPE_UNUSED_ENTRY(83),
205 HNS3_RX_PTYPE_UNUSED_ENTRY(84),
206 HNS3_RX_PTYPE_UNUSED_ENTRY(85),
207 HNS3_RX_PTYPE_UNUSED_ENTRY(86),
208 HNS3_RX_PTYPE_UNUSED_ENTRY(87),
209 HNS3_RX_PTYPE_UNUSED_ENTRY(88),
210 HNS3_RX_PTYPE_UNUSED_ENTRY(89),
211 HNS3_RX_PTYPE_UNUSED_ENTRY(90),
212 HNS3_RX_PTYPE_UNUSED_ENTRY(91),
213 HNS3_RX_PTYPE_UNUSED_ENTRY(92),
214 HNS3_RX_PTYPE_UNUSED_ENTRY(93),
215 HNS3_RX_PTYPE_UNUSED_ENTRY(94),
216 HNS3_RX_PTYPE_UNUSED_ENTRY(95),
217 HNS3_RX_PTYPE_UNUSED_ENTRY(96),
218 HNS3_RX_PTYPE_UNUSED_ENTRY(97),
219 HNS3_RX_PTYPE_UNUSED_ENTRY(98),
220 HNS3_RX_PTYPE_UNUSED_ENTRY(99),
221 HNS3_RX_PTYPE_UNUSED_ENTRY(100),
222 HNS3_RX_PTYPE_UNUSED_ENTRY(101),
223 HNS3_RX_PTYPE_UNUSED_ENTRY(102),
224 HNS3_RX_PTYPE_UNUSED_ENTRY(103),
225 HNS3_RX_PTYPE_UNUSED_ENTRY(104),
226 HNS3_RX_PTYPE_UNUSED_ENTRY(105),
227 HNS3_RX_PTYPE_UNUSED_ENTRY(106),
228 HNS3_RX_PTYPE_UNUSED_ENTRY(107),
229 HNS3_RX_PTYPE_UNUSED_ENTRY(108),
230 HNS3_RX_PTYPE_UNUSED_ENTRY(109),
231 HNS3_RX_PTYPE_UNUSED_ENTRY(110),
232 HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
233 HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
234 HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
235 HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
236 HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
237 HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
238 HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
239 HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
240 HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
241 HNS3_RX_PTYPE_UNUSED_ENTRY(120),
242 HNS3_RX_PTYPE_UNUSED_ENTRY(121),
243 HNS3_RX_PTYPE_UNUSED_ENTRY(122),
244 HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
245 HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
246 HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
247 HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
248 HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
249 HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
250 HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
251 HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
252 HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
253 HNS3_RX_PTYPE_UNUSED_ENTRY(132),
254 HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
255 HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
256 HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
257 HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
258 HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
259 HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
260 HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
261 HNS3_RX_PTYPE_UNUSED_ENTRY(140),
262 HNS3_RX_PTYPE_UNUSED_ENTRY(141),
263 HNS3_RX_PTYPE_UNUSED_ENTRY(142),
264 HNS3_RX_PTYPE_UNUSED_ENTRY(143),
265 HNS3_RX_PTYPE_UNUSED_ENTRY(144),
266 HNS3_RX_PTYPE_UNUSED_ENTRY(145),
267 HNS3_RX_PTYPE_UNUSED_ENTRY(146),
268 HNS3_RX_PTYPE_UNUSED_ENTRY(147),
269 HNS3_RX_PTYPE_UNUSED_ENTRY(148),
270 HNS3_RX_PTYPE_UNUSED_ENTRY(149),
271 HNS3_RX_PTYPE_UNUSED_ENTRY(150),
272 HNS3_RX_PTYPE_UNUSED_ENTRY(151),
273 HNS3_RX_PTYPE_UNUSED_ENTRY(152),
274 HNS3_RX_PTYPE_UNUSED_ENTRY(153),
275 HNS3_RX_PTYPE_UNUSED_ENTRY(154),
276 HNS3_RX_PTYPE_UNUSED_ENTRY(155),
277 HNS3_RX_PTYPE_UNUSED_ENTRY(156),
278 HNS3_RX_PTYPE_UNUSED_ENTRY(157),
279 HNS3_RX_PTYPE_UNUSED_ENTRY(158),
280 HNS3_RX_PTYPE_UNUSED_ENTRY(159),
281 HNS3_RX_PTYPE_UNUSED_ENTRY(160),
282 HNS3_RX_PTYPE_UNUSED_ENTRY(161),
283 HNS3_RX_PTYPE_UNUSED_ENTRY(162),
284 HNS3_RX_PTYPE_UNUSED_ENTRY(163),
285 HNS3_RX_PTYPE_UNUSED_ENTRY(164),
286 HNS3_RX_PTYPE_UNUSED_ENTRY(165),
287 HNS3_RX_PTYPE_UNUSED_ENTRY(166),
288 HNS3_RX_PTYPE_UNUSED_ENTRY(167),
289 HNS3_RX_PTYPE_UNUSED_ENTRY(168),
290 HNS3_RX_PTYPE_UNUSED_ENTRY(169),
291 HNS3_RX_PTYPE_UNUSED_ENTRY(170),
292 HNS3_RX_PTYPE_UNUSED_ENTRY(171),
293 HNS3_RX_PTYPE_UNUSED_ENTRY(172),
294 HNS3_RX_PTYPE_UNUSED_ENTRY(173),
295 HNS3_RX_PTYPE_UNUSED_ENTRY(174),
296 HNS3_RX_PTYPE_UNUSED_ENTRY(175),
297 HNS3_RX_PTYPE_UNUSED_ENTRY(176),
298 HNS3_RX_PTYPE_UNUSED_ENTRY(177),
299 HNS3_RX_PTYPE_UNUSED_ENTRY(178),
300 HNS3_RX_PTYPE_UNUSED_ENTRY(179),
301 HNS3_RX_PTYPE_UNUSED_ENTRY(180),
302 HNS3_RX_PTYPE_UNUSED_ENTRY(181),
303 HNS3_RX_PTYPE_UNUSED_ENTRY(182),
304 HNS3_RX_PTYPE_UNUSED_ENTRY(183),
305 HNS3_RX_PTYPE_UNUSED_ENTRY(184),
306 HNS3_RX_PTYPE_UNUSED_ENTRY(185),
307 HNS3_RX_PTYPE_UNUSED_ENTRY(186),
308 HNS3_RX_PTYPE_UNUSED_ENTRY(187),
309 HNS3_RX_PTYPE_UNUSED_ENTRY(188),
310 HNS3_RX_PTYPE_UNUSED_ENTRY(189),
311 HNS3_RX_PTYPE_UNUSED_ENTRY(190),
312 HNS3_RX_PTYPE_UNUSED_ENTRY(191),
313 HNS3_RX_PTYPE_UNUSED_ENTRY(192),
314 HNS3_RX_PTYPE_UNUSED_ENTRY(193),
315 HNS3_RX_PTYPE_UNUSED_ENTRY(194),
316 HNS3_RX_PTYPE_UNUSED_ENTRY(195),
317 HNS3_RX_PTYPE_UNUSED_ENTRY(196),
318 HNS3_RX_PTYPE_UNUSED_ENTRY(197),
319 HNS3_RX_PTYPE_UNUSED_ENTRY(198),
320 HNS3_RX_PTYPE_UNUSED_ENTRY(199),
321 HNS3_RX_PTYPE_UNUSED_ENTRY(200),
322 HNS3_RX_PTYPE_UNUSED_ENTRY(201),
323 HNS3_RX_PTYPE_UNUSED_ENTRY(202),
324 HNS3_RX_PTYPE_UNUSED_ENTRY(203),
325 HNS3_RX_PTYPE_UNUSED_ENTRY(204),
326 HNS3_RX_PTYPE_UNUSED_ENTRY(205),
327 HNS3_RX_PTYPE_UNUSED_ENTRY(206),
328 HNS3_RX_PTYPE_UNUSED_ENTRY(207),
329 HNS3_RX_PTYPE_UNUSED_ENTRY(208),
330 HNS3_RX_PTYPE_UNUSED_ENTRY(209),
331 HNS3_RX_PTYPE_UNUSED_ENTRY(210),
332 HNS3_RX_PTYPE_UNUSED_ENTRY(211),
333 HNS3_RX_PTYPE_UNUSED_ENTRY(212),
334 HNS3_RX_PTYPE_UNUSED_ENTRY(213),
335 HNS3_RX_PTYPE_UNUSED_ENTRY(214),
336 HNS3_RX_PTYPE_UNUSED_ENTRY(215),
337 HNS3_RX_PTYPE_UNUSED_ENTRY(216),
338 HNS3_RX_PTYPE_UNUSED_ENTRY(217),
339 HNS3_RX_PTYPE_UNUSED_ENTRY(218),
340 HNS3_RX_PTYPE_UNUSED_ENTRY(219),
341 HNS3_RX_PTYPE_UNUSED_ENTRY(220),
342 HNS3_RX_PTYPE_UNUSED_ENTRY(221),
343 HNS3_RX_PTYPE_UNUSED_ENTRY(222),
344 HNS3_RX_PTYPE_UNUSED_ENTRY(223),
345 HNS3_RX_PTYPE_UNUSED_ENTRY(224),
346 HNS3_RX_PTYPE_UNUSED_ENTRY(225),
347 HNS3_RX_PTYPE_UNUSED_ENTRY(226),
348 HNS3_RX_PTYPE_UNUSED_ENTRY(227),
349 HNS3_RX_PTYPE_UNUSED_ENTRY(228),
350 HNS3_RX_PTYPE_UNUSED_ENTRY(229),
351 HNS3_RX_PTYPE_UNUSED_ENTRY(230),
352 HNS3_RX_PTYPE_UNUSED_ENTRY(231),
353 HNS3_RX_PTYPE_UNUSED_ENTRY(232),
354 HNS3_RX_PTYPE_UNUSED_ENTRY(233),
355 HNS3_RX_PTYPE_UNUSED_ENTRY(234),
356 HNS3_RX_PTYPE_UNUSED_ENTRY(235),
357 HNS3_RX_PTYPE_UNUSED_ENTRY(236),
358 HNS3_RX_PTYPE_UNUSED_ENTRY(237),
359 HNS3_RX_PTYPE_UNUSED_ENTRY(238),
360 HNS3_RX_PTYPE_UNUSED_ENTRY(239),
361 HNS3_RX_PTYPE_UNUSED_ENTRY(240),
362 HNS3_RX_PTYPE_UNUSED_ENTRY(241),
363 HNS3_RX_PTYPE_UNUSED_ENTRY(242),
364 HNS3_RX_PTYPE_UNUSED_ENTRY(243),
365 HNS3_RX_PTYPE_UNUSED_ENTRY(244),
366 HNS3_RX_PTYPE_UNUSED_ENTRY(245),
367 HNS3_RX_PTYPE_UNUSED_ENTRY(246),
368 HNS3_RX_PTYPE_UNUSED_ENTRY(247),
369 HNS3_RX_PTYPE_UNUSED_ENTRY(248),
370 HNS3_RX_PTYPE_UNUSED_ENTRY(249),
371 HNS3_RX_PTYPE_UNUSED_ENTRY(250),
372 HNS3_RX_PTYPE_UNUSED_ENTRY(251),
373 HNS3_RX_PTYPE_UNUSED_ENTRY(252),
374 HNS3_RX_PTYPE_UNUSED_ENTRY(253),
375 HNS3_RX_PTYPE_UNUSED_ENTRY(254),
376 HNS3_RX_PTYPE_UNUSED_ENTRY(255),
377 };
378
379 #define HNS3_INVALID_PTYPE \
380 ARRAY_SIZE(hns3_rx_ptype_tbl)
381
382 static irqreturn_t hns3_irq_handle(int irq, void *vector)
383 {
384 struct hns3_enet_tqp_vector *tqp_vector = vector;
385
386 napi_schedule_irqoff(&tqp_vector->napi);
387 tqp_vector->event_cnt++;
388
389 return IRQ_HANDLED;
390 }
391
392 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
393 {
394 struct hns3_enet_tqp_vector *tqp_vectors;
395 unsigned int i;
396
397 for (i = 0; i < priv->vector_num; i++) {
398 tqp_vectors = &priv->tqp_vector[i];
399
400 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
401 continue;
402
403 /* clear the affinity mask */
404 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
405
406 /* release the irq resource */
407 free_irq(tqp_vectors->vector_irq, tqp_vectors);
408 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
409 }
410 }
411
412 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
413 {
414 struct hns3_enet_tqp_vector *tqp_vectors;
415 int txrx_int_idx = 0;
416 int rx_int_idx = 0;
417 int tx_int_idx = 0;
418 unsigned int i;
419 int ret;
420
421 for (i = 0; i < priv->vector_num; i++) {
422 tqp_vectors = &priv->tqp_vector[i];
423
424 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
425 continue;
426
427 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
428 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
429 "%s-%s-%s-%d", hns3_driver_name,
430 pci_name(priv->ae_handle->pdev),
431 "TxRx", txrx_int_idx++);
432 txrx_int_idx++;
433 } else if (tqp_vectors->rx_group.ring) {
434 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
435 "%s-%s-%s-%d", hns3_driver_name,
436 pci_name(priv->ae_handle->pdev),
437 "Rx", rx_int_idx++);
438 } else if (tqp_vectors->tx_group.ring) {
439 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
440 "%s-%s-%s-%d", hns3_driver_name,
441 pci_name(priv->ae_handle->pdev),
442 "Tx", tx_int_idx++);
443 } else {
444 /* Skip this unused q_vector */
445 continue;
446 }
447
448 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
449
450 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
451 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
452 tqp_vectors->name, tqp_vectors);
453 if (ret) {
454 netdev_err(priv->netdev, "request irq(%d) fail\n",
455 tqp_vectors->vector_irq);
456 hns3_nic_uninit_irq(priv);
457 return ret;
458 }
459
460 irq_set_affinity_hint(tqp_vectors->vector_irq,
461 &tqp_vectors->affinity_mask);
462
463 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
464 }
465
466 return 0;
467 }
468
469 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
470 u32 mask_en)
471 {
472 writel(mask_en, tqp_vector->mask_addr);
473 }
474
475 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
476 {
477 napi_enable(&tqp_vector->napi);
478 enable_irq(tqp_vector->vector_irq);
479
480 /* enable vector */
481 hns3_mask_vector_irq(tqp_vector, 1);
482 }
483
484 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
485 {
486 /* disable vector */
487 hns3_mask_vector_irq(tqp_vector, 0);
488
489 disable_irq(tqp_vector->vector_irq);
490 napi_disable(&tqp_vector->napi);
491 cancel_work_sync(&tqp_vector->rx_group.dim.work);
492 cancel_work_sync(&tqp_vector->tx_group.dim.work);
493 }
494
495 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
496 u32 rl_value)
497 {
498 u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
499
500 /* this defines the configuration for RL (Interrupt Rate Limiter).
501 * Rl defines rate of interrupts i.e. number of interrupts-per-second
502 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
503 */
504 if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
505 !tqp_vector->rx_group.coal.adapt_enable)
506 /* According to the hardware, the range of rl_reg is
507 * 0-59 and the unit is 4.
508 */
509 rl_reg |= HNS3_INT_RL_ENABLE_MASK;
510
511 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
512 }
513
514 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
515 u32 gl_value)
516 {
517 u32 new_val;
518
519 if (tqp_vector->rx_group.coal.unit_1us)
520 new_val = gl_value | HNS3_INT_GL_1US;
521 else
522 new_val = hns3_gl_usec_to_reg(gl_value);
523
524 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
525 }
526
527 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
528 u32 gl_value)
529 {
530 u32 new_val;
531
532 if (tqp_vector->tx_group.coal.unit_1us)
533 new_val = gl_value | HNS3_INT_GL_1US;
534 else
535 new_val = hns3_gl_usec_to_reg(gl_value);
536
537 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
538 }
539
540 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
541 u32 ql_value)
542 {
543 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
544 }
545
546 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
547 u32 ql_value)
548 {
549 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
550 }
551
552 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
553 struct hns3_nic_priv *priv)
554 {
555 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
556 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
557 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
558 struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
559 struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
560
561 tx_coal->adapt_enable = ptx_coal->adapt_enable;
562 rx_coal->adapt_enable = prx_coal->adapt_enable;
563
564 tx_coal->int_gl = ptx_coal->int_gl;
565 rx_coal->int_gl = prx_coal->int_gl;
566
567 rx_coal->flow_level = prx_coal->flow_level;
568 tx_coal->flow_level = ptx_coal->flow_level;
569
570 /* device version above V3(include V3), GL can configure 1us
571 * unit, so uses 1us unit.
572 */
573 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
574 tx_coal->unit_1us = 1;
575 rx_coal->unit_1us = 1;
576 }
577
578 if (ae_dev->dev_specs.int_ql_max) {
579 tx_coal->ql_enable = 1;
580 rx_coal->ql_enable = 1;
581 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
582 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
583 tx_coal->int_ql = ptx_coal->int_ql;
584 rx_coal->int_ql = prx_coal->int_ql;
585 }
586 }
587
588 static void
589 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
590 struct hns3_nic_priv *priv)
591 {
592 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
593 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
594 struct hnae3_handle *h = priv->ae_handle;
595
596 hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
597 hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
598 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
599
600 if (tx_coal->ql_enable)
601 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
602
603 if (rx_coal->ql_enable)
604 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
605 }
606
607 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
608 {
609 struct hnae3_handle *h = hns3_get_handle(netdev);
610 struct hnae3_knic_private_info *kinfo = &h->kinfo;
611 struct hnae3_tc_info *tc_info = &kinfo->tc_info;
612 unsigned int queue_size = kinfo->num_tqps;
613 int i, ret;
614
615 if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
616 netdev_reset_tc(netdev);
617 } else {
618 ret = netdev_set_num_tc(netdev, tc_info->num_tc);
619 if (ret) {
620 netdev_err(netdev,
621 "netdev_set_num_tc fail, ret=%d!\n", ret);
622 return ret;
623 }
624
625 for (i = 0; i < tc_info->num_tc; i++)
626 netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
627 tc_info->tqp_offset[i]);
628 }
629
630 ret = netif_set_real_num_tx_queues(netdev, queue_size);
631 if (ret) {
632 netdev_err(netdev,
633 "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
634 return ret;
635 }
636
637 ret = netif_set_real_num_rx_queues(netdev, queue_size);
638 if (ret) {
639 netdev_err(netdev,
640 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
641 return ret;
642 }
643
644 return 0;
645 }
646
647 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
648 {
649 u16 alloc_tqps, max_rss_size, rss_size;
650
651 h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
652 rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
653
654 return min_t(u16, rss_size, max_rss_size);
655 }
656
657 static void hns3_tqp_enable(struct hnae3_queue *tqp)
658 {
659 u32 rcb_reg;
660
661 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
662 rcb_reg |= BIT(HNS3_RING_EN_B);
663 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
664 }
665
666 static void hns3_tqp_disable(struct hnae3_queue *tqp)
667 {
668 u32 rcb_reg;
669
670 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
671 rcb_reg &= ~BIT(HNS3_RING_EN_B);
672 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
673 }
674
675 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
676 {
677 #ifdef CONFIG_RFS_ACCEL
678 free_irq_cpu_rmap(netdev->rx_cpu_rmap);
679 netdev->rx_cpu_rmap = NULL;
680 #endif
681 }
682
683 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
684 {
685 #ifdef CONFIG_RFS_ACCEL
686 struct hns3_nic_priv *priv = netdev_priv(netdev);
687 struct hns3_enet_tqp_vector *tqp_vector;
688 int i, ret;
689
690 if (!netdev->rx_cpu_rmap) {
691 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
692 if (!netdev->rx_cpu_rmap)
693 return -ENOMEM;
694 }
695
696 for (i = 0; i < priv->vector_num; i++) {
697 tqp_vector = &priv->tqp_vector[i];
698 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
699 tqp_vector->vector_irq);
700 if (ret) {
701 hns3_free_rx_cpu_rmap(netdev);
702 return ret;
703 }
704 }
705 #endif
706 return 0;
707 }
708
709 static int hns3_nic_net_up(struct net_device *netdev)
710 {
711 struct hns3_nic_priv *priv = netdev_priv(netdev);
712 struct hnae3_handle *h = priv->ae_handle;
713 int i, j;
714 int ret;
715
716 ret = hns3_nic_reset_all_ring(h);
717 if (ret)
718 return ret;
719
720 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
721
722 /* enable the vectors */
723 for (i = 0; i < priv->vector_num; i++)
724 hns3_vector_enable(&priv->tqp_vector[i]);
725
726 /* enable rcb */
727 for (j = 0; j < h->kinfo.num_tqps; j++)
728 hns3_tqp_enable(h->kinfo.tqp[j]);
729
730 /* start the ae_dev */
731 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
732 if (ret) {
733 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
734 while (j--)
735 hns3_tqp_disable(h->kinfo.tqp[j]);
736
737 for (j = i - 1; j >= 0; j--)
738 hns3_vector_disable(&priv->tqp_vector[j]);
739 }
740
741 return ret;
742 }
743
744 static void hns3_config_xps(struct hns3_nic_priv *priv)
745 {
746 int i;
747
748 for (i = 0; i < priv->vector_num; i++) {
749 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
750 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
751
752 while (ring) {
753 int ret;
754
755 ret = netif_set_xps_queue(priv->netdev,
756 &tqp_vector->affinity_mask,
757 ring->tqp->tqp_index);
758 if (ret)
759 netdev_warn(priv->netdev,
760 "set xps queue failed: %d", ret);
761
762 ring = ring->next;
763 }
764 }
765 }
766
767 static int hns3_nic_net_open(struct net_device *netdev)
768 {
769 struct hns3_nic_priv *priv = netdev_priv(netdev);
770 struct hnae3_handle *h = hns3_get_handle(netdev);
771 struct hnae3_knic_private_info *kinfo;
772 int i, ret;
773
774 if (hns3_nic_resetting(netdev))
775 return -EBUSY;
776
777 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
778 netdev_warn(netdev, "net open repeatedly!\n");
779 return 0;
780 }
781
782 netif_carrier_off(netdev);
783
784 ret = hns3_nic_set_real_num_queue(netdev);
785 if (ret)
786 return ret;
787
788 ret = hns3_nic_net_up(netdev);
789 if (ret) {
790 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
791 return ret;
792 }
793
794 kinfo = &h->kinfo;
795 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
796 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
797
798 if (h->ae_algo->ops->set_timer_task)
799 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
800
801 hns3_config_xps(priv);
802
803 netif_dbg(h, drv, netdev, "net open\n");
804
805 return 0;
806 }
807
808 static void hns3_reset_tx_queue(struct hnae3_handle *h)
809 {
810 struct net_device *ndev = h->kinfo.netdev;
811 struct hns3_nic_priv *priv = netdev_priv(ndev);
812 struct netdev_queue *dev_queue;
813 u32 i;
814
815 for (i = 0; i < h->kinfo.num_tqps; i++) {
816 dev_queue = netdev_get_tx_queue(ndev,
817 priv->ring[i].queue_index);
818 netdev_tx_reset_queue(dev_queue);
819 }
820 }
821
822 static void hns3_nic_net_down(struct net_device *netdev)
823 {
824 struct hns3_nic_priv *priv = netdev_priv(netdev);
825 struct hnae3_handle *h = hns3_get_handle(netdev);
826 const struct hnae3_ae_ops *ops;
827 int i;
828
829 /* disable vectors */
830 for (i = 0; i < priv->vector_num; i++)
831 hns3_vector_disable(&priv->tqp_vector[i]);
832
833 /* disable rcb */
834 for (i = 0; i < h->kinfo.num_tqps; i++)
835 hns3_tqp_disable(h->kinfo.tqp[i]);
836
837 /* stop ae_dev */
838 ops = priv->ae_handle->ae_algo->ops;
839 if (ops->stop)
840 ops->stop(priv->ae_handle);
841
842 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
843 * during reset process, because driver may not be able
844 * to disable the ring through firmware when downing the netdev.
845 */
846 if (!hns3_nic_resetting(netdev))
847 hns3_clear_all_ring(priv->ae_handle, false);
848
849 hns3_reset_tx_queue(priv->ae_handle);
850 }
851
852 static int hns3_nic_net_stop(struct net_device *netdev)
853 {
854 struct hns3_nic_priv *priv = netdev_priv(netdev);
855 struct hnae3_handle *h = hns3_get_handle(netdev);
856
857 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
858 return 0;
859
860 netif_dbg(h, drv, netdev, "net stop\n");
861
862 if (h->ae_algo->ops->set_timer_task)
863 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
864
865 netif_carrier_off(netdev);
866 netif_tx_disable(netdev);
867
868 hns3_nic_net_down(netdev);
869
870 return 0;
871 }
872
873 static int hns3_nic_uc_sync(struct net_device *netdev,
874 const unsigned char *addr)
875 {
876 struct hnae3_handle *h = hns3_get_handle(netdev);
877
878 if (h->ae_algo->ops->add_uc_addr)
879 return h->ae_algo->ops->add_uc_addr(h, addr);
880
881 return 0;
882 }
883
884 static int hns3_nic_uc_unsync(struct net_device *netdev,
885 const unsigned char *addr)
886 {
887 struct hnae3_handle *h = hns3_get_handle(netdev);
888
889 /* need ignore the request of removing device address, because
890 * we store the device address and other addresses of uc list
891 * in the function's mac filter list.
892 */
893 if (ether_addr_equal(addr, netdev->dev_addr))
894 return 0;
895
896 if (h->ae_algo->ops->rm_uc_addr)
897 return h->ae_algo->ops->rm_uc_addr(h, addr);
898
899 return 0;
900 }
901
902 static int hns3_nic_mc_sync(struct net_device *netdev,
903 const unsigned char *addr)
904 {
905 struct hnae3_handle *h = hns3_get_handle(netdev);
906
907 if (h->ae_algo->ops->add_mc_addr)
908 return h->ae_algo->ops->add_mc_addr(h, addr);
909
910 return 0;
911 }
912
913 static int hns3_nic_mc_unsync(struct net_device *netdev,
914 const unsigned char *addr)
915 {
916 struct hnae3_handle *h = hns3_get_handle(netdev);
917
918 if (h->ae_algo->ops->rm_mc_addr)
919 return h->ae_algo->ops->rm_mc_addr(h, addr);
920
921 return 0;
922 }
923
924 static u8 hns3_get_netdev_flags(struct net_device *netdev)
925 {
926 u8 flags = 0;
927
928 if (netdev->flags & IFF_PROMISC)
929 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
930 else if (netdev->flags & IFF_ALLMULTI)
931 flags = HNAE3_USER_MPE;
932
933 return flags;
934 }
935
936 static void hns3_nic_set_rx_mode(struct net_device *netdev)
937 {
938 struct hnae3_handle *h = hns3_get_handle(netdev);
939 u8 new_flags;
940
941 new_flags = hns3_get_netdev_flags(netdev);
942
943 __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
944 __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
945
946 /* User mode Promisc mode enable and vlan filtering is disabled to
947 * let all packets in.
948 */
949 h->netdev_flags = new_flags;
950 hns3_request_update_promisc_mode(h);
951 }
952
953 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
954 {
955 const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
956
957 if (ops->request_update_promisc_mode)
958 ops->request_update_promisc_mode(handle);
959 }
960
961 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
962 {
963 struct hns3_tx_spare *tx_spare = ring->tx_spare;
964 u32 ntc, ntu;
965
966 /* This smp_load_acquire() pairs with smp_store_release() in
967 * hns3_tx_spare_update() called in tx desc cleaning process.
968 */
969 ntc = smp_load_acquire(&tx_spare->last_to_clean);
970 ntu = tx_spare->next_to_use;
971
972 if (ntc > ntu)
973 return ntc - ntu - 1;
974
975 /* The free tx buffer is divided into two part, so pick the
976 * larger one.
977 */
978 return max(ntc, tx_spare->len - ntu) - 1;
979 }
980
981 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
982 {
983 struct hns3_tx_spare *tx_spare = ring->tx_spare;
984
985 if (!tx_spare ||
986 tx_spare->last_to_clean == tx_spare->next_to_clean)
987 return;
988
989 /* This smp_store_release() pairs with smp_load_acquire() in
990 * hns3_tx_spare_space() called in xmit process.
991 */
992 smp_store_release(&tx_spare->last_to_clean,
993 tx_spare->next_to_clean);
994 }
995
996 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
997 struct sk_buff *skb,
998 u32 space)
999 {
1000 u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1001 skb_headlen(skb);
1002
1003 if (len > ring->tx_copybreak)
1004 return false;
1005
1006 if (ALIGN(len, dma_get_cache_alignment()) > space) {
1007 hns3_ring_stats_update(ring, tx_spare_full);
1008 return false;
1009 }
1010
1011 return true;
1012 }
1013
1014 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1015 struct sk_buff *skb,
1016 u32 space)
1017 {
1018 if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1019 (!skb_has_frag_list(skb) &&
1020 skb_shinfo(skb)->nr_frags < tx_sgl))
1021 return false;
1022
1023 if (space < HNS3_MAX_SGL_SIZE) {
1024 hns3_ring_stats_update(ring, tx_spare_full);
1025 return false;
1026 }
1027
1028 return true;
1029 }
1030
1031 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1032 {
1033 u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1034 struct hns3_tx_spare *tx_spare;
1035 struct page *page;
1036 dma_addr_t dma;
1037 int order;
1038
1039 if (!alloc_size)
1040 return;
1041
1042 order = get_order(alloc_size);
1043 if (order > MAX_ORDER) {
1044 if (net_ratelimit())
1045 dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
1046 return;
1047 }
1048
1049 tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1050 GFP_KERNEL);
1051 if (!tx_spare) {
1052 /* The driver still work without the tx spare buffer */
1053 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1054 goto devm_kzalloc_error;
1055 }
1056
1057 page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1058 GFP_KERNEL, order);
1059 if (!page) {
1060 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1061 goto alloc_pages_error;
1062 }
1063
1064 dma = dma_map_page(ring_to_dev(ring), page, 0,
1065 PAGE_SIZE << order, DMA_TO_DEVICE);
1066 if (dma_mapping_error(ring_to_dev(ring), dma)) {
1067 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1068 goto dma_mapping_error;
1069 }
1070
1071 tx_spare->dma = dma;
1072 tx_spare->buf = page_address(page);
1073 tx_spare->len = PAGE_SIZE << order;
1074 ring->tx_spare = tx_spare;
1075 return;
1076
1077 dma_mapping_error:
1078 put_page(page);
1079 alloc_pages_error:
1080 devm_kfree(ring_to_dev(ring), tx_spare);
1081 devm_kzalloc_error:
1082 ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
1083 }
1084
1085 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1086 * before calling below function to allocate tx buffer.
1087 */
1088 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1089 unsigned int size, dma_addr_t *dma,
1090 u32 *cb_len)
1091 {
1092 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1093 u32 ntu = tx_spare->next_to_use;
1094
1095 size = ALIGN(size, dma_get_cache_alignment());
1096 *cb_len = size;
1097
1098 /* Tx spare buffer wraps back here because the end of
1099 * freed tx buffer is not enough.
1100 */
1101 if (ntu + size > tx_spare->len) {
1102 *cb_len += (tx_spare->len - ntu);
1103 ntu = 0;
1104 }
1105
1106 tx_spare->next_to_use = ntu + size;
1107 if (tx_spare->next_to_use == tx_spare->len)
1108 tx_spare->next_to_use = 0;
1109
1110 *dma = tx_spare->dma + ntu;
1111
1112 return tx_spare->buf + ntu;
1113 }
1114
1115 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1116 {
1117 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1118
1119 if (len > tx_spare->next_to_use) {
1120 len -= tx_spare->next_to_use;
1121 tx_spare->next_to_use = tx_spare->len - len;
1122 } else {
1123 tx_spare->next_to_use -= len;
1124 }
1125 }
1126
1127 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1128 struct hns3_desc_cb *cb)
1129 {
1130 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1131 u32 ntc = tx_spare->next_to_clean;
1132 u32 len = cb->length;
1133
1134 tx_spare->next_to_clean += len;
1135
1136 if (tx_spare->next_to_clean >= tx_spare->len) {
1137 tx_spare->next_to_clean -= tx_spare->len;
1138
1139 if (tx_spare->next_to_clean) {
1140 ntc = 0;
1141 len = tx_spare->next_to_clean;
1142 }
1143 }
1144
1145 /* This tx spare buffer is only really reclaimed after calling
1146 * hns3_tx_spare_update(), so it is still safe to use the info in
1147 * the tx buffer to do the dma sync or sg unmapping after
1148 * tx_spare->next_to_clean is moved forword.
1149 */
1150 if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1151 dma_addr_t dma = tx_spare->dma + ntc;
1152
1153 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1154 DMA_TO_DEVICE);
1155 } else {
1156 struct sg_table *sgt = tx_spare->buf + ntc;
1157
1158 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1159 DMA_TO_DEVICE);
1160 }
1161 }
1162
1163 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1164 u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1165 {
1166 u32 l4_offset, hdr_len;
1167 union l3_hdr_info l3;
1168 union l4_hdr_info l4;
1169 u32 l4_paylen;
1170 int ret;
1171
1172 if (!skb_is_gso(skb))
1173 return 0;
1174
1175 ret = skb_cow_head(skb, 0);
1176 if (unlikely(ret < 0))
1177 return ret;
1178
1179 l3.hdr = skb_network_header(skb);
1180 l4.hdr = skb_transport_header(skb);
1181
1182 /* Software should clear the IPv4's checksum field when tso is
1183 * needed.
1184 */
1185 if (l3.v4->version == 4)
1186 l3.v4->check = 0;
1187
1188 /* tunnel packet */
1189 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1190 SKB_GSO_GRE_CSUM |
1191 SKB_GSO_UDP_TUNNEL |
1192 SKB_GSO_UDP_TUNNEL_CSUM)) {
1193 /* reset l3&l4 pointers from outer to inner headers */
1194 l3.hdr = skb_inner_network_header(skb);
1195 l4.hdr = skb_inner_transport_header(skb);
1196
1197 /* Software should clear the IPv4's checksum field when
1198 * tso is needed.
1199 */
1200 if (l3.v4->version == 4)
1201 l3.v4->check = 0;
1202 }
1203
1204 /* normal or tunnel packet */
1205 l4_offset = l4.hdr - skb->data;
1206
1207 /* remove payload length from inner pseudo checksum when tso */
1208 l4_paylen = skb->len - l4_offset;
1209
1210 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1211 hdr_len = sizeof(*l4.udp) + l4_offset;
1212 csum_replace_by_diff(&l4.udp->check,
1213 (__force __wsum)htonl(l4_paylen));
1214 } else {
1215 hdr_len = (l4.tcp->doff << 2) + l4_offset;
1216 csum_replace_by_diff(&l4.tcp->check,
1217 (__force __wsum)htonl(l4_paylen));
1218 }
1219
1220 *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1221
1222 /* find the txbd field values */
1223 *paylen_fdop_ol4cs = skb->len - hdr_len;
1224 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1225
1226 /* offload outer UDP header checksum */
1227 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1228 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1229
1230 /* get MSS for TSO */
1231 *mss = skb_shinfo(skb)->gso_size;
1232
1233 trace_hns3_tso(skb);
1234
1235 return 0;
1236 }
1237
1238 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1239 u8 *il4_proto)
1240 {
1241 union l3_hdr_info l3;
1242 unsigned char *l4_hdr;
1243 unsigned char *exthdr;
1244 u8 l4_proto_tmp;
1245 __be16 frag_off;
1246
1247 /* find outer header point */
1248 l3.hdr = skb_network_header(skb);
1249 l4_hdr = skb_transport_header(skb);
1250
1251 if (skb->protocol == htons(ETH_P_IPV6)) {
1252 exthdr = l3.hdr + sizeof(*l3.v6);
1253 l4_proto_tmp = l3.v6->nexthdr;
1254 if (l4_hdr != exthdr)
1255 ipv6_skip_exthdr(skb, exthdr - skb->data,
1256 &l4_proto_tmp, &frag_off);
1257 } else if (skb->protocol == htons(ETH_P_IP)) {
1258 l4_proto_tmp = l3.v4->protocol;
1259 } else {
1260 return -EINVAL;
1261 }
1262
1263 *ol4_proto = l4_proto_tmp;
1264
1265 /* tunnel packet */
1266 if (!skb->encapsulation) {
1267 *il4_proto = 0;
1268 return 0;
1269 }
1270
1271 /* find inner header point */
1272 l3.hdr = skb_inner_network_header(skb);
1273 l4_hdr = skb_inner_transport_header(skb);
1274
1275 if (l3.v6->version == 6) {
1276 exthdr = l3.hdr + sizeof(*l3.v6);
1277 l4_proto_tmp = l3.v6->nexthdr;
1278 if (l4_hdr != exthdr)
1279 ipv6_skip_exthdr(skb, exthdr - skb->data,
1280 &l4_proto_tmp, &frag_off);
1281 } else if (l3.v4->version == 4) {
1282 l4_proto_tmp = l3.v4->protocol;
1283 }
1284
1285 *il4_proto = l4_proto_tmp;
1286
1287 return 0;
1288 }
1289
1290 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1291 * and it is udp packet, which has a dest port as the IANA assigned.
1292 * the hardware is expected to do the checksum offload, but the
1293 * hardware will not do the checksum offload when udp dest port is
1294 * 4789, 4790 or 6081.
1295 */
1296 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1297 {
1298 struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1299 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1300 union l4_hdr_info l4;
1301
1302 /* device version above V3(include V3), the hardware can
1303 * do this checksum offload.
1304 */
1305 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1306 return false;
1307
1308 l4.hdr = skb_transport_header(skb);
1309
1310 if (!(!skb->encapsulation &&
1311 (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1312 l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1313 l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1314 return false;
1315
1316 return true;
1317 }
1318
1319 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1320 u32 *ol_type_vlan_len_msec)
1321 {
1322 u32 l2_len, l3_len, l4_len;
1323 unsigned char *il2_hdr;
1324 union l3_hdr_info l3;
1325 union l4_hdr_info l4;
1326
1327 l3.hdr = skb_network_header(skb);
1328 l4.hdr = skb_transport_header(skb);
1329
1330 /* compute OL2 header size, defined in 2 Bytes */
1331 l2_len = l3.hdr - skb->data;
1332 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1333
1334 /* compute OL3 header size, defined in 4 Bytes */
1335 l3_len = l4.hdr - l3.hdr;
1336 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1337
1338 il2_hdr = skb_inner_mac_header(skb);
1339 /* compute OL4 header size, defined in 4 Bytes */
1340 l4_len = il2_hdr - l4.hdr;
1341 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1342
1343 /* define outer network header type */
1344 if (skb->protocol == htons(ETH_P_IP)) {
1345 if (skb_is_gso(skb))
1346 hns3_set_field(*ol_type_vlan_len_msec,
1347 HNS3_TXD_OL3T_S,
1348 HNS3_OL3T_IPV4_CSUM);
1349 else
1350 hns3_set_field(*ol_type_vlan_len_msec,
1351 HNS3_TXD_OL3T_S,
1352 HNS3_OL3T_IPV4_NO_CSUM);
1353 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1354 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1355 HNS3_OL3T_IPV6);
1356 }
1357
1358 if (ol4_proto == IPPROTO_UDP)
1359 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1360 HNS3_TUN_MAC_IN_UDP);
1361 else if (ol4_proto == IPPROTO_GRE)
1362 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1363 HNS3_TUN_NVGRE);
1364 }
1365
1366 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1367 u32 *type_cs_vlan_tso)
1368 {
1369 if (l3.v4->version == 4) {
1370 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1371 HNS3_L3T_IPV4);
1372
1373 /* the stack computes the IP header already, the only time we
1374 * need the hardware to recompute it is in the case of TSO.
1375 */
1376 if (skb_is_gso(skb))
1377 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1378 } else if (l3.v6->version == 6) {
1379 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1380 HNS3_L3T_IPV6);
1381 }
1382 }
1383
1384 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1385 u32 l4_proto, u32 *type_cs_vlan_tso)
1386 {
1387 /* compute inner(/normal) L4 header size, defined in 4 Bytes */
1388 switch (l4_proto) {
1389 case IPPROTO_TCP:
1390 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1391 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1392 HNS3_L4T_TCP);
1393 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1394 l4.tcp->doff);
1395 break;
1396 case IPPROTO_UDP:
1397 if (hns3_tunnel_csum_bug(skb)) {
1398 int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1399
1400 return ret ? ret : skb_checksum_help(skb);
1401 }
1402
1403 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1404 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1405 HNS3_L4T_UDP);
1406 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1407 (sizeof(struct udphdr) >> 2));
1408 break;
1409 case IPPROTO_SCTP:
1410 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1411 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1412 HNS3_L4T_SCTP);
1413 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1414 (sizeof(struct sctphdr) >> 2));
1415 break;
1416 default:
1417 /* drop the skb tunnel packet if hardware don't support,
1418 * because hardware can't calculate csum when TSO.
1419 */
1420 if (skb_is_gso(skb))
1421 return -EDOM;
1422
1423 /* the stack computes the IP header already,
1424 * driver calculate l4 checksum when not TSO.
1425 */
1426 return skb_checksum_help(skb);
1427 }
1428
1429 return 0;
1430 }
1431
1432 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1433 u8 il4_proto, u32 *type_cs_vlan_tso,
1434 u32 *ol_type_vlan_len_msec)
1435 {
1436 unsigned char *l2_hdr = skb->data;
1437 u32 l4_proto = ol4_proto;
1438 union l4_hdr_info l4;
1439 union l3_hdr_info l3;
1440 u32 l2_len, l3_len;
1441
1442 l4.hdr = skb_transport_header(skb);
1443 l3.hdr = skb_network_header(skb);
1444
1445 /* handle encapsulation skb */
1446 if (skb->encapsulation) {
1447 /* If this is a not UDP/GRE encapsulation skb */
1448 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1449 /* drop the skb tunnel packet if hardware don't support,
1450 * because hardware can't calculate csum when TSO.
1451 */
1452 if (skb_is_gso(skb))
1453 return -EDOM;
1454
1455 /* the stack computes the IP header already,
1456 * driver calculate l4 checksum when not TSO.
1457 */
1458 return skb_checksum_help(skb);
1459 }
1460
1461 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1462
1463 /* switch to inner header */
1464 l2_hdr = skb_inner_mac_header(skb);
1465 l3.hdr = skb_inner_network_header(skb);
1466 l4.hdr = skb_inner_transport_header(skb);
1467 l4_proto = il4_proto;
1468 }
1469
1470 hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1471
1472 /* compute inner(/normal) L2 header size, defined in 2 Bytes */
1473 l2_len = l3.hdr - l2_hdr;
1474 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1475
1476 /* compute inner(/normal) L3 header size, defined in 4 Bytes */
1477 l3_len = l4.hdr - l3.hdr;
1478 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1479
1480 return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1481 }
1482
1483 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1484 struct sk_buff *skb)
1485 {
1486 struct hnae3_handle *handle = tx_ring->tqp->handle;
1487 struct hnae3_ae_dev *ae_dev;
1488 struct vlan_ethhdr *vhdr;
1489 int rc;
1490
1491 if (!(skb->protocol == htons(ETH_P_8021Q) ||
1492 skb_vlan_tag_present(skb)))
1493 return 0;
1494
1495 /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1496 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1497 * will cause RAS error.
1498 */
1499 ae_dev = pci_get_drvdata(handle->pdev);
1500 if (unlikely(skb_vlan_tagged_multi(skb) &&
1501 ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1502 handle->port_base_vlan_state ==
1503 HNAE3_PORT_BASE_VLAN_ENABLE))
1504 return -EINVAL;
1505
1506 if (skb->protocol == htons(ETH_P_8021Q) &&
1507 !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1508 /* When HW VLAN acceleration is turned off, and the stack
1509 * sets the protocol to 802.1q, the driver just need to
1510 * set the protocol to the encapsulated ethertype.
1511 */
1512 skb->protocol = vlan_get_protocol(skb);
1513 return 0;
1514 }
1515
1516 if (skb_vlan_tag_present(skb)) {
1517 /* Based on hw strategy, use out_vtag in two layer tag case,
1518 * and use inner_vtag in one tag case.
1519 */
1520 if (skb->protocol == htons(ETH_P_8021Q) &&
1521 handle->port_base_vlan_state ==
1522 HNAE3_PORT_BASE_VLAN_DISABLE)
1523 rc = HNS3_OUTER_VLAN_TAG;
1524 else
1525 rc = HNS3_INNER_VLAN_TAG;
1526
1527 skb->protocol = vlan_get_protocol(skb);
1528 return rc;
1529 }
1530
1531 rc = skb_cow_head(skb, 0);
1532 if (unlikely(rc < 0))
1533 return rc;
1534
1535 vhdr = skb_vlan_eth_hdr(skb);
1536 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1537 & VLAN_PRIO_MASK);
1538
1539 skb->protocol = vlan_get_protocol(skb);
1540 return 0;
1541 }
1542
1543 /* check if the hardware is capable of checksum offloading */
1544 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1545 {
1546 struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1547
1548 /* Kindly note, due to backward compatibility of the TX descriptor,
1549 * HW checksum of the non-IP packets and GSO packets is handled at
1550 * different place in the following code
1551 */
1552 if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1553 !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1554 return false;
1555
1556 return true;
1557 }
1558
1559 struct hns3_desc_param {
1560 u32 paylen_ol4cs;
1561 u32 ol_type_vlan_len_msec;
1562 u32 type_cs_vlan_tso;
1563 u16 mss_hw_csum;
1564 u16 inner_vtag;
1565 u16 out_vtag;
1566 };
1567
1568 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1569 {
1570 pa->paylen_ol4cs = skb->len;
1571 pa->ol_type_vlan_len_msec = 0;
1572 pa->type_cs_vlan_tso = 0;
1573 pa->mss_hw_csum = 0;
1574 pa->inner_vtag = 0;
1575 pa->out_vtag = 0;
1576 }
1577
1578 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1579 struct sk_buff *skb,
1580 struct hns3_desc_param *param)
1581 {
1582 int ret;
1583
1584 ret = hns3_handle_vtags(ring, skb);
1585 if (unlikely(ret < 0)) {
1586 hns3_ring_stats_update(ring, tx_vlan_err);
1587 return ret;
1588 } else if (ret == HNS3_INNER_VLAN_TAG) {
1589 param->inner_vtag = skb_vlan_tag_get(skb);
1590 param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1591 VLAN_PRIO_MASK;
1592 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1593 } else if (ret == HNS3_OUTER_VLAN_TAG) {
1594 param->out_vtag = skb_vlan_tag_get(skb);
1595 param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1596 VLAN_PRIO_MASK;
1597 hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1598 1);
1599 }
1600 return 0;
1601 }
1602
1603 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1604 struct sk_buff *skb,
1605 struct hns3_desc_cb *desc_cb,
1606 struct hns3_desc_param *param)
1607 {
1608 u8 ol4_proto, il4_proto;
1609 int ret;
1610
1611 if (hns3_check_hw_tx_csum(skb)) {
1612 /* set checksum start and offset, defined in 2 Bytes */
1613 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1614 skb_checksum_start_offset(skb) >> 1);
1615 hns3_set_field(param->ol_type_vlan_len_msec,
1616 HNS3_TXD_CSUM_OFFSET_S,
1617 skb->csum_offset >> 1);
1618 param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1619 return 0;
1620 }
1621
1622 skb_reset_mac_len(skb);
1623
1624 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1625 if (unlikely(ret < 0)) {
1626 hns3_ring_stats_update(ring, tx_l4_proto_err);
1627 return ret;
1628 }
1629
1630 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1631 &param->type_cs_vlan_tso,
1632 &param->ol_type_vlan_len_msec);
1633 if (unlikely(ret < 0)) {
1634 hns3_ring_stats_update(ring, tx_l2l3l4_err);
1635 return ret;
1636 }
1637
1638 ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
1639 &param->type_cs_vlan_tso, &desc_cb->send_bytes);
1640 if (unlikely(ret < 0)) {
1641 hns3_ring_stats_update(ring, tx_tso_err);
1642 return ret;
1643 }
1644 return 0;
1645 }
1646
1647 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1648 struct sk_buff *skb, struct hns3_desc *desc,
1649 struct hns3_desc_cb *desc_cb)
1650 {
1651 struct hns3_desc_param param;
1652 int ret;
1653
1654 hns3_init_desc_data(skb, &param);
1655 ret = hns3_handle_vlan_info(ring, skb, &param);
1656 if (unlikely(ret < 0))
1657 return ret;
1658
1659 desc_cb->send_bytes = skb->len;
1660
1661 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1662 ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
1663 if (ret)
1664 return ret;
1665 }
1666
1667 /* Set txbd */
1668 desc->tx.ol_type_vlan_len_msec =
1669 cpu_to_le32(param.ol_type_vlan_len_msec);
1670 desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1671 desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1672 desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1673 desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1674 desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1675
1676 return 0;
1677 }
1678
1679 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1680 unsigned int size)
1681 {
1682 #define HNS3_LIKELY_BD_NUM 1
1683
1684 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1685 unsigned int frag_buf_num;
1686 int k, sizeoflast;
1687
1688 if (likely(size <= HNS3_MAX_BD_SIZE)) {
1689 desc->addr = cpu_to_le64(dma);
1690 desc->tx.send_size = cpu_to_le16(size);
1691 desc->tx.bdtp_fe_sc_vld_ra_ri =
1692 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1693
1694 trace_hns3_tx_desc(ring, ring->next_to_use);
1695 ring_ptr_move_fw(ring, next_to_use);
1696 return HNS3_LIKELY_BD_NUM;
1697 }
1698
1699 frag_buf_num = hns3_tx_bd_count(size);
1700 sizeoflast = size % HNS3_MAX_BD_SIZE;
1701 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1702
1703 /* When frag size is bigger than hardware limit, split this frag */
1704 for (k = 0; k < frag_buf_num; k++) {
1705 /* now, fill the descriptor */
1706 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1707 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1708 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1709 desc->tx.bdtp_fe_sc_vld_ra_ri =
1710 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1711
1712 trace_hns3_tx_desc(ring, ring->next_to_use);
1713 /* move ring pointer to next */
1714 ring_ptr_move_fw(ring, next_to_use);
1715
1716 desc = &ring->desc[ring->next_to_use];
1717 }
1718
1719 return frag_buf_num;
1720 }
1721
1722 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1723 unsigned int type)
1724 {
1725 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1726 struct device *dev = ring_to_dev(ring);
1727 unsigned int size;
1728 dma_addr_t dma;
1729
1730 if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1731 struct sk_buff *skb = (struct sk_buff *)priv;
1732
1733 size = skb_headlen(skb);
1734 if (!size)
1735 return 0;
1736
1737 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1738 } else if (type & DESC_TYPE_BOUNCE_HEAD) {
1739 /* Head data has been filled in hns3_handle_tx_bounce(),
1740 * just return 0 here.
1741 */
1742 return 0;
1743 } else {
1744 skb_frag_t *frag = (skb_frag_t *)priv;
1745
1746 size = skb_frag_size(frag);
1747 if (!size)
1748 return 0;
1749
1750 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1751 }
1752
1753 if (unlikely(dma_mapping_error(dev, dma))) {
1754 hns3_ring_stats_update(ring, sw_err_cnt);
1755 return -ENOMEM;
1756 }
1757
1758 desc_cb->priv = priv;
1759 desc_cb->length = size;
1760 desc_cb->dma = dma;
1761 desc_cb->type = type;
1762
1763 return hns3_fill_desc(ring, dma, size);
1764 }
1765
1766 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1767 unsigned int bd_num)
1768 {
1769 unsigned int size;
1770 int i;
1771
1772 size = skb_headlen(skb);
1773 while (size > HNS3_MAX_BD_SIZE) {
1774 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1775 size -= HNS3_MAX_BD_SIZE;
1776
1777 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1778 return bd_num;
1779 }
1780
1781 if (size) {
1782 bd_size[bd_num++] = size;
1783 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1784 return bd_num;
1785 }
1786
1787 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1788 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1789 size = skb_frag_size(frag);
1790 if (!size)
1791 continue;
1792
1793 while (size > HNS3_MAX_BD_SIZE) {
1794 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1795 size -= HNS3_MAX_BD_SIZE;
1796
1797 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1798 return bd_num;
1799 }
1800
1801 bd_size[bd_num++] = size;
1802 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1803 return bd_num;
1804 }
1805
1806 return bd_num;
1807 }
1808
1809 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1810 u8 max_non_tso_bd_num, unsigned int bd_num,
1811 unsigned int recursion_level)
1812 {
1813 #define HNS3_MAX_RECURSION_LEVEL 24
1814
1815 struct sk_buff *frag_skb;
1816
1817 /* If the total len is within the max bd limit */
1818 if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1819 !skb_has_frag_list(skb) &&
1820 skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1821 return skb_shinfo(skb)->nr_frags + 1U;
1822
1823 if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1824 return UINT_MAX;
1825
1826 bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1827 if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1828 return bd_num;
1829
1830 skb_walk_frags(skb, frag_skb) {
1831 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1832 bd_num, recursion_level + 1);
1833 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1834 return bd_num;
1835 }
1836
1837 return bd_num;
1838 }
1839
1840 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1841 {
1842 if (!skb->encapsulation)
1843 return skb_tcp_all_headers(skb);
1844
1845 return skb_inner_tcp_all_headers(skb);
1846 }
1847
1848 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1849 * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1850 * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1851 * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1852 * than MSS except the last max_non_tso_bd_num - 1 frags.
1853 */
1854 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1855 unsigned int bd_num, u8 max_non_tso_bd_num)
1856 {
1857 unsigned int tot_len = 0;
1858 int i;
1859
1860 for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1861 tot_len += bd_size[i];
1862
1863 /* ensure the first max_non_tso_bd_num frags is greater than
1864 * mss + header
1865 */
1866 if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1867 skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1868 return true;
1869
1870 /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1871 * than mss except the last one.
1872 */
1873 for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1874 tot_len -= bd_size[i];
1875 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1876
1877 if (tot_len < skb_shinfo(skb)->gso_size)
1878 return true;
1879 }
1880
1881 return false;
1882 }
1883
1884 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1885 {
1886 int i;
1887
1888 for (i = 0; i < MAX_SKB_FRAGS; i++)
1889 size[i] = skb_frag_size(&shinfo->frags[i]);
1890 }
1891
1892 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1893 struct sk_buff *skb,
1894 unsigned int bd_num)
1895 {
1896 /* 'bd_num == UINT_MAX' means the skb' fraglist has a
1897 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1898 */
1899 if (bd_num == UINT_MAX) {
1900 hns3_ring_stats_update(ring, over_max_recursion);
1901 return -ENOMEM;
1902 }
1903
1904 /* The skb->len has exceeded the hw limitation, linearization
1905 * will not help.
1906 */
1907 if (skb->len > HNS3_MAX_TSO_SIZE ||
1908 (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1909 hns3_ring_stats_update(ring, hw_limitation);
1910 return -ENOMEM;
1911 }
1912
1913 if (__skb_linearize(skb)) {
1914 hns3_ring_stats_update(ring, sw_err_cnt);
1915 return -ENOMEM;
1916 }
1917
1918 return 0;
1919 }
1920
1921 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1922 struct net_device *netdev,
1923 struct sk_buff *skb)
1924 {
1925 struct hns3_nic_priv *priv = netdev_priv(netdev);
1926 u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1927 unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1928 unsigned int bd_num;
1929
1930 bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1931 if (unlikely(bd_num > max_non_tso_bd_num)) {
1932 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1933 !hns3_skb_need_linearized(skb, bd_size, bd_num,
1934 max_non_tso_bd_num)) {
1935 trace_hns3_over_max_bd(skb);
1936 goto out;
1937 }
1938
1939 if (hns3_skb_linearize(ring, skb, bd_num))
1940 return -ENOMEM;
1941
1942 bd_num = hns3_tx_bd_count(skb->len);
1943
1944 hns3_ring_stats_update(ring, tx_copy);
1945 }
1946
1947 out:
1948 if (likely(ring_space(ring) >= bd_num))
1949 return bd_num;
1950
1951 netif_stop_subqueue(netdev, ring->queue_index);
1952 smp_mb(); /* Memory barrier before checking ring_space */
1953
1954 /* Start queue in case hns3_clean_tx_ring has just made room
1955 * available and has not seen the queue stopped state performed
1956 * by netif_stop_subqueue above.
1957 */
1958 if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1959 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1960 netif_start_subqueue(netdev, ring->queue_index);
1961 return bd_num;
1962 }
1963
1964 hns3_ring_stats_update(ring, tx_busy);
1965
1966 return -EBUSY;
1967 }
1968
1969 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1970 {
1971 struct device *dev = ring_to_dev(ring);
1972 unsigned int i;
1973
1974 for (i = 0; i < ring->desc_num; i++) {
1975 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1976 struct hns3_desc_cb *desc_cb;
1977
1978 memset(desc, 0, sizeof(*desc));
1979
1980 /* check if this is where we started */
1981 if (ring->next_to_use == next_to_use_orig)
1982 break;
1983
1984 /* rollback one */
1985 ring_ptr_move_bw(ring, next_to_use);
1986
1987 desc_cb = &ring->desc_cb[ring->next_to_use];
1988
1989 if (!desc_cb->dma)
1990 continue;
1991
1992 /* unmap the descriptor dma address */
1993 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1994 dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1995 DMA_TO_DEVICE);
1996 else if (desc_cb->type &
1997 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1998 hns3_tx_spare_rollback(ring, desc_cb->length);
1999 else if (desc_cb->length)
2000 dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
2001 DMA_TO_DEVICE);
2002
2003 desc_cb->length = 0;
2004 desc_cb->dma = 0;
2005 desc_cb->type = DESC_TYPE_UNKNOWN;
2006 }
2007 }
2008
2009 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
2010 struct sk_buff *skb, unsigned int type)
2011 {
2012 struct sk_buff *frag_skb;
2013 int i, ret, bd_num = 0;
2014
2015 ret = hns3_map_and_fill_desc(ring, skb, type);
2016 if (unlikely(ret < 0))
2017 return ret;
2018
2019 bd_num += ret;
2020
2021 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2022 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2023
2024 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2025 if (unlikely(ret < 0))
2026 return ret;
2027
2028 bd_num += ret;
2029 }
2030
2031 skb_walk_frags(skb, frag_skb) {
2032 ret = hns3_fill_skb_to_desc(ring, frag_skb,
2033 DESC_TYPE_FRAGLIST_SKB);
2034 if (unlikely(ret < 0))
2035 return ret;
2036
2037 bd_num += ret;
2038 }
2039
2040 return bd_num;
2041 }
2042
2043 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
2044 {
2045 #define HNS3_BYTES_PER_64BIT 8
2046
2047 struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
2048 int offset = 0;
2049
2050 /* make sure everything is visible to device before
2051 * excuting tx push or updating doorbell
2052 */
2053 dma_wmb();
2054
2055 do {
2056 int idx = (ring->next_to_use - num + ring->desc_num) %
2057 ring->desc_num;
2058
2059 u64_stats_update_begin(&ring->syncp);
2060 ring->stats.tx_push++;
2061 u64_stats_update_end(&ring->syncp);
2062 memcpy(&desc[offset], &ring->desc[idx],
2063 sizeof(struct hns3_desc));
2064 offset++;
2065 } while (--num);
2066
2067 __iowrite64_copy(ring->tqp->mem_base, desc,
2068 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
2069 HNS3_BYTES_PER_64BIT);
2070
2071 io_stop_wc();
2072 }
2073
2074 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
2075 {
2076 #define HNS3_MEM_DOORBELL_OFFSET 64
2077
2078 __le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
2079
2080 /* make sure everything is visible to device before
2081 * excuting tx push or updating doorbell
2082 */
2083 dma_wmb();
2084
2085 __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
2086 &bd_num, 1);
2087 u64_stats_update_begin(&ring->syncp);
2088 ring->stats.tx_mem_doorbell += ring->pending_buf;
2089 u64_stats_update_end(&ring->syncp);
2090
2091 io_stop_wc();
2092 }
2093
2094 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2095 bool doorbell)
2096 {
2097 struct net_device *netdev = ring_to_netdev(ring);
2098 struct hns3_nic_priv *priv = netdev_priv(netdev);
2099
2100 /* when tx push is enabled, the packet whose number of BD below
2101 * HNS3_MAX_PUSH_BD_NUM can be pushed directly.
2102 */
2103 if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
2104 !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
2105 hns3_tx_push_bd(ring, num);
2106 WRITE_ONCE(ring->last_to_use, ring->next_to_use);
2107 return;
2108 }
2109
2110 ring->pending_buf += num;
2111
2112 if (!doorbell) {
2113 hns3_ring_stats_update(ring, tx_more);
2114 return;
2115 }
2116
2117 if (ring->tqp->mem_base)
2118 hns3_tx_mem_doorbell(ring);
2119 else
2120 writel(ring->pending_buf,
2121 ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2122
2123 ring->pending_buf = 0;
2124 WRITE_ONCE(ring->last_to_use, ring->next_to_use);
2125 }
2126
2127 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2128 struct hns3_desc *desc)
2129 {
2130 struct hnae3_handle *h = hns3_get_handle(netdev);
2131
2132 if (!(h->ae_algo->ops->set_tx_hwts_info &&
2133 h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2134 return;
2135
2136 desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2137 }
2138
2139 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2140 struct sk_buff *skb)
2141 {
2142 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2143 unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2144 unsigned int size = skb_headlen(skb);
2145 dma_addr_t dma;
2146 int bd_num = 0;
2147 u32 cb_len;
2148 void *buf;
2149 int ret;
2150
2151 if (skb->len <= ring->tx_copybreak) {
2152 size = skb->len;
2153 type = DESC_TYPE_BOUNCE_ALL;
2154 }
2155
2156 /* hns3_can_use_tx_bounce() is called to ensure the below
2157 * function can always return the tx buffer.
2158 */
2159 buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2160
2161 ret = skb_copy_bits(skb, 0, buf, size);
2162 if (unlikely(ret < 0)) {
2163 hns3_tx_spare_rollback(ring, cb_len);
2164 hns3_ring_stats_update(ring, copy_bits_err);
2165 return ret;
2166 }
2167
2168 desc_cb->priv = skb;
2169 desc_cb->length = cb_len;
2170 desc_cb->dma = dma;
2171 desc_cb->type = type;
2172
2173 bd_num += hns3_fill_desc(ring, dma, size);
2174
2175 if (type == DESC_TYPE_BOUNCE_HEAD) {
2176 ret = hns3_fill_skb_to_desc(ring, skb,
2177 DESC_TYPE_BOUNCE_HEAD);
2178 if (unlikely(ret < 0))
2179 return ret;
2180
2181 bd_num += ret;
2182 }
2183
2184 dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2185 DMA_TO_DEVICE);
2186
2187 hns3_ring_stats_update(ring, tx_bounce);
2188
2189 return bd_num;
2190 }
2191
2192 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2193 struct sk_buff *skb)
2194 {
2195 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2196 u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2197 struct sg_table *sgt;
2198 int i, bd_num = 0;
2199 dma_addr_t dma;
2200 u32 cb_len;
2201 int nents;
2202
2203 if (skb_has_frag_list(skb))
2204 nfrag = HNS3_MAX_TSO_BD_NUM;
2205
2206 /* hns3_can_use_tx_sgl() is called to ensure the below
2207 * function can always return the tx buffer.
2208 */
2209 sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2210 &dma, &cb_len);
2211
2212 /* scatterlist follows by the sg table */
2213 sgt->sgl = (struct scatterlist *)(sgt + 1);
2214 sg_init_table(sgt->sgl, nfrag);
2215 nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2216 if (unlikely(nents < 0)) {
2217 hns3_tx_spare_rollback(ring, cb_len);
2218 hns3_ring_stats_update(ring, skb2sgl_err);
2219 return -ENOMEM;
2220 }
2221
2222 sgt->orig_nents = nents;
2223 sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2224 DMA_TO_DEVICE);
2225 if (unlikely(!sgt->nents)) {
2226 hns3_tx_spare_rollback(ring, cb_len);
2227 hns3_ring_stats_update(ring, map_sg_err);
2228 return -ENOMEM;
2229 }
2230
2231 desc_cb->priv = skb;
2232 desc_cb->length = cb_len;
2233 desc_cb->dma = dma;
2234 desc_cb->type = DESC_TYPE_SGL_SKB;
2235
2236 for (i = 0; i < sgt->nents; i++)
2237 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2238 sg_dma_len(sgt->sgl + i));
2239 hns3_ring_stats_update(ring, tx_sgl);
2240
2241 return bd_num;
2242 }
2243
2244 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2245 struct sk_buff *skb)
2246 {
2247 u32 space;
2248
2249 if (!ring->tx_spare)
2250 goto out;
2251
2252 space = hns3_tx_spare_space(ring);
2253
2254 if (hns3_can_use_tx_sgl(ring, skb, space))
2255 return hns3_handle_tx_sgl(ring, skb);
2256
2257 if (hns3_can_use_tx_bounce(ring, skb, space))
2258 return hns3_handle_tx_bounce(ring, skb);
2259
2260 out:
2261 return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2262 }
2263
2264 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2265 struct sk_buff *skb,
2266 struct hns3_desc_cb *desc_cb,
2267 int next_to_use_head)
2268 {
2269 int ret;
2270
2271 ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2272 desc_cb);
2273 if (unlikely(ret < 0))
2274 goto fill_err;
2275
2276 /* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2277 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2278 * need to be notified to the hw.
2279 */
2280 ret = hns3_handle_desc_filling(ring, skb);
2281 if (likely(ret > 0))
2282 return ret;
2283
2284 fill_err:
2285 hns3_clear_desc(ring, next_to_use_head);
2286 return ret;
2287 }
2288
2289 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2290 {
2291 struct hns3_nic_priv *priv = netdev_priv(netdev);
2292 struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2293 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2294 struct netdev_queue *dev_queue;
2295 int pre_ntu, ret;
2296 bool doorbell;
2297
2298 /* Hardware can only handle short frames above 32 bytes */
2299 if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2300 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2301
2302 hns3_ring_stats_update(ring, sw_err_cnt);
2303
2304 return NETDEV_TX_OK;
2305 }
2306
2307 /* Prefetch the data used later */
2308 prefetch(skb->data);
2309
2310 ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2311 if (unlikely(ret <= 0)) {
2312 if (ret == -EBUSY) {
2313 hns3_tx_doorbell(ring, 0, true);
2314 return NETDEV_TX_BUSY;
2315 }
2316
2317 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2318 goto out_err_tx_ok;
2319 }
2320
2321 ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2322 if (unlikely(ret <= 0))
2323 goto out_err_tx_ok;
2324
2325 pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2326 (ring->desc_num - 1);
2327
2328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2329 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2330
2331 ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2332 cpu_to_le16(BIT(HNS3_TXD_FE_B));
2333 trace_hns3_tx_desc(ring, pre_ntu);
2334
2335 skb_tx_timestamp(skb);
2336
2337 /* Complete translate all packets */
2338 dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2339 doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2340 netdev_xmit_more());
2341 hns3_tx_doorbell(ring, ret, doorbell);
2342
2343 return NETDEV_TX_OK;
2344
2345 out_err_tx_ok:
2346 dev_kfree_skb_any(skb);
2347 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2348 return NETDEV_TX_OK;
2349 }
2350
2351 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2352 {
2353 char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2354 char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2355 struct hnae3_handle *h = hns3_get_handle(netdev);
2356 struct sockaddr *mac_addr = p;
2357 int ret;
2358
2359 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2360 return -EADDRNOTAVAIL;
2361
2362 if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2363 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2364 netdev_info(netdev, "already using mac address %s\n",
2365 format_mac_addr_sa);
2366 return 0;
2367 }
2368
2369 /* For VF device, if there is a perm_addr, then the user will not
2370 * be allowed to change the address.
2371 */
2372 if (!hns3_is_phys_func(h->pdev) &&
2373 !is_zero_ether_addr(netdev->perm_addr)) {
2374 hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2375 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2376 netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2377 format_mac_addr_perm, format_mac_addr_sa);
2378 return -EPERM;
2379 }
2380
2381 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2382 if (ret) {
2383 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2384 return ret;
2385 }
2386
2387 eth_hw_addr_set(netdev, mac_addr->sa_data);
2388
2389 return 0;
2390 }
2391
2392 static int hns3_nic_do_ioctl(struct net_device *netdev,
2393 struct ifreq *ifr, int cmd)
2394 {
2395 struct hnae3_handle *h = hns3_get_handle(netdev);
2396
2397 if (!netif_running(netdev))
2398 return -EINVAL;
2399
2400 if (!h->ae_algo->ops->do_ioctl)
2401 return -EOPNOTSUPP;
2402
2403 return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2404 }
2405
2406 static int hns3_nic_set_features(struct net_device *netdev,
2407 netdev_features_t features)
2408 {
2409 netdev_features_t changed = netdev->features ^ features;
2410 struct hns3_nic_priv *priv = netdev_priv(netdev);
2411 struct hnae3_handle *h = priv->ae_handle;
2412 bool enable;
2413 int ret;
2414
2415 if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2416 enable = !!(features & NETIF_F_GRO_HW);
2417 ret = h->ae_algo->ops->set_gro_en(h, enable);
2418 if (ret)
2419 return ret;
2420 }
2421
2422 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2423 h->ae_algo->ops->enable_hw_strip_rxvtag) {
2424 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2425 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2426 if (ret)
2427 return ret;
2428 }
2429
2430 if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2431 enable = !!(features & NETIF_F_NTUPLE);
2432 h->ae_algo->ops->enable_fd(h, enable);
2433 }
2434
2435 if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2436 h->ae_algo->ops->cls_flower_active(h)) {
2437 netdev_err(netdev,
2438 "there are offloaded TC filters active, cannot disable HW TC offload");
2439 return -EINVAL;
2440 }
2441
2442 if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2443 h->ae_algo->ops->enable_vlan_filter) {
2444 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2445 ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2446 if (ret)
2447 return ret;
2448 }
2449
2450 netdev->features = features;
2451 return 0;
2452 }
2453
2454 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2455 struct net_device *dev,
2456 netdev_features_t features)
2457 {
2458 #define HNS3_MAX_HDR_LEN 480U
2459 #define HNS3_MAX_L4_HDR_LEN 60U
2460
2461 size_t len;
2462
2463 if (skb->ip_summed != CHECKSUM_PARTIAL)
2464 return features;
2465
2466 if (skb->encapsulation)
2467 len = skb_inner_transport_header(skb) - skb->data;
2468 else
2469 len = skb_transport_header(skb) - skb->data;
2470
2471 /* Assume L4 is 60 byte as TCP is the only protocol with a
2472 * a flexible value, and it's max len is 60 bytes.
2473 */
2474 len += HNS3_MAX_L4_HDR_LEN;
2475
2476 /* Hardware only supports checksum on the skb with a max header
2477 * len of 480 bytes.
2478 */
2479 if (len > HNS3_MAX_HDR_LEN)
2480 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2481
2482 return features;
2483 }
2484
2485 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2486 struct hns3_enet_ring *ring, bool is_tx)
2487 {
2488 unsigned int start;
2489
2490 do {
2491 start = u64_stats_fetch_begin(&ring->syncp);
2492 if (is_tx) {
2493 stats->tx_bytes += ring->stats.tx_bytes;
2494 stats->tx_packets += ring->stats.tx_pkts;
2495 stats->tx_dropped += ring->stats.sw_err_cnt;
2496 stats->tx_dropped += ring->stats.tx_vlan_err;
2497 stats->tx_dropped += ring->stats.tx_l4_proto_err;
2498 stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2499 stats->tx_dropped += ring->stats.tx_tso_err;
2500 stats->tx_dropped += ring->stats.over_max_recursion;
2501 stats->tx_dropped += ring->stats.hw_limitation;
2502 stats->tx_dropped += ring->stats.copy_bits_err;
2503 stats->tx_dropped += ring->stats.skb2sgl_err;
2504 stats->tx_dropped += ring->stats.map_sg_err;
2505 stats->tx_errors += ring->stats.sw_err_cnt;
2506 stats->tx_errors += ring->stats.tx_vlan_err;
2507 stats->tx_errors += ring->stats.tx_l4_proto_err;
2508 stats->tx_errors += ring->stats.tx_l2l3l4_err;
2509 stats->tx_errors += ring->stats.tx_tso_err;
2510 stats->tx_errors += ring->stats.over_max_recursion;
2511 stats->tx_errors += ring->stats.hw_limitation;
2512 stats->tx_errors += ring->stats.copy_bits_err;
2513 stats->tx_errors += ring->stats.skb2sgl_err;
2514 stats->tx_errors += ring->stats.map_sg_err;
2515 } else {
2516 stats->rx_bytes += ring->stats.rx_bytes;
2517 stats->rx_packets += ring->stats.rx_pkts;
2518 stats->rx_dropped += ring->stats.l2_err;
2519 stats->rx_errors += ring->stats.l2_err;
2520 stats->rx_errors += ring->stats.l3l4_csum_err;
2521 stats->rx_crc_errors += ring->stats.l2_err;
2522 stats->multicast += ring->stats.rx_multicast;
2523 stats->rx_length_errors += ring->stats.err_pkt_len;
2524 }
2525 } while (u64_stats_fetch_retry(&ring->syncp, start));
2526 }
2527
2528 static void hns3_nic_get_stats64(struct net_device *netdev,
2529 struct rtnl_link_stats64 *stats)
2530 {
2531 struct hns3_nic_priv *priv = netdev_priv(netdev);
2532 int queue_num = priv->ae_handle->kinfo.num_tqps;
2533 struct hnae3_handle *handle = priv->ae_handle;
2534 struct rtnl_link_stats64 ring_total_stats;
2535 struct hns3_enet_ring *ring;
2536 unsigned int idx;
2537
2538 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2539 return;
2540
2541 handle->ae_algo->ops->update_stats(handle, &netdev->stats);
2542
2543 memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2544 for (idx = 0; idx < queue_num; idx++) {
2545 /* fetch the tx stats */
2546 ring = &priv->ring[idx];
2547 hns3_fetch_stats(&ring_total_stats, ring, true);
2548
2549 /* fetch the rx stats */
2550 ring = &priv->ring[idx + queue_num];
2551 hns3_fetch_stats(&ring_total_stats, ring, false);
2552 }
2553
2554 stats->tx_bytes = ring_total_stats.tx_bytes;
2555 stats->tx_packets = ring_total_stats.tx_packets;
2556 stats->rx_bytes = ring_total_stats.rx_bytes;
2557 stats->rx_packets = ring_total_stats.rx_packets;
2558
2559 stats->rx_errors = ring_total_stats.rx_errors;
2560 stats->multicast = ring_total_stats.multicast;
2561 stats->rx_length_errors = ring_total_stats.rx_length_errors;
2562 stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2563 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2564
2565 stats->tx_errors = ring_total_stats.tx_errors;
2566 stats->rx_dropped = ring_total_stats.rx_dropped;
2567 stats->tx_dropped = ring_total_stats.tx_dropped;
2568 stats->collisions = netdev->stats.collisions;
2569 stats->rx_over_errors = netdev->stats.rx_over_errors;
2570 stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2571 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2572 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2573 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2574 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2575 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2576 stats->tx_window_errors = netdev->stats.tx_window_errors;
2577 stats->rx_compressed = netdev->stats.rx_compressed;
2578 stats->tx_compressed = netdev->stats.tx_compressed;
2579 }
2580
2581 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2582 {
2583 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2584 struct hnae3_knic_private_info *kinfo;
2585 u8 tc = mqprio_qopt->qopt.num_tc;
2586 u16 mode = mqprio_qopt->mode;
2587 u8 hw = mqprio_qopt->qopt.hw;
2588 struct hnae3_handle *h;
2589
2590 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2591 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2592 return -EOPNOTSUPP;
2593
2594 if (tc > HNAE3_MAX_TC)
2595 return -EINVAL;
2596
2597 if (!netdev)
2598 return -EINVAL;
2599
2600 h = hns3_get_handle(netdev);
2601 kinfo = &h->kinfo;
2602
2603 netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2604
2605 return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2606 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2607 }
2608
2609 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2610 struct flow_cls_offload *flow)
2611 {
2612 int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2613 struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2614
2615 switch (flow->command) {
2616 case FLOW_CLS_REPLACE:
2617 if (h->ae_algo->ops->add_cls_flower)
2618 return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2619 break;
2620 case FLOW_CLS_DESTROY:
2621 if (h->ae_algo->ops->del_cls_flower)
2622 return h->ae_algo->ops->del_cls_flower(h, flow);
2623 break;
2624 default:
2625 break;
2626 }
2627
2628 return -EOPNOTSUPP;
2629 }
2630
2631 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2632 void *cb_priv)
2633 {
2634 struct hns3_nic_priv *priv = cb_priv;
2635
2636 if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2637 return -EOPNOTSUPP;
2638
2639 switch (type) {
2640 case TC_SETUP_CLSFLOWER:
2641 return hns3_setup_tc_cls_flower(priv, type_data);
2642 default:
2643 return -EOPNOTSUPP;
2644 }
2645 }
2646
2647 static LIST_HEAD(hns3_block_cb_list);
2648
2649 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2650 void *type_data)
2651 {
2652 struct hns3_nic_priv *priv = netdev_priv(dev);
2653 int ret;
2654
2655 switch (type) {
2656 case TC_SETUP_QDISC_MQPRIO:
2657 ret = hns3_setup_tc(dev, type_data);
2658 break;
2659 case TC_SETUP_BLOCK:
2660 ret = flow_block_cb_setup_simple(type_data,
2661 &hns3_block_cb_list,
2662 hns3_setup_tc_block_cb,
2663 priv, priv, true);
2664 break;
2665 default:
2666 return -EOPNOTSUPP;
2667 }
2668
2669 return ret;
2670 }
2671
2672 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2673 __be16 proto, u16 vid)
2674 {
2675 struct hnae3_handle *h = hns3_get_handle(netdev);
2676 int ret = -EIO;
2677
2678 if (h->ae_algo->ops->set_vlan_filter)
2679 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2680
2681 return ret;
2682 }
2683
2684 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2685 __be16 proto, u16 vid)
2686 {
2687 struct hnae3_handle *h = hns3_get_handle(netdev);
2688 int ret = -EIO;
2689
2690 if (h->ae_algo->ops->set_vlan_filter)
2691 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2692
2693 return ret;
2694 }
2695
2696 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2697 u8 qos, __be16 vlan_proto)
2698 {
2699 struct hnae3_handle *h = hns3_get_handle(netdev);
2700 int ret = -EIO;
2701
2702 netif_dbg(h, drv, netdev,
2703 "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2704 vf, vlan, qos, ntohs(vlan_proto));
2705
2706 if (h->ae_algo->ops->set_vf_vlan_filter)
2707 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2708 qos, vlan_proto);
2709
2710 return ret;
2711 }
2712
2713 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2714 {
2715 struct hnae3_handle *handle = hns3_get_handle(netdev);
2716
2717 if (hns3_nic_resetting(netdev))
2718 return -EBUSY;
2719
2720 if (!handle->ae_algo->ops->set_vf_spoofchk)
2721 return -EOPNOTSUPP;
2722
2723 return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2724 }
2725
2726 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2727 {
2728 struct hnae3_handle *handle = hns3_get_handle(netdev);
2729
2730 if (!handle->ae_algo->ops->set_vf_trust)
2731 return -EOPNOTSUPP;
2732
2733 return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2734 }
2735
2736 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2737 {
2738 struct hnae3_handle *h = hns3_get_handle(netdev);
2739 int ret;
2740
2741 if (hns3_nic_resetting(netdev))
2742 return -EBUSY;
2743
2744 if (!h->ae_algo->ops->set_mtu)
2745 return -EOPNOTSUPP;
2746
2747 netif_dbg(h, drv, netdev,
2748 "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2749
2750 ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2751 if (ret)
2752 netdev_err(netdev, "failed to change MTU in hardware %d\n",
2753 ret);
2754 else
2755 netdev->mtu = new_mtu;
2756
2757 return ret;
2758 }
2759
2760 static int hns3_get_timeout_queue(struct net_device *ndev)
2761 {
2762 int i;
2763
2764 /* Find the stopped queue the same way the stack does */
2765 for (i = 0; i < ndev->num_tx_queues; i++) {
2766 struct netdev_queue *q;
2767 unsigned long trans_start;
2768
2769 q = netdev_get_tx_queue(ndev, i);
2770 trans_start = READ_ONCE(q->trans_start);
2771 if (netif_xmit_stopped(q) &&
2772 time_after(jiffies,
2773 (trans_start + ndev->watchdog_timeo))) {
2774 #ifdef CONFIG_BQL
2775 struct dql *dql = &q->dql;
2776
2777 netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2778 dql->last_obj_cnt, dql->num_queued,
2779 dql->adj_limit, dql->num_completed);
2780 #endif
2781 netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2782 q->state,
2783 jiffies_to_msecs(jiffies - trans_start));
2784 break;
2785 }
2786 }
2787
2788 return i;
2789 }
2790
2791 static void hns3_dump_queue_stats(struct net_device *ndev,
2792 struct hns3_enet_ring *tx_ring,
2793 int timeout_queue)
2794 {
2795 struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2796 struct hns3_nic_priv *priv = netdev_priv(ndev);
2797
2798 netdev_info(ndev,
2799 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2800 priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2801 tx_ring->next_to_clean, napi->state);
2802
2803 netdev_info(ndev,
2804 "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2805 tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2806 tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2807
2808 netdev_info(ndev,
2809 "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2810 tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2811 tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2812
2813 netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
2814 tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
2815 }
2816
2817 static void hns3_dump_queue_reg(struct net_device *ndev,
2818 struct hns3_enet_ring *tx_ring)
2819 {
2820 netdev_info(ndev,
2821 "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2822 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2823 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2824 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2825 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2826 readl(tx_ring->tqp_vector->mask_addr));
2827 netdev_info(ndev,
2828 "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2829 hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2830 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2831 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2832 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2833 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2834 hns3_tqp_read_reg(tx_ring,
2835 HNS3_RING_TX_RING_EBD_OFFSET_REG));
2836 }
2837
2838 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2839 {
2840 struct hns3_nic_priv *priv = netdev_priv(ndev);
2841 struct hnae3_handle *h = hns3_get_handle(ndev);
2842 struct hns3_enet_ring *tx_ring;
2843 int timeout_queue;
2844
2845 timeout_queue = hns3_get_timeout_queue(ndev);
2846 if (timeout_queue >= ndev->num_tx_queues) {
2847 netdev_info(ndev,
2848 "no netdev TX timeout queue found, timeout count: %llu\n",
2849 priv->tx_timeout_count);
2850 return false;
2851 }
2852
2853 priv->tx_timeout_count++;
2854
2855 tx_ring = &priv->ring[timeout_queue];
2856 hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2857
2858 /* When mac received many pause frames continuous, it's unable to send
2859 * packets, which may cause tx timeout
2860 */
2861 if (h->ae_algo->ops->get_mac_stats) {
2862 struct hns3_mac_stats mac_stats;
2863
2864 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2865 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2866 mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2867 }
2868
2869 hns3_dump_queue_reg(ndev, tx_ring);
2870
2871 return true;
2872 }
2873
2874 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2875 {
2876 struct hns3_nic_priv *priv = netdev_priv(ndev);
2877 struct hnae3_handle *h = priv->ae_handle;
2878
2879 if (!hns3_get_tx_timeo_queue_info(ndev))
2880 return;
2881
2882 /* request the reset, and let the hclge to determine
2883 * which reset level should be done
2884 */
2885 if (h->ae_algo->ops->reset_event)
2886 h->ae_algo->ops->reset_event(h->pdev, h);
2887 }
2888
2889 #ifdef CONFIG_RFS_ACCEL
2890 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2891 u16 rxq_index, u32 flow_id)
2892 {
2893 struct hnae3_handle *h = hns3_get_handle(dev);
2894 struct flow_keys fkeys;
2895
2896 if (!h->ae_algo->ops->add_arfs_entry)
2897 return -EOPNOTSUPP;
2898
2899 if (skb->encapsulation)
2900 return -EPROTONOSUPPORT;
2901
2902 if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2903 return -EPROTONOSUPPORT;
2904
2905 if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2906 fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2907 (fkeys.basic.ip_proto != IPPROTO_TCP &&
2908 fkeys.basic.ip_proto != IPPROTO_UDP))
2909 return -EPROTONOSUPPORT;
2910
2911 return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2912 }
2913 #endif
2914
2915 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2916 struct ifla_vf_info *ivf)
2917 {
2918 struct hnae3_handle *h = hns3_get_handle(ndev);
2919
2920 if (!h->ae_algo->ops->get_vf_config)
2921 return -EOPNOTSUPP;
2922
2923 return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2924 }
2925
2926 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2927 int link_state)
2928 {
2929 struct hnae3_handle *h = hns3_get_handle(ndev);
2930
2931 if (!h->ae_algo->ops->set_vf_link_state)
2932 return -EOPNOTSUPP;
2933
2934 return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2935 }
2936
2937 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2938 int min_tx_rate, int max_tx_rate)
2939 {
2940 struct hnae3_handle *h = hns3_get_handle(ndev);
2941
2942 if (!h->ae_algo->ops->set_vf_rate)
2943 return -EOPNOTSUPP;
2944
2945 return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2946 false);
2947 }
2948
2949 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2950 {
2951 struct hnae3_handle *h = hns3_get_handle(netdev);
2952 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2953
2954 if (!h->ae_algo->ops->set_vf_mac)
2955 return -EOPNOTSUPP;
2956
2957 if (is_multicast_ether_addr(mac)) {
2958 hnae3_format_mac_addr(format_mac_addr, mac);
2959 netdev_err(netdev,
2960 "Invalid MAC:%s specified. Could not set MAC\n",
2961 format_mac_addr);
2962 return -EINVAL;
2963 }
2964
2965 return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2966 }
2967
2968 #define HNS3_INVALID_DSCP 0xff
2969 #define HNS3_DSCP_SHIFT 2
2970
2971 static u8 hns3_get_skb_dscp(struct sk_buff *skb)
2972 {
2973 __be16 protocol = skb->protocol;
2974 u8 dscp = HNS3_INVALID_DSCP;
2975
2976 if (protocol == htons(ETH_P_8021Q))
2977 protocol = vlan_get_protocol(skb);
2978
2979 if (protocol == htons(ETH_P_IP))
2980 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT;
2981 else if (protocol == htons(ETH_P_IPV6))
2982 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT;
2983
2984 return dscp;
2985 }
2986
2987 static u16 hns3_nic_select_queue(struct net_device *netdev,
2988 struct sk_buff *skb,
2989 struct net_device *sb_dev)
2990 {
2991 struct hnae3_handle *h = hns3_get_handle(netdev);
2992 u8 dscp;
2993
2994 if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP ||
2995 !h->ae_algo->ops->get_dscp_prio)
2996 goto out;
2997
2998 dscp = hns3_get_skb_dscp(skb);
2999 if (unlikely(dscp >= HNAE3_MAX_DSCP))
3000 goto out;
3001
3002 skb->priority = h->kinfo.dscp_prio[dscp];
3003 if (skb->priority == HNAE3_PRIO_ID_INVALID)
3004 skb->priority = 0;
3005
3006 out:
3007 return netdev_pick_tx(netdev, skb, sb_dev);
3008 }
3009
3010 static const struct net_device_ops hns3_nic_netdev_ops = {
3011 .ndo_open = hns3_nic_net_open,
3012 .ndo_stop = hns3_nic_net_stop,
3013 .ndo_start_xmit = hns3_nic_net_xmit,
3014 .ndo_tx_timeout = hns3_nic_net_timeout,
3015 .ndo_set_mac_address = hns3_nic_net_set_mac_address,
3016 .ndo_eth_ioctl = hns3_nic_do_ioctl,
3017 .ndo_change_mtu = hns3_nic_change_mtu,
3018 .ndo_set_features = hns3_nic_set_features,
3019 .ndo_features_check = hns3_features_check,
3020 .ndo_get_stats64 = hns3_nic_get_stats64,
3021 .ndo_setup_tc = hns3_nic_setup_tc,
3022 .ndo_set_rx_mode = hns3_nic_set_rx_mode,
3023 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid,
3024 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid,
3025 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan,
3026 .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk,
3027 .ndo_set_vf_trust = hns3_set_vf_trust,
3028 #ifdef CONFIG_RFS_ACCEL
3029 .ndo_rx_flow_steer = hns3_rx_flow_steer,
3030 #endif
3031 .ndo_get_vf_config = hns3_nic_get_vf_config,
3032 .ndo_set_vf_link_state = hns3_nic_set_vf_link_state,
3033 .ndo_set_vf_rate = hns3_nic_set_vf_rate,
3034 .ndo_set_vf_mac = hns3_nic_set_vf_mac,
3035 .ndo_select_queue = hns3_nic_select_queue,
3036 };
3037
3038 bool hns3_is_phys_func(struct pci_dev *pdev)
3039 {
3040 u32 dev_id = pdev->device;
3041
3042 switch (dev_id) {
3043 case HNAE3_DEV_ID_GE:
3044 case HNAE3_DEV_ID_25GE:
3045 case HNAE3_DEV_ID_25GE_RDMA:
3046 case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
3047 case HNAE3_DEV_ID_50GE_RDMA:
3048 case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
3049 case HNAE3_DEV_ID_100G_RDMA_MACSEC:
3050 case HNAE3_DEV_ID_200G_RDMA:
3051 return true;
3052 case HNAE3_DEV_ID_VF:
3053 case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
3054 return false;
3055 default:
3056 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
3057 dev_id);
3058 }
3059
3060 return false;
3061 }
3062
3063 static void hns3_disable_sriov(struct pci_dev *pdev)
3064 {
3065 /* If our VFs are assigned we cannot shut down SR-IOV
3066 * without causing issues, so just leave the hardware
3067 * available but disabled
3068 */
3069 if (pci_vfs_assigned(pdev)) {
3070 dev_warn(&pdev->dev,
3071 "disabling driver while VFs are assigned\n");
3072 return;
3073 }
3074
3075 pci_disable_sriov(pdev);
3076 }
3077
3078 /* hns3_probe - Device initialization routine
3079 * @pdev: PCI device information struct
3080 * @ent: entry in hns3_pci_tbl
3081 *
3082 * hns3_probe initializes a PF identified by a pci_dev structure.
3083 * The OS initialization, configuring of the PF private structure,
3084 * and a hardware reset occur.
3085 *
3086 * Returns 0 on success, negative on failure
3087 */
3088 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3089 {
3090 struct hnae3_ae_dev *ae_dev;
3091 int ret;
3092
3093 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
3094 if (!ae_dev)
3095 return -ENOMEM;
3096
3097 ae_dev->pdev = pdev;
3098 ae_dev->flag = ent->driver_data;
3099 pci_set_drvdata(pdev, ae_dev);
3100
3101 ret = hnae3_register_ae_dev(ae_dev);
3102 if (ret)
3103 pci_set_drvdata(pdev, NULL);
3104
3105 return ret;
3106 }
3107
3108 /**
3109 * hns3_clean_vf_config
3110 * @pdev: pointer to a pci_dev structure
3111 * @num_vfs: number of VFs allocated
3112 *
3113 * Clean residual vf config after disable sriov
3114 **/
3115 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
3116 {
3117 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3118
3119 if (ae_dev->ops->clean_vf_config)
3120 ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
3121 }
3122
3123 /* hns3_remove - Device removal routine
3124 * @pdev: PCI device information struct
3125 */
3126 static void hns3_remove(struct pci_dev *pdev)
3127 {
3128 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3129
3130 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
3131 hns3_disable_sriov(pdev);
3132
3133 hnae3_unregister_ae_dev(ae_dev);
3134 pci_set_drvdata(pdev, NULL);
3135 }
3136
3137 /**
3138 * hns3_pci_sriov_configure
3139 * @pdev: pointer to a pci_dev structure
3140 * @num_vfs: number of VFs to allocate
3141 *
3142 * Enable or change the number of VFs. Called when the user updates the number
3143 * of VFs in sysfs.
3144 **/
3145 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3146 {
3147 int ret;
3148
3149 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3150 dev_warn(&pdev->dev, "Can not config SRIOV\n");
3151 return -EINVAL;
3152 }
3153
3154 if (num_vfs) {
3155 ret = pci_enable_sriov(pdev, num_vfs);
3156 if (ret)
3157 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3158 else
3159 return num_vfs;
3160 } else if (!pci_vfs_assigned(pdev)) {
3161 int num_vfs_pre = pci_num_vf(pdev);
3162
3163 pci_disable_sriov(pdev);
3164 hns3_clean_vf_config(pdev, num_vfs_pre);
3165 } else {
3166 dev_warn(&pdev->dev,
3167 "Unable to free VFs because some are assigned to VMs.\n");
3168 }
3169
3170 return 0;
3171 }
3172
3173 static void hns3_shutdown(struct pci_dev *pdev)
3174 {
3175 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3176
3177 hnae3_unregister_ae_dev(ae_dev);
3178 pci_set_drvdata(pdev, NULL);
3179
3180 if (system_state == SYSTEM_POWER_OFF)
3181 pci_set_power_state(pdev, PCI_D3hot);
3182 }
3183
3184 static int __maybe_unused hns3_suspend(struct device *dev)
3185 {
3186 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3187
3188 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3189 dev_info(dev, "Begin to suspend.\n");
3190 if (ae_dev->ops && ae_dev->ops->reset_prepare)
3191 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3192 }
3193
3194 return 0;
3195 }
3196
3197 static int __maybe_unused hns3_resume(struct device *dev)
3198 {
3199 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3200
3201 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3202 dev_info(dev, "Begin to resume.\n");
3203 if (ae_dev->ops && ae_dev->ops->reset_done)
3204 ae_dev->ops->reset_done(ae_dev);
3205 }
3206
3207 return 0;
3208 }
3209
3210 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3211 pci_channel_state_t state)
3212 {
3213 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3214 pci_ers_result_t ret;
3215
3216 dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3217
3218 if (state == pci_channel_io_perm_failure)
3219 return PCI_ERS_RESULT_DISCONNECT;
3220
3221 if (!ae_dev || !ae_dev->ops) {
3222 dev_err(&pdev->dev,
3223 "Can't recover - error happened before device initialized\n");
3224 return PCI_ERS_RESULT_NONE;
3225 }
3226
3227 if (ae_dev->ops->handle_hw_ras_error)
3228 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3229 else
3230 return PCI_ERS_RESULT_NONE;
3231
3232 return ret;
3233 }
3234
3235 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3236 {
3237 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3238 const struct hnae3_ae_ops *ops;
3239 enum hnae3_reset_type reset_type;
3240 struct device *dev = &pdev->dev;
3241
3242 if (!ae_dev || !ae_dev->ops)
3243 return PCI_ERS_RESULT_NONE;
3244
3245 ops = ae_dev->ops;
3246 /* request the reset */
3247 if (ops->reset_event && ops->get_reset_level &&
3248 ops->set_default_reset_request) {
3249 if (ae_dev->hw_err_reset_req) {
3250 reset_type = ops->get_reset_level(ae_dev,
3251 &ae_dev->hw_err_reset_req);
3252 ops->set_default_reset_request(ae_dev, reset_type);
3253 dev_info(dev, "requesting reset due to PCI error\n");
3254 ops->reset_event(pdev, NULL);
3255 }
3256
3257 return PCI_ERS_RESULT_RECOVERED;
3258 }
3259
3260 return PCI_ERS_RESULT_DISCONNECT;
3261 }
3262
3263 static void hns3_reset_prepare(struct pci_dev *pdev)
3264 {
3265 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3266
3267 dev_info(&pdev->dev, "FLR prepare\n");
3268 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3269 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3270 }
3271
3272 static void hns3_reset_done(struct pci_dev *pdev)
3273 {
3274 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3275
3276 dev_info(&pdev->dev, "FLR done\n");
3277 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3278 ae_dev->ops->reset_done(ae_dev);
3279 }
3280
3281 static const struct pci_error_handlers hns3_err_handler = {
3282 .error_detected = hns3_error_detected,
3283 .slot_reset = hns3_slot_reset,
3284 .reset_prepare = hns3_reset_prepare,
3285 .reset_done = hns3_reset_done,
3286 };
3287
3288 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3289
3290 static struct pci_driver hns3_driver = {
3291 .name = hns3_driver_name,
3292 .id_table = hns3_pci_tbl,
3293 .probe = hns3_probe,
3294 .remove = hns3_remove,
3295 .shutdown = hns3_shutdown,
3296 .driver.pm = &hns3_pm_ops,
3297 .sriov_configure = hns3_pci_sriov_configure,
3298 .err_handler = &hns3_err_handler,
3299 };
3300
3301 /* set default feature to hns3 */
3302 static void hns3_set_default_feature(struct net_device *netdev)
3303 {
3304 struct hnae3_handle *h = hns3_get_handle(netdev);
3305 struct pci_dev *pdev = h->pdev;
3306 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3307
3308 netdev->priv_flags |= IFF_UNICAST_FLT;
3309
3310 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3311
3312 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3313 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3314 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3315 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3316 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3317 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3318
3319 if (hnae3_ae_dev_gro_supported(ae_dev))
3320 netdev->features |= NETIF_F_GRO_HW;
3321
3322 if (hnae3_ae_dev_fd_supported(ae_dev))
3323 netdev->features |= NETIF_F_NTUPLE;
3324
3325 if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3326 netdev->features |= NETIF_F_GSO_UDP_L4;
3327
3328 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3329 netdev->features |= NETIF_F_HW_CSUM;
3330 else
3331 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3332
3333 if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3334 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3335
3336 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3337 netdev->features |= NETIF_F_HW_TC;
3338
3339 netdev->hw_features |= netdev->features;
3340 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3341 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3342
3343 netdev->vlan_features |= netdev->features &
3344 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3345 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3346 NETIF_F_HW_TC);
3347
3348 netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3349 }
3350
3351 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3352 struct hns3_desc_cb *cb)
3353 {
3354 unsigned int order = hns3_page_order(ring);
3355 struct page *p;
3356
3357 if (ring->page_pool) {
3358 p = page_pool_dev_alloc_frag(ring->page_pool,
3359 &cb->page_offset,
3360 hns3_buf_size(ring));
3361 if (unlikely(!p))
3362 return -ENOMEM;
3363
3364 cb->priv = p;
3365 cb->buf = page_address(p);
3366 cb->dma = page_pool_get_dma_addr(p);
3367 cb->type = DESC_TYPE_PP_FRAG;
3368 cb->reuse_flag = 0;
3369 return 0;
3370 }
3371
3372 p = dev_alloc_pages(order);
3373 if (!p)
3374 return -ENOMEM;
3375
3376 cb->priv = p;
3377 cb->page_offset = 0;
3378 cb->reuse_flag = 0;
3379 cb->buf = page_address(p);
3380 cb->length = hns3_page_size(ring);
3381 cb->type = DESC_TYPE_PAGE;
3382 page_ref_add(p, USHRT_MAX - 1);
3383 cb->pagecnt_bias = USHRT_MAX;
3384
3385 return 0;
3386 }
3387
3388 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3389 struct hns3_desc_cb *cb, int budget)
3390 {
3391 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3392 DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3393 napi_consume_skb(cb->priv, budget);
3394 else if (!HNAE3_IS_TX_RING(ring)) {
3395 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3396 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3397 else if (cb->type & DESC_TYPE_PP_FRAG)
3398 page_pool_put_full_page(ring->page_pool, cb->priv,
3399 false);
3400 }
3401 memset(cb, 0, sizeof(*cb));
3402 }
3403
3404 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3405 {
3406 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3407 cb->length, ring_to_dma_dir(ring));
3408
3409 if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3410 return -EIO;
3411
3412 return 0;
3413 }
3414
3415 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3416 struct hns3_desc_cb *cb)
3417 {
3418 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3419 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3420 ring_to_dma_dir(ring));
3421 else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3422 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3423 ring_to_dma_dir(ring));
3424 else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3425 DESC_TYPE_SGL_SKB))
3426 hns3_tx_spare_reclaim_cb(ring, cb);
3427 }
3428
3429 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3430 {
3431 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3432 ring->desc[i].addr = 0;
3433 ring->desc_cb[i].refill = 0;
3434 }
3435
3436 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3437 int budget)
3438 {
3439 struct hns3_desc_cb *cb = &ring->desc_cb[i];
3440
3441 if (!ring->desc_cb[i].dma)
3442 return;
3443
3444 hns3_buffer_detach(ring, i);
3445 hns3_free_buffer(ring, cb, budget);
3446 }
3447
3448 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3449 {
3450 int i;
3451
3452 for (i = 0; i < ring->desc_num; i++)
3453 hns3_free_buffer_detach(ring, i, 0);
3454 }
3455
3456 /* free desc along with its attached buffer */
3457 static void hns3_free_desc(struct hns3_enet_ring *ring)
3458 {
3459 int size = ring->desc_num * sizeof(ring->desc[0]);
3460
3461 hns3_free_buffers(ring);
3462
3463 if (ring->desc) {
3464 dma_free_coherent(ring_to_dev(ring), size,
3465 ring->desc, ring->desc_dma_addr);
3466 ring->desc = NULL;
3467 }
3468 }
3469
3470 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3471 {
3472 int size = ring->desc_num * sizeof(ring->desc[0]);
3473
3474 ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3475 &ring->desc_dma_addr, GFP_KERNEL);
3476 if (!ring->desc)
3477 return -ENOMEM;
3478
3479 return 0;
3480 }
3481
3482 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3483 struct hns3_desc_cb *cb)
3484 {
3485 int ret;
3486
3487 ret = hns3_alloc_buffer(ring, cb);
3488 if (ret || ring->page_pool)
3489 goto out;
3490
3491 ret = hns3_map_buffer(ring, cb);
3492 if (ret)
3493 goto out_with_buf;
3494
3495 return 0;
3496
3497 out_with_buf:
3498 hns3_free_buffer(ring, cb, 0);
3499 out:
3500 return ret;
3501 }
3502
3503 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3504 {
3505 int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3506
3507 if (ret)
3508 return ret;
3509
3510 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3511 ring->desc_cb[i].page_offset);
3512 ring->desc_cb[i].refill = 1;
3513
3514 return 0;
3515 }
3516
3517 /* Allocate memory for raw pkg, and map with dma */
3518 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3519 {
3520 int i, j, ret;
3521
3522 for (i = 0; i < ring->desc_num; i++) {
3523 ret = hns3_alloc_and_attach_buffer(ring, i);
3524 if (ret)
3525 goto out_buffer_fail;
3526 }
3527
3528 return 0;
3529
3530 out_buffer_fail:
3531 for (j = i - 1; j >= 0; j--)
3532 hns3_free_buffer_detach(ring, j, 0);
3533 return ret;
3534 }
3535
3536 /* detach a in-used buffer and replace with a reserved one */
3537 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3538 struct hns3_desc_cb *res_cb)
3539 {
3540 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3541 ring->desc_cb[i] = *res_cb;
3542 ring->desc_cb[i].refill = 1;
3543 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3544 ring->desc_cb[i].page_offset);
3545 ring->desc[i].rx.bd_base_info = 0;
3546 }
3547
3548 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3549 {
3550 ring->desc_cb[i].reuse_flag = 0;
3551 ring->desc_cb[i].refill = 1;
3552 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3553 ring->desc_cb[i].page_offset);
3554 ring->desc[i].rx.bd_base_info = 0;
3555
3556 dma_sync_single_for_device(ring_to_dev(ring),
3557 ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3558 hns3_buf_size(ring),
3559 DMA_FROM_DEVICE);
3560 }
3561
3562 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3563 int *bytes, int *pkts, int budget)
3564 {
3565 /* pair with ring->last_to_use update in hns3_tx_doorbell(),
3566 * smp_store_release() is not used in hns3_tx_doorbell() because
3567 * the doorbell operation already have the needed barrier operation.
3568 */
3569 int ltu = smp_load_acquire(&ring->last_to_use);
3570 int ntc = ring->next_to_clean;
3571 struct hns3_desc_cb *desc_cb;
3572 bool reclaimed = false;
3573 struct hns3_desc *desc;
3574
3575 while (ltu != ntc) {
3576 desc = &ring->desc[ntc];
3577
3578 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3579 BIT(HNS3_TXD_VLD_B))
3580 break;
3581
3582 desc_cb = &ring->desc_cb[ntc];
3583
3584 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3585 DESC_TYPE_BOUNCE_HEAD |
3586 DESC_TYPE_SGL_SKB)) {
3587 (*pkts)++;
3588 (*bytes) += desc_cb->send_bytes;
3589 }
3590
3591 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3592 hns3_free_buffer_detach(ring, ntc, budget);
3593
3594 if (++ntc == ring->desc_num)
3595 ntc = 0;
3596
3597 /* Issue prefetch for next Tx descriptor */
3598 prefetch(&ring->desc_cb[ntc]);
3599 reclaimed = true;
3600 }
3601
3602 if (unlikely(!reclaimed))
3603 return false;
3604
3605 /* This smp_store_release() pairs with smp_load_acquire() in
3606 * ring_space called by hns3_nic_net_xmit.
3607 */
3608 smp_store_release(&ring->next_to_clean, ntc);
3609
3610 hns3_tx_spare_update(ring);
3611
3612 return true;
3613 }
3614
3615 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3616 {
3617 struct net_device *netdev = ring_to_netdev(ring);
3618 struct hns3_nic_priv *priv = netdev_priv(netdev);
3619 struct netdev_queue *dev_queue;
3620 int bytes, pkts;
3621
3622 bytes = 0;
3623 pkts = 0;
3624
3625 if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3626 return;
3627
3628 ring->tqp_vector->tx_group.total_bytes += bytes;
3629 ring->tqp_vector->tx_group.total_packets += pkts;
3630
3631 u64_stats_update_begin(&ring->syncp);
3632 ring->stats.tx_bytes += bytes;
3633 ring->stats.tx_pkts += pkts;
3634 u64_stats_update_end(&ring->syncp);
3635
3636 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3637 netdev_tx_completed_queue(dev_queue, pkts, bytes);
3638
3639 if (unlikely(netif_carrier_ok(netdev) &&
3640 ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3641 /* Make sure that anybody stopping the queue after this
3642 * sees the new next_to_clean.
3643 */
3644 smp_mb();
3645 if (netif_tx_queue_stopped(dev_queue) &&
3646 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3647 netif_tx_wake_queue(dev_queue);
3648 ring->stats.restart_queue++;
3649 }
3650 }
3651 }
3652
3653 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3654 {
3655 int ntc = ring->next_to_clean;
3656 int ntu = ring->next_to_use;
3657
3658 if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3659 return ring->desc_num;
3660
3661 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3662 }
3663
3664 /* Return true if there is any allocation failure */
3665 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3666 int cleand_count)
3667 {
3668 struct hns3_desc_cb *desc_cb;
3669 struct hns3_desc_cb res_cbs;
3670 int i, ret;
3671
3672 for (i = 0; i < cleand_count; i++) {
3673 desc_cb = &ring->desc_cb[ring->next_to_use];
3674 if (desc_cb->reuse_flag) {
3675 hns3_ring_stats_update(ring, reuse_pg_cnt);
3676
3677 hns3_reuse_buffer(ring, ring->next_to_use);
3678 } else {
3679 ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3680 if (ret) {
3681 hns3_ring_stats_update(ring, sw_err_cnt);
3682
3683 hns3_rl_err(ring_to_netdev(ring),
3684 "alloc rx buffer failed: %d\n",
3685 ret);
3686
3687 writel(i, ring->tqp->io_base +
3688 HNS3_RING_RX_RING_HEAD_REG);
3689 return true;
3690 }
3691 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3692
3693 hns3_ring_stats_update(ring, non_reuse_pg);
3694 }
3695
3696 ring_ptr_move_fw(ring, next_to_use);
3697 }
3698
3699 writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3700 return false;
3701 }
3702
3703 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3704 {
3705 return page_count(cb->priv) == cb->pagecnt_bias;
3706 }
3707
3708 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3709 struct hns3_enet_ring *ring,
3710 int pull_len,
3711 struct hns3_desc_cb *desc_cb)
3712 {
3713 struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3714 u32 frag_offset = desc_cb->page_offset + pull_len;
3715 int size = le16_to_cpu(desc->rx.size);
3716 u32 frag_size = size - pull_len;
3717 void *frag = napi_alloc_frag(frag_size);
3718
3719 if (unlikely(!frag)) {
3720 hns3_ring_stats_update(ring, frag_alloc_err);
3721
3722 hns3_rl_err(ring_to_netdev(ring),
3723 "failed to allocate rx frag\n");
3724 return -ENOMEM;
3725 }
3726
3727 desc_cb->reuse_flag = 1;
3728 memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3729 skb_add_rx_frag(skb, i, virt_to_page(frag),
3730 offset_in_page(frag), frag_size, frag_size);
3731
3732 hns3_ring_stats_update(ring, frag_alloc);
3733 return 0;
3734 }
3735
3736 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3737 struct hns3_enet_ring *ring, int pull_len,
3738 struct hns3_desc_cb *desc_cb)
3739 {
3740 struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3741 u32 frag_offset = desc_cb->page_offset + pull_len;
3742 int size = le16_to_cpu(desc->rx.size);
3743 u32 truesize = hns3_buf_size(ring);
3744 u32 frag_size = size - pull_len;
3745 int ret = 0;
3746 bool reused;
3747
3748 if (ring->page_pool) {
3749 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3750 frag_size, truesize);
3751 return;
3752 }
3753
3754 /* Avoid re-using remote or pfmem page */
3755 if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3756 goto out;
3757
3758 reused = hns3_can_reuse_page(desc_cb);
3759
3760 /* Rx page can be reused when:
3761 * 1. Rx page is only owned by the driver when page_offset
3762 * is zero, which means 0 @ truesize will be used by
3763 * stack after skb_add_rx_frag() is called, and the rest
3764 * of rx page can be reused by driver.
3765 * Or
3766 * 2. Rx page is only owned by the driver when page_offset
3767 * is non-zero, which means page_offset @ truesize will
3768 * be used by stack after skb_add_rx_frag() is called,
3769 * and 0 @ truesize can be reused by driver.
3770 */
3771 if ((!desc_cb->page_offset && reused) ||
3772 ((desc_cb->page_offset + truesize + truesize) <=
3773 hns3_page_size(ring) && desc_cb->page_offset)) {
3774 desc_cb->page_offset += truesize;
3775 desc_cb->reuse_flag = 1;
3776 } else if (desc_cb->page_offset && reused) {
3777 desc_cb->page_offset = 0;
3778 desc_cb->reuse_flag = 1;
3779 } else if (frag_size <= ring->rx_copybreak) {
3780 ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3781 if (!ret)
3782 return;
3783 }
3784
3785 out:
3786 desc_cb->pagecnt_bias--;
3787
3788 if (unlikely(!desc_cb->pagecnt_bias)) {
3789 page_ref_add(desc_cb->priv, USHRT_MAX);
3790 desc_cb->pagecnt_bias = USHRT_MAX;
3791 }
3792
3793 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3794 frag_size, truesize);
3795
3796 if (unlikely(!desc_cb->reuse_flag))
3797 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3798 }
3799
3800 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3801 {
3802 __be16 type = skb->protocol;
3803 struct tcphdr *th;
3804 int depth = 0;
3805
3806 while (eth_type_vlan(type)) {
3807 struct vlan_hdr *vh;
3808
3809 if ((depth + VLAN_HLEN) > skb_headlen(skb))
3810 return -EFAULT;
3811
3812 vh = (struct vlan_hdr *)(skb->data + depth);
3813 type = vh->h_vlan_encapsulated_proto;
3814 depth += VLAN_HLEN;
3815 }
3816
3817 skb_set_network_header(skb, depth);
3818
3819 if (type == htons(ETH_P_IP)) {
3820 const struct iphdr *iph = ip_hdr(skb);
3821
3822 depth += sizeof(struct iphdr);
3823 skb_set_transport_header(skb, depth);
3824 th = tcp_hdr(skb);
3825 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3826 iph->daddr, 0);
3827 } else if (type == htons(ETH_P_IPV6)) {
3828 const struct ipv6hdr *iph = ipv6_hdr(skb);
3829
3830 depth += sizeof(struct ipv6hdr);
3831 skb_set_transport_header(skb, depth);
3832 th = tcp_hdr(skb);
3833 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3834 &iph->daddr, 0);
3835 } else {
3836 hns3_rl_err(skb->dev,
3837 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3838 be16_to_cpu(type), depth);
3839 return -EFAULT;
3840 }
3841
3842 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3843 if (th->cwr)
3844 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3845
3846 if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3847 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3848
3849 skb->csum_start = (unsigned char *)th - skb->head;
3850 skb->csum_offset = offsetof(struct tcphdr, check);
3851 skb->ip_summed = CHECKSUM_PARTIAL;
3852
3853 trace_hns3_gro(skb);
3854
3855 return 0;
3856 }
3857
3858 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
3859 struct sk_buff *skb, u32 ptype, u16 csum)
3860 {
3861 if (ptype == HNS3_INVALID_PTYPE ||
3862 hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3863 return;
3864
3865 hns3_ring_stats_update(ring, csum_complete);
3866 skb->ip_summed = CHECKSUM_COMPLETE;
3867 skb->csum = csum_unfold((__force __sum16)csum);
3868 }
3869
3870 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3871 u32 ol_info, u32 ptype)
3872 {
3873 int l3_type, l4_type;
3874 int ol4_type;
3875
3876 if (ptype != HNS3_INVALID_PTYPE) {
3877 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3878 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3879
3880 return;
3881 }
3882
3883 ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3884 HNS3_RXD_OL4ID_S);
3885 switch (ol4_type) {
3886 case HNS3_OL4_TYPE_MAC_IN_UDP:
3887 case HNS3_OL4_TYPE_NVGRE:
3888 skb->csum_level = 1;
3889 fallthrough;
3890 case HNS3_OL4_TYPE_NO_TUN:
3891 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3892 HNS3_RXD_L3ID_S);
3893 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3894 HNS3_RXD_L4ID_S);
3895 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3896 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3897 l3_type == HNS3_L3_TYPE_IPV6) &&
3898 (l4_type == HNS3_L4_TYPE_UDP ||
3899 l4_type == HNS3_L4_TYPE_TCP ||
3900 l4_type == HNS3_L4_TYPE_SCTP))
3901 skb->ip_summed = CHECKSUM_UNNECESSARY;
3902 break;
3903 default:
3904 break;
3905 }
3906 }
3907
3908 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3909 u32 l234info, u32 bd_base_info, u32 ol_info,
3910 u16 csum)
3911 {
3912 struct net_device *netdev = ring_to_netdev(ring);
3913 struct hns3_nic_priv *priv = netdev_priv(netdev);
3914 u32 ptype = HNS3_INVALID_PTYPE;
3915
3916 skb->ip_summed = CHECKSUM_NONE;
3917
3918 skb_checksum_none_assert(skb);
3919
3920 if (!(netdev->features & NETIF_F_RXCSUM))
3921 return;
3922
3923 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3924 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3925 HNS3_RXD_PTYPE_S);
3926
3927 hns3_checksum_complete(ring, skb, ptype, csum);
3928
3929 /* check if hardware has done checksum */
3930 if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3931 return;
3932
3933 if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3934 BIT(HNS3_RXD_OL3E_B) |
3935 BIT(HNS3_RXD_OL4E_B)))) {
3936 skb->ip_summed = CHECKSUM_NONE;
3937 hns3_ring_stats_update(ring, l3l4_csum_err);
3938
3939 return;
3940 }
3941
3942 hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3943 }
3944
3945 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3946 {
3947 if (skb_has_frag_list(skb))
3948 napi_gro_flush(&ring->tqp_vector->napi, false);
3949
3950 napi_gro_receive(&ring->tqp_vector->napi, skb);
3951 }
3952
3953 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3954 struct hns3_desc *desc, u32 l234info,
3955 u16 *vlan_tag)
3956 {
3957 struct hnae3_handle *handle = ring->tqp->handle;
3958 struct pci_dev *pdev = ring->tqp->handle->pdev;
3959 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3960
3961 if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3962 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3963 if (!(*vlan_tag & VLAN_VID_MASK))
3964 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3965
3966 return (*vlan_tag != 0);
3967 }
3968
3969 #define HNS3_STRP_OUTER_VLAN 0x1
3970 #define HNS3_STRP_INNER_VLAN 0x2
3971 #define HNS3_STRP_BOTH 0x3
3972
3973 /* Hardware always insert VLAN tag into RX descriptor when
3974 * remove the tag from packet, driver needs to determine
3975 * reporting which tag to stack.
3976 */
3977 switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3978 HNS3_RXD_STRP_TAGP_S)) {
3979 case HNS3_STRP_OUTER_VLAN:
3980 if (handle->port_base_vlan_state !=
3981 HNAE3_PORT_BASE_VLAN_DISABLE)
3982 return false;
3983
3984 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3985 return true;
3986 case HNS3_STRP_INNER_VLAN:
3987 if (handle->port_base_vlan_state !=
3988 HNAE3_PORT_BASE_VLAN_DISABLE)
3989 return false;
3990
3991 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3992 return true;
3993 case HNS3_STRP_BOTH:
3994 if (handle->port_base_vlan_state ==
3995 HNAE3_PORT_BASE_VLAN_DISABLE)
3996 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3997 else
3998 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3999
4000 return true;
4001 default:
4002 return false;
4003 }
4004 }
4005
4006 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
4007 {
4008 ring->desc[ring->next_to_clean].rx.bd_base_info &=
4009 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
4010 ring->desc_cb[ring->next_to_clean].refill = 0;
4011 ring->next_to_clean += 1;
4012
4013 if (unlikely(ring->next_to_clean == ring->desc_num))
4014 ring->next_to_clean = 0;
4015 }
4016
4017 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
4018 unsigned char *va)
4019 {
4020 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
4021 struct net_device *netdev = ring_to_netdev(ring);
4022 struct sk_buff *skb;
4023
4024 ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
4025 skb = ring->skb;
4026 if (unlikely(!skb)) {
4027 hns3_rl_err(netdev, "alloc rx skb fail\n");
4028 hns3_ring_stats_update(ring, sw_err_cnt);
4029
4030 return -ENOMEM;
4031 }
4032
4033 trace_hns3_rx_desc(ring);
4034 prefetchw(skb->data);
4035
4036 ring->pending_buf = 1;
4037 ring->frag_num = 0;
4038 ring->tail_skb = NULL;
4039 if (length <= HNS3_RX_HEAD_SIZE) {
4040 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
4041
4042 /* We can reuse buffer as-is, just make sure it is reusable */
4043 if (dev_page_is_reusable(desc_cb->priv))
4044 desc_cb->reuse_flag = 1;
4045 else if (desc_cb->type & DESC_TYPE_PP_FRAG)
4046 page_pool_put_full_page(ring->page_pool, desc_cb->priv,
4047 false);
4048 else /* This page cannot be reused so discard it */
4049 __page_frag_cache_drain(desc_cb->priv,
4050 desc_cb->pagecnt_bias);
4051
4052 hns3_rx_ring_move_fw(ring);
4053 return 0;
4054 }
4055
4056 if (ring->page_pool)
4057 skb_mark_for_recycle(skb);
4058
4059 hns3_ring_stats_update(ring, seg_pkt_cnt);
4060
4061 ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
4062 __skb_put(skb, ring->pull_len);
4063 hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
4064 desc_cb);
4065 hns3_rx_ring_move_fw(ring);
4066
4067 return 0;
4068 }
4069
4070 static int hns3_add_frag(struct hns3_enet_ring *ring)
4071 {
4072 struct sk_buff *skb = ring->skb;
4073 struct sk_buff *head_skb = skb;
4074 struct sk_buff *new_skb;
4075 struct hns3_desc_cb *desc_cb;
4076 struct hns3_desc *desc;
4077 u32 bd_base_info;
4078
4079 do {
4080 desc = &ring->desc[ring->next_to_clean];
4081 desc_cb = &ring->desc_cb[ring->next_to_clean];
4082 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4083 /* make sure HW write desc complete */
4084 dma_rmb();
4085 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4086 return -ENXIO;
4087
4088 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
4089 new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
4090 if (unlikely(!new_skb)) {
4091 hns3_rl_err(ring_to_netdev(ring),
4092 "alloc rx fraglist skb fail\n");
4093 return -ENXIO;
4094 }
4095
4096 if (ring->page_pool)
4097 skb_mark_for_recycle(new_skb);
4098
4099 ring->frag_num = 0;
4100
4101 if (ring->tail_skb) {
4102 ring->tail_skb->next = new_skb;
4103 ring->tail_skb = new_skb;
4104 } else {
4105 skb_shinfo(skb)->frag_list = new_skb;
4106 ring->tail_skb = new_skb;
4107 }
4108 }
4109
4110 if (ring->tail_skb) {
4111 head_skb->truesize += hns3_buf_size(ring);
4112 head_skb->data_len += le16_to_cpu(desc->rx.size);
4113 head_skb->len += le16_to_cpu(desc->rx.size);
4114 skb = ring->tail_skb;
4115 }
4116
4117 dma_sync_single_for_cpu(ring_to_dev(ring),
4118 desc_cb->dma + desc_cb->page_offset,
4119 hns3_buf_size(ring),
4120 DMA_FROM_DEVICE);
4121
4122 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
4123 trace_hns3_rx_desc(ring);
4124 hns3_rx_ring_move_fw(ring);
4125 ring->pending_buf++;
4126 } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
4127
4128 return 0;
4129 }
4130
4131 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
4132 struct sk_buff *skb, u32 l234info,
4133 u32 bd_base_info, u32 ol_info, u16 csum)
4134 {
4135 struct net_device *netdev = ring_to_netdev(ring);
4136 struct hns3_nic_priv *priv = netdev_priv(netdev);
4137 u32 l3_type;
4138
4139 skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4140 HNS3_RXD_GRO_SIZE_M,
4141 HNS3_RXD_GRO_SIZE_S);
4142 /* if there is no HW GRO, do not set gro params */
4143 if (!skb_shinfo(skb)->gso_size) {
4144 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4145 csum);
4146 return 0;
4147 }
4148
4149 NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4150 HNS3_RXD_GRO_COUNT_M,
4151 HNS3_RXD_GRO_COUNT_S);
4152
4153 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4154 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4155 HNS3_RXD_PTYPE_S);
4156
4157 l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4158 } else {
4159 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4160 HNS3_RXD_L3ID_S);
4161 }
4162
4163 if (l3_type == HNS3_L3_TYPE_IPV4)
4164 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4165 else if (l3_type == HNS3_L3_TYPE_IPV6)
4166 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4167 else
4168 return -EFAULT;
4169
4170 return hns3_gro_complete(skb, l234info);
4171 }
4172
4173 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4174 struct sk_buff *skb, u32 rss_hash,
4175 u32 l234info, u32 ol_info)
4176 {
4177 enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE;
4178 struct net_device *netdev = ring_to_netdev(ring);
4179 struct hns3_nic_priv *priv = netdev_priv(netdev);
4180
4181 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4182 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4183 HNS3_RXD_PTYPE_S);
4184
4185 rss_type = hns3_rx_ptype_tbl[ptype].hash_type;
4186 } else {
4187 int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4188 HNS3_RXD_L3ID_S);
4189 int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
4190 HNS3_RXD_L4ID_S);
4191
4192 if (l3_type == HNS3_L3_TYPE_IPV4 ||
4193 l3_type == HNS3_L3_TYPE_IPV6) {
4194 if (l4_type == HNS3_L4_TYPE_UDP ||
4195 l4_type == HNS3_L4_TYPE_TCP ||
4196 l4_type == HNS3_L4_TYPE_SCTP)
4197 rss_type = PKT_HASH_TYPE_L4;
4198 else if (l4_type == HNS3_L4_TYPE_IGMP ||
4199 l4_type == HNS3_L4_TYPE_ICMP)
4200 rss_type = PKT_HASH_TYPE_L3;
4201 }
4202 }
4203
4204 skb_set_hash(skb, rss_hash, rss_type);
4205 }
4206
4207 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4208 struct hns3_desc *desc, struct sk_buff *skb,
4209 u32 bd_base_info)
4210 {
4211 if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4212 struct hnae3_handle *h = hns3_get_handle(netdev);
4213 u32 nsec = le32_to_cpu(desc->ts_nsec);
4214 u32 sec = le32_to_cpu(desc->ts_sec);
4215
4216 if (h->ae_algo->ops->get_rx_hwts)
4217 h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4218 }
4219 }
4220
4221 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4222 struct hns3_desc *desc, struct sk_buff *skb,
4223 u32 l234info)
4224 {
4225 struct net_device *netdev = ring_to_netdev(ring);
4226
4227 /* Based on hw strategy, the tag offloaded will be stored at
4228 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4229 * in one layer tag case.
4230 */
4231 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4232 u16 vlan_tag;
4233
4234 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4235 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4236 vlan_tag);
4237 }
4238 }
4239
4240 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4241 {
4242 struct net_device *netdev = ring_to_netdev(ring);
4243 enum hns3_pkt_l2t_type l2_frame_type;
4244 u32 bd_base_info, l234info, ol_info;
4245 struct hns3_desc *desc;
4246 unsigned int len;
4247 int pre_ntc, ret;
4248 u16 csum;
4249
4250 /* bdinfo handled below is only valid on the last BD of the
4251 * current packet, and ring->next_to_clean indicates the first
4252 * descriptor of next packet, so need - 1 below.
4253 */
4254 pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4255 (ring->desc_num - 1);
4256 desc = &ring->desc[pre_ntc];
4257 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4258 l234info = le32_to_cpu(desc->rx.l234_info);
4259 ol_info = le32_to_cpu(desc->rx.ol_info);
4260 csum = le16_to_cpu(desc->csum);
4261
4262 hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4263
4264 hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4265
4266 if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4267 BIT(HNS3_RXD_L2E_B))))) {
4268 u64_stats_update_begin(&ring->syncp);
4269 if (l234info & BIT(HNS3_RXD_L2E_B))
4270 ring->stats.l2_err++;
4271 else
4272 ring->stats.err_pkt_len++;
4273 u64_stats_update_end(&ring->syncp);
4274
4275 return -EFAULT;
4276 }
4277
4278 len = skb->len;
4279
4280 /* Do update ip stack process */
4281 skb->protocol = eth_type_trans(skb, netdev);
4282
4283 /* This is needed in order to enable forwarding support */
4284 ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4285 bd_base_info, ol_info, csum);
4286 if (unlikely(ret)) {
4287 hns3_ring_stats_update(ring, rx_err_cnt);
4288 return ret;
4289 }
4290
4291 l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4292 HNS3_RXD_DMAC_S);
4293
4294 u64_stats_update_begin(&ring->syncp);
4295 ring->stats.rx_pkts++;
4296 ring->stats.rx_bytes += len;
4297
4298 if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4299 ring->stats.rx_multicast++;
4300
4301 u64_stats_update_end(&ring->syncp);
4302
4303 ring->tqp_vector->rx_group.total_bytes += len;
4304
4305 hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash),
4306 l234info, ol_info);
4307 return 0;
4308 }
4309
4310 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4311 {
4312 struct sk_buff *skb = ring->skb;
4313 struct hns3_desc_cb *desc_cb;
4314 struct hns3_desc *desc;
4315 unsigned int length;
4316 u32 bd_base_info;
4317 int ret;
4318
4319 desc = &ring->desc[ring->next_to_clean];
4320 desc_cb = &ring->desc_cb[ring->next_to_clean];
4321
4322 prefetch(desc);
4323
4324 if (!skb) {
4325 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4326 /* Check valid BD */
4327 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4328 return -ENXIO;
4329
4330 dma_rmb();
4331 length = le16_to_cpu(desc->rx.size);
4332
4333 ring->va = desc_cb->buf + desc_cb->page_offset;
4334
4335 dma_sync_single_for_cpu(ring_to_dev(ring),
4336 desc_cb->dma + desc_cb->page_offset,
4337 hns3_buf_size(ring),
4338 DMA_FROM_DEVICE);
4339
4340 /* Prefetch first cache line of first page.
4341 * Idea is to cache few bytes of the header of the packet.
4342 * Our L1 Cache line size is 64B so need to prefetch twice to make
4343 * it 128B. But in actual we can have greater size of caches with
4344 * 128B Level 1 cache lines. In such a case, single fetch would
4345 * suffice to cache in the relevant part of the header.
4346 */
4347 net_prefetch(ring->va);
4348
4349 ret = hns3_alloc_skb(ring, length, ring->va);
4350 skb = ring->skb;
4351
4352 if (ret < 0) /* alloc buffer fail */
4353 return ret;
4354 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4355 ret = hns3_add_frag(ring);
4356 if (ret)
4357 return ret;
4358 }
4359 } else {
4360 ret = hns3_add_frag(ring);
4361 if (ret)
4362 return ret;
4363 }
4364
4365 /* As the head data may be changed when GRO enable, copy
4366 * the head data in after other data rx completed
4367 */
4368 if (skb->len > HNS3_RX_HEAD_SIZE)
4369 memcpy(skb->data, ring->va,
4370 ALIGN(ring->pull_len, sizeof(long)));
4371
4372 ret = hns3_handle_bdinfo(ring, skb);
4373 if (unlikely(ret)) {
4374 dev_kfree_skb_any(skb);
4375 return ret;
4376 }
4377
4378 skb_record_rx_queue(skb, ring->tqp->tqp_index);
4379 return 0;
4380 }
4381
4382 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4383 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4384 {
4385 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4386 int unused_count = hns3_desc_unused(ring);
4387 bool failure = false;
4388 int recv_pkts = 0;
4389 int err;
4390
4391 unused_count -= ring->pending_buf;
4392
4393 while (recv_pkts < budget) {
4394 /* Reuse or realloc buffers */
4395 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4396 failure = failure ||
4397 hns3_nic_alloc_rx_buffers(ring, unused_count);
4398 unused_count = 0;
4399 }
4400
4401 /* Poll one pkt */
4402 err = hns3_handle_rx_bd(ring);
4403 /* Do not get FE for the packet or failed to alloc skb */
4404 if (unlikely(!ring->skb || err == -ENXIO)) {
4405 goto out;
4406 } else if (likely(!err)) {
4407 rx_fn(ring, ring->skb);
4408 recv_pkts++;
4409 }
4410
4411 unused_count += ring->pending_buf;
4412 ring->skb = NULL;
4413 ring->pending_buf = 0;
4414 }
4415
4416 out:
4417 /* sync head pointer before exiting, since hardware will calculate
4418 * FBD number with head pointer
4419 */
4420 if (unused_count > 0)
4421 failure = failure ||
4422 hns3_nic_alloc_rx_buffers(ring, unused_count);
4423
4424 return failure ? budget : recv_pkts;
4425 }
4426
4427 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4428 {
4429 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4430 struct dim_sample sample = {};
4431
4432 if (!rx_group->coal.adapt_enable)
4433 return;
4434
4435 dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4436 rx_group->total_bytes, &sample);
4437 net_dim(&rx_group->dim, sample);
4438 }
4439
4440 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4441 {
4442 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4443 struct dim_sample sample = {};
4444
4445 if (!tx_group->coal.adapt_enable)
4446 return;
4447
4448 dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4449 tx_group->total_bytes, &sample);
4450 net_dim(&tx_group->dim, sample);
4451 }
4452
4453 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4454 {
4455 struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4456 struct hns3_enet_ring *ring;
4457 int rx_pkt_total = 0;
4458
4459 struct hns3_enet_tqp_vector *tqp_vector =
4460 container_of(napi, struct hns3_enet_tqp_vector, napi);
4461 bool clean_complete = true;
4462 int rx_budget = budget;
4463
4464 if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4465 napi_complete(napi);
4466 return 0;
4467 }
4468
4469 /* Since the actual Tx work is minimal, we can give the Tx a larger
4470 * budget and be more aggressive about cleaning up the Tx descriptors.
4471 */
4472 hns3_for_each_ring(ring, tqp_vector->tx_group)
4473 hns3_clean_tx_ring(ring, budget);
4474
4475 /* make sure rx ring budget not smaller than 1 */
4476 if (tqp_vector->num_tqps > 1)
4477 rx_budget = max(budget / tqp_vector->num_tqps, 1);
4478
4479 hns3_for_each_ring(ring, tqp_vector->rx_group) {
4480 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4481 hns3_rx_skb);
4482 if (rx_cleaned >= rx_budget)
4483 clean_complete = false;
4484
4485 rx_pkt_total += rx_cleaned;
4486 }
4487
4488 tqp_vector->rx_group.total_packets += rx_pkt_total;
4489
4490 if (!clean_complete)
4491 return budget;
4492
4493 if (napi_complete(napi) &&
4494 likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4495 hns3_update_rx_int_coalesce(tqp_vector);
4496 hns3_update_tx_int_coalesce(tqp_vector);
4497
4498 hns3_mask_vector_irq(tqp_vector, 1);
4499 }
4500
4501 return rx_pkt_total;
4502 }
4503
4504 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4505 struct hnae3_ring_chain_node **head,
4506 bool is_tx)
4507 {
4508 u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4509 u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4510 struct hnae3_ring_chain_node *cur_chain = *head;
4511 struct pci_dev *pdev = tqp_vector->handle->pdev;
4512 struct hnae3_ring_chain_node *chain;
4513 struct hns3_enet_ring *ring;
4514
4515 ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4516
4517 if (cur_chain) {
4518 while (cur_chain->next)
4519 cur_chain = cur_chain->next;
4520 }
4521
4522 while (ring) {
4523 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4524 if (!chain)
4525 return -ENOMEM;
4526 if (cur_chain)
4527 cur_chain->next = chain;
4528 else
4529 *head = chain;
4530 chain->tqp_index = ring->tqp->tqp_index;
4531 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4532 bit_value);
4533 hnae3_set_field(chain->int_gl_idx,
4534 HNAE3_RING_GL_IDX_M,
4535 HNAE3_RING_GL_IDX_S, field_value);
4536
4537 cur_chain = chain;
4538
4539 ring = ring->next;
4540 }
4541
4542 return 0;
4543 }
4544
4545 static struct hnae3_ring_chain_node *
4546 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4547 {
4548 struct pci_dev *pdev = tqp_vector->handle->pdev;
4549 struct hnae3_ring_chain_node *cur_chain = NULL;
4550 struct hnae3_ring_chain_node *chain;
4551
4552 if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4553 goto err_free_chain;
4554
4555 if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4556 goto err_free_chain;
4557
4558 return cur_chain;
4559
4560 err_free_chain:
4561 while (cur_chain) {
4562 chain = cur_chain->next;
4563 devm_kfree(&pdev->dev, cur_chain);
4564 cur_chain = chain;
4565 }
4566
4567 return NULL;
4568 }
4569
4570 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4571 struct hnae3_ring_chain_node *head)
4572 {
4573 struct pci_dev *pdev = tqp_vector->handle->pdev;
4574 struct hnae3_ring_chain_node *chain_tmp, *chain;
4575
4576 chain = head;
4577
4578 while (chain) {
4579 chain_tmp = chain->next;
4580 devm_kfree(&pdev->dev, chain);
4581 chain = chain_tmp;
4582 }
4583 }
4584
4585 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4586 struct hns3_enet_ring *ring)
4587 {
4588 ring->next = group->ring;
4589 group->ring = ring;
4590
4591 group->count++;
4592 }
4593
4594 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4595 {
4596 struct pci_dev *pdev = priv->ae_handle->pdev;
4597 struct hns3_enet_tqp_vector *tqp_vector;
4598 int num_vectors = priv->vector_num;
4599 int numa_node;
4600 int vector_i;
4601
4602 numa_node = dev_to_node(&pdev->dev);
4603
4604 for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4605 tqp_vector = &priv->tqp_vector[vector_i];
4606 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4607 &tqp_vector->affinity_mask);
4608 }
4609 }
4610
4611 static void hns3_rx_dim_work(struct work_struct *work)
4612 {
4613 struct dim *dim = container_of(work, struct dim, work);
4614 struct hns3_enet_ring_group *group = container_of(dim,
4615 struct hns3_enet_ring_group, dim);
4616 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4617 struct dim_cq_moder cur_moder =
4618 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4619
4620 hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4621 tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4622
4623 if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4624 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4625 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4626 }
4627
4628 dim->state = DIM_START_MEASURE;
4629 }
4630
4631 static void hns3_tx_dim_work(struct work_struct *work)
4632 {
4633 struct dim *dim = container_of(work, struct dim, work);
4634 struct hns3_enet_ring_group *group = container_of(dim,
4635 struct hns3_enet_ring_group, dim);
4636 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4637 struct dim_cq_moder cur_moder =
4638 net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4639
4640 hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4641 tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4642
4643 if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4644 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4645 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4646 }
4647
4648 dim->state = DIM_START_MEASURE;
4649 }
4650
4651 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4652 {
4653 INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4654 INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4655 }
4656
4657 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4658 {
4659 struct hnae3_handle *h = priv->ae_handle;
4660 struct hns3_enet_tqp_vector *tqp_vector;
4661 int ret;
4662 int i;
4663
4664 hns3_nic_set_cpumask(priv);
4665
4666 for (i = 0; i < priv->vector_num; i++) {
4667 tqp_vector = &priv->tqp_vector[i];
4668 hns3_vector_coalesce_init_hw(tqp_vector, priv);
4669 tqp_vector->num_tqps = 0;
4670 hns3_nic_init_dim(tqp_vector);
4671 }
4672
4673 for (i = 0; i < h->kinfo.num_tqps; i++) {
4674 u16 vector_i = i % priv->vector_num;
4675 u16 tqp_num = h->kinfo.num_tqps;
4676
4677 tqp_vector = &priv->tqp_vector[vector_i];
4678
4679 hns3_add_ring_to_group(&tqp_vector->tx_group,
4680 &priv->ring[i]);
4681
4682 hns3_add_ring_to_group(&tqp_vector->rx_group,
4683 &priv->ring[i + tqp_num]);
4684
4685 priv->ring[i].tqp_vector = tqp_vector;
4686 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4687 tqp_vector->num_tqps++;
4688 }
4689
4690 for (i = 0; i < priv->vector_num; i++) {
4691 struct hnae3_ring_chain_node *vector_ring_chain;
4692
4693 tqp_vector = &priv->tqp_vector[i];
4694
4695 tqp_vector->rx_group.total_bytes = 0;
4696 tqp_vector->rx_group.total_packets = 0;
4697 tqp_vector->tx_group.total_bytes = 0;
4698 tqp_vector->tx_group.total_packets = 0;
4699 tqp_vector->handle = h;
4700
4701 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4702 if (!vector_ring_chain) {
4703 ret = -ENOMEM;
4704 goto map_ring_fail;
4705 }
4706
4707 ret = h->ae_algo->ops->map_ring_to_vector(h,
4708 tqp_vector->vector_irq, vector_ring_chain);
4709
4710 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4711
4712 if (ret)
4713 goto map_ring_fail;
4714
4715 netif_napi_add(priv->netdev, &tqp_vector->napi,
4716 hns3_nic_common_poll);
4717 }
4718
4719 return 0;
4720
4721 map_ring_fail:
4722 while (i--)
4723 netif_napi_del(&priv->tqp_vector[i].napi);
4724
4725 return ret;
4726 }
4727
4728 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4729 {
4730 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4731 struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4732 struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4733
4734 /* initialize the configuration for interrupt coalescing.
4735 * 1. GL (Interrupt Gap Limiter)
4736 * 2. RL (Interrupt Rate Limiter)
4737 * 3. QL (Interrupt Quantity Limiter)
4738 *
4739 * Default: enable interrupt coalescing self-adaptive and GL
4740 */
4741 tx_coal->adapt_enable = 1;
4742 rx_coal->adapt_enable = 1;
4743
4744 tx_coal->int_gl = HNS3_INT_GL_50K;
4745 rx_coal->int_gl = HNS3_INT_GL_50K;
4746
4747 rx_coal->flow_level = HNS3_FLOW_LOW;
4748 tx_coal->flow_level = HNS3_FLOW_LOW;
4749
4750 if (ae_dev->dev_specs.int_ql_max) {
4751 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4752 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4753 }
4754 }
4755
4756 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4757 {
4758 struct hnae3_handle *h = priv->ae_handle;
4759 struct hns3_enet_tqp_vector *tqp_vector;
4760 struct hnae3_vector_info *vector;
4761 struct pci_dev *pdev = h->pdev;
4762 u16 tqp_num = h->kinfo.num_tqps;
4763 u16 vector_num;
4764 int ret = 0;
4765 u16 i;
4766
4767 /* RSS size, cpu online and vector_num should be the same */
4768 /* Should consider 2p/4p later */
4769 vector_num = min_t(u16, num_online_cpus(), tqp_num);
4770
4771 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4772 GFP_KERNEL);
4773 if (!vector)
4774 return -ENOMEM;
4775
4776 /* save the actual available vector number */
4777 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4778
4779 priv->vector_num = vector_num;
4780 priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4781 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4782 GFP_KERNEL);
4783 if (!priv->tqp_vector) {
4784 ret = -ENOMEM;
4785 goto out;
4786 }
4787
4788 for (i = 0; i < priv->vector_num; i++) {
4789 tqp_vector = &priv->tqp_vector[i];
4790 tqp_vector->idx = i;
4791 tqp_vector->mask_addr = vector[i].io_addr;
4792 tqp_vector->vector_irq = vector[i].vector;
4793 hns3_vector_coalesce_init(tqp_vector, priv);
4794 }
4795
4796 out:
4797 devm_kfree(&pdev->dev, vector);
4798 return ret;
4799 }
4800
4801 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4802 {
4803 group->ring = NULL;
4804 group->count = 0;
4805 }
4806
4807 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4808 {
4809 struct hnae3_ring_chain_node *vector_ring_chain;
4810 struct hnae3_handle *h = priv->ae_handle;
4811 struct hns3_enet_tqp_vector *tqp_vector;
4812 int i;
4813
4814 for (i = 0; i < priv->vector_num; i++) {
4815 tqp_vector = &priv->tqp_vector[i];
4816
4817 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4818 continue;
4819
4820 /* Since the mapping can be overwritten, when fail to get the
4821 * chain between vector and ring, we should go on to deal with
4822 * the remaining options.
4823 */
4824 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4825 if (!vector_ring_chain)
4826 dev_warn(priv->dev, "failed to get ring chain\n");
4827
4828 h->ae_algo->ops->unmap_ring_from_vector(h,
4829 tqp_vector->vector_irq, vector_ring_chain);
4830
4831 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4832
4833 hns3_clear_ring_group(&tqp_vector->rx_group);
4834 hns3_clear_ring_group(&tqp_vector->tx_group);
4835 netif_napi_del(&priv->tqp_vector[i].napi);
4836 }
4837 }
4838
4839 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4840 {
4841 struct hnae3_handle *h = priv->ae_handle;
4842 struct pci_dev *pdev = h->pdev;
4843 int i, ret;
4844
4845 for (i = 0; i < priv->vector_num; i++) {
4846 struct hns3_enet_tqp_vector *tqp_vector;
4847
4848 tqp_vector = &priv->tqp_vector[i];
4849 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4850 if (ret)
4851 return;
4852 }
4853
4854 devm_kfree(&pdev->dev, priv->tqp_vector);
4855 }
4856
4857 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4858 unsigned int ring_type)
4859 {
4860 int queue_num = priv->ae_handle->kinfo.num_tqps;
4861 struct hns3_enet_ring *ring;
4862 int desc_num;
4863
4864 if (ring_type == HNAE3_RING_TYPE_TX) {
4865 ring = &priv->ring[q->tqp_index];
4866 desc_num = priv->ae_handle->kinfo.num_tx_desc;
4867 ring->queue_index = q->tqp_index;
4868 ring->tx_copybreak = priv->tx_copybreak;
4869 ring->last_to_use = 0;
4870 } else {
4871 ring = &priv->ring[q->tqp_index + queue_num];
4872 desc_num = priv->ae_handle->kinfo.num_rx_desc;
4873 ring->queue_index = q->tqp_index;
4874 ring->rx_copybreak = priv->rx_copybreak;
4875 }
4876
4877 hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4878
4879 ring->tqp = q;
4880 ring->desc = NULL;
4881 ring->desc_cb = NULL;
4882 ring->dev = priv->dev;
4883 ring->desc_dma_addr = 0;
4884 ring->buf_size = q->buf_size;
4885 ring->desc_num = desc_num;
4886 ring->next_to_use = 0;
4887 ring->next_to_clean = 0;
4888 }
4889
4890 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4891 struct hns3_nic_priv *priv)
4892 {
4893 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4894 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4895 }
4896
4897 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4898 {
4899 struct hnae3_handle *h = priv->ae_handle;
4900 struct pci_dev *pdev = h->pdev;
4901 int i;
4902
4903 priv->ring = devm_kzalloc(&pdev->dev,
4904 array3_size(h->kinfo.num_tqps,
4905 sizeof(*priv->ring), 2),
4906 GFP_KERNEL);
4907 if (!priv->ring)
4908 return -ENOMEM;
4909
4910 for (i = 0; i < h->kinfo.num_tqps; i++)
4911 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4912
4913 return 0;
4914 }
4915
4916 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4917 {
4918 if (!priv->ring)
4919 return;
4920
4921 devm_kfree(priv->dev, priv->ring);
4922 priv->ring = NULL;
4923 }
4924
4925 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4926 {
4927 struct page_pool_params pp_params = {
4928 .flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG |
4929 PP_FLAG_DMA_SYNC_DEV,
4930 .order = hns3_page_order(ring),
4931 .pool_size = ring->desc_num * hns3_buf_size(ring) /
4932 (PAGE_SIZE << hns3_page_order(ring)),
4933 .nid = dev_to_node(ring_to_dev(ring)),
4934 .dev = ring_to_dev(ring),
4935 .dma_dir = DMA_FROM_DEVICE,
4936 .offset = 0,
4937 .max_len = PAGE_SIZE << hns3_page_order(ring),
4938 };
4939
4940 ring->page_pool = page_pool_create(&pp_params);
4941 if (IS_ERR(ring->page_pool)) {
4942 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4943 PTR_ERR(ring->page_pool));
4944 ring->page_pool = NULL;
4945 }
4946 }
4947
4948 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4949 {
4950 int ret;
4951
4952 if (ring->desc_num <= 0 || ring->buf_size <= 0)
4953 return -EINVAL;
4954
4955 ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4956 sizeof(ring->desc_cb[0]), GFP_KERNEL);
4957 if (!ring->desc_cb) {
4958 ret = -ENOMEM;
4959 goto out;
4960 }
4961
4962 ret = hns3_alloc_desc(ring);
4963 if (ret)
4964 goto out_with_desc_cb;
4965
4966 if (!HNAE3_IS_TX_RING(ring)) {
4967 if (page_pool_enabled)
4968 hns3_alloc_page_pool(ring);
4969
4970 ret = hns3_alloc_ring_buffers(ring);
4971 if (ret)
4972 goto out_with_desc;
4973 } else {
4974 hns3_init_tx_spare_buffer(ring);
4975 }
4976
4977 return 0;
4978
4979 out_with_desc:
4980 hns3_free_desc(ring);
4981 out_with_desc_cb:
4982 devm_kfree(ring_to_dev(ring), ring->desc_cb);
4983 ring->desc_cb = NULL;
4984 out:
4985 return ret;
4986 }
4987
4988 void hns3_fini_ring(struct hns3_enet_ring *ring)
4989 {
4990 hns3_free_desc(ring);
4991 devm_kfree(ring_to_dev(ring), ring->desc_cb);
4992 ring->desc_cb = NULL;
4993 ring->next_to_clean = 0;
4994 ring->next_to_use = 0;
4995 ring->last_to_use = 0;
4996 ring->pending_buf = 0;
4997 if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
4998 dev_kfree_skb_any(ring->skb);
4999 ring->skb = NULL;
5000 } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
5001 struct hns3_tx_spare *tx_spare = ring->tx_spare;
5002
5003 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
5004 DMA_TO_DEVICE);
5005 free_pages((unsigned long)tx_spare->buf,
5006 get_order(tx_spare->len));
5007 devm_kfree(ring_to_dev(ring), tx_spare);
5008 ring->tx_spare = NULL;
5009 }
5010
5011 if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
5012 page_pool_destroy(ring->page_pool);
5013 ring->page_pool = NULL;
5014 }
5015 }
5016
5017 static int hns3_buf_size2type(u32 buf_size)
5018 {
5019 int bd_size_type;
5020
5021 switch (buf_size) {
5022 case 512:
5023 bd_size_type = HNS3_BD_SIZE_512_TYPE;
5024 break;
5025 case 1024:
5026 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
5027 break;
5028 case 2048:
5029 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5030 break;
5031 case 4096:
5032 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
5033 break;
5034 default:
5035 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5036 }
5037
5038 return bd_size_type;
5039 }
5040
5041 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
5042 {
5043 dma_addr_t dma = ring->desc_dma_addr;
5044 struct hnae3_queue *q = ring->tqp;
5045
5046 if (!HNAE3_IS_TX_RING(ring)) {
5047 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
5048 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
5049 (u32)((dma >> 31) >> 1));
5050
5051 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
5052 hns3_buf_size2type(ring->buf_size));
5053 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
5054 ring->desc_num / 8 - 1);
5055 } else {
5056 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
5057 (u32)dma);
5058 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
5059 (u32)((dma >> 31) >> 1));
5060
5061 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
5062 ring->desc_num / 8 - 1);
5063 }
5064 }
5065
5066 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
5067 {
5068 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5069 struct hnae3_tc_info *tc_info = &kinfo->tc_info;
5070 int i;
5071
5072 for (i = 0; i < tc_info->num_tc; i++) {
5073 int j;
5074
5075 for (j = 0; j < tc_info->tqp_count[i]; j++) {
5076 struct hnae3_queue *q;
5077
5078 q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
5079 hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
5080 }
5081 }
5082 }
5083
5084 int hns3_init_all_ring(struct hns3_nic_priv *priv)
5085 {
5086 struct hnae3_handle *h = priv->ae_handle;
5087 int ring_num = h->kinfo.num_tqps * 2;
5088 int i, j;
5089 int ret;
5090
5091 for (i = 0; i < ring_num; i++) {
5092 ret = hns3_alloc_ring_memory(&priv->ring[i]);
5093 if (ret) {
5094 dev_err(priv->dev,
5095 "Alloc ring memory fail! ret=%d\n", ret);
5096 goto out_when_alloc_ring_memory;
5097 }
5098
5099 u64_stats_init(&priv->ring[i].syncp);
5100 }
5101
5102 return 0;
5103
5104 out_when_alloc_ring_memory:
5105 for (j = i - 1; j >= 0; j--)
5106 hns3_fini_ring(&priv->ring[j]);
5107
5108 return -ENOMEM;
5109 }
5110
5111 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
5112 {
5113 struct hnae3_handle *h = priv->ae_handle;
5114 int i;
5115
5116 for (i = 0; i < h->kinfo.num_tqps; i++) {
5117 hns3_fini_ring(&priv->ring[i]);
5118 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
5119 }
5120 }
5121
5122 /* Set mac addr if it is configured. or leave it to the AE driver */
5123 static int hns3_init_mac_addr(struct net_device *netdev)
5124 {
5125 struct hns3_nic_priv *priv = netdev_priv(netdev);
5126 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5127 struct hnae3_handle *h = priv->ae_handle;
5128 u8 mac_addr_temp[ETH_ALEN];
5129 int ret = 0;
5130
5131 if (h->ae_algo->ops->get_mac_addr)
5132 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
5133
5134 /* Check if the MAC address is valid, if not get a random one */
5135 if (!is_valid_ether_addr(mac_addr_temp)) {
5136 eth_hw_addr_random(netdev);
5137 hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
5138 dev_warn(priv->dev, "using random MAC address %s\n",
5139 format_mac_addr);
5140 } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
5141 eth_hw_addr_set(netdev, mac_addr_temp);
5142 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
5143 } else {
5144 return 0;
5145 }
5146
5147 if (h->ae_algo->ops->set_mac_addr)
5148 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
5149
5150 return ret;
5151 }
5152
5153 static int hns3_init_phy(struct net_device *netdev)
5154 {
5155 struct hnae3_handle *h = hns3_get_handle(netdev);
5156 int ret = 0;
5157
5158 if (h->ae_algo->ops->mac_connect_phy)
5159 ret = h->ae_algo->ops->mac_connect_phy(h);
5160
5161 return ret;
5162 }
5163
5164 static void hns3_uninit_phy(struct net_device *netdev)
5165 {
5166 struct hnae3_handle *h = hns3_get_handle(netdev);
5167
5168 if (h->ae_algo->ops->mac_disconnect_phy)
5169 h->ae_algo->ops->mac_disconnect_phy(h);
5170 }
5171
5172 static int hns3_client_start(struct hnae3_handle *handle)
5173 {
5174 if (!handle->ae_algo->ops->client_start)
5175 return 0;
5176
5177 return handle->ae_algo->ops->client_start(handle);
5178 }
5179
5180 static void hns3_client_stop(struct hnae3_handle *handle)
5181 {
5182 if (!handle->ae_algo->ops->client_stop)
5183 return;
5184
5185 handle->ae_algo->ops->client_stop(handle);
5186 }
5187
5188 static void hns3_info_show(struct hns3_nic_priv *priv)
5189 {
5190 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5191 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5192
5193 hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5194 dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5195 dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5196 dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5197 dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5198 dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5199 dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5200 dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5201 dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5202 kinfo->tc_info.num_tc);
5203 dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5204 }
5205
5206 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5207 enum dim_cq_period_mode mode, bool is_tx)
5208 {
5209 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5210 struct hnae3_handle *handle = priv->ae_handle;
5211 int i;
5212
5213 if (is_tx) {
5214 priv->tx_cqe_mode = mode;
5215
5216 for (i = 0; i < priv->vector_num; i++)
5217 priv->tqp_vector[i].tx_group.dim.mode = mode;
5218 } else {
5219 priv->rx_cqe_mode = mode;
5220
5221 for (i = 0; i < priv->vector_num; i++)
5222 priv->tqp_vector[i].rx_group.dim.mode = mode;
5223 }
5224
5225 if (hnae3_ae_dev_cq_supported(ae_dev)) {
5226 u32 new_mode;
5227 u64 reg;
5228
5229 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5230 HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5231 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5232
5233 writel(new_mode, handle->kinfo.io_base + reg);
5234 }
5235 }
5236
5237 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5238 enum dim_cq_period_mode tx_mode,
5239 enum dim_cq_period_mode rx_mode)
5240 {
5241 hns3_set_cq_period_mode(priv, tx_mode, true);
5242 hns3_set_cq_period_mode(priv, rx_mode, false);
5243 }
5244
5245 static void hns3_state_init(struct hnae3_handle *handle)
5246 {
5247 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5248 struct net_device *netdev = handle->kinfo.netdev;
5249 struct hns3_nic_priv *priv = netdev_priv(netdev);
5250
5251 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5252
5253 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
5254 set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
5255
5256 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5257 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5258
5259 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5260 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5261
5262 if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5263 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5264 }
5265
5266 static void hns3_state_uninit(struct hnae3_handle *handle)
5267 {
5268 struct hns3_nic_priv *priv = handle->priv;
5269
5270 clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
5271 }
5272
5273 static int hns3_client_init(struct hnae3_handle *handle)
5274 {
5275 struct pci_dev *pdev = handle->pdev;
5276 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5277 u16 alloc_tqps, max_rss_size;
5278 struct hns3_nic_priv *priv;
5279 struct net_device *netdev;
5280 int ret;
5281
5282 handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5283 &max_rss_size);
5284 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5285 if (!netdev)
5286 return -ENOMEM;
5287
5288 priv = netdev_priv(netdev);
5289 priv->dev = &pdev->dev;
5290 priv->netdev = netdev;
5291 priv->ae_handle = handle;
5292 priv->tx_timeout_count = 0;
5293 priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5294 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5295
5296 handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5297
5298 handle->kinfo.netdev = netdev;
5299 handle->priv = (void *)priv;
5300
5301 hns3_init_mac_addr(netdev);
5302
5303 hns3_set_default_feature(netdev);
5304
5305 netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5306 netdev->priv_flags |= IFF_UNICAST_FLT;
5307 netdev->netdev_ops = &hns3_nic_netdev_ops;
5308 SET_NETDEV_DEV(netdev, &pdev->dev);
5309 hns3_ethtool_set_ops(netdev);
5310
5311 /* Carrier off reporting is important to ethtool even BEFORE open */
5312 netif_carrier_off(netdev);
5313
5314 ret = hns3_get_ring_config(priv);
5315 if (ret) {
5316 ret = -ENOMEM;
5317 goto out_get_ring_cfg;
5318 }
5319
5320 hns3_nic_init_coal_cfg(priv);
5321
5322 ret = hns3_nic_alloc_vector_data(priv);
5323 if (ret) {
5324 ret = -ENOMEM;
5325 goto out_alloc_vector_data;
5326 }
5327
5328 ret = hns3_nic_init_vector_data(priv);
5329 if (ret) {
5330 ret = -ENOMEM;
5331 goto out_init_vector_data;
5332 }
5333
5334 ret = hns3_init_all_ring(priv);
5335 if (ret) {
5336 ret = -ENOMEM;
5337 goto out_init_ring;
5338 }
5339
5340 hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5341 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5342
5343 ret = hns3_init_phy(netdev);
5344 if (ret)
5345 goto out_init_phy;
5346
5347 /* the device can work without cpu rmap, only aRFS needs it */
5348 ret = hns3_set_rx_cpu_rmap(netdev);
5349 if (ret)
5350 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5351
5352 ret = hns3_nic_init_irq(priv);
5353 if (ret) {
5354 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5355 hns3_free_rx_cpu_rmap(netdev);
5356 goto out_init_irq_fail;
5357 }
5358
5359 ret = hns3_client_start(handle);
5360 if (ret) {
5361 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5362 goto out_client_start;
5363 }
5364
5365 hns3_dcbnl_setup(handle);
5366
5367 ret = hns3_dbg_init(handle);
5368 if (ret) {
5369 dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5370 ret);
5371 goto out_client_start;
5372 }
5373
5374 netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5375
5376 hns3_state_init(handle);
5377
5378 ret = register_netdev(netdev);
5379 if (ret) {
5380 dev_err(priv->dev, "probe register netdev fail!\n");
5381 goto out_reg_netdev_fail;
5382 }
5383
5384 if (netif_msg_drv(handle))
5385 hns3_info_show(priv);
5386
5387 return ret;
5388
5389 out_reg_netdev_fail:
5390 hns3_state_uninit(handle);
5391 hns3_dbg_uninit(handle);
5392 hns3_client_stop(handle);
5393 out_client_start:
5394 hns3_free_rx_cpu_rmap(netdev);
5395 hns3_nic_uninit_irq(priv);
5396 out_init_irq_fail:
5397 hns3_uninit_phy(netdev);
5398 out_init_phy:
5399 hns3_uninit_all_ring(priv);
5400 out_init_ring:
5401 hns3_nic_uninit_vector_data(priv);
5402 out_init_vector_data:
5403 hns3_nic_dealloc_vector_data(priv);
5404 out_alloc_vector_data:
5405 priv->ring = NULL;
5406 out_get_ring_cfg:
5407 priv->ae_handle = NULL;
5408 free_netdev(netdev);
5409 return ret;
5410 }
5411
5412 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5413 {
5414 struct net_device *netdev = handle->kinfo.netdev;
5415 struct hns3_nic_priv *priv = netdev_priv(netdev);
5416
5417 if (netdev->reg_state != NETREG_UNINITIALIZED)
5418 unregister_netdev(netdev);
5419
5420 hns3_client_stop(handle);
5421
5422 hns3_uninit_phy(netdev);
5423
5424 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5425 netdev_warn(netdev, "already uninitialized\n");
5426 goto out_netdev_free;
5427 }
5428
5429 hns3_free_rx_cpu_rmap(netdev);
5430
5431 hns3_nic_uninit_irq(priv);
5432
5433 hns3_clear_all_ring(handle, true);
5434
5435 hns3_nic_uninit_vector_data(priv);
5436
5437 hns3_nic_dealloc_vector_data(priv);
5438
5439 hns3_uninit_all_ring(priv);
5440
5441 hns3_put_ring_config(priv);
5442
5443 out_netdev_free:
5444 hns3_dbg_uninit(handle);
5445 free_netdev(netdev);
5446 }
5447
5448 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5449 {
5450 struct net_device *netdev = handle->kinfo.netdev;
5451
5452 if (!netdev)
5453 return;
5454
5455 if (linkup) {
5456 netif_tx_wake_all_queues(netdev);
5457 netif_carrier_on(netdev);
5458 if (netif_msg_link(handle))
5459 netdev_info(netdev, "link up\n");
5460 } else {
5461 netif_carrier_off(netdev);
5462 netif_tx_stop_all_queues(netdev);
5463 if (netif_msg_link(handle))
5464 netdev_info(netdev, "link down\n");
5465 }
5466 }
5467
5468 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5469 {
5470 while (ring->next_to_clean != ring->next_to_use) {
5471 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5472 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5473 ring_ptr_move_fw(ring, next_to_clean);
5474 }
5475
5476 ring->pending_buf = 0;
5477 }
5478
5479 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5480 {
5481 struct hns3_desc_cb res_cbs;
5482 int ret;
5483
5484 while (ring->next_to_use != ring->next_to_clean) {
5485 /* When a buffer is not reused, it's memory has been
5486 * freed in hns3_handle_rx_bd or will be freed by
5487 * stack, so we need to replace the buffer here.
5488 */
5489 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5490 ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5491 if (ret) {
5492 hns3_ring_stats_update(ring, sw_err_cnt);
5493 /* if alloc new buffer fail, exit directly
5494 * and reclear in up flow.
5495 */
5496 netdev_warn(ring_to_netdev(ring),
5497 "reserve buffer map failed, ret = %d\n",
5498 ret);
5499 return ret;
5500 }
5501 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5502 }
5503 ring_ptr_move_fw(ring, next_to_use);
5504 }
5505
5506 /* Free the pending skb in rx ring */
5507 if (ring->skb) {
5508 dev_kfree_skb_any(ring->skb);
5509 ring->skb = NULL;
5510 ring->pending_buf = 0;
5511 }
5512
5513 return 0;
5514 }
5515
5516 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5517 {
5518 while (ring->next_to_use != ring->next_to_clean) {
5519 /* When a buffer is not reused, it's memory has been
5520 * freed in hns3_handle_rx_bd or will be freed by
5521 * stack, so only need to unmap the buffer here.
5522 */
5523 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5524 hns3_unmap_buffer(ring,
5525 &ring->desc_cb[ring->next_to_use]);
5526 ring->desc_cb[ring->next_to_use].dma = 0;
5527 }
5528
5529 ring_ptr_move_fw(ring, next_to_use);
5530 }
5531 }
5532
5533 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5534 {
5535 struct net_device *ndev = h->kinfo.netdev;
5536 struct hns3_nic_priv *priv = netdev_priv(ndev);
5537 u32 i;
5538
5539 for (i = 0; i < h->kinfo.num_tqps; i++) {
5540 struct hns3_enet_ring *ring;
5541
5542 ring = &priv->ring[i];
5543 hns3_clear_tx_ring(ring);
5544
5545 ring = &priv->ring[i + h->kinfo.num_tqps];
5546 /* Continue to clear other rings even if clearing some
5547 * rings failed.
5548 */
5549 if (force)
5550 hns3_force_clear_rx_ring(ring);
5551 else
5552 hns3_clear_rx_ring(ring);
5553 }
5554 }
5555
5556 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5557 {
5558 struct net_device *ndev = h->kinfo.netdev;
5559 struct hns3_nic_priv *priv = netdev_priv(ndev);
5560 struct hns3_enet_ring *rx_ring;
5561 int i, j;
5562 int ret;
5563
5564 ret = h->ae_algo->ops->reset_queue(h);
5565 if (ret)
5566 return ret;
5567
5568 for (i = 0; i < h->kinfo.num_tqps; i++) {
5569 hns3_init_ring_hw(&priv->ring[i]);
5570
5571 /* We need to clear tx ring here because self test will
5572 * use the ring and will not run down before up
5573 */
5574 hns3_clear_tx_ring(&priv->ring[i]);
5575 priv->ring[i].next_to_clean = 0;
5576 priv->ring[i].next_to_use = 0;
5577 priv->ring[i].last_to_use = 0;
5578
5579 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5580 hns3_init_ring_hw(rx_ring);
5581 ret = hns3_clear_rx_ring(rx_ring);
5582 if (ret)
5583 return ret;
5584
5585 /* We can not know the hardware head and tail when this
5586 * function is called in reset flow, so we reuse all desc.
5587 */
5588 for (j = 0; j < rx_ring->desc_num; j++)
5589 hns3_reuse_buffer(rx_ring, j);
5590
5591 rx_ring->next_to_clean = 0;
5592 rx_ring->next_to_use = 0;
5593 }
5594
5595 hns3_init_tx_ring_tc(priv);
5596
5597 return 0;
5598 }
5599
5600 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5601 {
5602 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5603 struct net_device *ndev = kinfo->netdev;
5604 struct hns3_nic_priv *priv = netdev_priv(ndev);
5605
5606 if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5607 return 0;
5608
5609 if (!netif_running(ndev))
5610 return 0;
5611
5612 return hns3_nic_net_stop(ndev);
5613 }
5614
5615 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5616 {
5617 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5618 struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5619 int ret = 0;
5620
5621 if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5622 netdev_err(kinfo->netdev, "device is not initialized yet\n");
5623 return -EFAULT;
5624 }
5625
5626 clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5627
5628 if (netif_running(kinfo->netdev)) {
5629 ret = hns3_nic_net_open(kinfo->netdev);
5630 if (ret) {
5631 set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5632 netdev_err(kinfo->netdev,
5633 "net up fail, ret=%d!\n", ret);
5634 return ret;
5635 }
5636 }
5637
5638 return ret;
5639 }
5640
5641 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5642 {
5643 struct net_device *netdev = handle->kinfo.netdev;
5644 struct hns3_nic_priv *priv = netdev_priv(netdev);
5645 int ret;
5646
5647 /* Carrier off reporting is important to ethtool even BEFORE open */
5648 netif_carrier_off(netdev);
5649
5650 ret = hns3_get_ring_config(priv);
5651 if (ret)
5652 return ret;
5653
5654 ret = hns3_nic_alloc_vector_data(priv);
5655 if (ret)
5656 goto err_put_ring;
5657
5658 ret = hns3_nic_init_vector_data(priv);
5659 if (ret)
5660 goto err_dealloc_vector;
5661
5662 ret = hns3_init_all_ring(priv);
5663 if (ret)
5664 goto err_uninit_vector;
5665
5666 hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5667
5668 /* the device can work without cpu rmap, only aRFS needs it */
5669 ret = hns3_set_rx_cpu_rmap(netdev);
5670 if (ret)
5671 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5672
5673 ret = hns3_nic_init_irq(priv);
5674 if (ret) {
5675 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5676 hns3_free_rx_cpu_rmap(netdev);
5677 goto err_init_irq_fail;
5678 }
5679
5680 if (!hns3_is_phys_func(handle->pdev))
5681 hns3_init_mac_addr(netdev);
5682
5683 ret = hns3_client_start(handle);
5684 if (ret) {
5685 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5686 goto err_client_start_fail;
5687 }
5688
5689 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5690
5691 return ret;
5692
5693 err_client_start_fail:
5694 hns3_free_rx_cpu_rmap(netdev);
5695 hns3_nic_uninit_irq(priv);
5696 err_init_irq_fail:
5697 hns3_uninit_all_ring(priv);
5698 err_uninit_vector:
5699 hns3_nic_uninit_vector_data(priv);
5700 err_dealloc_vector:
5701 hns3_nic_dealloc_vector_data(priv);
5702 err_put_ring:
5703 hns3_put_ring_config(priv);
5704
5705 return ret;
5706 }
5707
5708 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5709 {
5710 struct net_device *netdev = handle->kinfo.netdev;
5711 struct hns3_nic_priv *priv = netdev_priv(netdev);
5712
5713 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5714 netdev_warn(netdev, "already uninitialized\n");
5715 return 0;
5716 }
5717
5718 hns3_free_rx_cpu_rmap(netdev);
5719 hns3_nic_uninit_irq(priv);
5720 hns3_clear_all_ring(handle, true);
5721 hns3_reset_tx_queue(priv->ae_handle);
5722
5723 hns3_nic_uninit_vector_data(priv);
5724
5725 hns3_nic_dealloc_vector_data(priv);
5726
5727 hns3_uninit_all_ring(priv);
5728
5729 hns3_put_ring_config(priv);
5730
5731 return 0;
5732 }
5733
5734 int hns3_reset_notify(struct hnae3_handle *handle,
5735 enum hnae3_reset_notify_type type)
5736 {
5737 int ret = 0;
5738
5739 switch (type) {
5740 case HNAE3_UP_CLIENT:
5741 ret = hns3_reset_notify_up_enet(handle);
5742 break;
5743 case HNAE3_DOWN_CLIENT:
5744 ret = hns3_reset_notify_down_enet(handle);
5745 break;
5746 case HNAE3_INIT_CLIENT:
5747 ret = hns3_reset_notify_init_enet(handle);
5748 break;
5749 case HNAE3_UNINIT_CLIENT:
5750 ret = hns3_reset_notify_uninit_enet(handle);
5751 break;
5752 default:
5753 break;
5754 }
5755
5756 return ret;
5757 }
5758
5759 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5760 bool rxfh_configured)
5761 {
5762 int ret;
5763
5764 ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5765 rxfh_configured);
5766 if (ret) {
5767 dev_err(&handle->pdev->dev,
5768 "Change tqp num(%u) fail.\n", new_tqp_num);
5769 return ret;
5770 }
5771
5772 ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5773 if (ret)
5774 return ret;
5775
5776 ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5777 if (ret)
5778 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5779
5780 return ret;
5781 }
5782
5783 int hns3_set_channels(struct net_device *netdev,
5784 struct ethtool_channels *ch)
5785 {
5786 struct hnae3_handle *h = hns3_get_handle(netdev);
5787 struct hnae3_knic_private_info *kinfo = &h->kinfo;
5788 bool rxfh_configured = netif_is_rxfh_configured(netdev);
5789 u32 new_tqp_num = ch->combined_count;
5790 u16 org_tqp_num;
5791 int ret;
5792
5793 if (hns3_nic_resetting(netdev))
5794 return -EBUSY;
5795
5796 if (ch->rx_count || ch->tx_count)
5797 return -EINVAL;
5798
5799 if (kinfo->tc_info.mqprio_active) {
5800 dev_err(&netdev->dev,
5801 "it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5802 return -EINVAL;
5803 }
5804
5805 if (new_tqp_num > hns3_get_max_available_channels(h) ||
5806 new_tqp_num < 1) {
5807 dev_err(&netdev->dev,
5808 "Change tqps fail, the tqp range is from 1 to %u",
5809 hns3_get_max_available_channels(h));
5810 return -EINVAL;
5811 }
5812
5813 if (kinfo->rss_size == new_tqp_num)
5814 return 0;
5815
5816 netif_dbg(h, drv, netdev,
5817 "set channels: tqp_num=%u, rxfh=%d\n",
5818 new_tqp_num, rxfh_configured);
5819
5820 ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5821 if (ret)
5822 return ret;
5823
5824 ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5825 if (ret)
5826 return ret;
5827
5828 org_tqp_num = h->kinfo.num_tqps;
5829 ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5830 if (ret) {
5831 int ret1;
5832
5833 netdev_warn(netdev,
5834 "Change channels fail, revert to old value\n");
5835 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5836 if (ret1) {
5837 netdev_err(netdev,
5838 "revert to old channel fail\n");
5839 return ret1;
5840 }
5841
5842 return ret;
5843 }
5844
5845 return 0;
5846 }
5847
5848 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running)
5849 {
5850 struct hns3_nic_priv *priv = netdev_priv(ndev);
5851 struct hnae3_handle *h = priv->ae_handle;
5852 int i;
5853
5854 if (!if_running)
5855 return;
5856
5857 netif_carrier_off(ndev);
5858 netif_tx_disable(ndev);
5859
5860 for (i = 0; i < priv->vector_num; i++)
5861 hns3_vector_disable(&priv->tqp_vector[i]);
5862
5863 for (i = 0; i < h->kinfo.num_tqps; i++)
5864 hns3_tqp_disable(h->kinfo.tqp[i]);
5865
5866 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
5867 * during reset process, because driver may not be able
5868 * to disable the ring through firmware when downing the netdev.
5869 */
5870 if (!hns3_nic_resetting(ndev))
5871 hns3_nic_reset_all_ring(priv->ae_handle);
5872
5873 hns3_reset_tx_queue(priv->ae_handle);
5874 }
5875
5876 void hns3_external_lb_restore(struct net_device *ndev, bool if_running)
5877 {
5878 struct hns3_nic_priv *priv = netdev_priv(ndev);
5879 struct hnae3_handle *h = priv->ae_handle;
5880 int i;
5881
5882 if (!if_running)
5883 return;
5884
5885 hns3_nic_reset_all_ring(priv->ae_handle);
5886
5887 for (i = 0; i < priv->vector_num; i++)
5888 hns3_vector_enable(&priv->tqp_vector[i]);
5889
5890 for (i = 0; i < h->kinfo.num_tqps; i++)
5891 hns3_tqp_enable(h->kinfo.tqp[i]);
5892
5893 netif_tx_wake_all_queues(ndev);
5894
5895 if (h->ae_algo->ops->get_status(h))
5896 netif_carrier_on(ndev);
5897 }
5898
5899 static const struct hns3_hw_error_info hns3_hw_err[] = {
5900 { .type = HNAE3_PPU_POISON_ERROR,
5901 .msg = "PPU poison" },
5902 { .type = HNAE3_CMDQ_ECC_ERROR,
5903 .msg = "IMP CMDQ error" },
5904 { .type = HNAE3_IMP_RD_POISON_ERROR,
5905 .msg = "IMP RD poison" },
5906 { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5907 .msg = "ROCEE AXI RESP error" },
5908 };
5909
5910 static void hns3_process_hw_error(struct hnae3_handle *handle,
5911 enum hnae3_hw_error_type type)
5912 {
5913 int i;
5914
5915 for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5916 if (hns3_hw_err[i].type == type) {
5917 dev_err(&handle->pdev->dev, "Detected %s!\n",
5918 hns3_hw_err[i].msg);
5919 break;
5920 }
5921 }
5922 }
5923
5924 static const struct hnae3_client_ops client_ops = {
5925 .init_instance = hns3_client_init,
5926 .uninit_instance = hns3_client_uninit,
5927 .link_status_change = hns3_link_status_change,
5928 .reset_notify = hns3_reset_notify,
5929 .process_hw_error = hns3_process_hw_error,
5930 };
5931
5932 /* hns3_init_module - Driver registration routine
5933 * hns3_init_module is the first routine called when the driver is
5934 * loaded. All it does is register with the PCI subsystem.
5935 */
5936 static int __init hns3_init_module(void)
5937 {
5938 int ret;
5939
5940 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5941 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5942
5943 client.type = HNAE3_CLIENT_KNIC;
5944 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5945 hns3_driver_name);
5946
5947 client.ops = &client_ops;
5948
5949 INIT_LIST_HEAD(&client.node);
5950
5951 hns3_dbg_register_debugfs(hns3_driver_name);
5952
5953 ret = hnae3_register_client(&client);
5954 if (ret)
5955 goto err_reg_client;
5956
5957 ret = pci_register_driver(&hns3_driver);
5958 if (ret)
5959 goto err_reg_driver;
5960
5961 return ret;
5962
5963 err_reg_driver:
5964 hnae3_unregister_client(&client);
5965 err_reg_client:
5966 hns3_dbg_unregister_debugfs();
5967 return ret;
5968 }
5969 module_init(hns3_init_module);
5970
5971 /* hns3_exit_module - Driver exit cleanup routine
5972 * hns3_exit_module is called just before the driver is removed
5973 * from memory.
5974 */
5975 static void __exit hns3_exit_module(void)
5976 {
5977 pci_unregister_driver(&hns3_driver);
5978 hnae3_unregister_client(&client);
5979 hns3_dbg_unregister_debugfs();
5980 }
5981 module_exit(hns3_exit_module);
5982
5983 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
5984 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
5985 MODULE_LICENSE("GPL");
5986 MODULE_ALIAS("pci:hns-nic");