]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c
Merge tag 'kvm-x86-docs-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14
15 #define HCLGEVF_NAME "hclgevf"
16
17 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
18
19 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
20 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
21 unsigned long delay);
22
23 static struct hnae3_ae_algo ae_algovf;
24
25 static struct workqueue_struct *hclgevf_wq;
26
27 static const struct pci_device_id ae_algovf_pci_tbl[] = {
28 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
30 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
31 /* required last entry */
32 {0, }
33 };
34
35 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
36
37 /* hclgevf_cmd_send - send command to command queue
38 * @hw: pointer to the hw struct
39 * @desc: prefilled descriptor for describing the command
40 * @num : the number of descriptors to be sent
41 *
42 * This is the main send command for command queue, it
43 * sends the queue, cleans the queue, etc
44 */
45 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
46 {
47 return hclge_comm_cmd_send(&hw->hw, desc, num);
48 }
49
50 void hclgevf_arq_init(struct hclgevf_dev *hdev)
51 {
52 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
53
54 spin_lock(&cmdq->crq.lock);
55 /* initialize the pointers of async rx queue of mailbox */
56 hdev->arq.hdev = hdev;
57 hdev->arq.head = 0;
58 hdev->arq.tail = 0;
59 atomic_set(&hdev->arq.count, 0);
60 spin_unlock(&cmdq->crq.lock);
61 }
62
63 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
64 {
65 if (!handle->client)
66 return container_of(handle, struct hclgevf_dev, nic);
67 else if (handle->client->type == HNAE3_CLIENT_ROCE)
68 return container_of(handle, struct hclgevf_dev, roce);
69 else
70 return container_of(handle, struct hclgevf_dev, nic);
71 }
72
73 static void hclgevf_update_stats(struct hnae3_handle *handle)
74 {
75 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
76 int status;
77
78 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
79 if (status)
80 dev_err(&hdev->pdev->dev,
81 "VF update of TQPS stats fail, status = %d.\n",
82 status);
83 }
84
85 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
86 {
87 if (strset == ETH_SS_TEST)
88 return -EOPNOTSUPP;
89 else if (strset == ETH_SS_STATS)
90 return hclge_comm_tqps_get_sset_count(handle);
91
92 return 0;
93 }
94
95 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
96 u8 *data)
97 {
98 u8 *p = (char *)data;
99
100 if (strset == ETH_SS_STATS)
101 p = hclge_comm_tqps_get_strings(handle, p);
102 }
103
104 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
105 {
106 hclge_comm_tqps_get_stats(handle, data);
107 }
108
109 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
110 u8 subcode)
111 {
112 if (msg) {
113 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
114 msg->code = code;
115 msg->subcode = subcode;
116 }
117 }
118
119 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
120 {
121 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
122 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
123 struct hclge_basic_info *basic_info;
124 struct hclge_vf_to_pf_msg send_msg;
125 unsigned long caps;
126 int status;
127
128 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
129 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
130 sizeof(resp_msg));
131 if (status) {
132 dev_err(&hdev->pdev->dev,
133 "failed to get basic info from pf, ret = %d", status);
134 return status;
135 }
136
137 basic_info = (struct hclge_basic_info *)resp_msg;
138
139 hdev->hw_tc_map = basic_info->hw_tc_map;
140 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
141 caps = le32_to_cpu(basic_info->pf_caps);
142 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
143 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
144
145 return 0;
146 }
147
148 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
149 {
150 struct hnae3_handle *nic = &hdev->nic;
151 struct hclge_vf_to_pf_msg send_msg;
152 u8 resp_msg;
153 int ret;
154
155 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
156 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
157 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
158 sizeof(u8));
159 if (ret) {
160 dev_err(&hdev->pdev->dev,
161 "VF request to get port based vlan state failed %d",
162 ret);
163 return ret;
164 }
165
166 nic->port_base_vlan_state = resp_msg;
167
168 return 0;
169 }
170
171 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
172 {
173 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
174
175 struct hclge_mbx_vf_queue_info *queue_info;
176 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
177 struct hclge_vf_to_pf_msg send_msg;
178 int status;
179
180 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
181 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 HCLGEVF_TQPS_RSS_INFO_LEN);
183 if (status) {
184 dev_err(&hdev->pdev->dev,
185 "VF request to get tqp info from PF failed %d",
186 status);
187 return status;
188 }
189
190 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
191 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
192 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
193 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
194
195 return 0;
196 }
197
198 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
199 {
200 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
201
202 struct hclge_mbx_vf_queue_depth *queue_depth;
203 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
204 struct hclge_vf_to_pf_msg send_msg;
205 int ret;
206
207 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
208 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
209 HCLGEVF_TQPS_DEPTH_INFO_LEN);
210 if (ret) {
211 dev_err(&hdev->pdev->dev,
212 "VF request to get tqp depth info from PF failed %d",
213 ret);
214 return ret;
215 }
216
217 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
218 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
219 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
220
221 return 0;
222 }
223
224 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
225 {
226 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
227 struct hclge_vf_to_pf_msg send_msg;
228 u16 qid_in_pf = 0;
229 u8 resp_data[2];
230 int ret;
231
232 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
233 *(__le16 *)send_msg.data = cpu_to_le16(queue_id);
234 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
235 sizeof(resp_data));
236 if (!ret)
237 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
238
239 return qid_in_pf;
240 }
241
242 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
243 {
244 struct hclge_vf_to_pf_msg send_msg;
245 u8 resp_msg[2];
246 int ret;
247
248 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
249 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
250 sizeof(resp_msg));
251 if (ret) {
252 dev_err(&hdev->pdev->dev,
253 "VF request to get the pf port media type failed %d",
254 ret);
255 return ret;
256 }
257
258 hdev->hw.mac.media_type = resp_msg[0];
259 hdev->hw.mac.module_type = resp_msg[1];
260
261 return 0;
262 }
263
264 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
265 {
266 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
267 struct hclge_comm_tqp *tqp;
268 int i;
269
270 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
271 sizeof(struct hclge_comm_tqp), GFP_KERNEL);
272 if (!hdev->htqp)
273 return -ENOMEM;
274
275 tqp = hdev->htqp;
276
277 for (i = 0; i < hdev->num_tqps; i++) {
278 tqp->dev = &hdev->pdev->dev;
279 tqp->index = i;
280
281 tqp->q.ae_algo = &ae_algovf;
282 tqp->q.buf_size = hdev->rx_buf_len;
283 tqp->q.tx_desc_num = hdev->num_tx_desc;
284 tqp->q.rx_desc_num = hdev->num_rx_desc;
285
286 /* need an extended offset to configure queues >=
287 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
288 */
289 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
290 tqp->q.io_base = hdev->hw.hw.io_base +
291 HCLGEVF_TQP_REG_OFFSET +
292 i * HCLGEVF_TQP_REG_SIZE;
293 else
294 tqp->q.io_base = hdev->hw.hw.io_base +
295 HCLGEVF_TQP_REG_OFFSET +
296 HCLGEVF_TQP_EXT_REG_OFFSET +
297 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
298 HCLGEVF_TQP_REG_SIZE;
299
300 /* when device supports tx push and has device memory,
301 * the queue can execute push mode or doorbell mode on
302 * device memory.
303 */
304 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
305 tqp->q.mem_base = hdev->hw.hw.mem_base +
306 HCLGEVF_TQP_MEM_OFFSET(hdev, i);
307
308 tqp++;
309 }
310
311 return 0;
312 }
313
314 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
315 {
316 struct hnae3_handle *nic = &hdev->nic;
317 struct hnae3_knic_private_info *kinfo;
318 u16 new_tqps = hdev->num_tqps;
319 unsigned int i;
320 u8 num_tc = 0;
321
322 kinfo = &nic->kinfo;
323 kinfo->num_tx_desc = hdev->num_tx_desc;
324 kinfo->num_rx_desc = hdev->num_rx_desc;
325 kinfo->rx_buf_len = hdev->rx_buf_len;
326 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
327 if (hdev->hw_tc_map & BIT(i))
328 num_tc++;
329
330 num_tc = num_tc ? num_tc : 1;
331 kinfo->tc_info.num_tc = num_tc;
332 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
333 new_tqps = kinfo->rss_size * num_tc;
334 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
335
336 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
337 sizeof(struct hnae3_queue *), GFP_KERNEL);
338 if (!kinfo->tqp)
339 return -ENOMEM;
340
341 for (i = 0; i < kinfo->num_tqps; i++) {
342 hdev->htqp[i].q.handle = &hdev->nic;
343 hdev->htqp[i].q.tqp_index = i;
344 kinfo->tqp[i] = &hdev->htqp[i].q;
345 }
346
347 /* after init the max rss_size and tqps, adjust the default tqp numbers
348 * and rss size with the actual vector numbers
349 */
350 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
351 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
352 kinfo->rss_size);
353
354 return 0;
355 }
356
357 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
358 {
359 struct hclge_vf_to_pf_msg send_msg;
360 int status;
361
362 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
363 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
364 if (status)
365 dev_err(&hdev->pdev->dev,
366 "VF failed to fetch link status(%d) from PF", status);
367 }
368
369 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
370 {
371 struct hnae3_handle *rhandle = &hdev->roce;
372 struct hnae3_handle *handle = &hdev->nic;
373 struct hnae3_client *rclient;
374 struct hnae3_client *client;
375
376 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
377 return;
378
379 client = handle->client;
380 rclient = hdev->roce_client;
381
382 link_state =
383 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
384 if (link_state != hdev->hw.mac.link) {
385 hdev->hw.mac.link = link_state;
386 client->ops->link_status_change(handle, !!link_state);
387 if (rclient && rclient->ops->link_status_change)
388 rclient->ops->link_status_change(rhandle, !!link_state);
389 }
390
391 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
392 }
393
394 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
395 {
396 #define HCLGEVF_ADVERTISING 0
397 #define HCLGEVF_SUPPORTED 1
398
399 struct hclge_vf_to_pf_msg send_msg;
400
401 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
402 send_msg.data[0] = HCLGEVF_ADVERTISING;
403 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
404 send_msg.data[0] = HCLGEVF_SUPPORTED;
405 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
406 }
407
408 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
409 {
410 struct hnae3_handle *nic = &hdev->nic;
411 int ret;
412
413 nic->ae_algo = &ae_algovf;
414 nic->pdev = hdev->pdev;
415 nic->numa_node_mask = hdev->numa_node_mask;
416 nic->flags |= HNAE3_SUPPORT_VF;
417 nic->kinfo.io_base = hdev->hw.hw.io_base;
418
419 ret = hclgevf_knic_setup(hdev);
420 if (ret)
421 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
422 ret);
423 return ret;
424 }
425
426 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
427 {
428 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
429 dev_warn(&hdev->pdev->dev,
430 "vector(vector_id %d) has been freed.\n", vector_id);
431 return;
432 }
433
434 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
435 hdev->num_msi_left += 1;
436 hdev->num_msi_used -= 1;
437 }
438
439 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
440 struct hnae3_vector_info *vector_info)
441 {
442 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
443 struct hnae3_vector_info *vector = vector_info;
444 int alloc = 0;
445 int i, j;
446
447 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
448 vector_num = min(hdev->num_msi_left, vector_num);
449
450 for (j = 0; j < vector_num; j++) {
451 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
452 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
453 vector->vector = pci_irq_vector(hdev->pdev, i);
454 vector->io_addr = hdev->hw.hw.io_base +
455 HCLGEVF_VECTOR_REG_BASE +
456 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
457 hdev->vector_status[i] = 0;
458 hdev->vector_irq[i] = vector->vector;
459
460 vector++;
461 alloc++;
462
463 break;
464 }
465 }
466 }
467 hdev->num_msi_left -= alloc;
468 hdev->num_msi_used += alloc;
469
470 return alloc;
471 }
472
473 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
474 {
475 int i;
476
477 for (i = 0; i < hdev->num_msi; i++)
478 if (vector == hdev->vector_irq[i])
479 return i;
480
481 return -EINVAL;
482 }
483
484 /* for revision 0x20, vf shared the same rss config with pf */
485 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
486 {
487 #define HCLGEVF_RSS_MBX_RESP_LEN 8
488 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
489 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
490 struct hclge_vf_to_pf_msg send_msg;
491 u16 msg_num, hash_key_index;
492 u8 index;
493 int ret;
494
495 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
496 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
497 HCLGEVF_RSS_MBX_RESP_LEN;
498 for (index = 0; index < msg_num; index++) {
499 send_msg.data[0] = index;
500 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
501 HCLGEVF_RSS_MBX_RESP_LEN);
502 if (ret) {
503 dev_err(&hdev->pdev->dev,
504 "VF get rss hash key from PF failed, ret=%d",
505 ret);
506 return ret;
507 }
508
509 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
510 if (index == msg_num - 1)
511 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
512 &resp_msg[0],
513 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
514 else
515 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
516 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
517 }
518
519 return 0;
520 }
521
522 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
523 u8 *hfunc)
524 {
525 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
526 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
527 int ret;
528
529 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
530 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
531 } else {
532 if (hfunc)
533 *hfunc = ETH_RSS_HASH_TOP;
534 if (key) {
535 ret = hclgevf_get_rss_hash_key(hdev);
536 if (ret)
537 return ret;
538 memcpy(key, rss_cfg->rss_hash_key,
539 HCLGE_COMM_RSS_KEY_SIZE);
540 }
541 }
542
543 hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
544 hdev->ae_dev->dev_specs.rss_ind_tbl_size);
545
546 return 0;
547 }
548
549 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
550 const u8 *key, const u8 hfunc)
551 {
552 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
553 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
554 int ret, i;
555
556 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
557 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
558 hfunc);
559 if (ret)
560 return ret;
561 }
562
563 /* update the shadow RSS table with user specified qids */
564 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
565 rss_cfg->rss_indirection_tbl[i] = indir[i];
566
567 /* update the hardware */
568 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
569 rss_cfg->rss_indirection_tbl);
570 }
571
572 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
573 struct ethtool_rxnfc *nfc)
574 {
575 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
576 int ret;
577
578 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
579 return -EOPNOTSUPP;
580
581 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
582 &hdev->rss_cfg, nfc);
583 if (ret)
584 dev_err(&hdev->pdev->dev,
585 "failed to set rss tuple, ret = %d.\n", ret);
586
587 return ret;
588 }
589
590 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
591 struct ethtool_rxnfc *nfc)
592 {
593 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
594 u8 tuple_sets;
595 int ret;
596
597 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
598 return -EOPNOTSUPP;
599
600 nfc->data = 0;
601
602 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
603 &tuple_sets);
604 if (ret || !tuple_sets)
605 return ret;
606
607 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
608
609 return 0;
610 }
611
612 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
613 {
614 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
615 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
616
617 return rss_cfg->rss_size;
618 }
619
620 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
621 int vector_id,
622 struct hnae3_ring_chain_node *ring_chain)
623 {
624 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
625 struct hclge_vf_to_pf_msg send_msg;
626 struct hnae3_ring_chain_node *node;
627 int status;
628 int i = 0;
629
630 memset(&send_msg, 0, sizeof(send_msg));
631 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
632 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
633 send_msg.vector_id = vector_id;
634
635 for (node = ring_chain; node; node = node->next) {
636 send_msg.param[i].ring_type =
637 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
638
639 send_msg.param[i].tqp_index = node->tqp_index;
640 send_msg.param[i].int_gl_index =
641 hnae3_get_field(node->int_gl_idx,
642 HNAE3_RING_GL_IDX_M,
643 HNAE3_RING_GL_IDX_S);
644
645 i++;
646 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
647 send_msg.ring_num = i;
648
649 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
650 NULL, 0);
651 if (status) {
652 dev_err(&hdev->pdev->dev,
653 "Map TQP fail, status is %d.\n",
654 status);
655 return status;
656 }
657 i = 0;
658 }
659 }
660
661 return 0;
662 }
663
664 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
665 struct hnae3_ring_chain_node *ring_chain)
666 {
667 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
668 int vector_id;
669
670 vector_id = hclgevf_get_vector_index(hdev, vector);
671 if (vector_id < 0) {
672 dev_err(&handle->pdev->dev,
673 "Get vector index fail. ret =%d\n", vector_id);
674 return vector_id;
675 }
676
677 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
678 }
679
680 static int hclgevf_unmap_ring_from_vector(
681 struct hnae3_handle *handle,
682 int vector,
683 struct hnae3_ring_chain_node *ring_chain)
684 {
685 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
686 int ret, vector_id;
687
688 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
689 return 0;
690
691 vector_id = hclgevf_get_vector_index(hdev, vector);
692 if (vector_id < 0) {
693 dev_err(&handle->pdev->dev,
694 "Get vector index fail. ret =%d\n", vector_id);
695 return vector_id;
696 }
697
698 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
699 if (ret)
700 dev_err(&handle->pdev->dev,
701 "Unmap ring from vector fail. vector=%d, ret =%d\n",
702 vector_id,
703 ret);
704
705 return ret;
706 }
707
708 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
709 {
710 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
711 int vector_id;
712
713 vector_id = hclgevf_get_vector_index(hdev, vector);
714 if (vector_id < 0) {
715 dev_err(&handle->pdev->dev,
716 "hclgevf_put_vector get vector index fail. ret =%d\n",
717 vector_id);
718 return vector_id;
719 }
720
721 hclgevf_free_vector(hdev, vector_id);
722
723 return 0;
724 }
725
726 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
727 bool en_uc_pmc, bool en_mc_pmc,
728 bool en_bc_pmc)
729 {
730 struct hnae3_handle *handle = &hdev->nic;
731 struct hclge_vf_to_pf_msg send_msg;
732 int ret;
733
734 memset(&send_msg, 0, sizeof(send_msg));
735 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
736 send_msg.en_bc = en_bc_pmc ? 1 : 0;
737 send_msg.en_uc = en_uc_pmc ? 1 : 0;
738 send_msg.en_mc = en_mc_pmc ? 1 : 0;
739 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
740 &handle->priv_flags) ? 1 : 0;
741
742 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
743 if (ret)
744 dev_err(&hdev->pdev->dev,
745 "Set promisc mode fail, status is %d.\n", ret);
746
747 return ret;
748 }
749
750 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
751 bool en_mc_pmc)
752 {
753 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
754 bool en_bc_pmc;
755
756 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
757
758 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
759 en_bc_pmc);
760 }
761
762 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
763 {
764 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
765
766 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
767 hclgevf_task_schedule(hdev, 0);
768 }
769
770 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
771 {
772 struct hnae3_handle *handle = &hdev->nic;
773 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
774 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
775 int ret;
776
777 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
778 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
779 if (!ret)
780 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
781 }
782 }
783
784 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
785 u16 stream_id, bool enable)
786 {
787 struct hclgevf_cfg_com_tqp_queue_cmd *req;
788 struct hclge_desc desc;
789
790 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
791
792 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
793 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
794 req->stream_id = cpu_to_le16(stream_id);
795 if (enable)
796 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
797
798 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
799 }
800
801 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
802 {
803 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
804 int ret;
805 u16 i;
806
807 for (i = 0; i < handle->kinfo.num_tqps; i++) {
808 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
809 if (ret)
810 return ret;
811 }
812
813 return 0;
814 }
815
816 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
817 {
818 struct hclge_vf_to_pf_msg send_msg;
819 u8 host_mac[ETH_ALEN];
820 int status;
821
822 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
823 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
824 ETH_ALEN);
825 if (status) {
826 dev_err(&hdev->pdev->dev,
827 "fail to get VF MAC from host %d", status);
828 return status;
829 }
830
831 ether_addr_copy(p, host_mac);
832
833 return 0;
834 }
835
836 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
837 {
838 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
839 u8 host_mac_addr[ETH_ALEN];
840
841 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
842 return;
843
844 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
845 if (hdev->has_pf_mac)
846 ether_addr_copy(p, host_mac_addr);
847 else
848 ether_addr_copy(p, hdev->hw.mac.mac_addr);
849 }
850
851 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
852 bool is_first)
853 {
854 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
855 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
856 struct hclge_vf_to_pf_msg send_msg;
857 u8 *new_mac_addr = (u8 *)p;
858 int status;
859
860 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
861 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
862 ether_addr_copy(send_msg.data, new_mac_addr);
863 if (is_first && !hdev->has_pf_mac)
864 eth_zero_addr(&send_msg.data[ETH_ALEN]);
865 else
866 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
867 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
868 if (!status)
869 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
870
871 return status;
872 }
873
874 static struct hclgevf_mac_addr_node *
875 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
876 {
877 struct hclgevf_mac_addr_node *mac_node, *tmp;
878
879 list_for_each_entry_safe(mac_node, tmp, list, node)
880 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
881 return mac_node;
882
883 return NULL;
884 }
885
886 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
887 enum HCLGEVF_MAC_NODE_STATE state)
888 {
889 switch (state) {
890 /* from set_rx_mode or tmp_add_list */
891 case HCLGEVF_MAC_TO_ADD:
892 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
893 mac_node->state = HCLGEVF_MAC_ACTIVE;
894 break;
895 /* only from set_rx_mode */
896 case HCLGEVF_MAC_TO_DEL:
897 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
898 list_del(&mac_node->node);
899 kfree(mac_node);
900 } else {
901 mac_node->state = HCLGEVF_MAC_TO_DEL;
902 }
903 break;
904 /* only from tmp_add_list, the mac_node->state won't be
905 * HCLGEVF_MAC_ACTIVE
906 */
907 case HCLGEVF_MAC_ACTIVE:
908 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
909 mac_node->state = HCLGEVF_MAC_ACTIVE;
910 break;
911 }
912 }
913
914 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
915 enum HCLGEVF_MAC_NODE_STATE state,
916 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
917 const unsigned char *addr)
918 {
919 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
920 struct hclgevf_mac_addr_node *mac_node;
921 struct list_head *list;
922
923 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
924 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
925
926 spin_lock_bh(&hdev->mac_table.mac_list_lock);
927
928 /* if the mac addr is already in the mac list, no need to add a new
929 * one into it, just check the mac addr state, convert it to a new
930 * state, or just remove it, or do nothing.
931 */
932 mac_node = hclgevf_find_mac_node(list, addr);
933 if (mac_node) {
934 hclgevf_update_mac_node(mac_node, state);
935 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
936 return 0;
937 }
938 /* if this address is never added, unnecessary to delete */
939 if (state == HCLGEVF_MAC_TO_DEL) {
940 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
941 return -ENOENT;
942 }
943
944 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
945 if (!mac_node) {
946 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
947 return -ENOMEM;
948 }
949
950 mac_node->state = state;
951 ether_addr_copy(mac_node->mac_addr, addr);
952 list_add_tail(&mac_node->node, list);
953
954 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
955 return 0;
956 }
957
958 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
959 const unsigned char *addr)
960 {
961 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
962 HCLGEVF_MAC_ADDR_UC, addr);
963 }
964
965 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
966 const unsigned char *addr)
967 {
968 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
969 HCLGEVF_MAC_ADDR_UC, addr);
970 }
971
972 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
973 const unsigned char *addr)
974 {
975 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
976 HCLGEVF_MAC_ADDR_MC, addr);
977 }
978
979 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
980 const unsigned char *addr)
981 {
982 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
983 HCLGEVF_MAC_ADDR_MC, addr);
984 }
985
986 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
987 struct hclgevf_mac_addr_node *mac_node,
988 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
989 {
990 struct hclge_vf_to_pf_msg send_msg;
991 u8 code, subcode;
992
993 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
994 code = HCLGE_MBX_SET_UNICAST;
995 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
996 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
997 else
998 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
999 } else {
1000 code = HCLGE_MBX_SET_MULTICAST;
1001 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1002 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1003 else
1004 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1005 }
1006
1007 hclgevf_build_send_msg(&send_msg, code, subcode);
1008 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1009 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1010 }
1011
1012 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1013 struct list_head *list,
1014 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1015 {
1016 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1017 struct hclgevf_mac_addr_node *mac_node, *tmp;
1018 int ret;
1019
1020 list_for_each_entry_safe(mac_node, tmp, list, node) {
1021 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1022 if (ret) {
1023 hnae3_format_mac_addr(format_mac_addr,
1024 mac_node->mac_addr);
1025 dev_err(&hdev->pdev->dev,
1026 "failed to configure mac %s, state = %d, ret = %d\n",
1027 format_mac_addr, mac_node->state, ret);
1028 return;
1029 }
1030 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1031 mac_node->state = HCLGEVF_MAC_ACTIVE;
1032 } else {
1033 list_del(&mac_node->node);
1034 kfree(mac_node);
1035 }
1036 }
1037 }
1038
1039 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1040 struct list_head *mac_list)
1041 {
1042 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1043
1044 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1045 /* if the mac address from tmp_add_list is not in the
1046 * uc/mc_mac_list, it means have received a TO_DEL request
1047 * during the time window of sending mac config request to PF
1048 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1049 * then it will be removed at next time. If is TO_ADD, it means
1050 * send TO_ADD request failed, so just remove the mac node.
1051 */
1052 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1053 if (new_node) {
1054 hclgevf_update_mac_node(new_node, mac_node->state);
1055 list_del(&mac_node->node);
1056 kfree(mac_node);
1057 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1058 mac_node->state = HCLGEVF_MAC_TO_DEL;
1059 list_move_tail(&mac_node->node, mac_list);
1060 } else {
1061 list_del(&mac_node->node);
1062 kfree(mac_node);
1063 }
1064 }
1065 }
1066
1067 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1068 struct list_head *mac_list)
1069 {
1070 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1071
1072 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1073 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1074 if (new_node) {
1075 /* If the mac addr is exist in the mac list, it means
1076 * received a new request TO_ADD during the time window
1077 * of sending mac addr configurrequest to PF, so just
1078 * change the mac state to ACTIVE.
1079 */
1080 new_node->state = HCLGEVF_MAC_ACTIVE;
1081 list_del(&mac_node->node);
1082 kfree(mac_node);
1083 } else {
1084 list_move_tail(&mac_node->node, mac_list);
1085 }
1086 }
1087 }
1088
1089 static void hclgevf_clear_list(struct list_head *list)
1090 {
1091 struct hclgevf_mac_addr_node *mac_node, *tmp;
1092
1093 list_for_each_entry_safe(mac_node, tmp, list, node) {
1094 list_del(&mac_node->node);
1095 kfree(mac_node);
1096 }
1097 }
1098
1099 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1100 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1101 {
1102 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1103 struct list_head tmp_add_list, tmp_del_list;
1104 struct list_head *list;
1105
1106 INIT_LIST_HEAD(&tmp_add_list);
1107 INIT_LIST_HEAD(&tmp_del_list);
1108
1109 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1110 * we can add/delete these mac addr outside the spin lock
1111 */
1112 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1113 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1114
1115 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1116
1117 list_for_each_entry_safe(mac_node, tmp, list, node) {
1118 switch (mac_node->state) {
1119 case HCLGEVF_MAC_TO_DEL:
1120 list_move_tail(&mac_node->node, &tmp_del_list);
1121 break;
1122 case HCLGEVF_MAC_TO_ADD:
1123 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1124 if (!new_node)
1125 goto stop_traverse;
1126
1127 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1128 new_node->state = mac_node->state;
1129 list_add_tail(&new_node->node, &tmp_add_list);
1130 break;
1131 default:
1132 break;
1133 }
1134 }
1135
1136 stop_traverse:
1137 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1138
1139 /* delete first, in order to get max mac table space for adding */
1140 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1141 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1142
1143 /* if some mac addresses were added/deleted fail, move back to the
1144 * mac_list, and retry at next time.
1145 */
1146 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1147
1148 hclgevf_sync_from_del_list(&tmp_del_list, list);
1149 hclgevf_sync_from_add_list(&tmp_add_list, list);
1150
1151 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1152 }
1153
1154 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1155 {
1156 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1157 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1158 }
1159
1160 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1161 {
1162 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1163
1164 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1165 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1166
1167 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1168 }
1169
1170 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1171 {
1172 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1173 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1174 struct hclge_vf_to_pf_msg send_msg;
1175
1176 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1177 return -EOPNOTSUPP;
1178
1179 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1180 HCLGE_MBX_ENABLE_VLAN_FILTER);
1181 send_msg.data[0] = enable ? 1 : 0;
1182
1183 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1184 }
1185
1186 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1187 __be16 proto, u16 vlan_id,
1188 bool is_kill)
1189 {
1190 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1191 struct hclge_mbx_vlan_filter *vlan_filter;
1192 struct hclge_vf_to_pf_msg send_msg;
1193 int ret;
1194
1195 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1196 return -EINVAL;
1197
1198 if (proto != htons(ETH_P_8021Q))
1199 return -EPROTONOSUPPORT;
1200
1201 /* When device is resetting or reset failed, firmware is unable to
1202 * handle mailbox. Just record the vlan id, and remove it after
1203 * reset finished.
1204 */
1205 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1206 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1207 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1208 return -EBUSY;
1209 }
1210
1211 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1212 HCLGE_MBX_VLAN_FILTER);
1213 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1214 vlan_filter->is_kill = is_kill;
1215 vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1216 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1217
1218 /* when remove hw vlan filter failed, record the vlan id,
1219 * and try to remove it from hw later, to be consistence
1220 * with stack.
1221 */
1222 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1223 if (is_kill && ret)
1224 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1225
1226 return ret;
1227 }
1228
1229 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1230 {
1231 #define HCLGEVF_MAX_SYNC_COUNT 60
1232 struct hnae3_handle *handle = &hdev->nic;
1233 int ret, sync_cnt = 0;
1234 u16 vlan_id;
1235
1236 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1237 while (vlan_id != VLAN_N_VID) {
1238 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1239 vlan_id, true);
1240 if (ret)
1241 return;
1242
1243 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1244 sync_cnt++;
1245 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1246 return;
1247
1248 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1249 }
1250 }
1251
1252 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1253 {
1254 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1255 struct hclge_vf_to_pf_msg send_msg;
1256
1257 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1258 HCLGE_MBX_VLAN_RX_OFF_CFG);
1259 send_msg.data[0] = enable ? 1 : 0;
1260 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1261 }
1262
1263 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1264 {
1265 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1266 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1267 struct hclge_vf_to_pf_msg send_msg;
1268 u8 return_status = 0;
1269 int ret;
1270 u16 i;
1271
1272 /* disable vf queue before send queue reset msg to PF */
1273 ret = hclgevf_tqp_enable(handle, false);
1274 if (ret) {
1275 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1276 ret);
1277 return ret;
1278 }
1279
1280 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1281
1282 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1283 sizeof(return_status));
1284 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1285 return ret;
1286
1287 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1288 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1289 *(__le16 *)send_msg.data = cpu_to_le16(i);
1290 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1291 if (ret)
1292 return ret;
1293 }
1294
1295 return 0;
1296 }
1297
1298 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1299 {
1300 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1301 struct hclge_mbx_mtu_info *mtu_info;
1302 struct hclge_vf_to_pf_msg send_msg;
1303
1304 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1305 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1306 mtu_info->mtu = cpu_to_le32(new_mtu);
1307
1308 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1309 }
1310
1311 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1312 enum hnae3_reset_notify_type type)
1313 {
1314 struct hnae3_client *client = hdev->nic_client;
1315 struct hnae3_handle *handle = &hdev->nic;
1316 int ret;
1317
1318 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1319 !client)
1320 return 0;
1321
1322 if (!client->ops->reset_notify)
1323 return -EOPNOTSUPP;
1324
1325 ret = client->ops->reset_notify(handle, type);
1326 if (ret)
1327 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1328 type, ret);
1329
1330 return ret;
1331 }
1332
1333 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1334 enum hnae3_reset_notify_type type)
1335 {
1336 struct hnae3_client *client = hdev->roce_client;
1337 struct hnae3_handle *handle = &hdev->roce;
1338 int ret;
1339
1340 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1341 return 0;
1342
1343 if (!client->ops->reset_notify)
1344 return -EOPNOTSUPP;
1345
1346 ret = client->ops->reset_notify(handle, type);
1347 if (ret)
1348 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1349 type, ret);
1350 return ret;
1351 }
1352
1353 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1354 {
1355 #define HCLGEVF_RESET_WAIT_US 20000
1356 #define HCLGEVF_RESET_WAIT_CNT 2000
1357 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1358 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1359
1360 u32 val;
1361 int ret;
1362
1363 if (hdev->reset_type == HNAE3_VF_RESET)
1364 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1365 HCLGEVF_VF_RST_ING, val,
1366 !(val & HCLGEVF_VF_RST_ING_BIT),
1367 HCLGEVF_RESET_WAIT_US,
1368 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1369 else
1370 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1371 HCLGEVF_RST_ING, val,
1372 !(val & HCLGEVF_RST_ING_BITS),
1373 HCLGEVF_RESET_WAIT_US,
1374 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1375
1376 /* hardware completion status should be available by this time */
1377 if (ret) {
1378 dev_err(&hdev->pdev->dev,
1379 "couldn't get reset done status from h/w, timeout!\n");
1380 return ret;
1381 }
1382
1383 /* we will wait a bit more to let reset of the stack to complete. This
1384 * might happen in case reset assertion was made by PF. Yes, this also
1385 * means we might end up waiting bit more even for VF reset.
1386 */
1387 if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1388 msleep(5000);
1389 else
1390 msleep(500);
1391
1392 return 0;
1393 }
1394
1395 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1396 {
1397 u32 reg_val;
1398
1399 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1400 if (enable)
1401 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1402 else
1403 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1404
1405 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1406 reg_val);
1407 }
1408
1409 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1410 {
1411 int ret;
1412
1413 /* uninitialize the nic client */
1414 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1415 if (ret)
1416 return ret;
1417
1418 /* re-initialize the hclge device */
1419 ret = hclgevf_reset_hdev(hdev);
1420 if (ret) {
1421 dev_err(&hdev->pdev->dev,
1422 "hclge device re-init failed, VF is disabled!\n");
1423 return ret;
1424 }
1425
1426 /* bring up the nic client again */
1427 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1428 if (ret)
1429 return ret;
1430
1431 /* clear handshake status with IMP */
1432 hclgevf_reset_handshake(hdev, false);
1433
1434 /* bring up the nic to enable TX/RX again */
1435 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1436 }
1437
1438 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1439 {
1440 #define HCLGEVF_RESET_SYNC_TIME 100
1441
1442 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1443 struct hclge_vf_to_pf_msg send_msg;
1444 int ret;
1445
1446 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1447 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1448 if (ret) {
1449 dev_err(&hdev->pdev->dev,
1450 "failed to assert VF reset, ret = %d\n", ret);
1451 return ret;
1452 }
1453 hdev->rst_stats.vf_func_rst_cnt++;
1454 }
1455
1456 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1457 /* inform hardware that preparatory work is done */
1458 msleep(HCLGEVF_RESET_SYNC_TIME);
1459 hclgevf_reset_handshake(hdev, true);
1460 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1461 hdev->reset_type);
1462
1463 return 0;
1464 }
1465
1466 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1467 {
1468 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1469 hdev->rst_stats.vf_func_rst_cnt);
1470 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1471 hdev->rst_stats.flr_rst_cnt);
1472 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1473 hdev->rst_stats.vf_rst_cnt);
1474 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1475 hdev->rst_stats.rst_done_cnt);
1476 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1477 hdev->rst_stats.hw_rst_done_cnt);
1478 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1479 hdev->rst_stats.rst_cnt);
1480 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1481 hdev->rst_stats.rst_fail_cnt);
1482 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1483 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1484 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1485 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1486 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1487 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1488 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1489 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1490 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1491 }
1492
1493 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1494 {
1495 /* recover handshake status with IMP when reset fail */
1496 hclgevf_reset_handshake(hdev, true);
1497 hdev->rst_stats.rst_fail_cnt++;
1498 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1499 hdev->rst_stats.rst_fail_cnt);
1500
1501 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1502 set_bit(hdev->reset_type, &hdev->reset_pending);
1503
1504 if (hclgevf_is_reset_pending(hdev)) {
1505 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1506 hclgevf_reset_task_schedule(hdev);
1507 } else {
1508 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1509 hclgevf_dump_rst_info(hdev);
1510 }
1511 }
1512
1513 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1514 {
1515 int ret;
1516
1517 hdev->rst_stats.rst_cnt++;
1518
1519 /* perform reset of the stack & ae device for a client */
1520 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1521 if (ret)
1522 return ret;
1523
1524 rtnl_lock();
1525 /* bring down the nic to stop any ongoing TX/RX */
1526 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1527 rtnl_unlock();
1528 if (ret)
1529 return ret;
1530
1531 return hclgevf_reset_prepare_wait(hdev);
1532 }
1533
1534 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1535 {
1536 int ret;
1537
1538 hdev->rst_stats.hw_rst_done_cnt++;
1539 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1540 if (ret)
1541 return ret;
1542
1543 rtnl_lock();
1544 /* now, re-initialize the nic client and ae device */
1545 ret = hclgevf_reset_stack(hdev);
1546 rtnl_unlock();
1547 if (ret) {
1548 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1549 return ret;
1550 }
1551
1552 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1553 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1554 * times
1555 */
1556 if (ret &&
1557 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1558 return ret;
1559
1560 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1561 if (ret)
1562 return ret;
1563
1564 hdev->last_reset_time = jiffies;
1565 hdev->rst_stats.rst_done_cnt++;
1566 hdev->rst_stats.rst_fail_cnt = 0;
1567 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1568
1569 return 0;
1570 }
1571
1572 static void hclgevf_reset(struct hclgevf_dev *hdev)
1573 {
1574 if (hclgevf_reset_prepare(hdev))
1575 goto err_reset;
1576
1577 /* check if VF could successfully fetch the hardware reset completion
1578 * status from the hardware
1579 */
1580 if (hclgevf_reset_wait(hdev)) {
1581 /* can't do much in this situation, will disable VF */
1582 dev_err(&hdev->pdev->dev,
1583 "failed to fetch H/W reset completion status\n");
1584 goto err_reset;
1585 }
1586
1587 if (hclgevf_reset_rebuild(hdev))
1588 goto err_reset;
1589
1590 return;
1591
1592 err_reset:
1593 hclgevf_reset_err_handle(hdev);
1594 }
1595
1596 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1597 {
1598 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1599
1600 /* return the highest priority reset level amongst all */
1601 if (test_bit(HNAE3_VF_RESET, addr)) {
1602 rst_level = HNAE3_VF_RESET;
1603 clear_bit(HNAE3_VF_RESET, addr);
1604 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1605 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1606 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1607 rst_level = HNAE3_VF_FULL_RESET;
1608 clear_bit(HNAE3_VF_FULL_RESET, addr);
1609 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1610 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1611 rst_level = HNAE3_VF_PF_FUNC_RESET;
1612 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1613 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1614 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1615 rst_level = HNAE3_VF_FUNC_RESET;
1616 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1617 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1618 rst_level = HNAE3_FLR_RESET;
1619 clear_bit(HNAE3_FLR_RESET, addr);
1620 }
1621
1622 return rst_level;
1623 }
1624
1625 static void hclgevf_reset_event(struct pci_dev *pdev,
1626 struct hnae3_handle *handle)
1627 {
1628 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1629 struct hclgevf_dev *hdev = ae_dev->priv;
1630
1631 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1632
1633 if (hdev->default_reset_request)
1634 hdev->reset_level =
1635 hclgevf_get_reset_level(&hdev->default_reset_request);
1636 else
1637 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1638
1639 /* reset of this VF requested */
1640 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1641 hclgevf_reset_task_schedule(hdev);
1642
1643 hdev->last_reset_time = jiffies;
1644 }
1645
1646 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1647 enum hnae3_reset_type rst_type)
1648 {
1649 struct hclgevf_dev *hdev = ae_dev->priv;
1650
1651 set_bit(rst_type, &hdev->default_reset_request);
1652 }
1653
1654 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1655 {
1656 writel(en ? 1 : 0, vector->addr);
1657 }
1658
1659 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1660 enum hnae3_reset_type rst_type)
1661 {
1662 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
1663 #define HCLGEVF_RESET_RETRY_CNT 5
1664
1665 struct hclgevf_dev *hdev = ae_dev->priv;
1666 int retry_cnt = 0;
1667 int ret;
1668
1669 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1670 down(&hdev->reset_sem);
1671 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1672 hdev->reset_type = rst_type;
1673 ret = hclgevf_reset_prepare(hdev);
1674 if (!ret && !hdev->reset_pending)
1675 break;
1676
1677 dev_err(&hdev->pdev->dev,
1678 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1679 ret, hdev->reset_pending, retry_cnt);
1680 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1681 up(&hdev->reset_sem);
1682 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1683 }
1684
1685 /* disable misc vector before reset done */
1686 hclgevf_enable_vector(&hdev->misc_vector, false);
1687
1688 if (hdev->reset_type == HNAE3_FLR_RESET)
1689 hdev->rst_stats.flr_rst_cnt++;
1690 }
1691
1692 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1693 {
1694 struct hclgevf_dev *hdev = ae_dev->priv;
1695 int ret;
1696
1697 hclgevf_enable_vector(&hdev->misc_vector, true);
1698
1699 ret = hclgevf_reset_rebuild(hdev);
1700 if (ret)
1701 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1702 ret);
1703
1704 hdev->reset_type = HNAE3_NONE_RESET;
1705 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1706 up(&hdev->reset_sem);
1707 }
1708
1709 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1710 {
1711 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1712
1713 return hdev->fw_version;
1714 }
1715
1716 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1717 {
1718 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1719
1720 vector->vector_irq = pci_irq_vector(hdev->pdev,
1721 HCLGEVF_MISC_VECTOR_NUM);
1722 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1723 /* vector status always valid for Vector 0 */
1724 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1725 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1726
1727 hdev->num_msi_left -= 1;
1728 hdev->num_msi_used += 1;
1729 }
1730
1731 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1732 {
1733 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1734 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1735 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1736 &hdev->state))
1737 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1738 }
1739
1740 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1741 {
1742 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1743 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1744 &hdev->state))
1745 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1746 }
1747
1748 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1749 unsigned long delay)
1750 {
1751 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1752 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1753 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1754 }
1755
1756 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1757 {
1758 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
1759
1760 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1761 return;
1762
1763 down(&hdev->reset_sem);
1764 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1765
1766 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1767 &hdev->reset_state)) {
1768 /* PF has intimated that it is about to reset the hardware.
1769 * We now have to poll & check if hardware has actually
1770 * completed the reset sequence. On hardware reset completion,
1771 * VF needs to reset the client and ae device.
1772 */
1773 hdev->reset_attempts = 0;
1774
1775 hdev->last_reset_time = jiffies;
1776 hdev->reset_type =
1777 hclgevf_get_reset_level(&hdev->reset_pending);
1778 if (hdev->reset_type != HNAE3_NONE_RESET)
1779 hclgevf_reset(hdev);
1780 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1781 &hdev->reset_state)) {
1782 /* we could be here when either of below happens:
1783 * 1. reset was initiated due to watchdog timeout caused by
1784 * a. IMP was earlier reset and our TX got choked down and
1785 * which resulted in watchdog reacting and inducing VF
1786 * reset. This also means our cmdq would be unreliable.
1787 * b. problem in TX due to other lower layer(example link
1788 * layer not functioning properly etc.)
1789 * 2. VF reset might have been initiated due to some config
1790 * change.
1791 *
1792 * NOTE: Theres no clear way to detect above cases than to react
1793 * to the response of PF for this reset request. PF will ack the
1794 * 1b and 2. cases but we will not get any intimation about 1a
1795 * from PF as cmdq would be in unreliable state i.e. mailbox
1796 * communication between PF and VF would be broken.
1797 *
1798 * if we are never geting into pending state it means either:
1799 * 1. PF is not receiving our request which could be due to IMP
1800 * reset
1801 * 2. PF is screwed
1802 * We cannot do much for 2. but to check first we can try reset
1803 * our PCIe + stack and see if it alleviates the problem.
1804 */
1805 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1806 /* prepare for full reset of stack + pcie interface */
1807 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1808
1809 /* "defer" schedule the reset task again */
1810 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1811 } else {
1812 hdev->reset_attempts++;
1813
1814 set_bit(hdev->reset_level, &hdev->reset_pending);
1815 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1816 }
1817 hclgevf_reset_task_schedule(hdev);
1818 }
1819
1820 hdev->reset_type = HNAE3_NONE_RESET;
1821 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1822 up(&hdev->reset_sem);
1823 }
1824
1825 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1826 {
1827 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1828 return;
1829
1830 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1831 return;
1832
1833 hclgevf_mbx_async_handler(hdev);
1834
1835 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1836 }
1837
1838 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1839 {
1840 struct hclge_vf_to_pf_msg send_msg;
1841 int ret;
1842
1843 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1844 return;
1845
1846 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1847 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1848 if (ret)
1849 dev_err(&hdev->pdev->dev,
1850 "VF sends keep alive cmd failed(=%d)\n", ret);
1851 }
1852
1853 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1854 {
1855 unsigned long delta = round_jiffies_relative(HZ);
1856 struct hnae3_handle *handle = &hdev->nic;
1857
1858 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1859 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1860 return;
1861
1862 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1863 delta = jiffies - hdev->last_serv_processed;
1864
1865 if (delta < round_jiffies_relative(HZ)) {
1866 delta = round_jiffies_relative(HZ) - delta;
1867 goto out;
1868 }
1869 }
1870
1871 hdev->serv_processed_cnt++;
1872 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1873 hclgevf_keep_alive(hdev);
1874
1875 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1876 hdev->last_serv_processed = jiffies;
1877 goto out;
1878 }
1879
1880 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1881 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1882
1883 /* VF does not need to request link status when this bit is set, because
1884 * PF will push its link status to VFs when link status changed.
1885 */
1886 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1887 hclgevf_request_link_info(hdev);
1888
1889 hclgevf_update_link_mode(hdev);
1890
1891 hclgevf_sync_vlan_filter(hdev);
1892
1893 hclgevf_sync_mac_table(hdev);
1894
1895 hclgevf_sync_promisc_mode(hdev);
1896
1897 hdev->last_serv_processed = jiffies;
1898
1899 out:
1900 hclgevf_task_schedule(hdev, delta);
1901 }
1902
1903 static void hclgevf_service_task(struct work_struct *work)
1904 {
1905 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1906 service_task.work);
1907
1908 hclgevf_reset_service_task(hdev);
1909 hclgevf_mailbox_service_task(hdev);
1910 hclgevf_periodic_service_task(hdev);
1911
1912 /* Handle reset and mbx again in case periodical task delays the
1913 * handling by calling hclgevf_task_schedule() in
1914 * hclgevf_periodic_service_task()
1915 */
1916 hclgevf_reset_service_task(hdev);
1917 hclgevf_mailbox_service_task(hdev);
1918 }
1919
1920 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1921 {
1922 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1923 }
1924
1925 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1926 u32 *clearval)
1927 {
1928 u32 val, cmdq_stat_reg, rst_ing_reg;
1929
1930 /* fetch the events from their corresponding regs */
1931 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1932 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1933 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1934 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1935 dev_info(&hdev->pdev->dev,
1936 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1937 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1938 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1939 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1940 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1941 hdev->rst_stats.vf_rst_cnt++;
1942 /* set up VF hardware reset status, its PF will clear
1943 * this status when PF has initialized done.
1944 */
1945 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1946 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1947 val | HCLGEVF_VF_RST_ING_BIT);
1948 return HCLGEVF_VECTOR0_EVENT_RST;
1949 }
1950
1951 /* check for vector0 mailbox(=CMDQ RX) event source */
1952 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1953 /* for revision 0x21, clearing interrupt is writing bit 0
1954 * to the clear register, writing bit 1 means to keep the
1955 * old value.
1956 * for revision 0x20, the clear register is a read & write
1957 * register, so we should just write 0 to the bit we are
1958 * handling, and keep other bits as cmdq_stat_reg.
1959 */
1960 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
1961 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1962 else
1963 *clearval = cmdq_stat_reg &
1964 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1965
1966 return HCLGEVF_VECTOR0_EVENT_MBX;
1967 }
1968
1969 /* print other vector0 event source */
1970 dev_info(&hdev->pdev->dev,
1971 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
1972 cmdq_stat_reg);
1973
1974 return HCLGEVF_VECTOR0_EVENT_OTHER;
1975 }
1976
1977 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1978 {
1979 enum hclgevf_evt_cause event_cause;
1980 struct hclgevf_dev *hdev = data;
1981 u32 clearval;
1982
1983 hclgevf_enable_vector(&hdev->misc_vector, false);
1984 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1985 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
1986 hclgevf_clear_event_cause(hdev, clearval);
1987
1988 switch (event_cause) {
1989 case HCLGEVF_VECTOR0_EVENT_RST:
1990 hclgevf_reset_task_schedule(hdev);
1991 break;
1992 case HCLGEVF_VECTOR0_EVENT_MBX:
1993 hclgevf_mbx_handler(hdev);
1994 break;
1995 default:
1996 break;
1997 }
1998
1999 hclgevf_enable_vector(&hdev->misc_vector, true);
2000
2001 return IRQ_HANDLED;
2002 }
2003
2004 static int hclgevf_configure(struct hclgevf_dev *hdev)
2005 {
2006 int ret;
2007
2008 hdev->gro_en = true;
2009
2010 ret = hclgevf_get_basic_info(hdev);
2011 if (ret)
2012 return ret;
2013
2014 /* get current port based vlan state from PF */
2015 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2016 if (ret)
2017 return ret;
2018
2019 /* get queue configuration from PF */
2020 ret = hclgevf_get_queue_info(hdev);
2021 if (ret)
2022 return ret;
2023
2024 /* get queue depth info from PF */
2025 ret = hclgevf_get_queue_depth(hdev);
2026 if (ret)
2027 return ret;
2028
2029 return hclgevf_get_pf_media_type(hdev);
2030 }
2031
2032 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2033 {
2034 struct pci_dev *pdev = ae_dev->pdev;
2035 struct hclgevf_dev *hdev;
2036
2037 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2038 if (!hdev)
2039 return -ENOMEM;
2040
2041 hdev->pdev = pdev;
2042 hdev->ae_dev = ae_dev;
2043 ae_dev->priv = hdev;
2044
2045 return 0;
2046 }
2047
2048 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2049 {
2050 struct hnae3_handle *roce = &hdev->roce;
2051 struct hnae3_handle *nic = &hdev->nic;
2052
2053 roce->rinfo.num_vectors = hdev->num_roce_msix;
2054
2055 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2056 hdev->num_msi_left == 0)
2057 return -EINVAL;
2058
2059 roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2060
2061 roce->rinfo.netdev = nic->kinfo.netdev;
2062 roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2063 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2064
2065 roce->pdev = nic->pdev;
2066 roce->ae_algo = nic->ae_algo;
2067 roce->numa_node_mask = nic->numa_node_mask;
2068
2069 return 0;
2070 }
2071
2072 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2073 {
2074 struct hclgevf_cfg_gro_status_cmd *req;
2075 struct hclge_desc desc;
2076 int ret;
2077
2078 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2079 return 0;
2080
2081 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2082 false);
2083 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2084
2085 req->gro_en = hdev->gro_en ? 1 : 0;
2086
2087 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2088 if (ret)
2089 dev_err(&hdev->pdev->dev,
2090 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2091
2092 return ret;
2093 }
2094
2095 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2096 {
2097 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2098 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2099 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2100 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2101 int ret;
2102
2103 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2104 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2105 rss_cfg->rss_algo,
2106 rss_cfg->rss_hash_key);
2107 if (ret)
2108 return ret;
2109
2110 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2111 if (ret)
2112 return ret;
2113 }
2114
2115 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2116 rss_cfg->rss_indirection_tbl);
2117 if (ret)
2118 return ret;
2119
2120 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2121 tc_offset, tc_valid, tc_size);
2122
2123 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2124 tc_valid, tc_size);
2125 }
2126
2127 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2128 {
2129 struct hnae3_handle *nic = &hdev->nic;
2130 int ret;
2131
2132 ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2133 if (ret) {
2134 dev_err(&hdev->pdev->dev,
2135 "failed to enable rx vlan offload, ret = %d\n", ret);
2136 return ret;
2137 }
2138
2139 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2140 false);
2141 }
2142
2143 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2144 {
2145 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2146
2147 unsigned long last = hdev->serv_processed_cnt;
2148 int i = 0;
2149
2150 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2151 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2152 last == hdev->serv_processed_cnt)
2153 usleep_range(1, 1);
2154 }
2155
2156 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2157 {
2158 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2159
2160 if (enable) {
2161 hclgevf_task_schedule(hdev, 0);
2162 } else {
2163 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2164
2165 /* flush memory to make sure DOWN is seen by service task */
2166 smp_mb__before_atomic();
2167 hclgevf_flush_link_update(hdev);
2168 }
2169 }
2170
2171 static int hclgevf_ae_start(struct hnae3_handle *handle)
2172 {
2173 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2174
2175 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2176 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2177
2178 hclge_comm_reset_tqp_stats(handle);
2179
2180 hclgevf_request_link_info(hdev);
2181
2182 hclgevf_update_link_mode(hdev);
2183
2184 return 0;
2185 }
2186
2187 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2188 {
2189 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2190
2191 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2192
2193 if (hdev->reset_type != HNAE3_VF_RESET)
2194 hclgevf_reset_tqp(handle);
2195
2196 hclge_comm_reset_tqp_stats(handle);
2197 hclgevf_update_link_status(hdev, 0);
2198 }
2199
2200 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2201 {
2202 #define HCLGEVF_STATE_ALIVE 1
2203 #define HCLGEVF_STATE_NOT_ALIVE 0
2204
2205 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2206 struct hclge_vf_to_pf_msg send_msg;
2207
2208 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2209 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2210 HCLGEVF_STATE_NOT_ALIVE;
2211 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2212 }
2213
2214 static int hclgevf_client_start(struct hnae3_handle *handle)
2215 {
2216 return hclgevf_set_alive(handle, true);
2217 }
2218
2219 static void hclgevf_client_stop(struct hnae3_handle *handle)
2220 {
2221 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2222 int ret;
2223
2224 ret = hclgevf_set_alive(handle, false);
2225 if (ret)
2226 dev_warn(&hdev->pdev->dev,
2227 "%s failed %d\n", __func__, ret);
2228 }
2229
2230 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2231 {
2232 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2233 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2234 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2235
2236 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2237
2238 mutex_init(&hdev->mbx_resp.mbx_mutex);
2239 sema_init(&hdev->reset_sem, 1);
2240
2241 spin_lock_init(&hdev->mac_table.mac_list_lock);
2242 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2243 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2244
2245 /* bring the device down */
2246 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2247 }
2248
2249 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2250 {
2251 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2252 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2253
2254 if (hdev->service_task.work.func)
2255 cancel_delayed_work_sync(&hdev->service_task);
2256
2257 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2258 }
2259
2260 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2261 {
2262 struct pci_dev *pdev = hdev->pdev;
2263 int vectors;
2264 int i;
2265
2266 if (hnae3_dev_roce_supported(hdev))
2267 vectors = pci_alloc_irq_vectors(pdev,
2268 hdev->roce_base_msix_offset + 1,
2269 hdev->num_msi,
2270 PCI_IRQ_MSIX);
2271 else
2272 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2273 hdev->num_msi,
2274 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2275
2276 if (vectors < 0) {
2277 dev_err(&pdev->dev,
2278 "failed(%d) to allocate MSI/MSI-X vectors\n",
2279 vectors);
2280 return vectors;
2281 }
2282 if (vectors < hdev->num_msi)
2283 dev_warn(&hdev->pdev->dev,
2284 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2285 hdev->num_msi, vectors);
2286
2287 hdev->num_msi = vectors;
2288 hdev->num_msi_left = vectors;
2289
2290 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2291 sizeof(u16), GFP_KERNEL);
2292 if (!hdev->vector_status) {
2293 pci_free_irq_vectors(pdev);
2294 return -ENOMEM;
2295 }
2296
2297 for (i = 0; i < hdev->num_msi; i++)
2298 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2299
2300 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2301 sizeof(int), GFP_KERNEL);
2302 if (!hdev->vector_irq) {
2303 devm_kfree(&pdev->dev, hdev->vector_status);
2304 pci_free_irq_vectors(pdev);
2305 return -ENOMEM;
2306 }
2307
2308 return 0;
2309 }
2310
2311 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2312 {
2313 struct pci_dev *pdev = hdev->pdev;
2314
2315 devm_kfree(&pdev->dev, hdev->vector_status);
2316 devm_kfree(&pdev->dev, hdev->vector_irq);
2317 pci_free_irq_vectors(pdev);
2318 }
2319
2320 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2321 {
2322 int ret;
2323
2324 hclgevf_get_misc_vector(hdev);
2325
2326 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2327 HCLGEVF_NAME, pci_name(hdev->pdev));
2328 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2329 0, hdev->misc_vector.name, hdev);
2330 if (ret) {
2331 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2332 hdev->misc_vector.vector_irq);
2333 return ret;
2334 }
2335
2336 hclgevf_clear_event_cause(hdev, 0);
2337
2338 /* enable misc. vector(vector 0) */
2339 hclgevf_enable_vector(&hdev->misc_vector, true);
2340
2341 return ret;
2342 }
2343
2344 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2345 {
2346 /* disable misc vector(vector 0) */
2347 hclgevf_enable_vector(&hdev->misc_vector, false);
2348 synchronize_irq(hdev->misc_vector.vector_irq);
2349 free_irq(hdev->misc_vector.vector_irq, hdev);
2350 hclgevf_free_vector(hdev, 0);
2351 }
2352
2353 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2354 {
2355 struct device *dev = &hdev->pdev->dev;
2356
2357 dev_info(dev, "VF info begin:\n");
2358
2359 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2360 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2361 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2362 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2363 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2364 dev_info(dev, "PF media type of this VF: %u\n",
2365 hdev->hw.mac.media_type);
2366
2367 dev_info(dev, "VF info end.\n");
2368 }
2369
2370 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2371 struct hnae3_client *client)
2372 {
2373 struct hclgevf_dev *hdev = ae_dev->priv;
2374 int rst_cnt = hdev->rst_stats.rst_cnt;
2375 int ret;
2376
2377 ret = client->ops->init_instance(&hdev->nic);
2378 if (ret)
2379 return ret;
2380
2381 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2382 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2383 rst_cnt != hdev->rst_stats.rst_cnt) {
2384 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2385
2386 client->ops->uninit_instance(&hdev->nic, 0);
2387 return -EBUSY;
2388 }
2389
2390 hnae3_set_client_init_flag(client, ae_dev, 1);
2391
2392 if (netif_msg_drv(&hdev->nic))
2393 hclgevf_info_show(hdev);
2394
2395 return 0;
2396 }
2397
2398 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2399 struct hnae3_client *client)
2400 {
2401 struct hclgevf_dev *hdev = ae_dev->priv;
2402 int ret;
2403
2404 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2405 !hdev->nic_client)
2406 return 0;
2407
2408 ret = hclgevf_init_roce_base_info(hdev);
2409 if (ret)
2410 return ret;
2411
2412 ret = client->ops->init_instance(&hdev->roce);
2413 if (ret)
2414 return ret;
2415
2416 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2417 hnae3_set_client_init_flag(client, ae_dev, 1);
2418
2419 return 0;
2420 }
2421
2422 static int hclgevf_init_client_instance(struct hnae3_client *client,
2423 struct hnae3_ae_dev *ae_dev)
2424 {
2425 struct hclgevf_dev *hdev = ae_dev->priv;
2426 int ret;
2427
2428 switch (client->type) {
2429 case HNAE3_CLIENT_KNIC:
2430 hdev->nic_client = client;
2431 hdev->nic.client = client;
2432
2433 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2434 if (ret)
2435 goto clear_nic;
2436
2437 ret = hclgevf_init_roce_client_instance(ae_dev,
2438 hdev->roce_client);
2439 if (ret)
2440 goto clear_roce;
2441
2442 break;
2443 case HNAE3_CLIENT_ROCE:
2444 if (hnae3_dev_roce_supported(hdev)) {
2445 hdev->roce_client = client;
2446 hdev->roce.client = client;
2447 }
2448
2449 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2450 if (ret)
2451 goto clear_roce;
2452
2453 break;
2454 default:
2455 return -EINVAL;
2456 }
2457
2458 return 0;
2459
2460 clear_nic:
2461 hdev->nic_client = NULL;
2462 hdev->nic.client = NULL;
2463 return ret;
2464 clear_roce:
2465 hdev->roce_client = NULL;
2466 hdev->roce.client = NULL;
2467 return ret;
2468 }
2469
2470 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2471 struct hnae3_ae_dev *ae_dev)
2472 {
2473 struct hclgevf_dev *hdev = ae_dev->priv;
2474
2475 /* un-init roce, if it exists */
2476 if (hdev->roce_client) {
2477 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2478 msleep(HCLGEVF_WAIT_RESET_DONE);
2479 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2480
2481 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2482 hdev->roce_client = NULL;
2483 hdev->roce.client = NULL;
2484 }
2485
2486 /* un-init nic/unic, if this was not called by roce client */
2487 if (client->ops->uninit_instance && hdev->nic_client &&
2488 client->type != HNAE3_CLIENT_ROCE) {
2489 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2490 msleep(HCLGEVF_WAIT_RESET_DONE);
2491 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2492
2493 client->ops->uninit_instance(&hdev->nic, 0);
2494 hdev->nic_client = NULL;
2495 hdev->nic.client = NULL;
2496 }
2497 }
2498
2499 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2500 {
2501 struct pci_dev *pdev = hdev->pdev;
2502 struct hclgevf_hw *hw = &hdev->hw;
2503
2504 /* for device does not have device memory, return directly */
2505 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2506 return 0;
2507
2508 hw->hw.mem_base =
2509 devm_ioremap_wc(&pdev->dev,
2510 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2511 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2512 if (!hw->hw.mem_base) {
2513 dev_err(&pdev->dev, "failed to map device memory\n");
2514 return -EFAULT;
2515 }
2516
2517 return 0;
2518 }
2519
2520 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2521 {
2522 struct pci_dev *pdev = hdev->pdev;
2523 struct hclgevf_hw *hw;
2524 int ret;
2525
2526 ret = pci_enable_device(pdev);
2527 if (ret) {
2528 dev_err(&pdev->dev, "failed to enable PCI device\n");
2529 return ret;
2530 }
2531
2532 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2533 if (ret) {
2534 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2535 goto err_disable_device;
2536 }
2537
2538 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2539 if (ret) {
2540 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2541 goto err_disable_device;
2542 }
2543
2544 pci_set_master(pdev);
2545 hw = &hdev->hw;
2546 hw->hw.io_base = pci_iomap(pdev, 2, 0);
2547 if (!hw->hw.io_base) {
2548 dev_err(&pdev->dev, "can't map configuration register space\n");
2549 ret = -ENOMEM;
2550 goto err_release_regions;
2551 }
2552
2553 ret = hclgevf_dev_mem_map(hdev);
2554 if (ret)
2555 goto err_unmap_io_base;
2556
2557 return 0;
2558
2559 err_unmap_io_base:
2560 pci_iounmap(pdev, hdev->hw.hw.io_base);
2561 err_release_regions:
2562 pci_release_regions(pdev);
2563 err_disable_device:
2564 pci_disable_device(pdev);
2565
2566 return ret;
2567 }
2568
2569 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2570 {
2571 struct pci_dev *pdev = hdev->pdev;
2572
2573 if (hdev->hw.hw.mem_base)
2574 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2575
2576 pci_iounmap(pdev, hdev->hw.hw.io_base);
2577 pci_release_regions(pdev);
2578 pci_disable_device(pdev);
2579 }
2580
2581 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2582 {
2583 struct hclgevf_query_res_cmd *req;
2584 struct hclge_desc desc;
2585 int ret;
2586
2587 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2588 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2589 if (ret) {
2590 dev_err(&hdev->pdev->dev,
2591 "query vf resource failed, ret = %d.\n", ret);
2592 return ret;
2593 }
2594
2595 req = (struct hclgevf_query_res_cmd *)desc.data;
2596
2597 if (hnae3_dev_roce_supported(hdev)) {
2598 hdev->roce_base_msix_offset =
2599 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2600 HCLGEVF_MSIX_OFT_ROCEE_M,
2601 HCLGEVF_MSIX_OFT_ROCEE_S);
2602 hdev->num_roce_msix =
2603 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2604 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2605
2606 /* nic's msix numbers is always equals to the roce's. */
2607 hdev->num_nic_msix = hdev->num_roce_msix;
2608
2609 /* VF should have NIC vectors and Roce vectors, NIC vectors
2610 * are queued before Roce vectors. The offset is fixed to 64.
2611 */
2612 hdev->num_msi = hdev->num_roce_msix +
2613 hdev->roce_base_msix_offset;
2614 } else {
2615 hdev->num_msi =
2616 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2617 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2618
2619 hdev->num_nic_msix = hdev->num_msi;
2620 }
2621
2622 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2623 dev_err(&hdev->pdev->dev,
2624 "Just %u msi resources, not enough for vf(min:2).\n",
2625 hdev->num_nic_msix);
2626 return -EINVAL;
2627 }
2628
2629 return 0;
2630 }
2631
2632 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2633 {
2634 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
2635
2636 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2637
2638 ae_dev->dev_specs.max_non_tso_bd_num =
2639 HCLGEVF_MAX_NON_TSO_BD_NUM;
2640 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2641 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2642 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2643 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2644 }
2645
2646 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2647 struct hclge_desc *desc)
2648 {
2649 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2650 struct hclgevf_dev_specs_0_cmd *req0;
2651 struct hclgevf_dev_specs_1_cmd *req1;
2652
2653 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2654 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2655
2656 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2657 ae_dev->dev_specs.rss_ind_tbl_size =
2658 le16_to_cpu(req0->rss_ind_tbl_size);
2659 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2660 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2661 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2662 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2663 }
2664
2665 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2666 {
2667 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2668
2669 if (!dev_specs->max_non_tso_bd_num)
2670 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2671 if (!dev_specs->rss_ind_tbl_size)
2672 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2673 if (!dev_specs->rss_key_size)
2674 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2675 if (!dev_specs->max_int_gl)
2676 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2677 if (!dev_specs->max_frm_size)
2678 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2679 }
2680
2681 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2682 {
2683 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2684 int ret;
2685 int i;
2686
2687 /* set default specifications as devices lower than version V3 do not
2688 * support querying specifications from firmware.
2689 */
2690 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2691 hclgevf_set_default_dev_specs(hdev);
2692 return 0;
2693 }
2694
2695 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2696 hclgevf_cmd_setup_basic_desc(&desc[i],
2697 HCLGE_OPC_QUERY_DEV_SPECS, true);
2698 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2699 }
2700 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2701
2702 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2703 if (ret)
2704 return ret;
2705
2706 hclgevf_parse_dev_specs(hdev, desc);
2707 hclgevf_check_dev_specs(hdev);
2708
2709 return 0;
2710 }
2711
2712 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2713 {
2714 struct pci_dev *pdev = hdev->pdev;
2715 int ret = 0;
2716
2717 if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2718 hdev->reset_type == HNAE3_FLR_RESET) &&
2719 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2720 hclgevf_misc_irq_uninit(hdev);
2721 hclgevf_uninit_msi(hdev);
2722 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2723 }
2724
2725 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2726 pci_set_master(pdev);
2727 ret = hclgevf_init_msi(hdev);
2728 if (ret) {
2729 dev_err(&pdev->dev,
2730 "failed(%d) to init MSI/MSI-X\n", ret);
2731 return ret;
2732 }
2733
2734 ret = hclgevf_misc_irq_init(hdev);
2735 if (ret) {
2736 hclgevf_uninit_msi(hdev);
2737 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2738 ret);
2739 return ret;
2740 }
2741
2742 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2743 }
2744
2745 return ret;
2746 }
2747
2748 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2749 {
2750 struct hclge_vf_to_pf_msg send_msg;
2751
2752 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2753 HCLGE_MBX_VPORT_LIST_CLEAR);
2754 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2755 }
2756
2757 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2758 {
2759 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2760 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2761 }
2762
2763 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2764 {
2765 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2766 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2767 }
2768
2769 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2770 {
2771 struct pci_dev *pdev = hdev->pdev;
2772 int ret;
2773
2774 ret = hclgevf_pci_reset(hdev);
2775 if (ret) {
2776 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2777 return ret;
2778 }
2779
2780 hclgevf_arq_init(hdev);
2781 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2782 &hdev->fw_version, false,
2783 hdev->reset_pending);
2784 if (ret) {
2785 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2786 return ret;
2787 }
2788
2789 ret = hclgevf_rss_init_hw(hdev);
2790 if (ret) {
2791 dev_err(&hdev->pdev->dev,
2792 "failed(%d) to initialize RSS\n", ret);
2793 return ret;
2794 }
2795
2796 ret = hclgevf_config_gro(hdev);
2797 if (ret)
2798 return ret;
2799
2800 ret = hclgevf_init_vlan_config(hdev);
2801 if (ret) {
2802 dev_err(&hdev->pdev->dev,
2803 "failed(%d) to initialize VLAN config\n", ret);
2804 return ret;
2805 }
2806
2807 /* get current port based vlan state from PF */
2808 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2809 if (ret)
2810 return ret;
2811
2812 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2813
2814 hclgevf_init_rxd_adv_layout(hdev);
2815
2816 dev_info(&hdev->pdev->dev, "Reset done\n");
2817
2818 return 0;
2819 }
2820
2821 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2822 {
2823 struct pci_dev *pdev = hdev->pdev;
2824 int ret;
2825
2826 ret = hclgevf_pci_init(hdev);
2827 if (ret)
2828 return ret;
2829
2830 ret = hclgevf_devlink_init(hdev);
2831 if (ret)
2832 goto err_devlink_init;
2833
2834 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2835 if (ret)
2836 goto err_cmd_queue_init;
2837
2838 hclgevf_arq_init(hdev);
2839 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2840 &hdev->fw_version, false,
2841 hdev->reset_pending);
2842 if (ret)
2843 goto err_cmd_init;
2844
2845 /* Get vf resource */
2846 ret = hclgevf_query_vf_resource(hdev);
2847 if (ret)
2848 goto err_cmd_init;
2849
2850 ret = hclgevf_query_dev_specs(hdev);
2851 if (ret) {
2852 dev_err(&pdev->dev,
2853 "failed to query dev specifications, ret = %d\n", ret);
2854 goto err_cmd_init;
2855 }
2856
2857 ret = hclgevf_init_msi(hdev);
2858 if (ret) {
2859 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2860 goto err_cmd_init;
2861 }
2862
2863 hclgevf_state_init(hdev);
2864 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2865 hdev->reset_type = HNAE3_NONE_RESET;
2866
2867 ret = hclgevf_misc_irq_init(hdev);
2868 if (ret)
2869 goto err_misc_irq_init;
2870
2871 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2872
2873 ret = hclgevf_configure(hdev);
2874 if (ret) {
2875 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2876 goto err_config;
2877 }
2878
2879 ret = hclgevf_alloc_tqps(hdev);
2880 if (ret) {
2881 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2882 goto err_config;
2883 }
2884
2885 ret = hclgevf_set_handle_info(hdev);
2886 if (ret)
2887 goto err_config;
2888
2889 ret = hclgevf_config_gro(hdev);
2890 if (ret)
2891 goto err_config;
2892
2893 /* Initialize RSS for this VF */
2894 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2895 &hdev->rss_cfg);
2896 if (ret) {
2897 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2898 goto err_config;
2899 }
2900
2901 ret = hclgevf_rss_init_hw(hdev);
2902 if (ret) {
2903 dev_err(&hdev->pdev->dev,
2904 "failed(%d) to initialize RSS\n", ret);
2905 goto err_config;
2906 }
2907
2908 /* ensure vf tbl list as empty before init */
2909 ret = hclgevf_clear_vport_list(hdev);
2910 if (ret) {
2911 dev_err(&pdev->dev,
2912 "failed to clear tbl list configuration, ret = %d.\n",
2913 ret);
2914 goto err_config;
2915 }
2916
2917 ret = hclgevf_init_vlan_config(hdev);
2918 if (ret) {
2919 dev_err(&hdev->pdev->dev,
2920 "failed(%d) to initialize VLAN config\n", ret);
2921 goto err_config;
2922 }
2923
2924 hclgevf_init_rxd_adv_layout(hdev);
2925
2926 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2927
2928 hdev->last_reset_time = jiffies;
2929 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2930 HCLGEVF_DRIVER_NAME);
2931
2932 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2933
2934 return 0;
2935
2936 err_config:
2937 hclgevf_misc_irq_uninit(hdev);
2938 err_misc_irq_init:
2939 hclgevf_state_uninit(hdev);
2940 hclgevf_uninit_msi(hdev);
2941 err_cmd_init:
2942 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2943 err_cmd_queue_init:
2944 hclgevf_devlink_uninit(hdev);
2945 err_devlink_init:
2946 hclgevf_pci_uninit(hdev);
2947 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2948 return ret;
2949 }
2950
2951 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2952 {
2953 struct hclge_vf_to_pf_msg send_msg;
2954
2955 hclgevf_state_uninit(hdev);
2956 hclgevf_uninit_rxd_adv_layout(hdev);
2957
2958 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
2959 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2960
2961 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2962 hclgevf_misc_irq_uninit(hdev);
2963 hclgevf_uninit_msi(hdev);
2964 }
2965
2966 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2967 hclgevf_devlink_uninit(hdev);
2968 hclgevf_pci_uninit(hdev);
2969 hclgevf_uninit_mac_list(hdev);
2970 }
2971
2972 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2973 {
2974 struct pci_dev *pdev = ae_dev->pdev;
2975 int ret;
2976
2977 ret = hclgevf_alloc_hdev(ae_dev);
2978 if (ret) {
2979 dev_err(&pdev->dev, "hclge device allocation failed\n");
2980 return ret;
2981 }
2982
2983 ret = hclgevf_init_hdev(ae_dev->priv);
2984 if (ret) {
2985 dev_err(&pdev->dev, "hclge device initialization failed\n");
2986 return ret;
2987 }
2988
2989 return 0;
2990 }
2991
2992 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2993 {
2994 struct hclgevf_dev *hdev = ae_dev->priv;
2995
2996 hclgevf_uninit_hdev(hdev);
2997 ae_dev->priv = NULL;
2998 }
2999
3000 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3001 {
3002 struct hnae3_handle *nic = &hdev->nic;
3003 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3004
3005 return min_t(u32, hdev->rss_size_max,
3006 hdev->num_tqps / kinfo->tc_info.num_tc);
3007 }
3008
3009 /**
3010 * hclgevf_get_channels - Get the current channels enabled and max supported.
3011 * @handle: hardware information for network interface
3012 * @ch: ethtool channels structure
3013 *
3014 * We don't support separate tx and rx queues as channels. The other count
3015 * represents how many queues are being used for control. max_combined counts
3016 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3017 * q_vectors since we support a lot more queue pairs than q_vectors.
3018 **/
3019 static void hclgevf_get_channels(struct hnae3_handle *handle,
3020 struct ethtool_channels *ch)
3021 {
3022 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3023
3024 ch->max_combined = hclgevf_get_max_channels(hdev);
3025 ch->other_count = 0;
3026 ch->max_other = 0;
3027 ch->combined_count = handle->kinfo.rss_size;
3028 }
3029
3030 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3031 u16 *alloc_tqps, u16 *max_rss_size)
3032 {
3033 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3034
3035 *alloc_tqps = hdev->num_tqps;
3036 *max_rss_size = hdev->rss_size_max;
3037 }
3038
3039 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3040 u32 new_tqps_num)
3041 {
3042 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3043 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3044 u16 max_rss_size;
3045
3046 kinfo->req_rss_size = new_tqps_num;
3047
3048 max_rss_size = min_t(u16, hdev->rss_size_max,
3049 hdev->num_tqps / kinfo->tc_info.num_tc);
3050
3051 /* Use the user's configuration when it is not larger than
3052 * max_rss_size, otherwise, use the maximum specification value.
3053 */
3054 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3055 kinfo->req_rss_size <= max_rss_size)
3056 kinfo->rss_size = kinfo->req_rss_size;
3057 else if (kinfo->rss_size > max_rss_size ||
3058 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3059 kinfo->rss_size = max_rss_size;
3060
3061 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3062 }
3063
3064 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3065 bool rxfh_configured)
3066 {
3067 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3068 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3069 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3070 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3071 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3072 u16 cur_rss_size = kinfo->rss_size;
3073 u16 cur_tqps = kinfo->num_tqps;
3074 u32 *rss_indir;
3075 unsigned int i;
3076 int ret;
3077
3078 hclgevf_update_rss_size(handle, new_tqps_num);
3079
3080 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3081 tc_offset, tc_valid, tc_size);
3082 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3083 tc_valid, tc_size);
3084 if (ret)
3085 return ret;
3086
3087 /* RSS indirection table has been configured by user */
3088 if (rxfh_configured)
3089 goto out;
3090
3091 /* Reinitializes the rss indirect table according to the new RSS size */
3092 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3093 sizeof(u32), GFP_KERNEL);
3094 if (!rss_indir)
3095 return -ENOMEM;
3096
3097 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3098 rss_indir[i] = i % kinfo->rss_size;
3099
3100 hdev->rss_cfg.rss_size = kinfo->rss_size;
3101
3102 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3103 if (ret)
3104 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3105 ret);
3106
3107 kfree(rss_indir);
3108
3109 out:
3110 if (!ret)
3111 dev_info(&hdev->pdev->dev,
3112 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3113 cur_rss_size, kinfo->rss_size,
3114 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3115
3116 return ret;
3117 }
3118
3119 static int hclgevf_get_status(struct hnae3_handle *handle)
3120 {
3121 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3122
3123 return hdev->hw.mac.link;
3124 }
3125
3126 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3127 u8 *auto_neg, u32 *speed,
3128 u8 *duplex, u32 *lane_num)
3129 {
3130 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3131
3132 if (speed)
3133 *speed = hdev->hw.mac.speed;
3134 if (duplex)
3135 *duplex = hdev->hw.mac.duplex;
3136 if (auto_neg)
3137 *auto_neg = AUTONEG_DISABLE;
3138 }
3139
3140 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3141 u8 duplex)
3142 {
3143 hdev->hw.mac.speed = speed;
3144 hdev->hw.mac.duplex = duplex;
3145 }
3146
3147 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3148 {
3149 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3150 bool gro_en_old = hdev->gro_en;
3151 int ret;
3152
3153 hdev->gro_en = enable;
3154 ret = hclgevf_config_gro(hdev);
3155 if (ret)
3156 hdev->gro_en = gro_en_old;
3157
3158 return ret;
3159 }
3160
3161 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3162 u8 *module_type)
3163 {
3164 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3165
3166 if (media_type)
3167 *media_type = hdev->hw.mac.media_type;
3168
3169 if (module_type)
3170 *module_type = hdev->hw.mac.module_type;
3171 }
3172
3173 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3174 {
3175 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3176
3177 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3178 }
3179
3180 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3181 {
3182 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3183
3184 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3185 }
3186
3187 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3188 {
3189 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3190
3191 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3192 }
3193
3194 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3195 {
3196 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3197
3198 return hdev->rst_stats.hw_rst_done_cnt;
3199 }
3200
3201 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3202 unsigned long *supported,
3203 unsigned long *advertising)
3204 {
3205 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3206
3207 *supported = hdev->hw.mac.supported;
3208 *advertising = hdev->hw.mac.advertising;
3209 }
3210
3211 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3212 struct hclge_mbx_port_base_vlan *port_base_vlan)
3213 {
3214 struct hnae3_handle *nic = &hdev->nic;
3215 struct hclge_vf_to_pf_msg send_msg;
3216 int ret;
3217
3218 rtnl_lock();
3219
3220 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3221 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3222 dev_warn(&hdev->pdev->dev,
3223 "is resetting when updating port based vlan info\n");
3224 rtnl_unlock();
3225 return;
3226 }
3227
3228 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3229 if (ret) {
3230 rtnl_unlock();
3231 return;
3232 }
3233
3234 /* send msg to PF and wait update port based vlan info */
3235 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3236 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3237 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3238 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3239 if (!ret) {
3240 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3241 nic->port_base_vlan_state = state;
3242 else
3243 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3244 }
3245
3246 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3247 rtnl_unlock();
3248 }
3249
3250 static const struct hnae3_ae_ops hclgevf_ops = {
3251 .init_ae_dev = hclgevf_init_ae_dev,
3252 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3253 .reset_prepare = hclgevf_reset_prepare_general,
3254 .reset_done = hclgevf_reset_done,
3255 .init_client_instance = hclgevf_init_client_instance,
3256 .uninit_client_instance = hclgevf_uninit_client_instance,
3257 .start = hclgevf_ae_start,
3258 .stop = hclgevf_ae_stop,
3259 .client_start = hclgevf_client_start,
3260 .client_stop = hclgevf_client_stop,
3261 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3262 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3263 .get_vector = hclgevf_get_vector,
3264 .put_vector = hclgevf_put_vector,
3265 .reset_queue = hclgevf_reset_tqp,
3266 .get_mac_addr = hclgevf_get_mac_addr,
3267 .set_mac_addr = hclgevf_set_mac_addr,
3268 .add_uc_addr = hclgevf_add_uc_addr,
3269 .rm_uc_addr = hclgevf_rm_uc_addr,
3270 .add_mc_addr = hclgevf_add_mc_addr,
3271 .rm_mc_addr = hclgevf_rm_mc_addr,
3272 .get_stats = hclgevf_get_stats,
3273 .update_stats = hclgevf_update_stats,
3274 .get_strings = hclgevf_get_strings,
3275 .get_sset_count = hclgevf_get_sset_count,
3276 .get_rss_key_size = hclge_comm_get_rss_key_size,
3277 .get_rss = hclgevf_get_rss,
3278 .set_rss = hclgevf_set_rss,
3279 .get_rss_tuple = hclgevf_get_rss_tuple,
3280 .set_rss_tuple = hclgevf_set_rss_tuple,
3281 .get_tc_size = hclgevf_get_tc_size,
3282 .get_fw_version = hclgevf_get_fw_version,
3283 .set_vlan_filter = hclgevf_set_vlan_filter,
3284 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3285 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3286 .reset_event = hclgevf_reset_event,
3287 .set_default_reset_request = hclgevf_set_def_reset_request,
3288 .set_channels = hclgevf_set_channels,
3289 .get_channels = hclgevf_get_channels,
3290 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3291 .get_regs_len = hclgevf_get_regs_len,
3292 .get_regs = hclgevf_get_regs,
3293 .get_status = hclgevf_get_status,
3294 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3295 .get_media_type = hclgevf_get_media_type,
3296 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3297 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3298 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3299 .set_gro_en = hclgevf_gro_en,
3300 .set_mtu = hclgevf_set_mtu,
3301 .get_global_queue_id = hclgevf_get_qid_global,
3302 .set_timer_task = hclgevf_set_timer_task,
3303 .get_link_mode = hclgevf_get_link_mode,
3304 .set_promisc_mode = hclgevf_set_promisc_mode,
3305 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3306 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3307 };
3308
3309 static struct hnae3_ae_algo ae_algovf = {
3310 .ops = &hclgevf_ops,
3311 .pdev_id_table = ae_algovf_pci_tbl,
3312 };
3313
3314 static int __init hclgevf_init(void)
3315 {
3316 pr_info("%s is initializing\n", HCLGEVF_NAME);
3317
3318 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3319 if (!hclgevf_wq) {
3320 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3321 return -ENOMEM;
3322 }
3323
3324 hnae3_register_ae_algo(&ae_algovf);
3325
3326 return 0;
3327 }
3328
3329 static void __exit hclgevf_exit(void)
3330 {
3331 hnae3_unregister_ae_algo(&ae_algovf);
3332 destroy_workqueue(hclgevf_wq);
3333 }
3334 module_init(hclgevf_init);
3335 module_exit(hclgevf_exit);
3336
3337 MODULE_LICENSE("GPL");
3338 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3339 MODULE_DESCRIPTION("HCLGEVF Driver");
3340 MODULE_VERSION(HCLGEVF_MOD_VERSION);