]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/intel/ice/ice_main.c
Merge tag 'pci-v5.7-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[thirdparty/linux.git] / drivers / net / ethernet / intel / ice / ice_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include "ice.h"
9 #include "ice_base.h"
10 #include "ice_lib.h"
11 #include "ice_dcb_lib.h"
12 #include "ice_dcb_nl.h"
13 #include "ice_devlink.h"
14
15 #define DRV_VERSION_MAJOR 0
16 #define DRV_VERSION_MINOR 8
17 #define DRV_VERSION_BUILD 2
18
19 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
20 __stringify(DRV_VERSION_MINOR) "." \
21 __stringify(DRV_VERSION_BUILD) "-k"
22 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
23 const char ice_drv_ver[] = DRV_VERSION;
24 static const char ice_driver_string[] = DRV_SUMMARY;
25 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
26
27 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
28 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
29 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
30
31 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
32 MODULE_DESCRIPTION(DRV_SUMMARY);
33 MODULE_LICENSE("GPL v2");
34 MODULE_VERSION(DRV_VERSION);
35 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
36
37 static int debug = -1;
38 module_param(debug, int, 0644);
39 #ifndef CONFIG_DYNAMIC_DEBUG
40 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
41 #else
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
43 #endif /* !CONFIG_DYNAMIC_DEBUG */
44
45 static struct workqueue_struct *ice_wq;
46 static const struct net_device_ops ice_netdev_safe_mode_ops;
47 static const struct net_device_ops ice_netdev_ops;
48 static int ice_vsi_open(struct ice_vsi *vsi);
49
50 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
51
52 static void ice_vsi_release_all(struct ice_pf *pf);
53
54 /**
55 * ice_get_tx_pending - returns number of Tx descriptors not processed
56 * @ring: the ring of descriptors
57 */
58 static u16 ice_get_tx_pending(struct ice_ring *ring)
59 {
60 u16 head, tail;
61
62 head = ring->next_to_clean;
63 tail = ring->next_to_use;
64
65 if (head != tail)
66 return (head < tail) ?
67 tail - head : (tail + ring->count - head);
68 return 0;
69 }
70
71 /**
72 * ice_check_for_hang_subtask - check for and recover hung queues
73 * @pf: pointer to PF struct
74 */
75 static void ice_check_for_hang_subtask(struct ice_pf *pf)
76 {
77 struct ice_vsi *vsi = NULL;
78 struct ice_hw *hw;
79 unsigned int i;
80 int packets;
81 u32 v;
82
83 ice_for_each_vsi(pf, v)
84 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
85 vsi = pf->vsi[v];
86 break;
87 }
88
89 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
90 return;
91
92 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
93 return;
94
95 hw = &vsi->back->hw;
96
97 for (i = 0; i < vsi->num_txq; i++) {
98 struct ice_ring *tx_ring = vsi->tx_rings[i];
99
100 if (tx_ring && tx_ring->desc) {
101 /* If packet counter has not changed the queue is
102 * likely stalled, so force an interrupt for this
103 * queue.
104 *
105 * prev_pkt would be negative if there was no
106 * pending work.
107 */
108 packets = tx_ring->stats.pkts & INT_MAX;
109 if (tx_ring->tx_stats.prev_pkt == packets) {
110 /* Trigger sw interrupt to revive the queue */
111 ice_trigger_sw_intr(hw, tx_ring->q_vector);
112 continue;
113 }
114
115 /* Memory barrier between read of packet count and call
116 * to ice_get_tx_pending()
117 */
118 smp_rmb();
119 tx_ring->tx_stats.prev_pkt =
120 ice_get_tx_pending(tx_ring) ? packets : -1;
121 }
122 }
123 }
124
125 /**
126 * ice_init_mac_fltr - Set initial MAC filters
127 * @pf: board private structure
128 *
129 * Set initial set of MAC filters for PF VSI; configure filters for permanent
130 * address and broadcast address. If an error is encountered, netdevice will be
131 * unregistered.
132 */
133 static int ice_init_mac_fltr(struct ice_pf *pf)
134 {
135 enum ice_status status;
136 u8 broadcast[ETH_ALEN];
137 struct ice_vsi *vsi;
138
139 vsi = ice_get_main_vsi(pf);
140 if (!vsi)
141 return -EINVAL;
142
143 /* To add a MAC filter, first add the MAC to a list and then
144 * pass the list to ice_add_mac.
145 */
146
147 /* Add a unicast MAC filter so the VSI can get its packets */
148 status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true);
149 if (status)
150 goto unregister;
151
152 /* VSI needs to receive broadcast traffic, so add the broadcast
153 * MAC address to the list as well.
154 */
155 eth_broadcast_addr(broadcast);
156 status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true);
157 if (status)
158 goto unregister;
159
160 return 0;
161 unregister:
162 /* We aren't useful with no MAC filters, so unregister if we
163 * had an error
164 */
165 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
166 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %d. Unregistering device\n",
167 status);
168 unregister_netdev(vsi->netdev);
169 free_netdev(vsi->netdev);
170 vsi->netdev = NULL;
171 }
172
173 return -EIO;
174 }
175
176 /**
177 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
178 * @netdev: the net device on which the sync is happening
179 * @addr: MAC address to sync
180 *
181 * This is a callback function which is called by the in kernel device sync
182 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
183 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
184 * MAC filters from the hardware.
185 */
186 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
187 {
188 struct ice_netdev_priv *np = netdev_priv(netdev);
189 struct ice_vsi *vsi = np->vsi;
190
191 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
192 return -EINVAL;
193
194 return 0;
195 }
196
197 /**
198 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
199 * @netdev: the net device on which the unsync is happening
200 * @addr: MAC address to unsync
201 *
202 * This is a callback function which is called by the in kernel device unsync
203 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
204 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
205 * delete the MAC filters from the hardware.
206 */
207 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
208 {
209 struct ice_netdev_priv *np = netdev_priv(netdev);
210 struct ice_vsi *vsi = np->vsi;
211
212 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
213 return -EINVAL;
214
215 return 0;
216 }
217
218 /**
219 * ice_vsi_fltr_changed - check if filter state changed
220 * @vsi: VSI to be checked
221 *
222 * returns true if filter state has changed, false otherwise.
223 */
224 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
225 {
226 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
227 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
228 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
229 }
230
231 /**
232 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
233 * @vsi: the VSI being configured
234 * @promisc_m: mask of promiscuous config bits
235 * @set_promisc: enable or disable promisc flag request
236 *
237 */
238 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
239 {
240 struct ice_hw *hw = &vsi->back->hw;
241 enum ice_status status = 0;
242
243 if (vsi->type != ICE_VSI_PF)
244 return 0;
245
246 if (vsi->vlan_ena) {
247 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
248 set_promisc);
249 } else {
250 if (set_promisc)
251 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
252 0);
253 else
254 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
255 0);
256 }
257
258 if (status)
259 return -EIO;
260
261 return 0;
262 }
263
264 /**
265 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
266 * @vsi: ptr to the VSI
267 *
268 * Push any outstanding VSI filter changes through the AdminQ.
269 */
270 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
271 {
272 struct device *dev = ice_pf_to_dev(vsi->back);
273 struct net_device *netdev = vsi->netdev;
274 bool promisc_forced_on = false;
275 struct ice_pf *pf = vsi->back;
276 struct ice_hw *hw = &pf->hw;
277 enum ice_status status = 0;
278 u32 changed_flags = 0;
279 u8 promisc_m;
280 int err = 0;
281
282 if (!vsi->netdev)
283 return -EINVAL;
284
285 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
286 usleep_range(1000, 2000);
287
288 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
289 vsi->current_netdev_flags = vsi->netdev->flags;
290
291 INIT_LIST_HEAD(&vsi->tmp_sync_list);
292 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
293
294 if (ice_vsi_fltr_changed(vsi)) {
295 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
296 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
297 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
298
299 /* grab the netdev's addr_list_lock */
300 netif_addr_lock_bh(netdev);
301 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
302 ice_add_mac_to_unsync_list);
303 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
304 ice_add_mac_to_unsync_list);
305 /* our temp lists are populated. release lock */
306 netif_addr_unlock_bh(netdev);
307 }
308
309 /* Remove MAC addresses in the unsync list */
310 status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
311 ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
312 if (status) {
313 netdev_err(netdev, "Failed to delete MAC filters\n");
314 /* if we failed because of alloc failures, just bail */
315 if (status == ICE_ERR_NO_MEMORY) {
316 err = -ENOMEM;
317 goto out;
318 }
319 }
320
321 /* Add MAC addresses in the sync list */
322 status = ice_add_mac(hw, &vsi->tmp_sync_list);
323 ice_free_fltr_list(dev, &vsi->tmp_sync_list);
324 /* If filter is added successfully or already exists, do not go into
325 * 'if' condition and report it as error. Instead continue processing
326 * rest of the function.
327 */
328 if (status && status != ICE_ERR_ALREADY_EXISTS) {
329 netdev_err(netdev, "Failed to add MAC filters\n");
330 /* If there is no more space for new umac filters, VSI
331 * should go into promiscuous mode. There should be some
332 * space reserved for promiscuous filters.
333 */
334 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
335 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
336 vsi->state)) {
337 promisc_forced_on = true;
338 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
339 vsi->vsi_num);
340 } else {
341 err = -EIO;
342 goto out;
343 }
344 }
345 /* check for changes in promiscuous modes */
346 if (changed_flags & IFF_ALLMULTI) {
347 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
348 if (vsi->vlan_ena)
349 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
350 else
351 promisc_m = ICE_MCAST_PROMISC_BITS;
352
353 err = ice_cfg_promisc(vsi, promisc_m, true);
354 if (err) {
355 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
356 vsi->vsi_num);
357 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
358 goto out_promisc;
359 }
360 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
361 if (vsi->vlan_ena)
362 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
363 else
364 promisc_m = ICE_MCAST_PROMISC_BITS;
365
366 err = ice_cfg_promisc(vsi, promisc_m, false);
367 if (err) {
368 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
369 vsi->vsi_num);
370 vsi->current_netdev_flags |= IFF_ALLMULTI;
371 goto out_promisc;
372 }
373 }
374 }
375
376 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
377 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
378 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
379 if (vsi->current_netdev_flags & IFF_PROMISC) {
380 /* Apply Rx filter rule to get traffic from wire */
381 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
382 err = ice_set_dflt_vsi(pf->first_sw, vsi);
383 if (err && err != -EEXIST) {
384 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
385 err, vsi->vsi_num);
386 vsi->current_netdev_flags &=
387 ~IFF_PROMISC;
388 goto out_promisc;
389 }
390 }
391 } else {
392 /* Clear Rx filter to remove traffic from wire */
393 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
394 err = ice_clear_dflt_vsi(pf->first_sw);
395 if (err) {
396 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
397 err, vsi->vsi_num);
398 vsi->current_netdev_flags |=
399 IFF_PROMISC;
400 goto out_promisc;
401 }
402 }
403 }
404 }
405 goto exit;
406
407 out_promisc:
408 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
409 goto exit;
410 out:
411 /* if something went wrong then set the changed flag so we try again */
412 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
413 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
414 exit:
415 clear_bit(__ICE_CFG_BUSY, vsi->state);
416 return err;
417 }
418
419 /**
420 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
421 * @pf: board private structure
422 */
423 static void ice_sync_fltr_subtask(struct ice_pf *pf)
424 {
425 int v;
426
427 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
428 return;
429
430 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
431
432 ice_for_each_vsi(pf, v)
433 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
434 ice_vsi_sync_fltr(pf->vsi[v])) {
435 /* come back and try again later */
436 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
437 break;
438 }
439 }
440
441 /**
442 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
443 * @pf: the PF
444 * @locked: is the rtnl_lock already held
445 */
446 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
447 {
448 int v;
449
450 ice_for_each_vsi(pf, v)
451 if (pf->vsi[v])
452 ice_dis_vsi(pf->vsi[v], locked);
453 }
454
455 /**
456 * ice_prepare_for_reset - prep for the core to reset
457 * @pf: board private structure
458 *
459 * Inform or close all dependent features in prep for reset.
460 */
461 static void
462 ice_prepare_for_reset(struct ice_pf *pf)
463 {
464 struct ice_hw *hw = &pf->hw;
465 int i;
466
467 /* already prepared for reset */
468 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
469 return;
470
471 /* Notify VFs of impending reset */
472 if (ice_check_sq_alive(hw, &hw->mailboxq))
473 ice_vc_notify_reset(pf);
474
475 /* Disable VFs until reset is completed */
476 ice_for_each_vf(pf, i)
477 ice_set_vf_state_qs_dis(&pf->vf[i]);
478
479 /* clear SW filtering DB */
480 ice_clear_hw_tbls(hw);
481 /* disable the VSIs and their queues that are not already DOWN */
482 ice_pf_dis_all_vsi(pf, false);
483
484 if (hw->port_info)
485 ice_sched_clear_port(hw->port_info);
486
487 ice_shutdown_all_ctrlq(hw);
488
489 set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
490 }
491
492 /**
493 * ice_do_reset - Initiate one of many types of resets
494 * @pf: board private structure
495 * @reset_type: reset type requested
496 * before this function was called.
497 */
498 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
499 {
500 struct device *dev = ice_pf_to_dev(pf);
501 struct ice_hw *hw = &pf->hw;
502
503 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
504 WARN_ON(in_interrupt());
505
506 ice_prepare_for_reset(pf);
507
508 /* trigger the reset */
509 if (ice_reset(hw, reset_type)) {
510 dev_err(dev, "reset %d failed\n", reset_type);
511 set_bit(__ICE_RESET_FAILED, pf->state);
512 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
513 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
514 clear_bit(__ICE_PFR_REQ, pf->state);
515 clear_bit(__ICE_CORER_REQ, pf->state);
516 clear_bit(__ICE_GLOBR_REQ, pf->state);
517 return;
518 }
519
520 /* PFR is a bit of a special case because it doesn't result in an OICR
521 * interrupt. So for PFR, rebuild after the reset and clear the reset-
522 * associated state bits.
523 */
524 if (reset_type == ICE_RESET_PFR) {
525 pf->pfr_count++;
526 ice_rebuild(pf, reset_type);
527 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
528 clear_bit(__ICE_PFR_REQ, pf->state);
529 ice_reset_all_vfs(pf, true);
530 }
531 }
532
533 /**
534 * ice_reset_subtask - Set up for resetting the device and driver
535 * @pf: board private structure
536 */
537 static void ice_reset_subtask(struct ice_pf *pf)
538 {
539 enum ice_reset_req reset_type = ICE_RESET_INVAL;
540
541 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
542 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
543 * of reset is pending and sets bits in pf->state indicating the reset
544 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
545 * prepare for pending reset if not already (for PF software-initiated
546 * global resets the software should already be prepared for it as
547 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
548 * by firmware or software on other PFs, that bit is not set so prepare
549 * for the reset now), poll for reset done, rebuild and return.
550 */
551 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
552 /* Perform the largest reset requested */
553 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
554 reset_type = ICE_RESET_CORER;
555 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
556 reset_type = ICE_RESET_GLOBR;
557 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
558 reset_type = ICE_RESET_EMPR;
559 /* return if no valid reset type requested */
560 if (reset_type == ICE_RESET_INVAL)
561 return;
562 ice_prepare_for_reset(pf);
563
564 /* make sure we are ready to rebuild */
565 if (ice_check_reset(&pf->hw)) {
566 set_bit(__ICE_RESET_FAILED, pf->state);
567 } else {
568 /* done with reset. start rebuild */
569 pf->hw.reset_ongoing = false;
570 ice_rebuild(pf, reset_type);
571 /* clear bit to resume normal operations, but
572 * ICE_NEEDS_RESTART bit is set in case rebuild failed
573 */
574 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
575 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
576 clear_bit(__ICE_PFR_REQ, pf->state);
577 clear_bit(__ICE_CORER_REQ, pf->state);
578 clear_bit(__ICE_GLOBR_REQ, pf->state);
579 ice_reset_all_vfs(pf, true);
580 }
581
582 return;
583 }
584
585 /* No pending resets to finish processing. Check for new resets */
586 if (test_bit(__ICE_PFR_REQ, pf->state))
587 reset_type = ICE_RESET_PFR;
588 if (test_bit(__ICE_CORER_REQ, pf->state))
589 reset_type = ICE_RESET_CORER;
590 if (test_bit(__ICE_GLOBR_REQ, pf->state))
591 reset_type = ICE_RESET_GLOBR;
592 /* If no valid reset type requested just return */
593 if (reset_type == ICE_RESET_INVAL)
594 return;
595
596 /* reset if not already down or busy */
597 if (!test_bit(__ICE_DOWN, pf->state) &&
598 !test_bit(__ICE_CFG_BUSY, pf->state)) {
599 ice_do_reset(pf, reset_type);
600 }
601 }
602
603 /**
604 * ice_print_topo_conflict - print topology conflict message
605 * @vsi: the VSI whose topology status is being checked
606 */
607 static void ice_print_topo_conflict(struct ice_vsi *vsi)
608 {
609 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
610 case ICE_AQ_LINK_TOPO_CONFLICT:
611 case ICE_AQ_LINK_MEDIA_CONFLICT:
612 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
613 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
614 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
615 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
616 break;
617 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
618 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
619 break;
620 default:
621 break;
622 }
623 }
624
625 /**
626 * ice_print_link_msg - print link up or down message
627 * @vsi: the VSI whose link status is being queried
628 * @isup: boolean for if the link is now up or down
629 */
630 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
631 {
632 struct ice_aqc_get_phy_caps_data *caps;
633 enum ice_status status;
634 const char *fec_req;
635 const char *speed;
636 const char *fec;
637 const char *fc;
638 const char *an;
639
640 if (!vsi)
641 return;
642
643 if (vsi->current_isup == isup)
644 return;
645
646 vsi->current_isup = isup;
647
648 if (!isup) {
649 netdev_info(vsi->netdev, "NIC Link is Down\n");
650 return;
651 }
652
653 switch (vsi->port_info->phy.link_info.link_speed) {
654 case ICE_AQ_LINK_SPEED_100GB:
655 speed = "100 G";
656 break;
657 case ICE_AQ_LINK_SPEED_50GB:
658 speed = "50 G";
659 break;
660 case ICE_AQ_LINK_SPEED_40GB:
661 speed = "40 G";
662 break;
663 case ICE_AQ_LINK_SPEED_25GB:
664 speed = "25 G";
665 break;
666 case ICE_AQ_LINK_SPEED_20GB:
667 speed = "20 G";
668 break;
669 case ICE_AQ_LINK_SPEED_10GB:
670 speed = "10 G";
671 break;
672 case ICE_AQ_LINK_SPEED_5GB:
673 speed = "5 G";
674 break;
675 case ICE_AQ_LINK_SPEED_2500MB:
676 speed = "2.5 G";
677 break;
678 case ICE_AQ_LINK_SPEED_1000MB:
679 speed = "1 G";
680 break;
681 case ICE_AQ_LINK_SPEED_100MB:
682 speed = "100 M";
683 break;
684 default:
685 speed = "Unknown";
686 break;
687 }
688
689 switch (vsi->port_info->fc.current_mode) {
690 case ICE_FC_FULL:
691 fc = "Rx/Tx";
692 break;
693 case ICE_FC_TX_PAUSE:
694 fc = "Tx";
695 break;
696 case ICE_FC_RX_PAUSE:
697 fc = "Rx";
698 break;
699 case ICE_FC_NONE:
700 fc = "None";
701 break;
702 default:
703 fc = "Unknown";
704 break;
705 }
706
707 /* Get FEC mode based on negotiated link info */
708 switch (vsi->port_info->phy.link_info.fec_info) {
709 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
710 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
711 fec = "RS-FEC";
712 break;
713 case ICE_AQ_LINK_25G_KR_FEC_EN:
714 fec = "FC-FEC/BASE-R";
715 break;
716 default:
717 fec = "NONE";
718 break;
719 }
720
721 /* check if autoneg completed, might be false due to not supported */
722 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
723 an = "True";
724 else
725 an = "False";
726
727 /* Get FEC mode requested based on PHY caps last SW configuration */
728 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
729 if (!caps) {
730 fec_req = "Unknown";
731 goto done;
732 }
733
734 status = ice_aq_get_phy_caps(vsi->port_info, false,
735 ICE_AQC_REPORT_SW_CFG, caps, NULL);
736 if (status)
737 netdev_info(vsi->netdev, "Get phy capability failed.\n");
738
739 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
740 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
741 fec_req = "RS-FEC";
742 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
743 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
744 fec_req = "FC-FEC/BASE-R";
745 else
746 fec_req = "NONE";
747
748 kfree(caps);
749
750 done:
751 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
752 speed, fec_req, fec, an, fc);
753 ice_print_topo_conflict(vsi);
754 }
755
756 /**
757 * ice_vsi_link_event - update the VSI's netdev
758 * @vsi: the VSI on which the link event occurred
759 * @link_up: whether or not the VSI needs to be set up or down
760 */
761 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
762 {
763 if (!vsi)
764 return;
765
766 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
767 return;
768
769 if (vsi->type == ICE_VSI_PF) {
770 if (link_up == netif_carrier_ok(vsi->netdev))
771 return;
772
773 if (link_up) {
774 netif_carrier_on(vsi->netdev);
775 netif_tx_wake_all_queues(vsi->netdev);
776 } else {
777 netif_carrier_off(vsi->netdev);
778 netif_tx_stop_all_queues(vsi->netdev);
779 }
780 }
781 }
782
783 /**
784 * ice_link_event - process the link event
785 * @pf: PF that the link event is associated with
786 * @pi: port_info for the port that the link event is associated with
787 * @link_up: true if the physical link is up and false if it is down
788 * @link_speed: current link speed received from the link event
789 *
790 * Returns 0 on success and negative on failure
791 */
792 static int
793 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
794 u16 link_speed)
795 {
796 struct device *dev = ice_pf_to_dev(pf);
797 struct ice_phy_info *phy_info;
798 struct ice_vsi *vsi;
799 u16 old_link_speed;
800 bool old_link;
801 int result;
802
803 phy_info = &pi->phy;
804 phy_info->link_info_old = phy_info->link_info;
805
806 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
807 old_link_speed = phy_info->link_info_old.link_speed;
808
809 /* update the link info structures and re-enable link events,
810 * don't bail on failure due to other book keeping needed
811 */
812 result = ice_update_link_info(pi);
813 if (result)
814 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
815 pi->lport);
816
817 /* if the old link up/down and speed is the same as the new */
818 if (link_up == old_link && link_speed == old_link_speed)
819 return result;
820
821 vsi = ice_get_main_vsi(pf);
822 if (!vsi || !vsi->port_info)
823 return -EINVAL;
824
825 /* turn off PHY if media was removed */
826 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
827 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
828 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
829
830 result = ice_aq_set_link_restart_an(pi, false, NULL);
831 if (result) {
832 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
833 vsi->vsi_num, result);
834 return result;
835 }
836 }
837
838 ice_dcb_rebuild(pf);
839 ice_vsi_link_event(vsi, link_up);
840 ice_print_link_msg(vsi, link_up);
841
842 ice_vc_notify_link_state(pf);
843
844 return result;
845 }
846
847 /**
848 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
849 * @pf: board private structure
850 */
851 static void ice_watchdog_subtask(struct ice_pf *pf)
852 {
853 int i;
854
855 /* if interface is down do nothing */
856 if (test_bit(__ICE_DOWN, pf->state) ||
857 test_bit(__ICE_CFG_BUSY, pf->state))
858 return;
859
860 /* make sure we don't do these things too often */
861 if (time_before(jiffies,
862 pf->serv_tmr_prev + pf->serv_tmr_period))
863 return;
864
865 pf->serv_tmr_prev = jiffies;
866
867 /* Update the stats for active netdevs so the network stack
868 * can look at updated numbers whenever it cares to
869 */
870 ice_update_pf_stats(pf);
871 ice_for_each_vsi(pf, i)
872 if (pf->vsi[i] && pf->vsi[i]->netdev)
873 ice_update_vsi_stats(pf->vsi[i]);
874 }
875
876 /**
877 * ice_init_link_events - enable/initialize link events
878 * @pi: pointer to the port_info instance
879 *
880 * Returns -EIO on failure, 0 on success
881 */
882 static int ice_init_link_events(struct ice_port_info *pi)
883 {
884 u16 mask;
885
886 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
887 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
888
889 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
890 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
891 pi->lport);
892 return -EIO;
893 }
894
895 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
896 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
897 pi->lport);
898 return -EIO;
899 }
900
901 return 0;
902 }
903
904 /**
905 * ice_handle_link_event - handle link event via ARQ
906 * @pf: PF that the link event is associated with
907 * @event: event structure containing link status info
908 */
909 static int
910 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
911 {
912 struct ice_aqc_get_link_status_data *link_data;
913 struct ice_port_info *port_info;
914 int status;
915
916 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
917 port_info = pf->hw.port_info;
918 if (!port_info)
919 return -EINVAL;
920
921 status = ice_link_event(pf, port_info,
922 !!(link_data->link_info & ICE_AQ_LINK_UP),
923 le16_to_cpu(link_data->link_speed));
924 if (status)
925 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
926 status);
927
928 return status;
929 }
930
931 /**
932 * __ice_clean_ctrlq - helper function to clean controlq rings
933 * @pf: ptr to struct ice_pf
934 * @q_type: specific Control queue type
935 */
936 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
937 {
938 struct device *dev = ice_pf_to_dev(pf);
939 struct ice_rq_event_info event;
940 struct ice_hw *hw = &pf->hw;
941 struct ice_ctl_q_info *cq;
942 u16 pending, i = 0;
943 const char *qtype;
944 u32 oldval, val;
945
946 /* Do not clean control queue if/when PF reset fails */
947 if (test_bit(__ICE_RESET_FAILED, pf->state))
948 return 0;
949
950 switch (q_type) {
951 case ICE_CTL_Q_ADMIN:
952 cq = &hw->adminq;
953 qtype = "Admin";
954 break;
955 case ICE_CTL_Q_MAILBOX:
956 cq = &hw->mailboxq;
957 qtype = "Mailbox";
958 break;
959 default:
960 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
961 return 0;
962 }
963
964 /* check for error indications - PF_xx_AxQLEN register layout for
965 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
966 */
967 val = rd32(hw, cq->rq.len);
968 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
969 PF_FW_ARQLEN_ARQCRIT_M)) {
970 oldval = val;
971 if (val & PF_FW_ARQLEN_ARQVFE_M)
972 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
973 qtype);
974 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
975 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
976 qtype);
977 }
978 if (val & PF_FW_ARQLEN_ARQCRIT_M)
979 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
980 qtype);
981 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
982 PF_FW_ARQLEN_ARQCRIT_M);
983 if (oldval != val)
984 wr32(hw, cq->rq.len, val);
985 }
986
987 val = rd32(hw, cq->sq.len);
988 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
989 PF_FW_ATQLEN_ATQCRIT_M)) {
990 oldval = val;
991 if (val & PF_FW_ATQLEN_ATQVFE_M)
992 dev_dbg(dev, "%s Send Queue VF Error detected\n",
993 qtype);
994 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
995 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
996 qtype);
997 }
998 if (val & PF_FW_ATQLEN_ATQCRIT_M)
999 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1000 qtype);
1001 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1002 PF_FW_ATQLEN_ATQCRIT_M);
1003 if (oldval != val)
1004 wr32(hw, cq->sq.len, val);
1005 }
1006
1007 event.buf_len = cq->rq_buf_size;
1008 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1009 if (!event.msg_buf)
1010 return 0;
1011
1012 do {
1013 enum ice_status ret;
1014 u16 opcode;
1015
1016 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1017 if (ret == ICE_ERR_AQ_NO_WORK)
1018 break;
1019 if (ret) {
1020 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1021 ret);
1022 break;
1023 }
1024
1025 opcode = le16_to_cpu(event.desc.opcode);
1026
1027 switch (opcode) {
1028 case ice_aqc_opc_get_link_status:
1029 if (ice_handle_link_event(pf, &event))
1030 dev_err(dev, "Could not handle link event\n");
1031 break;
1032 case ice_aqc_opc_event_lan_overflow:
1033 ice_vf_lan_overflow_event(pf, &event);
1034 break;
1035 case ice_mbx_opc_send_msg_to_pf:
1036 ice_vc_process_vf_msg(pf, &event);
1037 break;
1038 case ice_aqc_opc_fw_logging:
1039 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1040 break;
1041 case ice_aqc_opc_lldp_set_mib_change:
1042 ice_dcb_process_lldp_set_mib_change(pf, &event);
1043 break;
1044 default:
1045 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1046 qtype, opcode);
1047 break;
1048 }
1049 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1050
1051 kfree(event.msg_buf);
1052
1053 return pending && (i == ICE_DFLT_IRQ_WORK);
1054 }
1055
1056 /**
1057 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1058 * @hw: pointer to hardware info
1059 * @cq: control queue information
1060 *
1061 * returns true if there are pending messages in a queue, false if there aren't
1062 */
1063 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1064 {
1065 u16 ntu;
1066
1067 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1068 return cq->rq.next_to_clean != ntu;
1069 }
1070
1071 /**
1072 * ice_clean_adminq_subtask - clean the AdminQ rings
1073 * @pf: board private structure
1074 */
1075 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1076 {
1077 struct ice_hw *hw = &pf->hw;
1078
1079 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1080 return;
1081
1082 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1083 return;
1084
1085 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1086
1087 /* There might be a situation where new messages arrive to a control
1088 * queue between processing the last message and clearing the
1089 * EVENT_PENDING bit. So before exiting, check queue head again (using
1090 * ice_ctrlq_pending) and process new messages if any.
1091 */
1092 if (ice_ctrlq_pending(hw, &hw->adminq))
1093 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1094
1095 ice_flush(hw);
1096 }
1097
1098 /**
1099 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1100 * @pf: board private structure
1101 */
1102 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1103 {
1104 struct ice_hw *hw = &pf->hw;
1105
1106 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1107 return;
1108
1109 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1110 return;
1111
1112 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1113
1114 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1115 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1116
1117 ice_flush(hw);
1118 }
1119
1120 /**
1121 * ice_service_task_schedule - schedule the service task to wake up
1122 * @pf: board private structure
1123 *
1124 * If not already scheduled, this puts the task into the work queue.
1125 */
1126 static void ice_service_task_schedule(struct ice_pf *pf)
1127 {
1128 if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1129 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1130 !test_bit(__ICE_NEEDS_RESTART, pf->state))
1131 queue_work(ice_wq, &pf->serv_task);
1132 }
1133
1134 /**
1135 * ice_service_task_complete - finish up the service task
1136 * @pf: board private structure
1137 */
1138 static void ice_service_task_complete(struct ice_pf *pf)
1139 {
1140 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1141
1142 /* force memory (pf->state) to sync before next service task */
1143 smp_mb__before_atomic();
1144 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1145 }
1146
1147 /**
1148 * ice_service_task_stop - stop service task and cancel works
1149 * @pf: board private structure
1150 */
1151 static void ice_service_task_stop(struct ice_pf *pf)
1152 {
1153 set_bit(__ICE_SERVICE_DIS, pf->state);
1154
1155 if (pf->serv_tmr.function)
1156 del_timer_sync(&pf->serv_tmr);
1157 if (pf->serv_task.func)
1158 cancel_work_sync(&pf->serv_task);
1159
1160 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1161 }
1162
1163 /**
1164 * ice_service_task_restart - restart service task and schedule works
1165 * @pf: board private structure
1166 *
1167 * This function is needed for suspend and resume works (e.g WoL scenario)
1168 */
1169 static void ice_service_task_restart(struct ice_pf *pf)
1170 {
1171 clear_bit(__ICE_SERVICE_DIS, pf->state);
1172 ice_service_task_schedule(pf);
1173 }
1174
1175 /**
1176 * ice_service_timer - timer callback to schedule service task
1177 * @t: pointer to timer_list
1178 */
1179 static void ice_service_timer(struct timer_list *t)
1180 {
1181 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1182
1183 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1184 ice_service_task_schedule(pf);
1185 }
1186
1187 /**
1188 * ice_handle_mdd_event - handle malicious driver detect event
1189 * @pf: pointer to the PF structure
1190 *
1191 * Called from service task. OICR interrupt handler indicates MDD event.
1192 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1193 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1194 * disable the queue, the PF can be configured to reset the VF using ethtool
1195 * private flag mdd-auto-reset-vf.
1196 */
1197 static void ice_handle_mdd_event(struct ice_pf *pf)
1198 {
1199 struct device *dev = ice_pf_to_dev(pf);
1200 struct ice_hw *hw = &pf->hw;
1201 u32 reg;
1202 int i;
1203
1204 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1205 /* Since the VF MDD event logging is rate limited, check if
1206 * there are pending MDD events.
1207 */
1208 ice_print_vfs_mdd_events(pf);
1209 return;
1210 }
1211
1212 /* find what triggered an MDD event */
1213 reg = rd32(hw, GL_MDET_TX_PQM);
1214 if (reg & GL_MDET_TX_PQM_VALID_M) {
1215 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1216 GL_MDET_TX_PQM_PF_NUM_S;
1217 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1218 GL_MDET_TX_PQM_VF_NUM_S;
1219 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1220 GL_MDET_TX_PQM_MAL_TYPE_S;
1221 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1222 GL_MDET_TX_PQM_QNUM_S);
1223
1224 if (netif_msg_tx_err(pf))
1225 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1226 event, queue, pf_num, vf_num);
1227 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1228 }
1229
1230 reg = rd32(hw, GL_MDET_TX_TCLAN);
1231 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1232 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1233 GL_MDET_TX_TCLAN_PF_NUM_S;
1234 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1235 GL_MDET_TX_TCLAN_VF_NUM_S;
1236 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1237 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1238 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1239 GL_MDET_TX_TCLAN_QNUM_S);
1240
1241 if (netif_msg_tx_err(pf))
1242 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1243 event, queue, pf_num, vf_num);
1244 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1245 }
1246
1247 reg = rd32(hw, GL_MDET_RX);
1248 if (reg & GL_MDET_RX_VALID_M) {
1249 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1250 GL_MDET_RX_PF_NUM_S;
1251 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1252 GL_MDET_RX_VF_NUM_S;
1253 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1254 GL_MDET_RX_MAL_TYPE_S;
1255 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1256 GL_MDET_RX_QNUM_S);
1257
1258 if (netif_msg_rx_err(pf))
1259 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1260 event, queue, pf_num, vf_num);
1261 wr32(hw, GL_MDET_RX, 0xffffffff);
1262 }
1263
1264 /* check to see if this PF caused an MDD event */
1265 reg = rd32(hw, PF_MDET_TX_PQM);
1266 if (reg & PF_MDET_TX_PQM_VALID_M) {
1267 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1268 if (netif_msg_tx_err(pf))
1269 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1270 }
1271
1272 reg = rd32(hw, PF_MDET_TX_TCLAN);
1273 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1274 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1275 if (netif_msg_tx_err(pf))
1276 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1277 }
1278
1279 reg = rd32(hw, PF_MDET_RX);
1280 if (reg & PF_MDET_RX_VALID_M) {
1281 wr32(hw, PF_MDET_RX, 0xFFFF);
1282 if (netif_msg_rx_err(pf))
1283 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1284 }
1285
1286 /* Check to see if one of the VFs caused an MDD event, and then
1287 * increment counters and set print pending
1288 */
1289 ice_for_each_vf(pf, i) {
1290 struct ice_vf *vf = &pf->vf[i];
1291
1292 reg = rd32(hw, VP_MDET_TX_PQM(i));
1293 if (reg & VP_MDET_TX_PQM_VALID_M) {
1294 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1295 vf->mdd_tx_events.count++;
1296 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1297 if (netif_msg_tx_err(pf))
1298 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1299 i);
1300 }
1301
1302 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1303 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1304 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1305 vf->mdd_tx_events.count++;
1306 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1307 if (netif_msg_tx_err(pf))
1308 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1309 i);
1310 }
1311
1312 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1313 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1314 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1315 vf->mdd_tx_events.count++;
1316 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1317 if (netif_msg_tx_err(pf))
1318 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1319 i);
1320 }
1321
1322 reg = rd32(hw, VP_MDET_RX(i));
1323 if (reg & VP_MDET_RX_VALID_M) {
1324 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1325 vf->mdd_rx_events.count++;
1326 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1327 if (netif_msg_rx_err(pf))
1328 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1329 i);
1330
1331 /* Since the queue is disabled on VF Rx MDD events, the
1332 * PF can be configured to reset the VF through ethtool
1333 * private flag mdd-auto-reset-vf.
1334 */
1335 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1336 ice_reset_vf(&pf->vf[i], false);
1337 }
1338 }
1339
1340 ice_print_vfs_mdd_events(pf);
1341 }
1342
1343 /**
1344 * ice_force_phys_link_state - Force the physical link state
1345 * @vsi: VSI to force the physical link state to up/down
1346 * @link_up: true/false indicates to set the physical link to up/down
1347 *
1348 * Force the physical link state by getting the current PHY capabilities from
1349 * hardware and setting the PHY config based on the determined capabilities. If
1350 * link changes a link event will be triggered because both the Enable Automatic
1351 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1352 *
1353 * Returns 0 on success, negative on failure
1354 */
1355 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1356 {
1357 struct ice_aqc_get_phy_caps_data *pcaps;
1358 struct ice_aqc_set_phy_cfg_data *cfg;
1359 struct ice_port_info *pi;
1360 struct device *dev;
1361 int retcode;
1362
1363 if (!vsi || !vsi->port_info || !vsi->back)
1364 return -EINVAL;
1365 if (vsi->type != ICE_VSI_PF)
1366 return 0;
1367
1368 dev = ice_pf_to_dev(vsi->back);
1369
1370 pi = vsi->port_info;
1371
1372 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1373 if (!pcaps)
1374 return -ENOMEM;
1375
1376 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1377 NULL);
1378 if (retcode) {
1379 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1380 vsi->vsi_num, retcode);
1381 retcode = -EIO;
1382 goto out;
1383 }
1384
1385 /* No change in link */
1386 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1387 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1388 goto out;
1389
1390 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1391 if (!cfg) {
1392 retcode = -ENOMEM;
1393 goto out;
1394 }
1395
1396 cfg->phy_type_low = pcaps->phy_type_low;
1397 cfg->phy_type_high = pcaps->phy_type_high;
1398 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1399 cfg->low_power_ctrl = pcaps->low_power_ctrl;
1400 cfg->eee_cap = pcaps->eee_cap;
1401 cfg->eeer_value = pcaps->eeer_value;
1402 cfg->link_fec_opt = pcaps->link_fec_options;
1403 if (link_up)
1404 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1405 else
1406 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1407
1408 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
1409 if (retcode) {
1410 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1411 vsi->vsi_num, retcode);
1412 retcode = -EIO;
1413 }
1414
1415 kfree(cfg);
1416 out:
1417 kfree(pcaps);
1418 return retcode;
1419 }
1420
1421 /**
1422 * ice_check_media_subtask - Check for media; bring link up if detected.
1423 * @pf: pointer to PF struct
1424 */
1425 static void ice_check_media_subtask(struct ice_pf *pf)
1426 {
1427 struct ice_port_info *pi;
1428 struct ice_vsi *vsi;
1429 int err;
1430
1431 vsi = ice_get_main_vsi(pf);
1432 if (!vsi)
1433 return;
1434
1435 /* No need to check for media if it's already present or the interface
1436 * is down
1437 */
1438 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
1439 test_bit(__ICE_DOWN, vsi->state))
1440 return;
1441
1442 /* Refresh link info and check if media is present */
1443 pi = vsi->port_info;
1444 err = ice_update_link_info(pi);
1445 if (err)
1446 return;
1447
1448 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1449 err = ice_force_phys_link_state(vsi, true);
1450 if (err)
1451 return;
1452 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1453
1454 /* A Link Status Event will be generated; the event handler
1455 * will complete bringing the interface up
1456 */
1457 }
1458 }
1459
1460 /**
1461 * ice_service_task - manage and run subtasks
1462 * @work: pointer to work_struct contained by the PF struct
1463 */
1464 static void ice_service_task(struct work_struct *work)
1465 {
1466 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1467 unsigned long start_time = jiffies;
1468
1469 /* subtasks */
1470
1471 /* process reset requests first */
1472 ice_reset_subtask(pf);
1473
1474 /* bail if a reset/recovery cycle is pending or rebuild failed */
1475 if (ice_is_reset_in_progress(pf->state) ||
1476 test_bit(__ICE_SUSPENDED, pf->state) ||
1477 test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1478 ice_service_task_complete(pf);
1479 return;
1480 }
1481
1482 ice_clean_adminq_subtask(pf);
1483 ice_check_media_subtask(pf);
1484 ice_check_for_hang_subtask(pf);
1485 ice_sync_fltr_subtask(pf);
1486 ice_handle_mdd_event(pf);
1487 ice_watchdog_subtask(pf);
1488
1489 if (ice_is_safe_mode(pf)) {
1490 ice_service_task_complete(pf);
1491 return;
1492 }
1493
1494 ice_process_vflr_event(pf);
1495 ice_clean_mailboxq_subtask(pf);
1496
1497 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1498 ice_service_task_complete(pf);
1499
1500 /* If the tasks have taken longer than one service timer period
1501 * or there is more work to be done, reset the service timer to
1502 * schedule the service task now.
1503 */
1504 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1505 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1506 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1507 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1508 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1509 mod_timer(&pf->serv_tmr, jiffies);
1510 }
1511
1512 /**
1513 * ice_set_ctrlq_len - helper function to set controlq length
1514 * @hw: pointer to the HW instance
1515 */
1516 static void ice_set_ctrlq_len(struct ice_hw *hw)
1517 {
1518 hw->adminq.num_rq_entries = ICE_AQ_LEN;
1519 hw->adminq.num_sq_entries = ICE_AQ_LEN;
1520 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1521 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1522 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
1523 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
1524 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1525 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1526 }
1527
1528 /**
1529 * ice_schedule_reset - schedule a reset
1530 * @pf: board private structure
1531 * @reset: reset being requested
1532 */
1533 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
1534 {
1535 struct device *dev = ice_pf_to_dev(pf);
1536
1537 /* bail out if earlier reset has failed */
1538 if (test_bit(__ICE_RESET_FAILED, pf->state)) {
1539 dev_dbg(dev, "earlier reset has failed\n");
1540 return -EIO;
1541 }
1542 /* bail if reset/recovery already in progress */
1543 if (ice_is_reset_in_progress(pf->state)) {
1544 dev_dbg(dev, "Reset already in progress\n");
1545 return -EBUSY;
1546 }
1547
1548 switch (reset) {
1549 case ICE_RESET_PFR:
1550 set_bit(__ICE_PFR_REQ, pf->state);
1551 break;
1552 case ICE_RESET_CORER:
1553 set_bit(__ICE_CORER_REQ, pf->state);
1554 break;
1555 case ICE_RESET_GLOBR:
1556 set_bit(__ICE_GLOBR_REQ, pf->state);
1557 break;
1558 default:
1559 return -EINVAL;
1560 }
1561
1562 ice_service_task_schedule(pf);
1563 return 0;
1564 }
1565
1566 /**
1567 * ice_irq_affinity_notify - Callback for affinity changes
1568 * @notify: context as to what irq was changed
1569 * @mask: the new affinity mask
1570 *
1571 * This is a callback function used by the irq_set_affinity_notifier function
1572 * so that we may register to receive changes to the irq affinity masks.
1573 */
1574 static void
1575 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1576 const cpumask_t *mask)
1577 {
1578 struct ice_q_vector *q_vector =
1579 container_of(notify, struct ice_q_vector, affinity_notify);
1580
1581 cpumask_copy(&q_vector->affinity_mask, mask);
1582 }
1583
1584 /**
1585 * ice_irq_affinity_release - Callback for affinity notifier release
1586 * @ref: internal core kernel usage
1587 *
1588 * This is a callback function used by the irq_set_affinity_notifier function
1589 * to inform the current notification subscriber that they will no longer
1590 * receive notifications.
1591 */
1592 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1593
1594 /**
1595 * ice_vsi_ena_irq - Enable IRQ for the given VSI
1596 * @vsi: the VSI being configured
1597 */
1598 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1599 {
1600 struct ice_hw *hw = &vsi->back->hw;
1601 int i;
1602
1603 ice_for_each_q_vector(vsi, i)
1604 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1605
1606 ice_flush(hw);
1607 return 0;
1608 }
1609
1610 /**
1611 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1612 * @vsi: the VSI being configured
1613 * @basename: name for the vector
1614 */
1615 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1616 {
1617 int q_vectors = vsi->num_q_vectors;
1618 struct ice_pf *pf = vsi->back;
1619 int base = vsi->base_vector;
1620 struct device *dev;
1621 int rx_int_idx = 0;
1622 int tx_int_idx = 0;
1623 int vector, err;
1624 int irq_num;
1625
1626 dev = ice_pf_to_dev(pf);
1627 for (vector = 0; vector < q_vectors; vector++) {
1628 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1629
1630 irq_num = pf->msix_entries[base + vector].vector;
1631
1632 if (q_vector->tx.ring && q_vector->rx.ring) {
1633 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1634 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1635 tx_int_idx++;
1636 } else if (q_vector->rx.ring) {
1637 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1638 "%s-%s-%d", basename, "rx", rx_int_idx++);
1639 } else if (q_vector->tx.ring) {
1640 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1641 "%s-%s-%d", basename, "tx", tx_int_idx++);
1642 } else {
1643 /* skip this unused q_vector */
1644 continue;
1645 }
1646 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
1647 q_vector->name, q_vector);
1648 if (err) {
1649 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
1650 err);
1651 goto free_q_irqs;
1652 }
1653
1654 /* register for affinity change notifications */
1655 q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1656 q_vector->affinity_notify.release = ice_irq_affinity_release;
1657 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1658
1659 /* assign the mask for this irq */
1660 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1661 }
1662
1663 vsi->irqs_ready = true;
1664 return 0;
1665
1666 free_q_irqs:
1667 while (vector) {
1668 vector--;
1669 irq_num = pf->msix_entries[base + vector].vector,
1670 irq_set_affinity_notifier(irq_num, NULL);
1671 irq_set_affinity_hint(irq_num, NULL);
1672 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
1673 }
1674 return err;
1675 }
1676
1677 /**
1678 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
1679 * @vsi: VSI to setup Tx rings used by XDP
1680 *
1681 * Return 0 on success and negative value on error
1682 */
1683 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
1684 {
1685 struct device *dev = ice_pf_to_dev(vsi->back);
1686 int i;
1687
1688 for (i = 0; i < vsi->num_xdp_txq; i++) {
1689 u16 xdp_q_idx = vsi->alloc_txq + i;
1690 struct ice_ring *xdp_ring;
1691
1692 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
1693
1694 if (!xdp_ring)
1695 goto free_xdp_rings;
1696
1697 xdp_ring->q_index = xdp_q_idx;
1698 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
1699 xdp_ring->ring_active = false;
1700 xdp_ring->vsi = vsi;
1701 xdp_ring->netdev = NULL;
1702 xdp_ring->dev = dev;
1703 xdp_ring->count = vsi->num_tx_desc;
1704 vsi->xdp_rings[i] = xdp_ring;
1705 if (ice_setup_tx_ring(xdp_ring))
1706 goto free_xdp_rings;
1707 ice_set_ring_xdp(xdp_ring);
1708 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
1709 }
1710
1711 return 0;
1712
1713 free_xdp_rings:
1714 for (; i >= 0; i--)
1715 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
1716 ice_free_tx_ring(vsi->xdp_rings[i]);
1717 return -ENOMEM;
1718 }
1719
1720 /**
1721 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
1722 * @vsi: VSI to set the bpf prog on
1723 * @prog: the bpf prog pointer
1724 */
1725 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
1726 {
1727 struct bpf_prog *old_prog;
1728 int i;
1729
1730 old_prog = xchg(&vsi->xdp_prog, prog);
1731 if (old_prog)
1732 bpf_prog_put(old_prog);
1733
1734 ice_for_each_rxq(vsi, i)
1735 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
1736 }
1737
1738 /**
1739 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
1740 * @vsi: VSI to bring up Tx rings used by XDP
1741 * @prog: bpf program that will be assigned to VSI
1742 *
1743 * Return 0 on success and negative value on error
1744 */
1745 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
1746 {
1747 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1748 int xdp_rings_rem = vsi->num_xdp_txq;
1749 struct ice_pf *pf = vsi->back;
1750 struct ice_qs_cfg xdp_qs_cfg = {
1751 .qs_mutex = &pf->avail_q_mutex,
1752 .pf_map = pf->avail_txqs,
1753 .pf_map_size = pf->max_pf_txqs,
1754 .q_count = vsi->num_xdp_txq,
1755 .scatter_count = ICE_MAX_SCATTER_TXQS,
1756 .vsi_map = vsi->txq_map,
1757 .vsi_map_offset = vsi->alloc_txq,
1758 .mapping_mode = ICE_VSI_MAP_CONTIG
1759 };
1760 enum ice_status status;
1761 struct device *dev;
1762 int i, v_idx;
1763
1764 dev = ice_pf_to_dev(pf);
1765 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
1766 sizeof(*vsi->xdp_rings), GFP_KERNEL);
1767 if (!vsi->xdp_rings)
1768 return -ENOMEM;
1769
1770 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
1771 if (__ice_vsi_get_qs(&xdp_qs_cfg))
1772 goto err_map_xdp;
1773
1774 if (ice_xdp_alloc_setup_rings(vsi))
1775 goto clear_xdp_rings;
1776
1777 /* follow the logic from ice_vsi_map_rings_to_vectors */
1778 ice_for_each_q_vector(vsi, v_idx) {
1779 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
1780 int xdp_rings_per_v, q_id, q_base;
1781
1782 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
1783 vsi->num_q_vectors - v_idx);
1784 q_base = vsi->num_xdp_txq - xdp_rings_rem;
1785
1786 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
1787 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
1788
1789 xdp_ring->q_vector = q_vector;
1790 xdp_ring->next = q_vector->tx.ring;
1791 q_vector->tx.ring = xdp_ring;
1792 }
1793 xdp_rings_rem -= xdp_rings_per_v;
1794 }
1795
1796 /* omit the scheduler update if in reset path; XDP queues will be
1797 * taken into account at the end of ice_vsi_rebuild, where
1798 * ice_cfg_vsi_lan is being called
1799 */
1800 if (ice_is_reset_in_progress(pf->state))
1801 return 0;
1802
1803 /* tell the Tx scheduler that right now we have
1804 * additional queues
1805 */
1806 for (i = 0; i < vsi->tc_cfg.numtc; i++)
1807 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
1808
1809 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
1810 max_txqs);
1811 if (status) {
1812 dev_err(dev, "Failed VSI LAN queue config for XDP, error:%d\n",
1813 status);
1814 goto clear_xdp_rings;
1815 }
1816 ice_vsi_assign_bpf_prog(vsi, prog);
1817
1818 return 0;
1819 clear_xdp_rings:
1820 for (i = 0; i < vsi->num_xdp_txq; i++)
1821 if (vsi->xdp_rings[i]) {
1822 kfree_rcu(vsi->xdp_rings[i], rcu);
1823 vsi->xdp_rings[i] = NULL;
1824 }
1825
1826 err_map_xdp:
1827 mutex_lock(&pf->avail_q_mutex);
1828 for (i = 0; i < vsi->num_xdp_txq; i++) {
1829 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
1830 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
1831 }
1832 mutex_unlock(&pf->avail_q_mutex);
1833
1834 devm_kfree(dev, vsi->xdp_rings);
1835 return -ENOMEM;
1836 }
1837
1838 /**
1839 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
1840 * @vsi: VSI to remove XDP rings
1841 *
1842 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
1843 * resources
1844 */
1845 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
1846 {
1847 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1848 struct ice_pf *pf = vsi->back;
1849 int i, v_idx;
1850
1851 /* q_vectors are freed in reset path so there's no point in detaching
1852 * rings; in case of rebuild being triggered not from reset reset bits
1853 * in pf->state won't be set, so additionally check first q_vector
1854 * against NULL
1855 */
1856 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
1857 goto free_qmap;
1858
1859 ice_for_each_q_vector(vsi, v_idx) {
1860 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
1861 struct ice_ring *ring;
1862
1863 ice_for_each_ring(ring, q_vector->tx)
1864 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
1865 break;
1866
1867 /* restore the value of last node prior to XDP setup */
1868 q_vector->tx.ring = ring;
1869 }
1870
1871 free_qmap:
1872 mutex_lock(&pf->avail_q_mutex);
1873 for (i = 0; i < vsi->num_xdp_txq; i++) {
1874 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
1875 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
1876 }
1877 mutex_unlock(&pf->avail_q_mutex);
1878
1879 for (i = 0; i < vsi->num_xdp_txq; i++)
1880 if (vsi->xdp_rings[i]) {
1881 if (vsi->xdp_rings[i]->desc)
1882 ice_free_tx_ring(vsi->xdp_rings[i]);
1883 kfree_rcu(vsi->xdp_rings[i], rcu);
1884 vsi->xdp_rings[i] = NULL;
1885 }
1886
1887 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
1888 vsi->xdp_rings = NULL;
1889
1890 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
1891 return 0;
1892
1893 ice_vsi_assign_bpf_prog(vsi, NULL);
1894
1895 /* notify Tx scheduler that we destroyed XDP queues and bring
1896 * back the old number of child nodes
1897 */
1898 for (i = 0; i < vsi->tc_cfg.numtc; i++)
1899 max_txqs[i] = vsi->num_txq;
1900
1901 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
1902 max_txqs);
1903 }
1904
1905 /**
1906 * ice_xdp_setup_prog - Add or remove XDP eBPF program
1907 * @vsi: VSI to setup XDP for
1908 * @prog: XDP program
1909 * @extack: netlink extended ack
1910 */
1911 static int
1912 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
1913 struct netlink_ext_ack *extack)
1914 {
1915 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
1916 bool if_running = netif_running(vsi->netdev);
1917 int ret = 0, xdp_ring_err = 0;
1918
1919 if (frame_size > vsi->rx_buf_len) {
1920 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
1921 return -EOPNOTSUPP;
1922 }
1923
1924 /* need to stop netdev while setting up the program for Rx rings */
1925 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
1926 ret = ice_down(vsi);
1927 if (ret) {
1928 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
1929 return ret;
1930 }
1931 }
1932
1933 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
1934 vsi->num_xdp_txq = vsi->alloc_txq;
1935 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
1936 if (xdp_ring_err)
1937 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
1938 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
1939 xdp_ring_err = ice_destroy_xdp_rings(vsi);
1940 if (xdp_ring_err)
1941 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
1942 } else {
1943 ice_vsi_assign_bpf_prog(vsi, prog);
1944 }
1945
1946 if (if_running)
1947 ret = ice_up(vsi);
1948
1949 if (!ret && prog && vsi->xsk_umems) {
1950 int i;
1951
1952 ice_for_each_rxq(vsi, i) {
1953 struct ice_ring *rx_ring = vsi->rx_rings[i];
1954
1955 if (rx_ring->xsk_umem)
1956 napi_schedule(&rx_ring->q_vector->napi);
1957 }
1958 }
1959
1960 return (ret || xdp_ring_err) ? -ENOMEM : 0;
1961 }
1962
1963 /**
1964 * ice_xdp - implements XDP handler
1965 * @dev: netdevice
1966 * @xdp: XDP command
1967 */
1968 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1969 {
1970 struct ice_netdev_priv *np = netdev_priv(dev);
1971 struct ice_vsi *vsi = np->vsi;
1972
1973 if (vsi->type != ICE_VSI_PF) {
1974 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
1975 return -EINVAL;
1976 }
1977
1978 switch (xdp->command) {
1979 case XDP_SETUP_PROG:
1980 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
1981 case XDP_QUERY_PROG:
1982 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
1983 return 0;
1984 case XDP_SETUP_XSK_UMEM:
1985 return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
1986 xdp->xsk.queue_id);
1987 default:
1988 return -EINVAL;
1989 }
1990 }
1991
1992 /**
1993 * ice_ena_misc_vector - enable the non-queue interrupts
1994 * @pf: board private structure
1995 */
1996 static void ice_ena_misc_vector(struct ice_pf *pf)
1997 {
1998 struct ice_hw *hw = &pf->hw;
1999 u32 val;
2000
2001 /* Disable anti-spoof detection interrupt to prevent spurious event
2002 * interrupts during a function reset. Anti-spoof functionally is
2003 * still supported.
2004 */
2005 val = rd32(hw, GL_MDCK_TX_TDPU);
2006 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2007 wr32(hw, GL_MDCK_TX_TDPU, val);
2008
2009 /* clear things first */
2010 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2011 rd32(hw, PFINT_OICR); /* read to clear */
2012
2013 val = (PFINT_OICR_ECC_ERR_M |
2014 PFINT_OICR_MAL_DETECT_M |
2015 PFINT_OICR_GRST_M |
2016 PFINT_OICR_PCI_EXCEPTION_M |
2017 PFINT_OICR_VFLR_M |
2018 PFINT_OICR_HMC_ERR_M |
2019 PFINT_OICR_PE_CRITERR_M);
2020
2021 wr32(hw, PFINT_OICR_ENA, val);
2022
2023 /* SW_ITR_IDX = 0, but don't change INTENA */
2024 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2025 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2026 }
2027
2028 /**
2029 * ice_misc_intr - misc interrupt handler
2030 * @irq: interrupt number
2031 * @data: pointer to a q_vector
2032 */
2033 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2034 {
2035 struct ice_pf *pf = (struct ice_pf *)data;
2036 struct ice_hw *hw = &pf->hw;
2037 irqreturn_t ret = IRQ_NONE;
2038 struct device *dev;
2039 u32 oicr, ena_mask;
2040
2041 dev = ice_pf_to_dev(pf);
2042 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2043 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2044
2045 oicr = rd32(hw, PFINT_OICR);
2046 ena_mask = rd32(hw, PFINT_OICR_ENA);
2047
2048 if (oicr & PFINT_OICR_SWINT_M) {
2049 ena_mask &= ~PFINT_OICR_SWINT_M;
2050 pf->sw_int_count++;
2051 }
2052
2053 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2054 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2055 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2056 }
2057 if (oicr & PFINT_OICR_VFLR_M) {
2058 /* disable any further VFLR event notifications */
2059 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2060 u32 reg = rd32(hw, PFINT_OICR_ENA);
2061
2062 reg &= ~PFINT_OICR_VFLR_M;
2063 wr32(hw, PFINT_OICR_ENA, reg);
2064 } else {
2065 ena_mask &= ~PFINT_OICR_VFLR_M;
2066 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2067 }
2068 }
2069
2070 if (oicr & PFINT_OICR_GRST_M) {
2071 u32 reset;
2072
2073 /* we have a reset warning */
2074 ena_mask &= ~PFINT_OICR_GRST_M;
2075 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2076 GLGEN_RSTAT_RESET_TYPE_S;
2077
2078 if (reset == ICE_RESET_CORER)
2079 pf->corer_count++;
2080 else if (reset == ICE_RESET_GLOBR)
2081 pf->globr_count++;
2082 else if (reset == ICE_RESET_EMPR)
2083 pf->empr_count++;
2084 else
2085 dev_dbg(dev, "Invalid reset type %d\n", reset);
2086
2087 /* If a reset cycle isn't already in progress, we set a bit in
2088 * pf->state so that the service task can start a reset/rebuild.
2089 * We also make note of which reset happened so that peer
2090 * devices/drivers can be informed.
2091 */
2092 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2093 if (reset == ICE_RESET_CORER)
2094 set_bit(__ICE_CORER_RECV, pf->state);
2095 else if (reset == ICE_RESET_GLOBR)
2096 set_bit(__ICE_GLOBR_RECV, pf->state);
2097 else
2098 set_bit(__ICE_EMPR_RECV, pf->state);
2099
2100 /* There are couple of different bits at play here.
2101 * hw->reset_ongoing indicates whether the hardware is
2102 * in reset. This is set to true when a reset interrupt
2103 * is received and set back to false after the driver
2104 * has determined that the hardware is out of reset.
2105 *
2106 * __ICE_RESET_OICR_RECV in pf->state indicates
2107 * that a post reset rebuild is required before the
2108 * driver is operational again. This is set above.
2109 *
2110 * As this is the start of the reset/rebuild cycle, set
2111 * both to indicate that.
2112 */
2113 hw->reset_ongoing = true;
2114 }
2115 }
2116
2117 if (oicr & PFINT_OICR_HMC_ERR_M) {
2118 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2119 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2120 rd32(hw, PFHMC_ERRORINFO),
2121 rd32(hw, PFHMC_ERRORDATA));
2122 }
2123
2124 /* Report any remaining unexpected interrupts */
2125 oicr &= ena_mask;
2126 if (oicr) {
2127 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2128 /* If a critical error is pending there is no choice but to
2129 * reset the device.
2130 */
2131 if (oicr & (PFINT_OICR_PE_CRITERR_M |
2132 PFINT_OICR_PCI_EXCEPTION_M |
2133 PFINT_OICR_ECC_ERR_M)) {
2134 set_bit(__ICE_PFR_REQ, pf->state);
2135 ice_service_task_schedule(pf);
2136 }
2137 }
2138 ret = IRQ_HANDLED;
2139
2140 if (!test_bit(__ICE_DOWN, pf->state)) {
2141 ice_service_task_schedule(pf);
2142 ice_irq_dynamic_ena(hw, NULL, NULL);
2143 }
2144
2145 return ret;
2146 }
2147
2148 /**
2149 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2150 * @hw: pointer to HW structure
2151 */
2152 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2153 {
2154 /* disable Admin queue Interrupt causes */
2155 wr32(hw, PFINT_FW_CTL,
2156 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2157
2158 /* disable Mailbox queue Interrupt causes */
2159 wr32(hw, PFINT_MBX_CTL,
2160 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2161
2162 /* disable Control queue Interrupt causes */
2163 wr32(hw, PFINT_OICR_CTL,
2164 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2165
2166 ice_flush(hw);
2167 }
2168
2169 /**
2170 * ice_free_irq_msix_misc - Unroll misc vector setup
2171 * @pf: board private structure
2172 */
2173 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2174 {
2175 struct ice_hw *hw = &pf->hw;
2176
2177 ice_dis_ctrlq_interrupts(hw);
2178
2179 /* disable OICR interrupt */
2180 wr32(hw, PFINT_OICR_ENA, 0);
2181 ice_flush(hw);
2182
2183 if (pf->msix_entries) {
2184 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2185 devm_free_irq(ice_pf_to_dev(pf),
2186 pf->msix_entries[pf->oicr_idx].vector, pf);
2187 }
2188
2189 pf->num_avail_sw_msix += 1;
2190 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2191 }
2192
2193 /**
2194 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2195 * @hw: pointer to HW structure
2196 * @reg_idx: HW vector index to associate the control queue interrupts with
2197 */
2198 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2199 {
2200 u32 val;
2201
2202 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2203 PFINT_OICR_CTL_CAUSE_ENA_M);
2204 wr32(hw, PFINT_OICR_CTL, val);
2205
2206 /* enable Admin queue Interrupt causes */
2207 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2208 PFINT_FW_CTL_CAUSE_ENA_M);
2209 wr32(hw, PFINT_FW_CTL, val);
2210
2211 /* enable Mailbox queue Interrupt causes */
2212 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2213 PFINT_MBX_CTL_CAUSE_ENA_M);
2214 wr32(hw, PFINT_MBX_CTL, val);
2215
2216 ice_flush(hw);
2217 }
2218
2219 /**
2220 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2221 * @pf: board private structure
2222 *
2223 * This sets up the handler for MSIX 0, which is used to manage the
2224 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2225 * when in MSI or Legacy interrupt mode.
2226 */
2227 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2228 {
2229 struct device *dev = ice_pf_to_dev(pf);
2230 struct ice_hw *hw = &pf->hw;
2231 int oicr_idx, err = 0;
2232
2233 if (!pf->int_name[0])
2234 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2235 dev_driver_string(dev), dev_name(dev));
2236
2237 /* Do not request IRQ but do enable OICR interrupt since settings are
2238 * lost during reset. Note that this function is called only during
2239 * rebuild path and not while reset is in progress.
2240 */
2241 if (ice_is_reset_in_progress(pf->state))
2242 goto skip_req_irq;
2243
2244 /* reserve one vector in irq_tracker for misc interrupts */
2245 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2246 if (oicr_idx < 0)
2247 return oicr_idx;
2248
2249 pf->num_avail_sw_msix -= 1;
2250 pf->oicr_idx = oicr_idx;
2251
2252 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2253 ice_misc_intr, 0, pf->int_name, pf);
2254 if (err) {
2255 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2256 pf->int_name, err);
2257 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2258 pf->num_avail_sw_msix += 1;
2259 return err;
2260 }
2261
2262 skip_req_irq:
2263 ice_ena_misc_vector(pf);
2264
2265 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2266 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2267 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2268
2269 ice_flush(hw);
2270 ice_irq_dynamic_ena(hw, NULL, NULL);
2271
2272 return 0;
2273 }
2274
2275 /**
2276 * ice_napi_add - register NAPI handler for the VSI
2277 * @vsi: VSI for which NAPI handler is to be registered
2278 *
2279 * This function is only called in the driver's load path. Registering the NAPI
2280 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2281 * reset/rebuild, etc.)
2282 */
2283 static void ice_napi_add(struct ice_vsi *vsi)
2284 {
2285 int v_idx;
2286
2287 if (!vsi->netdev)
2288 return;
2289
2290 ice_for_each_q_vector(vsi, v_idx)
2291 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2292 ice_napi_poll, NAPI_POLL_WEIGHT);
2293 }
2294
2295 /**
2296 * ice_set_ops - set netdev and ethtools ops for the given netdev
2297 * @netdev: netdev instance
2298 */
2299 static void ice_set_ops(struct net_device *netdev)
2300 {
2301 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2302
2303 if (ice_is_safe_mode(pf)) {
2304 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2305 ice_set_ethtool_safe_mode_ops(netdev);
2306 return;
2307 }
2308
2309 netdev->netdev_ops = &ice_netdev_ops;
2310 ice_set_ethtool_ops(netdev);
2311 }
2312
2313 /**
2314 * ice_set_netdev_features - set features for the given netdev
2315 * @netdev: netdev instance
2316 */
2317 static void ice_set_netdev_features(struct net_device *netdev)
2318 {
2319 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2320 netdev_features_t csumo_features;
2321 netdev_features_t vlano_features;
2322 netdev_features_t dflt_features;
2323 netdev_features_t tso_features;
2324
2325 if (ice_is_safe_mode(pf)) {
2326 /* safe mode */
2327 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2328 netdev->hw_features = netdev->features;
2329 return;
2330 }
2331
2332 dflt_features = NETIF_F_SG |
2333 NETIF_F_HIGHDMA |
2334 NETIF_F_RXHASH;
2335
2336 csumo_features = NETIF_F_RXCSUM |
2337 NETIF_F_IP_CSUM |
2338 NETIF_F_SCTP_CRC |
2339 NETIF_F_IPV6_CSUM;
2340
2341 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2342 NETIF_F_HW_VLAN_CTAG_TX |
2343 NETIF_F_HW_VLAN_CTAG_RX;
2344
2345 tso_features = NETIF_F_TSO |
2346 NETIF_F_GSO_UDP_L4;
2347
2348 /* set features that user can change */
2349 netdev->hw_features = dflt_features | csumo_features |
2350 vlano_features | tso_features;
2351
2352 /* enable features */
2353 netdev->features |= netdev->hw_features;
2354 /* encap and VLAN devices inherit default, csumo and tso features */
2355 netdev->hw_enc_features |= dflt_features | csumo_features |
2356 tso_features;
2357 netdev->vlan_features |= dflt_features | csumo_features |
2358 tso_features;
2359 }
2360
2361 /**
2362 * ice_cfg_netdev - Allocate, configure and register a netdev
2363 * @vsi: the VSI associated with the new netdev
2364 *
2365 * Returns 0 on success, negative value on failure
2366 */
2367 static int ice_cfg_netdev(struct ice_vsi *vsi)
2368 {
2369 struct ice_pf *pf = vsi->back;
2370 struct ice_netdev_priv *np;
2371 struct net_device *netdev;
2372 u8 mac_addr[ETH_ALEN];
2373 int err;
2374
2375 err = ice_devlink_create_port(pf);
2376 if (err)
2377 return err;
2378
2379 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2380 vsi->alloc_rxq);
2381 if (!netdev) {
2382 err = -ENOMEM;
2383 goto err_destroy_devlink_port;
2384 }
2385
2386 vsi->netdev = netdev;
2387 np = netdev_priv(netdev);
2388 np->vsi = vsi;
2389
2390 ice_set_netdev_features(netdev);
2391
2392 ice_set_ops(netdev);
2393
2394 if (vsi->type == ICE_VSI_PF) {
2395 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2396 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2397 ether_addr_copy(netdev->dev_addr, mac_addr);
2398 ether_addr_copy(netdev->perm_addr, mac_addr);
2399 }
2400
2401 netdev->priv_flags |= IFF_UNICAST_FLT;
2402
2403 /* Setup netdev TC information */
2404 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2405
2406 /* setup watchdog timeout value to be 5 second */
2407 netdev->watchdog_timeo = 5 * HZ;
2408
2409 netdev->min_mtu = ETH_MIN_MTU;
2410 netdev->max_mtu = ICE_MAX_MTU;
2411
2412 err = register_netdev(vsi->netdev);
2413 if (err)
2414 goto err_destroy_devlink_port;
2415
2416 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
2417
2418 netif_carrier_off(vsi->netdev);
2419
2420 /* make sure transmit queues start off as stopped */
2421 netif_tx_stop_all_queues(vsi->netdev);
2422
2423 return 0;
2424
2425 err_destroy_devlink_port:
2426 ice_devlink_destroy_port(pf);
2427
2428 return err;
2429 }
2430
2431 /**
2432 * ice_fill_rss_lut - Fill the RSS lookup table with default values
2433 * @lut: Lookup table
2434 * @rss_table_size: Lookup table size
2435 * @rss_size: Range of queue number for hashing
2436 */
2437 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2438 {
2439 u16 i;
2440
2441 for (i = 0; i < rss_table_size; i++)
2442 lut[i] = i % rss_size;
2443 }
2444
2445 /**
2446 * ice_pf_vsi_setup - Set up a PF VSI
2447 * @pf: board private structure
2448 * @pi: pointer to the port_info instance
2449 *
2450 * Returns pointer to the successfully allocated VSI software struct
2451 * on success, otherwise returns NULL on failure.
2452 */
2453 static struct ice_vsi *
2454 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2455 {
2456 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
2457 }
2458
2459 /**
2460 * ice_lb_vsi_setup - Set up a loopback VSI
2461 * @pf: board private structure
2462 * @pi: pointer to the port_info instance
2463 *
2464 * Returns pointer to the successfully allocated VSI software struct
2465 * on success, otherwise returns NULL on failure.
2466 */
2467 struct ice_vsi *
2468 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2469 {
2470 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
2471 }
2472
2473 /**
2474 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
2475 * @netdev: network interface to be adjusted
2476 * @proto: unused protocol
2477 * @vid: VLAN ID to be added
2478 *
2479 * net_device_ops implementation for adding VLAN IDs
2480 */
2481 static int
2482 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
2483 u16 vid)
2484 {
2485 struct ice_netdev_priv *np = netdev_priv(netdev);
2486 struct ice_vsi *vsi = np->vsi;
2487 int ret;
2488
2489 if (vid >= VLAN_N_VID) {
2490 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2491 vid, VLAN_N_VID);
2492 return -EINVAL;
2493 }
2494
2495 if (vsi->info.pvid)
2496 return -EINVAL;
2497
2498 /* VLAN 0 is added by default during load/reset */
2499 if (!vid)
2500 return 0;
2501
2502 /* Enable VLAN pruning when a VLAN other than 0 is added */
2503 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
2504 ret = ice_cfg_vlan_pruning(vsi, true, false);
2505 if (ret)
2506 return ret;
2507 }
2508
2509 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
2510 * packets aren't pruned by the device's internal switch on Rx
2511 */
2512 ret = ice_vsi_add_vlan(vsi, vid);
2513 if (!ret) {
2514 vsi->vlan_ena = true;
2515 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2516 }
2517
2518 return ret;
2519 }
2520
2521 /**
2522 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
2523 * @netdev: network interface to be adjusted
2524 * @proto: unused protocol
2525 * @vid: VLAN ID to be removed
2526 *
2527 * net_device_ops implementation for removing VLAN IDs
2528 */
2529 static int
2530 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
2531 u16 vid)
2532 {
2533 struct ice_netdev_priv *np = netdev_priv(netdev);
2534 struct ice_vsi *vsi = np->vsi;
2535 int ret;
2536
2537 if (vsi->info.pvid)
2538 return -EINVAL;
2539
2540 /* don't allow removal of VLAN 0 */
2541 if (!vid)
2542 return 0;
2543
2544 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
2545 * information
2546 */
2547 ret = ice_vsi_kill_vlan(vsi, vid);
2548 if (ret)
2549 return ret;
2550
2551 /* Disable pruning when VLAN 0 is the only VLAN rule */
2552 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
2553 ret = ice_cfg_vlan_pruning(vsi, false, false);
2554
2555 vsi->vlan_ena = false;
2556 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2557 return ret;
2558 }
2559
2560 /**
2561 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2562 * @pf: board private structure
2563 *
2564 * Returns 0 on success, negative value on failure
2565 */
2566 static int ice_setup_pf_sw(struct ice_pf *pf)
2567 {
2568 struct ice_vsi *vsi;
2569 int status = 0;
2570
2571 if (ice_is_reset_in_progress(pf->state))
2572 return -EBUSY;
2573
2574 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2575 if (!vsi) {
2576 status = -ENOMEM;
2577 goto unroll_vsi_setup;
2578 }
2579
2580 status = ice_cfg_netdev(vsi);
2581 if (status) {
2582 status = -ENODEV;
2583 goto unroll_vsi_setup;
2584 }
2585 /* netdev has to be configured before setting frame size */
2586 ice_vsi_cfg_frame_size(vsi);
2587
2588 /* Setup DCB netlink interface */
2589 ice_dcbnl_setup(vsi);
2590
2591 /* registering the NAPI handler requires both the queues and
2592 * netdev to be created, which are done in ice_pf_vsi_setup()
2593 * and ice_cfg_netdev() respectively
2594 */
2595 ice_napi_add(vsi);
2596
2597 status = ice_init_mac_fltr(pf);
2598 if (status)
2599 goto unroll_napi_add;
2600
2601 return status;
2602
2603 unroll_napi_add:
2604 if (vsi) {
2605 ice_napi_del(vsi);
2606 if (vsi->netdev) {
2607 if (vsi->netdev->reg_state == NETREG_REGISTERED)
2608 unregister_netdev(vsi->netdev);
2609 free_netdev(vsi->netdev);
2610 vsi->netdev = NULL;
2611 }
2612 }
2613
2614 unroll_vsi_setup:
2615 if (vsi) {
2616 ice_vsi_free_q_vectors(vsi);
2617 ice_vsi_delete(vsi);
2618 ice_vsi_put_qs(vsi);
2619 ice_vsi_clear(vsi);
2620 }
2621 return status;
2622 }
2623
2624 /**
2625 * ice_get_avail_q_count - Get count of queues in use
2626 * @pf_qmap: bitmap to get queue use count from
2627 * @lock: pointer to a mutex that protects access to pf_qmap
2628 * @size: size of the bitmap
2629 */
2630 static u16
2631 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
2632 {
2633 u16 count = 0, bit;
2634
2635 mutex_lock(lock);
2636 for_each_clear_bit(bit, pf_qmap, size)
2637 count++;
2638 mutex_unlock(lock);
2639
2640 return count;
2641 }
2642
2643 /**
2644 * ice_get_avail_txq_count - Get count of Tx queues in use
2645 * @pf: pointer to an ice_pf instance
2646 */
2647 u16 ice_get_avail_txq_count(struct ice_pf *pf)
2648 {
2649 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
2650 pf->max_pf_txqs);
2651 }
2652
2653 /**
2654 * ice_get_avail_rxq_count - Get count of Rx queues in use
2655 * @pf: pointer to an ice_pf instance
2656 */
2657 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
2658 {
2659 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
2660 pf->max_pf_rxqs);
2661 }
2662
2663 /**
2664 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2665 * @pf: board private structure to initialize
2666 */
2667 static void ice_deinit_pf(struct ice_pf *pf)
2668 {
2669 ice_service_task_stop(pf);
2670 mutex_destroy(&pf->sw_mutex);
2671 mutex_destroy(&pf->tc_mutex);
2672 mutex_destroy(&pf->avail_q_mutex);
2673
2674 if (pf->avail_txqs) {
2675 bitmap_free(pf->avail_txqs);
2676 pf->avail_txqs = NULL;
2677 }
2678
2679 if (pf->avail_rxqs) {
2680 bitmap_free(pf->avail_rxqs);
2681 pf->avail_rxqs = NULL;
2682 }
2683 }
2684
2685 /**
2686 * ice_set_pf_caps - set PFs capability flags
2687 * @pf: pointer to the PF instance
2688 */
2689 static void ice_set_pf_caps(struct ice_pf *pf)
2690 {
2691 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
2692
2693 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2694 if (func_caps->common_cap.dcb)
2695 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2696 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2697 if (func_caps->common_cap.sr_iov_1_1) {
2698 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2699 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
2700 ICE_MAX_VF_COUNT);
2701 }
2702 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
2703 if (func_caps->common_cap.rss_table_size)
2704 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2705
2706 pf->max_pf_txqs = func_caps->common_cap.num_txq;
2707 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
2708 }
2709
2710 /**
2711 * ice_init_pf - Initialize general software structures (struct ice_pf)
2712 * @pf: board private structure to initialize
2713 */
2714 static int ice_init_pf(struct ice_pf *pf)
2715 {
2716 ice_set_pf_caps(pf);
2717
2718 mutex_init(&pf->sw_mutex);
2719 mutex_init(&pf->tc_mutex);
2720
2721 /* setup service timer and periodic service task */
2722 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2723 pf->serv_tmr_period = HZ;
2724 INIT_WORK(&pf->serv_task, ice_service_task);
2725 clear_bit(__ICE_SERVICE_SCHED, pf->state);
2726
2727 mutex_init(&pf->avail_q_mutex);
2728 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
2729 if (!pf->avail_txqs)
2730 return -ENOMEM;
2731
2732 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
2733 if (!pf->avail_rxqs) {
2734 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
2735 pf->avail_txqs = NULL;
2736 return -ENOMEM;
2737 }
2738
2739 return 0;
2740 }
2741
2742 /**
2743 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2744 * @pf: board private structure
2745 *
2746 * compute the number of MSIX vectors required (v_budget) and request from
2747 * the OS. Return the number of vectors reserved or negative on failure
2748 */
2749 static int ice_ena_msix_range(struct ice_pf *pf)
2750 {
2751 struct device *dev = ice_pf_to_dev(pf);
2752 int v_left, v_actual, v_budget = 0;
2753 int needed, err, i;
2754
2755 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2756
2757 /* reserve one vector for miscellaneous handler */
2758 needed = 1;
2759 if (v_left < needed)
2760 goto no_hw_vecs_left_err;
2761 v_budget += needed;
2762 v_left -= needed;
2763
2764 /* reserve vectors for LAN traffic */
2765 needed = min_t(int, num_online_cpus(), v_left);
2766 if (v_left < needed)
2767 goto no_hw_vecs_left_err;
2768 pf->num_lan_msix = needed;
2769 v_budget += needed;
2770 v_left -= needed;
2771
2772 pf->msix_entries = devm_kcalloc(dev, v_budget,
2773 sizeof(*pf->msix_entries), GFP_KERNEL);
2774
2775 if (!pf->msix_entries) {
2776 err = -ENOMEM;
2777 goto exit_err;
2778 }
2779
2780 for (i = 0; i < v_budget; i++)
2781 pf->msix_entries[i].entry = i;
2782
2783 /* actually reserve the vectors */
2784 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2785 ICE_MIN_MSIX, v_budget);
2786
2787 if (v_actual < 0) {
2788 dev_err(dev, "unable to reserve MSI-X vectors\n");
2789 err = v_actual;
2790 goto msix_err;
2791 }
2792
2793 if (v_actual < v_budget) {
2794 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
2795 v_budget, v_actual);
2796 /* 2 vectors for LAN (traffic + OICR) */
2797 #define ICE_MIN_LAN_VECS 2
2798
2799 if (v_actual < ICE_MIN_LAN_VECS) {
2800 /* error if we can't get minimum vectors */
2801 pci_disable_msix(pf->pdev);
2802 err = -ERANGE;
2803 goto msix_err;
2804 } else {
2805 pf->num_lan_msix = ICE_MIN_LAN_VECS;
2806 }
2807 }
2808
2809 return v_actual;
2810
2811 msix_err:
2812 devm_kfree(dev, pf->msix_entries);
2813 goto exit_err;
2814
2815 no_hw_vecs_left_err:
2816 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
2817 needed, v_left);
2818 err = -ERANGE;
2819 exit_err:
2820 pf->num_lan_msix = 0;
2821 return err;
2822 }
2823
2824 /**
2825 * ice_dis_msix - Disable MSI-X interrupt setup in OS
2826 * @pf: board private structure
2827 */
2828 static void ice_dis_msix(struct ice_pf *pf)
2829 {
2830 pci_disable_msix(pf->pdev);
2831 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
2832 pf->msix_entries = NULL;
2833 }
2834
2835 /**
2836 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2837 * @pf: board private structure
2838 */
2839 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2840 {
2841 ice_dis_msix(pf);
2842
2843 if (pf->irq_tracker) {
2844 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
2845 pf->irq_tracker = NULL;
2846 }
2847 }
2848
2849 /**
2850 * ice_init_interrupt_scheme - Determine proper interrupt scheme
2851 * @pf: board private structure to initialize
2852 */
2853 static int ice_init_interrupt_scheme(struct ice_pf *pf)
2854 {
2855 int vectors;
2856
2857 vectors = ice_ena_msix_range(pf);
2858
2859 if (vectors < 0)
2860 return vectors;
2861
2862 /* set up vector assignment tracking */
2863 pf->irq_tracker =
2864 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
2865 (sizeof(u16) * vectors), GFP_KERNEL);
2866 if (!pf->irq_tracker) {
2867 ice_dis_msix(pf);
2868 return -ENOMEM;
2869 }
2870
2871 /* populate SW interrupts pool with number of OS granted IRQs. */
2872 pf->num_avail_sw_msix = vectors;
2873 pf->irq_tracker->num_entries = vectors;
2874 pf->irq_tracker->end = pf->irq_tracker->num_entries;
2875
2876 return 0;
2877 }
2878
2879 /**
2880 * ice_vsi_recfg_qs - Change the number of queues on a VSI
2881 * @vsi: VSI being changed
2882 * @new_rx: new number of Rx queues
2883 * @new_tx: new number of Tx queues
2884 *
2885 * Only change the number of queues if new_tx, or new_rx is non-0.
2886 *
2887 * Returns 0 on success.
2888 */
2889 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
2890 {
2891 struct ice_pf *pf = vsi->back;
2892 int err = 0, timeout = 50;
2893
2894 if (!new_rx && !new_tx)
2895 return -EINVAL;
2896
2897 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
2898 timeout--;
2899 if (!timeout)
2900 return -EBUSY;
2901 usleep_range(1000, 2000);
2902 }
2903
2904 if (new_tx)
2905 vsi->req_txq = new_tx;
2906 if (new_rx)
2907 vsi->req_rxq = new_rx;
2908
2909 /* set for the next time the netdev is started */
2910 if (!netif_running(vsi->netdev)) {
2911 ice_vsi_rebuild(vsi, false);
2912 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
2913 goto done;
2914 }
2915
2916 ice_vsi_close(vsi);
2917 ice_vsi_rebuild(vsi, false);
2918 ice_pf_dcb_recfg(pf);
2919 ice_vsi_open(vsi);
2920 done:
2921 clear_bit(__ICE_CFG_BUSY, pf->state);
2922 return err;
2923 }
2924
2925 /**
2926 * ice_log_pkg_init - log result of DDP package load
2927 * @hw: pointer to hardware info
2928 * @status: status of package load
2929 */
2930 static void
2931 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
2932 {
2933 struct ice_pf *pf = (struct ice_pf *)hw->back;
2934 struct device *dev = ice_pf_to_dev(pf);
2935
2936 switch (*status) {
2937 case ICE_SUCCESS:
2938 /* The package download AdminQ command returned success because
2939 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
2940 * already a package loaded on the device.
2941 */
2942 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
2943 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
2944 hw->pkg_ver.update == hw->active_pkg_ver.update &&
2945 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
2946 !memcmp(hw->pkg_name, hw->active_pkg_name,
2947 sizeof(hw->pkg_name))) {
2948 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
2949 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
2950 hw->active_pkg_name,
2951 hw->active_pkg_ver.major,
2952 hw->active_pkg_ver.minor,
2953 hw->active_pkg_ver.update,
2954 hw->active_pkg_ver.draft);
2955 else
2956 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
2957 hw->active_pkg_name,
2958 hw->active_pkg_ver.major,
2959 hw->active_pkg_ver.minor,
2960 hw->active_pkg_ver.update,
2961 hw->active_pkg_ver.draft);
2962 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
2963 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
2964 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
2965 hw->active_pkg_name,
2966 hw->active_pkg_ver.major,
2967 hw->active_pkg_ver.minor,
2968 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2969 *status = ICE_ERR_NOT_SUPPORTED;
2970 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2971 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
2972 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
2973 hw->active_pkg_name,
2974 hw->active_pkg_ver.major,
2975 hw->active_pkg_ver.minor,
2976 hw->active_pkg_ver.update,
2977 hw->active_pkg_ver.draft,
2978 hw->pkg_name,
2979 hw->pkg_ver.major,
2980 hw->pkg_ver.minor,
2981 hw->pkg_ver.update,
2982 hw->pkg_ver.draft);
2983 } else {
2984 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
2985 *status = ICE_ERR_NOT_SUPPORTED;
2986 }
2987 break;
2988 case ICE_ERR_BUF_TOO_SHORT:
2989 case ICE_ERR_CFG:
2990 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
2991 break;
2992 case ICE_ERR_NOT_SUPPORTED:
2993 /* Package File version not supported */
2994 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
2995 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2996 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
2997 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
2998 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
2999 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3000 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3001 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3002 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3003 break;
3004 case ICE_ERR_AQ_ERROR:
3005 switch (hw->pkg_dwnld_status) {
3006 case ICE_AQ_RC_ENOSEC:
3007 case ICE_AQ_RC_EBADSIG:
3008 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3009 return;
3010 case ICE_AQ_RC_ESVN:
3011 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3012 return;
3013 case ICE_AQ_RC_EBADMAN:
3014 case ICE_AQ_RC_EBADBUF:
3015 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3016 return;
3017 default:
3018 break;
3019 }
3020 fallthrough;
3021 default:
3022 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3023 *status);
3024 break;
3025 }
3026 }
3027
3028 /**
3029 * ice_load_pkg - load/reload the DDP Package file
3030 * @firmware: firmware structure when firmware requested or NULL for reload
3031 * @pf: pointer to the PF instance
3032 *
3033 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3034 * initialize HW tables.
3035 */
3036 static void
3037 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3038 {
3039 enum ice_status status = ICE_ERR_PARAM;
3040 struct device *dev = ice_pf_to_dev(pf);
3041 struct ice_hw *hw = &pf->hw;
3042
3043 /* Load DDP Package */
3044 if (firmware && !hw->pkg_copy) {
3045 status = ice_copy_and_init_pkg(hw, firmware->data,
3046 firmware->size);
3047 ice_log_pkg_init(hw, &status);
3048 } else if (!firmware && hw->pkg_copy) {
3049 /* Reload package during rebuild after CORER/GLOBR reset */
3050 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3051 ice_log_pkg_init(hw, &status);
3052 } else {
3053 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3054 }
3055
3056 if (status) {
3057 /* Safe Mode */
3058 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3059 return;
3060 }
3061
3062 /* Successful download package is the precondition for advanced
3063 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3064 */
3065 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3066 }
3067
3068 /**
3069 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3070 * @pf: pointer to the PF structure
3071 *
3072 * There is no error returned here because the driver should be able to handle
3073 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3074 * specifically with Tx.
3075 */
3076 static void ice_verify_cacheline_size(struct ice_pf *pf)
3077 {
3078 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3079 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3080 ICE_CACHE_LINE_BYTES);
3081 }
3082
3083 /**
3084 * ice_send_version - update firmware with driver version
3085 * @pf: PF struct
3086 *
3087 * Returns ICE_SUCCESS on success, else error code
3088 */
3089 static enum ice_status ice_send_version(struct ice_pf *pf)
3090 {
3091 struct ice_driver_ver dv;
3092
3093 dv.major_ver = DRV_VERSION_MAJOR;
3094 dv.minor_ver = DRV_VERSION_MINOR;
3095 dv.build_ver = DRV_VERSION_BUILD;
3096 dv.subbuild_ver = 0;
3097 strscpy((char *)dv.driver_string, DRV_VERSION,
3098 sizeof(dv.driver_string));
3099 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3100 }
3101
3102 /**
3103 * ice_get_opt_fw_name - return optional firmware file name or NULL
3104 * @pf: pointer to the PF instance
3105 */
3106 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3107 {
3108 /* Optional firmware name same as default with additional dash
3109 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3110 */
3111 struct pci_dev *pdev = pf->pdev;
3112 char *opt_fw_filename;
3113 u64 dsn;
3114
3115 /* Determine the name of the optional file using the DSN (two
3116 * dwords following the start of the DSN Capability).
3117 */
3118 dsn = pci_get_dsn(pdev);
3119 if (!dsn)
3120 return NULL;
3121
3122 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3123 if (!opt_fw_filename)
3124 return NULL;
3125
3126 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llX.pkg",
3127 ICE_DDP_PKG_PATH, dsn);
3128
3129 return opt_fw_filename;
3130 }
3131
3132 /**
3133 * ice_request_fw - Device initialization routine
3134 * @pf: pointer to the PF instance
3135 */
3136 static void ice_request_fw(struct ice_pf *pf)
3137 {
3138 char *opt_fw_filename = ice_get_opt_fw_name(pf);
3139 const struct firmware *firmware = NULL;
3140 struct device *dev = ice_pf_to_dev(pf);
3141 int err = 0;
3142
3143 /* optional device-specific DDP (if present) overrides the default DDP
3144 * package file. kernel logs a debug message if the file doesn't exist,
3145 * and warning messages for other errors.
3146 */
3147 if (opt_fw_filename) {
3148 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3149 if (err) {
3150 kfree(opt_fw_filename);
3151 goto dflt_pkg_load;
3152 }
3153
3154 /* request for firmware was successful. Download to device */
3155 ice_load_pkg(firmware, pf);
3156 kfree(opt_fw_filename);
3157 release_firmware(firmware);
3158 return;
3159 }
3160
3161 dflt_pkg_load:
3162 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3163 if (err) {
3164 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3165 return;
3166 }
3167
3168 /* request for firmware was successful. Download to device */
3169 ice_load_pkg(firmware, pf);
3170 release_firmware(firmware);
3171 }
3172
3173 /**
3174 * ice_probe - Device initialization routine
3175 * @pdev: PCI device information struct
3176 * @ent: entry in ice_pci_tbl
3177 *
3178 * Returns 0 on success, negative on failure
3179 */
3180 static int
3181 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3182 {
3183 struct device *dev = &pdev->dev;
3184 struct ice_pf *pf;
3185 struct ice_hw *hw;
3186 int err;
3187
3188 /* this driver uses devres, see
3189 * Documentation/driver-api/driver-model/devres.rst
3190 */
3191 err = pcim_enable_device(pdev);
3192 if (err)
3193 return err;
3194
3195 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3196 if (err) {
3197 dev_err(dev, "BAR0 I/O map error %d\n", err);
3198 return err;
3199 }
3200
3201 pf = ice_allocate_pf(dev);
3202 if (!pf)
3203 return -ENOMEM;
3204
3205 /* set up for high or low DMA */
3206 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3207 if (err)
3208 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3209 if (err) {
3210 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3211 return err;
3212 }
3213
3214 pci_enable_pcie_error_reporting(pdev);
3215 pci_set_master(pdev);
3216
3217 pf->pdev = pdev;
3218 pci_set_drvdata(pdev, pf);
3219 set_bit(__ICE_DOWN, pf->state);
3220 /* Disable service task until DOWN bit is cleared */
3221 set_bit(__ICE_SERVICE_DIS, pf->state);
3222
3223 hw = &pf->hw;
3224 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
3225 pci_save_state(pdev);
3226
3227 hw->back = pf;
3228 hw->vendor_id = pdev->vendor;
3229 hw->device_id = pdev->device;
3230 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3231 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3232 hw->subsystem_device_id = pdev->subsystem_device;
3233 hw->bus.device = PCI_SLOT(pdev->devfn);
3234 hw->bus.func = PCI_FUNC(pdev->devfn);
3235 ice_set_ctrlq_len(hw);
3236
3237 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
3238
3239 err = ice_devlink_register(pf);
3240 if (err) {
3241 dev_err(dev, "ice_devlink_register failed: %d\n", err);
3242 goto err_exit_unroll;
3243 }
3244
3245 #ifndef CONFIG_DYNAMIC_DEBUG
3246 if (debug < -1)
3247 hw->debug_mask = debug;
3248 #endif
3249
3250 err = ice_init_hw(hw);
3251 if (err) {
3252 dev_err(dev, "ice_init_hw failed: %d\n", err);
3253 err = -EIO;
3254 goto err_exit_unroll;
3255 }
3256
3257 ice_request_fw(pf);
3258
3259 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
3260 * set in pf->state, which will cause ice_is_safe_mode to return
3261 * true
3262 */
3263 if (ice_is_safe_mode(pf)) {
3264 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
3265 /* we already got function/device capabilities but these don't
3266 * reflect what the driver needs to do in safe mode. Instead of
3267 * adding conditional logic everywhere to ignore these
3268 * device/function capabilities, override them.
3269 */
3270 ice_set_safe_mode_caps(hw);
3271 }
3272
3273 err = ice_init_pf(pf);
3274 if (err) {
3275 dev_err(dev, "ice_init_pf failed: %d\n", err);
3276 goto err_init_pf_unroll;
3277 }
3278
3279 ice_devlink_init_regions(pf);
3280
3281 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
3282 if (!pf->num_alloc_vsi) {
3283 err = -EIO;
3284 goto err_init_pf_unroll;
3285 }
3286
3287 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
3288 GFP_KERNEL);
3289 if (!pf->vsi) {
3290 err = -ENOMEM;
3291 goto err_init_pf_unroll;
3292 }
3293
3294 err = ice_init_interrupt_scheme(pf);
3295 if (err) {
3296 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
3297 err = -EIO;
3298 goto err_init_interrupt_unroll;
3299 }
3300
3301 /* Driver is mostly up */
3302 clear_bit(__ICE_DOWN, pf->state);
3303
3304 /* In case of MSIX we are going to setup the misc vector right here
3305 * to handle admin queue events etc. In case of legacy and MSI
3306 * the misc functionality and queue processing is combined in
3307 * the same vector and that gets setup at open.
3308 */
3309 err = ice_req_irq_msix_misc(pf);
3310 if (err) {
3311 dev_err(dev, "setup of misc vector failed: %d\n", err);
3312 goto err_init_interrupt_unroll;
3313 }
3314
3315 /* create switch struct for the switch element created by FW on boot */
3316 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
3317 if (!pf->first_sw) {
3318 err = -ENOMEM;
3319 goto err_msix_misc_unroll;
3320 }
3321
3322 if (hw->evb_veb)
3323 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
3324 else
3325 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
3326
3327 pf->first_sw->pf = pf;
3328
3329 /* record the sw_id available for later use */
3330 pf->first_sw->sw_id = hw->port_info->sw_id;
3331
3332 err = ice_setup_pf_sw(pf);
3333 if (err) {
3334 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
3335 goto err_alloc_sw_unroll;
3336 }
3337
3338 clear_bit(__ICE_SERVICE_DIS, pf->state);
3339
3340 /* tell the firmware we are up */
3341 err = ice_send_version(pf);
3342 if (err) {
3343 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
3344 ice_drv_ver, err);
3345 goto err_alloc_sw_unroll;
3346 }
3347
3348 /* since everything is good, start the service timer */
3349 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3350
3351 err = ice_init_link_events(pf->hw.port_info);
3352 if (err) {
3353 dev_err(dev, "ice_init_link_events failed: %d\n", err);
3354 goto err_alloc_sw_unroll;
3355 }
3356
3357 ice_verify_cacheline_size(pf);
3358
3359 /* If no DDP driven features have to be setup, return here */
3360 if (ice_is_safe_mode(pf))
3361 return 0;
3362
3363 /* initialize DDP driven features */
3364
3365 /* Note: DCB init failure is non-fatal to load */
3366 if (ice_init_pf_dcb(pf, false)) {
3367 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3368 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
3369 } else {
3370 ice_cfg_lldp_mib_change(&pf->hw, true);
3371 }
3372
3373 /* print PCI link speed and width */
3374 pcie_print_link_status(pf->pdev);
3375
3376 return 0;
3377
3378 err_alloc_sw_unroll:
3379 ice_devlink_destroy_port(pf);
3380 set_bit(__ICE_SERVICE_DIS, pf->state);
3381 set_bit(__ICE_DOWN, pf->state);
3382 devm_kfree(dev, pf->first_sw);
3383 err_msix_misc_unroll:
3384 ice_free_irq_msix_misc(pf);
3385 err_init_interrupt_unroll:
3386 ice_clear_interrupt_scheme(pf);
3387 devm_kfree(dev, pf->vsi);
3388 err_init_pf_unroll:
3389 ice_deinit_pf(pf);
3390 ice_devlink_destroy_regions(pf);
3391 ice_deinit_hw(hw);
3392 err_exit_unroll:
3393 ice_devlink_unregister(pf);
3394 pci_disable_pcie_error_reporting(pdev);
3395 return err;
3396 }
3397
3398 /**
3399 * ice_remove - Device removal routine
3400 * @pdev: PCI device information struct
3401 */
3402 static void ice_remove(struct pci_dev *pdev)
3403 {
3404 struct ice_pf *pf = pci_get_drvdata(pdev);
3405 int i;
3406
3407 if (!pf)
3408 return;
3409
3410 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
3411 if (!ice_is_reset_in_progress(pf->state))
3412 break;
3413 msleep(100);
3414 }
3415
3416 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
3417 set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
3418 ice_free_vfs(pf);
3419 }
3420
3421 set_bit(__ICE_DOWN, pf->state);
3422 ice_service_task_stop(pf);
3423
3424 ice_devlink_destroy_port(pf);
3425 ice_vsi_release_all(pf);
3426 ice_free_irq_msix_misc(pf);
3427 ice_for_each_vsi(pf, i) {
3428 if (!pf->vsi[i])
3429 continue;
3430 ice_vsi_free_q_vectors(pf->vsi[i]);
3431 }
3432 ice_deinit_pf(pf);
3433 ice_devlink_destroy_regions(pf);
3434 ice_deinit_hw(&pf->hw);
3435 ice_devlink_unregister(pf);
3436
3437 /* Issue a PFR as part of the prescribed driver unload flow. Do not
3438 * do it via ice_schedule_reset() since there is no need to rebuild
3439 * and the service task is already stopped.
3440 */
3441 ice_reset(&pf->hw, ICE_RESET_PFR);
3442 pci_wait_for_pending_transaction(pdev);
3443 ice_clear_interrupt_scheme(pf);
3444 pci_disable_pcie_error_reporting(pdev);
3445 }
3446
3447 /**
3448 * ice_pci_err_detected - warning that PCI error has been detected
3449 * @pdev: PCI device information struct
3450 * @err: the type of PCI error
3451 *
3452 * Called to warn that something happened on the PCI bus and the error handling
3453 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
3454 */
3455 static pci_ers_result_t
3456 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
3457 {
3458 struct ice_pf *pf = pci_get_drvdata(pdev);
3459
3460 if (!pf) {
3461 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
3462 __func__, err);
3463 return PCI_ERS_RESULT_DISCONNECT;
3464 }
3465
3466 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3467 ice_service_task_stop(pf);
3468
3469 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3470 set_bit(__ICE_PFR_REQ, pf->state);
3471 ice_prepare_for_reset(pf);
3472 }
3473 }
3474
3475 return PCI_ERS_RESULT_NEED_RESET;
3476 }
3477
3478 /**
3479 * ice_pci_err_slot_reset - a PCI slot reset has just happened
3480 * @pdev: PCI device information struct
3481 *
3482 * Called to determine if the driver can recover from the PCI slot reset by
3483 * using a register read to determine if the device is recoverable.
3484 */
3485 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
3486 {
3487 struct ice_pf *pf = pci_get_drvdata(pdev);
3488 pci_ers_result_t result;
3489 int err;
3490 u32 reg;
3491
3492 err = pci_enable_device_mem(pdev);
3493 if (err) {
3494 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
3495 err);
3496 result = PCI_ERS_RESULT_DISCONNECT;
3497 } else {
3498 pci_set_master(pdev);
3499 pci_restore_state(pdev);
3500 pci_save_state(pdev);
3501 pci_wake_from_d3(pdev, false);
3502
3503 /* Check for life */
3504 reg = rd32(&pf->hw, GLGEN_RTRIG);
3505 if (!reg)
3506 result = PCI_ERS_RESULT_RECOVERED;
3507 else
3508 result = PCI_ERS_RESULT_DISCONNECT;
3509 }
3510
3511 err = pci_aer_clear_nonfatal_status(pdev);
3512 if (err)
3513 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
3514 err);
3515 /* non-fatal, continue */
3516
3517 return result;
3518 }
3519
3520 /**
3521 * ice_pci_err_resume - restart operations after PCI error recovery
3522 * @pdev: PCI device information struct
3523 *
3524 * Called to allow the driver to bring things back up after PCI error and/or
3525 * reset recovery have finished
3526 */
3527 static void ice_pci_err_resume(struct pci_dev *pdev)
3528 {
3529 struct ice_pf *pf = pci_get_drvdata(pdev);
3530
3531 if (!pf) {
3532 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
3533 __func__);
3534 return;
3535 }
3536
3537 if (test_bit(__ICE_SUSPENDED, pf->state)) {
3538 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
3539 __func__);
3540 return;
3541 }
3542
3543 ice_do_reset(pf, ICE_RESET_PFR);
3544 ice_service_task_restart(pf);
3545 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3546 }
3547
3548 /**
3549 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
3550 * @pdev: PCI device information struct
3551 */
3552 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
3553 {
3554 struct ice_pf *pf = pci_get_drvdata(pdev);
3555
3556 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3557 ice_service_task_stop(pf);
3558
3559 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3560 set_bit(__ICE_PFR_REQ, pf->state);
3561 ice_prepare_for_reset(pf);
3562 }
3563 }
3564 }
3565
3566 /**
3567 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
3568 * @pdev: PCI device information struct
3569 */
3570 static void ice_pci_err_reset_done(struct pci_dev *pdev)
3571 {
3572 ice_pci_err_resume(pdev);
3573 }
3574
3575 /* ice_pci_tbl - PCI Device ID Table
3576 *
3577 * Wildcard entries (PCI_ANY_ID) should come last
3578 * Last entry must be all 0s
3579 *
3580 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3581 * Class, Class Mask, private data (not used) }
3582 */
3583 static const struct pci_device_id ice_pci_tbl[] = {
3584 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
3585 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
3586 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
3587 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
3588 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
3589 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
3590 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
3591 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
3592 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
3593 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
3594 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
3595 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
3596 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
3597 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
3598 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
3599 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
3600 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
3601 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
3602 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
3603 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
3604 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
3605 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
3606 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
3607 /* required last entry */
3608 { 0, }
3609 };
3610 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3611
3612 static const struct pci_error_handlers ice_pci_err_handler = {
3613 .error_detected = ice_pci_err_detected,
3614 .slot_reset = ice_pci_err_slot_reset,
3615 .reset_prepare = ice_pci_err_reset_prepare,
3616 .reset_done = ice_pci_err_reset_done,
3617 .resume = ice_pci_err_resume
3618 };
3619
3620 static struct pci_driver ice_driver = {
3621 .name = KBUILD_MODNAME,
3622 .id_table = ice_pci_tbl,
3623 .probe = ice_probe,
3624 .remove = ice_remove,
3625 .sriov_configure = ice_sriov_configure,
3626 .err_handler = &ice_pci_err_handler
3627 };
3628
3629 /**
3630 * ice_module_init - Driver registration routine
3631 *
3632 * ice_module_init is the first routine called when the driver is
3633 * loaded. All it does is register with the PCI subsystem.
3634 */
3635 static int __init ice_module_init(void)
3636 {
3637 int status;
3638
3639 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3640 pr_info("%s\n", ice_copyright);
3641
3642 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
3643 if (!ice_wq) {
3644 pr_err("Failed to create workqueue\n");
3645 return -ENOMEM;
3646 }
3647
3648 status = pci_register_driver(&ice_driver);
3649 if (status) {
3650 pr_err("failed to register PCI driver, err %d\n", status);
3651 destroy_workqueue(ice_wq);
3652 }
3653
3654 return status;
3655 }
3656 module_init(ice_module_init);
3657
3658 /**
3659 * ice_module_exit - Driver exit cleanup routine
3660 *
3661 * ice_module_exit is called just before the driver is removed
3662 * from memory.
3663 */
3664 static void __exit ice_module_exit(void)
3665 {
3666 pci_unregister_driver(&ice_driver);
3667 destroy_workqueue(ice_wq);
3668 pr_info("module unloaded\n");
3669 }
3670 module_exit(ice_module_exit);
3671
3672 /**
3673 * ice_set_mac_address - NDO callback to set MAC address
3674 * @netdev: network interface device structure
3675 * @pi: pointer to an address structure
3676 *
3677 * Returns 0 on success, negative on failure
3678 */
3679 static int ice_set_mac_address(struct net_device *netdev, void *pi)
3680 {
3681 struct ice_netdev_priv *np = netdev_priv(netdev);
3682 struct ice_vsi *vsi = np->vsi;
3683 struct ice_pf *pf = vsi->back;
3684 struct ice_hw *hw = &pf->hw;
3685 struct sockaddr *addr = pi;
3686 enum ice_status status;
3687 u8 flags = 0;
3688 int err = 0;
3689 u8 *mac;
3690
3691 mac = (u8 *)addr->sa_data;
3692
3693 if (!is_valid_ether_addr(mac))
3694 return -EADDRNOTAVAIL;
3695
3696 if (ether_addr_equal(netdev->dev_addr, mac)) {
3697 netdev_warn(netdev, "already using mac %pM\n", mac);
3698 return 0;
3699 }
3700
3701 if (test_bit(__ICE_DOWN, pf->state) ||
3702 ice_is_reset_in_progress(pf->state)) {
3703 netdev_err(netdev, "can't set mac %pM. device not ready\n",
3704 mac);
3705 return -EBUSY;
3706 }
3707
3708 /* When we change the MAC address we also have to change the MAC address
3709 * based filter rules that were created previously for the old MAC
3710 * address. So first, we remove the old filter rule using ice_remove_mac
3711 * and then create a new filter rule using ice_add_mac via
3712 * ice_vsi_cfg_mac_fltr function call for both add and/or remove
3713 * filters.
3714 */
3715 status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false);
3716 if (status) {
3717 err = -EADDRNOTAVAIL;
3718 goto err_update_filters;
3719 }
3720
3721 status = ice_vsi_cfg_mac_fltr(vsi, mac, true);
3722 if (status) {
3723 err = -EADDRNOTAVAIL;
3724 goto err_update_filters;
3725 }
3726
3727 err_update_filters:
3728 if (err) {
3729 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
3730 mac);
3731 return err;
3732 }
3733
3734 /* change the netdev's MAC address */
3735 memcpy(netdev->dev_addr, mac, netdev->addr_len);
3736 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
3737 netdev->dev_addr);
3738
3739 /* write new MAC address to the firmware */
3740 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3741 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3742 if (status) {
3743 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
3744 mac, status);
3745 }
3746 return 0;
3747 }
3748
3749 /**
3750 * ice_set_rx_mode - NDO callback to set the netdev filters
3751 * @netdev: network interface device structure
3752 */
3753 static void ice_set_rx_mode(struct net_device *netdev)
3754 {
3755 struct ice_netdev_priv *np = netdev_priv(netdev);
3756 struct ice_vsi *vsi = np->vsi;
3757
3758 if (!vsi)
3759 return;
3760
3761 /* Set the flags to synchronize filters
3762 * ndo_set_rx_mode may be triggered even without a change in netdev
3763 * flags
3764 */
3765 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3766 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3767 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3768
3769 /* schedule our worker thread which will take care of
3770 * applying the new filter changes
3771 */
3772 ice_service_task_schedule(vsi->back);
3773 }
3774
3775 /**
3776 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
3777 * @netdev: network interface device structure
3778 * @queue_index: Queue ID
3779 * @maxrate: maximum bandwidth in Mbps
3780 */
3781 static int
3782 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
3783 {
3784 struct ice_netdev_priv *np = netdev_priv(netdev);
3785 struct ice_vsi *vsi = np->vsi;
3786 enum ice_status status;
3787 u16 q_handle;
3788 u8 tc;
3789
3790 /* Validate maxrate requested is within permitted range */
3791 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
3792 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
3793 maxrate, queue_index);
3794 return -EINVAL;
3795 }
3796
3797 q_handle = vsi->tx_rings[queue_index]->q_handle;
3798 tc = ice_dcb_get_tc(vsi, queue_index);
3799
3800 /* Set BW back to default, when user set maxrate to 0 */
3801 if (!maxrate)
3802 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
3803 q_handle, ICE_MAX_BW);
3804 else
3805 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
3806 q_handle, ICE_MAX_BW, maxrate * 1000);
3807 if (status) {
3808 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
3809 status);
3810 return -EIO;
3811 }
3812
3813 return 0;
3814 }
3815
3816 /**
3817 * ice_fdb_add - add an entry to the hardware database
3818 * @ndm: the input from the stack
3819 * @tb: pointer to array of nladdr (unused)
3820 * @dev: the net device pointer
3821 * @addr: the MAC address entry being added
3822 * @vid: VLAN ID
3823 * @flags: instructions from stack about fdb operation
3824 * @extack: netlink extended ack
3825 */
3826 static int
3827 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3828 struct net_device *dev, const unsigned char *addr, u16 vid,
3829 u16 flags, struct netlink_ext_ack __always_unused *extack)
3830 {
3831 int err;
3832
3833 if (vid) {
3834 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3835 return -EINVAL;
3836 }
3837 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3838 netdev_err(dev, "FDB only supports static addresses\n");
3839 return -EINVAL;
3840 }
3841
3842 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3843 err = dev_uc_add_excl(dev, addr);
3844 else if (is_multicast_ether_addr(addr))
3845 err = dev_mc_add_excl(dev, addr);
3846 else
3847 err = -EINVAL;
3848
3849 /* Only return duplicate errors if NLM_F_EXCL is set */
3850 if (err == -EEXIST && !(flags & NLM_F_EXCL))
3851 err = 0;
3852
3853 return err;
3854 }
3855
3856 /**
3857 * ice_fdb_del - delete an entry from the hardware database
3858 * @ndm: the input from the stack
3859 * @tb: pointer to array of nladdr (unused)
3860 * @dev: the net device pointer
3861 * @addr: the MAC address entry being added
3862 * @vid: VLAN ID
3863 */
3864 static int
3865 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3866 struct net_device *dev, const unsigned char *addr,
3867 __always_unused u16 vid)
3868 {
3869 int err;
3870
3871 if (ndm->ndm_state & NUD_PERMANENT) {
3872 netdev_err(dev, "FDB only supports static addresses\n");
3873 return -EINVAL;
3874 }
3875
3876 if (is_unicast_ether_addr(addr))
3877 err = dev_uc_del(dev, addr);
3878 else if (is_multicast_ether_addr(addr))
3879 err = dev_mc_del(dev, addr);
3880 else
3881 err = -EINVAL;
3882
3883 return err;
3884 }
3885
3886 /**
3887 * ice_set_features - set the netdev feature flags
3888 * @netdev: ptr to the netdev being adjusted
3889 * @features: the feature set that the stack is suggesting
3890 */
3891 static int
3892 ice_set_features(struct net_device *netdev, netdev_features_t features)
3893 {
3894 struct ice_netdev_priv *np = netdev_priv(netdev);
3895 struct ice_vsi *vsi = np->vsi;
3896 struct ice_pf *pf = vsi->back;
3897 int ret = 0;
3898
3899 /* Don't set any netdev advanced features with device in Safe Mode */
3900 if (ice_is_safe_mode(vsi->back)) {
3901 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
3902 return ret;
3903 }
3904
3905 /* Do not change setting during reset */
3906 if (ice_is_reset_in_progress(pf->state)) {
3907 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
3908 return -EBUSY;
3909 }
3910
3911 /* Multiple features can be changed in one call so keep features in
3912 * separate if/else statements to guarantee each feature is checked
3913 */
3914 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
3915 ret = ice_vsi_manage_rss_lut(vsi, true);
3916 else if (!(features & NETIF_F_RXHASH) &&
3917 netdev->features & NETIF_F_RXHASH)
3918 ret = ice_vsi_manage_rss_lut(vsi, false);
3919
3920 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3921 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3922 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3923 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3924 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3925 ret = ice_vsi_manage_vlan_stripping(vsi, false);
3926
3927 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3928 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3929 ret = ice_vsi_manage_vlan_insertion(vsi);
3930 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3931 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3932 ret = ice_vsi_manage_vlan_insertion(vsi);
3933
3934 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3935 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3936 ret = ice_cfg_vlan_pruning(vsi, true, false);
3937 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3938 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3939 ret = ice_cfg_vlan_pruning(vsi, false, false);
3940
3941 return ret;
3942 }
3943
3944 /**
3945 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
3946 * @vsi: VSI to setup VLAN properties for
3947 */
3948 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3949 {
3950 int ret = 0;
3951
3952 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3953 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3954 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3955 ret = ice_vsi_manage_vlan_insertion(vsi);
3956
3957 return ret;
3958 }
3959
3960 /**
3961 * ice_vsi_cfg - Setup the VSI
3962 * @vsi: the VSI being configured
3963 *
3964 * Return 0 on success and negative value on error
3965 */
3966 int ice_vsi_cfg(struct ice_vsi *vsi)
3967 {
3968 int err;
3969
3970 if (vsi->netdev) {
3971 ice_set_rx_mode(vsi->netdev);
3972
3973 err = ice_vsi_vlan_setup(vsi);
3974
3975 if (err)
3976 return err;
3977 }
3978 ice_vsi_cfg_dcb_rings(vsi);
3979
3980 err = ice_vsi_cfg_lan_txqs(vsi);
3981 if (!err && ice_is_xdp_ena_vsi(vsi))
3982 err = ice_vsi_cfg_xdp_txqs(vsi);
3983 if (!err)
3984 err = ice_vsi_cfg_rxqs(vsi);
3985
3986 return err;
3987 }
3988
3989 /**
3990 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3991 * @vsi: the VSI being configured
3992 */
3993 static void ice_napi_enable_all(struct ice_vsi *vsi)
3994 {
3995 int q_idx;
3996
3997 if (!vsi->netdev)
3998 return;
3999
4000 ice_for_each_q_vector(vsi, q_idx) {
4001 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
4002
4003 if (q_vector->rx.ring || q_vector->tx.ring)
4004 napi_enable(&q_vector->napi);
4005 }
4006 }
4007
4008 /**
4009 * ice_up_complete - Finish the last steps of bringing up a connection
4010 * @vsi: The VSI being configured
4011 *
4012 * Return 0 on success and negative value on error
4013 */
4014 static int ice_up_complete(struct ice_vsi *vsi)
4015 {
4016 struct ice_pf *pf = vsi->back;
4017 int err;
4018
4019 ice_vsi_cfg_msix(vsi);
4020
4021 /* Enable only Rx rings, Tx rings were enabled by the FW when the
4022 * Tx queue group list was configured and the context bits were
4023 * programmed using ice_vsi_cfg_txqs
4024 */
4025 err = ice_vsi_start_all_rx_rings(vsi);
4026 if (err)
4027 return err;
4028
4029 clear_bit(__ICE_DOWN, vsi->state);
4030 ice_napi_enable_all(vsi);
4031 ice_vsi_ena_irq(vsi);
4032
4033 if (vsi->port_info &&
4034 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
4035 vsi->netdev) {
4036 ice_print_link_msg(vsi, true);
4037 netif_tx_start_all_queues(vsi->netdev);
4038 netif_carrier_on(vsi->netdev);
4039 }
4040
4041 ice_service_task_schedule(pf);
4042
4043 return 0;
4044 }
4045
4046 /**
4047 * ice_up - Bring the connection back up after being down
4048 * @vsi: VSI being configured
4049 */
4050 int ice_up(struct ice_vsi *vsi)
4051 {
4052 int err;
4053
4054 err = ice_vsi_cfg(vsi);
4055 if (!err)
4056 err = ice_up_complete(vsi);
4057
4058 return err;
4059 }
4060
4061 /**
4062 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
4063 * @ring: Tx or Rx ring to read stats from
4064 * @pkts: packets stats counter
4065 * @bytes: bytes stats counter
4066 *
4067 * This function fetches stats from the ring considering the atomic operations
4068 * that needs to be performed to read u64 values in 32 bit machine.
4069 */
4070 static void
4071 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
4072 {
4073 unsigned int start;
4074 *pkts = 0;
4075 *bytes = 0;
4076
4077 if (!ring)
4078 return;
4079 do {
4080 start = u64_stats_fetch_begin_irq(&ring->syncp);
4081 *pkts = ring->stats.pkts;
4082 *bytes = ring->stats.bytes;
4083 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4084 }
4085
4086 /**
4087 * ice_update_vsi_ring_stats - Update VSI stats counters
4088 * @vsi: the VSI to be updated
4089 */
4090 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
4091 {
4092 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
4093 struct ice_ring *ring;
4094 u64 pkts, bytes;
4095 int i;
4096
4097 /* reset netdev stats */
4098 vsi_stats->tx_packets = 0;
4099 vsi_stats->tx_bytes = 0;
4100 vsi_stats->rx_packets = 0;
4101 vsi_stats->rx_bytes = 0;
4102
4103 /* reset non-netdev (extended) stats */
4104 vsi->tx_restart = 0;
4105 vsi->tx_busy = 0;
4106 vsi->tx_linearize = 0;
4107 vsi->rx_buf_failed = 0;
4108 vsi->rx_page_failed = 0;
4109
4110 rcu_read_lock();
4111
4112 /* update Tx rings counters */
4113 ice_for_each_txq(vsi, i) {
4114 ring = READ_ONCE(vsi->tx_rings[i]);
4115 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4116 vsi_stats->tx_packets += pkts;
4117 vsi_stats->tx_bytes += bytes;
4118 vsi->tx_restart += ring->tx_stats.restart_q;
4119 vsi->tx_busy += ring->tx_stats.tx_busy;
4120 vsi->tx_linearize += ring->tx_stats.tx_linearize;
4121 }
4122
4123 /* update Rx rings counters */
4124 ice_for_each_rxq(vsi, i) {
4125 ring = READ_ONCE(vsi->rx_rings[i]);
4126 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4127 vsi_stats->rx_packets += pkts;
4128 vsi_stats->rx_bytes += bytes;
4129 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
4130 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
4131 }
4132
4133 rcu_read_unlock();
4134 }
4135
4136 /**
4137 * ice_update_vsi_stats - Update VSI stats counters
4138 * @vsi: the VSI to be updated
4139 */
4140 void ice_update_vsi_stats(struct ice_vsi *vsi)
4141 {
4142 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
4143 struct ice_eth_stats *cur_es = &vsi->eth_stats;
4144 struct ice_pf *pf = vsi->back;
4145
4146 if (test_bit(__ICE_DOWN, vsi->state) ||
4147 test_bit(__ICE_CFG_BUSY, pf->state))
4148 return;
4149
4150 /* get stats as recorded by Tx/Rx rings */
4151 ice_update_vsi_ring_stats(vsi);
4152
4153 /* get VSI stats as recorded by the hardware */
4154 ice_update_eth_stats(vsi);
4155
4156 cur_ns->tx_errors = cur_es->tx_errors;
4157 cur_ns->rx_dropped = cur_es->rx_discards;
4158 cur_ns->tx_dropped = cur_es->tx_discards;
4159 cur_ns->multicast = cur_es->rx_multicast;
4160
4161 /* update some more netdev stats if this is main VSI */
4162 if (vsi->type == ICE_VSI_PF) {
4163 cur_ns->rx_crc_errors = pf->stats.crc_errors;
4164 cur_ns->rx_errors = pf->stats.crc_errors +
4165 pf->stats.illegal_bytes;
4166 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
4167 /* record drops from the port level */
4168 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
4169 }
4170 }
4171
4172 /**
4173 * ice_update_pf_stats - Update PF port stats counters
4174 * @pf: PF whose stats needs to be updated
4175 */
4176 void ice_update_pf_stats(struct ice_pf *pf)
4177 {
4178 struct ice_hw_port_stats *prev_ps, *cur_ps;
4179 struct ice_hw *hw = &pf->hw;
4180 u8 port;
4181
4182 port = hw->port_info->lport;
4183 prev_ps = &pf->stats_prev;
4184 cur_ps = &pf->stats;
4185
4186 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
4187 &prev_ps->eth.rx_bytes,
4188 &cur_ps->eth.rx_bytes);
4189
4190 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
4191 &prev_ps->eth.rx_unicast,
4192 &cur_ps->eth.rx_unicast);
4193
4194 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
4195 &prev_ps->eth.rx_multicast,
4196 &cur_ps->eth.rx_multicast);
4197
4198 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
4199 &prev_ps->eth.rx_broadcast,
4200 &cur_ps->eth.rx_broadcast);
4201
4202 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
4203 &prev_ps->eth.rx_discards,
4204 &cur_ps->eth.rx_discards);
4205
4206 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
4207 &prev_ps->eth.tx_bytes,
4208 &cur_ps->eth.tx_bytes);
4209
4210 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
4211 &prev_ps->eth.tx_unicast,
4212 &cur_ps->eth.tx_unicast);
4213
4214 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
4215 &prev_ps->eth.tx_multicast,
4216 &cur_ps->eth.tx_multicast);
4217
4218 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
4219 &prev_ps->eth.tx_broadcast,
4220 &cur_ps->eth.tx_broadcast);
4221
4222 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
4223 &prev_ps->tx_dropped_link_down,
4224 &cur_ps->tx_dropped_link_down);
4225
4226 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
4227 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
4228
4229 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
4230 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
4231
4232 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
4233 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
4234
4235 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
4236 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
4237
4238 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
4239 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
4240
4241 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
4242 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
4243
4244 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
4245 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
4246
4247 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
4248 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
4249
4250 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
4251 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
4252
4253 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
4254 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
4255
4256 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
4257 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
4258
4259 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
4260 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
4261
4262 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
4263 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
4264
4265 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
4266 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
4267
4268 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
4269 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
4270
4271 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
4272 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
4273
4274 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
4275 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
4276
4277 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
4278 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
4279
4280 ice_update_dcb_stats(pf);
4281
4282 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
4283 &prev_ps->crc_errors, &cur_ps->crc_errors);
4284
4285 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
4286 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
4287
4288 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
4289 &prev_ps->mac_local_faults,
4290 &cur_ps->mac_local_faults);
4291
4292 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
4293 &prev_ps->mac_remote_faults,
4294 &cur_ps->mac_remote_faults);
4295
4296 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
4297 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
4298
4299 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
4300 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
4301
4302 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
4303 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
4304
4305 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
4306 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
4307
4308 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
4309 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
4310
4311 pf->stat_prev_loaded = true;
4312 }
4313
4314 /**
4315 * ice_get_stats64 - get statistics for network device structure
4316 * @netdev: network interface device structure
4317 * @stats: main device statistics structure
4318 */
4319 static
4320 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
4321 {
4322 struct ice_netdev_priv *np = netdev_priv(netdev);
4323 struct rtnl_link_stats64 *vsi_stats;
4324 struct ice_vsi *vsi = np->vsi;
4325
4326 vsi_stats = &vsi->net_stats;
4327
4328 if (!vsi->num_txq || !vsi->num_rxq)
4329 return;
4330
4331 /* netdev packet/byte stats come from ring counter. These are obtained
4332 * by summing up ring counters (done by ice_update_vsi_ring_stats).
4333 * But, only call the update routine and read the registers if VSI is
4334 * not down.
4335 */
4336 if (!test_bit(__ICE_DOWN, vsi->state))
4337 ice_update_vsi_ring_stats(vsi);
4338 stats->tx_packets = vsi_stats->tx_packets;
4339 stats->tx_bytes = vsi_stats->tx_bytes;
4340 stats->rx_packets = vsi_stats->rx_packets;
4341 stats->rx_bytes = vsi_stats->rx_bytes;
4342
4343 /* The rest of the stats can be read from the hardware but instead we
4344 * just return values that the watchdog task has already obtained from
4345 * the hardware.
4346 */
4347 stats->multicast = vsi_stats->multicast;
4348 stats->tx_errors = vsi_stats->tx_errors;
4349 stats->tx_dropped = vsi_stats->tx_dropped;
4350 stats->rx_errors = vsi_stats->rx_errors;
4351 stats->rx_dropped = vsi_stats->rx_dropped;
4352 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
4353 stats->rx_length_errors = vsi_stats->rx_length_errors;
4354 }
4355
4356 /**
4357 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4358 * @vsi: VSI having NAPI disabled
4359 */
4360 static void ice_napi_disable_all(struct ice_vsi *vsi)
4361 {
4362 int q_idx;
4363
4364 if (!vsi->netdev)
4365 return;
4366
4367 ice_for_each_q_vector(vsi, q_idx) {
4368 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
4369
4370 if (q_vector->rx.ring || q_vector->tx.ring)
4371 napi_disable(&q_vector->napi);
4372 }
4373 }
4374
4375 /**
4376 * ice_down - Shutdown the connection
4377 * @vsi: The VSI being stopped
4378 */
4379 int ice_down(struct ice_vsi *vsi)
4380 {
4381 int i, tx_err, rx_err, link_err = 0;
4382
4383 /* Caller of this function is expected to set the
4384 * vsi->state __ICE_DOWN bit
4385 */
4386 if (vsi->netdev) {
4387 netif_carrier_off(vsi->netdev);
4388 netif_tx_disable(vsi->netdev);
4389 }
4390
4391 ice_vsi_dis_irq(vsi);
4392
4393 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
4394 if (tx_err)
4395 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
4396 vsi->vsi_num, tx_err);
4397 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
4398 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
4399 if (tx_err)
4400 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
4401 vsi->vsi_num, tx_err);
4402 }
4403
4404 rx_err = ice_vsi_stop_all_rx_rings(vsi);
4405 if (rx_err)
4406 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
4407 vsi->vsi_num, rx_err);
4408
4409 ice_napi_disable_all(vsi);
4410
4411 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
4412 link_err = ice_force_phys_link_state(vsi, false);
4413 if (link_err)
4414 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
4415 vsi->vsi_num, link_err);
4416 }
4417
4418 ice_for_each_txq(vsi, i)
4419 ice_clean_tx_ring(vsi->tx_rings[i]);
4420
4421 ice_for_each_rxq(vsi, i)
4422 ice_clean_rx_ring(vsi->rx_rings[i]);
4423
4424 if (tx_err || rx_err || link_err) {
4425 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
4426 vsi->vsi_num, vsi->vsw->sw_id);
4427 return -EIO;
4428 }
4429
4430 return 0;
4431 }
4432
4433 /**
4434 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
4435 * @vsi: VSI having resources allocated
4436 *
4437 * Return 0 on success, negative on failure
4438 */
4439 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
4440 {
4441 int i, err = 0;
4442
4443 if (!vsi->num_txq) {
4444 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
4445 vsi->vsi_num);
4446 return -EINVAL;
4447 }
4448
4449 ice_for_each_txq(vsi, i) {
4450 struct ice_ring *ring = vsi->tx_rings[i];
4451
4452 if (!ring)
4453 return -EINVAL;
4454
4455 ring->netdev = vsi->netdev;
4456 err = ice_setup_tx_ring(ring);
4457 if (err)
4458 break;
4459 }
4460
4461 return err;
4462 }
4463
4464 /**
4465 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
4466 * @vsi: VSI having resources allocated
4467 *
4468 * Return 0 on success, negative on failure
4469 */
4470 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
4471 {
4472 int i, err = 0;
4473
4474 if (!vsi->num_rxq) {
4475 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
4476 vsi->vsi_num);
4477 return -EINVAL;
4478 }
4479
4480 ice_for_each_rxq(vsi, i) {
4481 struct ice_ring *ring = vsi->rx_rings[i];
4482
4483 if (!ring)
4484 return -EINVAL;
4485
4486 ring->netdev = vsi->netdev;
4487 err = ice_setup_rx_ring(ring);
4488 if (err)
4489 break;
4490 }
4491
4492 return err;
4493 }
4494
4495 /**
4496 * ice_vsi_open - Called when a network interface is made active
4497 * @vsi: the VSI to open
4498 *
4499 * Initialization of the VSI
4500 *
4501 * Returns 0 on success, negative value on error
4502 */
4503 static int ice_vsi_open(struct ice_vsi *vsi)
4504 {
4505 char int_name[ICE_INT_NAME_STR_LEN];
4506 struct ice_pf *pf = vsi->back;
4507 int err;
4508
4509 /* allocate descriptors */
4510 err = ice_vsi_setup_tx_rings(vsi);
4511 if (err)
4512 goto err_setup_tx;
4513
4514 err = ice_vsi_setup_rx_rings(vsi);
4515 if (err)
4516 goto err_setup_rx;
4517
4518 err = ice_vsi_cfg(vsi);
4519 if (err)
4520 goto err_setup_rx;
4521
4522 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4523 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
4524 err = ice_vsi_req_irq_msix(vsi, int_name);
4525 if (err)
4526 goto err_setup_rx;
4527
4528 /* Notify the stack of the actual queue counts. */
4529 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4530 if (err)
4531 goto err_set_qs;
4532
4533 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
4534 if (err)
4535 goto err_set_qs;
4536
4537 err = ice_up_complete(vsi);
4538 if (err)
4539 goto err_up_complete;
4540
4541 return 0;
4542
4543 err_up_complete:
4544 ice_down(vsi);
4545 err_set_qs:
4546 ice_vsi_free_irq(vsi);
4547 err_setup_rx:
4548 ice_vsi_free_rx_rings(vsi);
4549 err_setup_tx:
4550 ice_vsi_free_tx_rings(vsi);
4551
4552 return err;
4553 }
4554
4555 /**
4556 * ice_vsi_release_all - Delete all VSIs
4557 * @pf: PF from which all VSIs are being removed
4558 */
4559 static void ice_vsi_release_all(struct ice_pf *pf)
4560 {
4561 int err, i;
4562
4563 if (!pf->vsi)
4564 return;
4565
4566 ice_for_each_vsi(pf, i) {
4567 if (!pf->vsi[i])
4568 continue;
4569
4570 err = ice_vsi_release(pf->vsi[i]);
4571 if (err)
4572 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
4573 i, err, pf->vsi[i]->vsi_num);
4574 }
4575 }
4576
4577 /**
4578 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
4579 * @pf: pointer to the PF instance
4580 * @type: VSI type to rebuild
4581 *
4582 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
4583 */
4584 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
4585 {
4586 struct device *dev = ice_pf_to_dev(pf);
4587 enum ice_status status;
4588 int i, err;
4589
4590 ice_for_each_vsi(pf, i) {
4591 struct ice_vsi *vsi = pf->vsi[i];
4592
4593 if (!vsi || vsi->type != type)
4594 continue;
4595
4596 /* rebuild the VSI */
4597 err = ice_vsi_rebuild(vsi, true);
4598 if (err) {
4599 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
4600 err, vsi->idx, ice_vsi_type_str(type));
4601 return err;
4602 }
4603
4604 /* replay filters for the VSI */
4605 status = ice_replay_vsi(&pf->hw, vsi->idx);
4606 if (status) {
4607 dev_err(dev, "replay VSI failed, status %d, VSI index %d, type %s\n",
4608 status, vsi->idx, ice_vsi_type_str(type));
4609 return -EIO;
4610 }
4611
4612 /* Re-map HW VSI number, using VSI handle that has been
4613 * previously validated in ice_replay_vsi() call above
4614 */
4615 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
4616
4617 /* enable the VSI */
4618 err = ice_ena_vsi(vsi, false);
4619 if (err) {
4620 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
4621 err, vsi->idx, ice_vsi_type_str(type));
4622 return err;
4623 }
4624
4625 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
4626 ice_vsi_type_str(type));
4627 }
4628
4629 return 0;
4630 }
4631
4632 /**
4633 * ice_update_pf_netdev_link - Update PF netdev link status
4634 * @pf: pointer to the PF instance
4635 */
4636 static void ice_update_pf_netdev_link(struct ice_pf *pf)
4637 {
4638 bool link_up;
4639 int i;
4640
4641 ice_for_each_vsi(pf, i) {
4642 struct ice_vsi *vsi = pf->vsi[i];
4643
4644 if (!vsi || vsi->type != ICE_VSI_PF)
4645 return;
4646
4647 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
4648 if (link_up) {
4649 netif_carrier_on(pf->vsi[i]->netdev);
4650 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
4651 } else {
4652 netif_carrier_off(pf->vsi[i]->netdev);
4653 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
4654 }
4655 }
4656 }
4657
4658 /**
4659 * ice_rebuild - rebuild after reset
4660 * @pf: PF to rebuild
4661 * @reset_type: type of reset
4662 */
4663 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
4664 {
4665 struct device *dev = ice_pf_to_dev(pf);
4666 struct ice_hw *hw = &pf->hw;
4667 enum ice_status ret;
4668 int err;
4669
4670 if (test_bit(__ICE_DOWN, pf->state))
4671 goto clear_recovery;
4672
4673 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
4674
4675 ret = ice_init_all_ctrlq(hw);
4676 if (ret) {
4677 dev_err(dev, "control queues init failed %d\n", ret);
4678 goto err_init_ctrlq;
4679 }
4680
4681 /* if DDP was previously loaded successfully */
4682 if (!ice_is_safe_mode(pf)) {
4683 /* reload the SW DB of filter tables */
4684 if (reset_type == ICE_RESET_PFR)
4685 ice_fill_blk_tbls(hw);
4686 else
4687 /* Reload DDP Package after CORER/GLOBR reset */
4688 ice_load_pkg(NULL, pf);
4689 }
4690
4691 ret = ice_clear_pf_cfg(hw);
4692 if (ret) {
4693 dev_err(dev, "clear PF configuration failed %d\n", ret);
4694 goto err_init_ctrlq;
4695 }
4696
4697 if (pf->first_sw->dflt_vsi_ena)
4698 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
4699 /* clear the default VSI configuration if it exists */
4700 pf->first_sw->dflt_vsi = NULL;
4701 pf->first_sw->dflt_vsi_ena = false;
4702
4703 ice_clear_pxe_mode(hw);
4704
4705 ret = ice_get_caps(hw);
4706 if (ret) {
4707 dev_err(dev, "ice_get_caps failed %d\n", ret);
4708 goto err_init_ctrlq;
4709 }
4710
4711 err = ice_sched_init_port(hw->port_info);
4712 if (err)
4713 goto err_sched_init_port;
4714
4715 err = ice_update_link_info(hw->port_info);
4716 if (err)
4717 dev_err(dev, "Get link status error %d\n", err);
4718
4719 /* start misc vector */
4720 err = ice_req_irq_msix_misc(pf);
4721 if (err) {
4722 dev_err(dev, "misc vector setup failed: %d\n", err);
4723 goto err_sched_init_port;
4724 }
4725
4726 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
4727 ice_dcb_rebuild(pf);
4728
4729 /* rebuild PF VSI */
4730 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
4731 if (err) {
4732 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
4733 goto err_vsi_rebuild;
4734 }
4735
4736 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4737 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF);
4738 if (err) {
4739 dev_err(dev, "VF VSI rebuild failed: %d\n", err);
4740 goto err_vsi_rebuild;
4741 }
4742 }
4743
4744 ice_update_pf_netdev_link(pf);
4745
4746 /* tell the firmware we are up */
4747 ret = ice_send_version(pf);
4748 if (ret) {
4749 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
4750 ret);
4751 goto err_vsi_rebuild;
4752 }
4753
4754 ice_replay_post(hw);
4755
4756 /* if we get here, reset flow is successful */
4757 clear_bit(__ICE_RESET_FAILED, pf->state);
4758 return;
4759
4760 err_vsi_rebuild:
4761 err_sched_init_port:
4762 ice_sched_cleanup_all(hw);
4763 err_init_ctrlq:
4764 ice_shutdown_all_ctrlq(hw);
4765 set_bit(__ICE_RESET_FAILED, pf->state);
4766 clear_recovery:
4767 /* set this bit in PF state to control service task scheduling */
4768 set_bit(__ICE_NEEDS_RESTART, pf->state);
4769 dev_err(dev, "Rebuild failed, unload and reload driver\n");
4770 }
4771
4772 /**
4773 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
4774 * @vsi: Pointer to VSI structure
4775 */
4776 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
4777 {
4778 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
4779 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
4780 else
4781 return ICE_RXBUF_3072;
4782 }
4783
4784 /**
4785 * ice_change_mtu - NDO callback to change the MTU
4786 * @netdev: network interface device structure
4787 * @new_mtu: new value for maximum frame size
4788 *
4789 * Returns 0 on success, negative on failure
4790 */
4791 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
4792 {
4793 struct ice_netdev_priv *np = netdev_priv(netdev);
4794 struct ice_vsi *vsi = np->vsi;
4795 struct ice_pf *pf = vsi->back;
4796 u8 count = 0;
4797
4798 if (new_mtu == netdev->mtu) {
4799 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
4800 return 0;
4801 }
4802
4803 if (ice_is_xdp_ena_vsi(vsi)) {
4804 int frame_size = ice_max_xdp_frame_size(vsi);
4805
4806 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
4807 netdev_err(netdev, "max MTU for XDP usage is %d\n",
4808 frame_size - ICE_ETH_PKT_HDR_PAD);
4809 return -EINVAL;
4810 }
4811 }
4812
4813 if (new_mtu < netdev->min_mtu) {
4814 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
4815 netdev->min_mtu);
4816 return -EINVAL;
4817 } else if (new_mtu > netdev->max_mtu) {
4818 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
4819 netdev->min_mtu);
4820 return -EINVAL;
4821 }
4822 /* if a reset is in progress, wait for some time for it to complete */
4823 do {
4824 if (ice_is_reset_in_progress(pf->state)) {
4825 count++;
4826 usleep_range(1000, 2000);
4827 } else {
4828 break;
4829 }
4830
4831 } while (count < 100);
4832
4833 if (count == 100) {
4834 netdev_err(netdev, "can't change MTU. Device is busy\n");
4835 return -EBUSY;
4836 }
4837
4838 netdev->mtu = new_mtu;
4839
4840 /* if VSI is up, bring it down and then back up */
4841 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
4842 int err;
4843
4844 err = ice_down(vsi);
4845 if (err) {
4846 netdev_err(netdev, "change MTU if_up err %d\n", err);
4847 return err;
4848 }
4849
4850 err = ice_up(vsi);
4851 if (err) {
4852 netdev_err(netdev, "change MTU if_up err %d\n", err);
4853 return err;
4854 }
4855 }
4856
4857 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
4858 return 0;
4859 }
4860
4861 /**
4862 * ice_set_rss - Set RSS keys and lut
4863 * @vsi: Pointer to VSI structure
4864 * @seed: RSS hash seed
4865 * @lut: Lookup table
4866 * @lut_size: Lookup table size
4867 *
4868 * Returns 0 on success, negative on failure
4869 */
4870 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4871 {
4872 struct ice_pf *pf = vsi->back;
4873 struct ice_hw *hw = &pf->hw;
4874 enum ice_status status;
4875 struct device *dev;
4876
4877 dev = ice_pf_to_dev(pf);
4878 if (seed) {
4879 struct ice_aqc_get_set_rss_keys *buf =
4880 (struct ice_aqc_get_set_rss_keys *)seed;
4881
4882 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
4883
4884 if (status) {
4885 dev_err(dev, "Cannot set RSS key, err %d aq_err %d\n",
4886 status, hw->adminq.rq_last_status);
4887 return -EIO;
4888 }
4889 }
4890
4891 if (lut) {
4892 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4893 lut, lut_size);
4894 if (status) {
4895 dev_err(dev, "Cannot set RSS lut, err %d aq_err %d\n",
4896 status, hw->adminq.rq_last_status);
4897 return -EIO;
4898 }
4899 }
4900
4901 return 0;
4902 }
4903
4904 /**
4905 * ice_get_rss - Get RSS keys and lut
4906 * @vsi: Pointer to VSI structure
4907 * @seed: Buffer to store the keys
4908 * @lut: Buffer to store the lookup table entries
4909 * @lut_size: Size of buffer to store the lookup table entries
4910 *
4911 * Returns 0 on success, negative on failure
4912 */
4913 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4914 {
4915 struct ice_pf *pf = vsi->back;
4916 struct ice_hw *hw = &pf->hw;
4917 enum ice_status status;
4918 struct device *dev;
4919
4920 dev = ice_pf_to_dev(pf);
4921 if (seed) {
4922 struct ice_aqc_get_set_rss_keys *buf =
4923 (struct ice_aqc_get_set_rss_keys *)seed;
4924
4925 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4926 if (status) {
4927 dev_err(dev, "Cannot get RSS key, err %d aq_err %d\n",
4928 status, hw->adminq.rq_last_status);
4929 return -EIO;
4930 }
4931 }
4932
4933 if (lut) {
4934 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4935 lut, lut_size);
4936 if (status) {
4937 dev_err(dev, "Cannot get RSS lut, err %d aq_err %d\n",
4938 status, hw->adminq.rq_last_status);
4939 return -EIO;
4940 }
4941 }
4942
4943 return 0;
4944 }
4945
4946 /**
4947 * ice_bridge_getlink - Get the hardware bridge mode
4948 * @skb: skb buff
4949 * @pid: process ID
4950 * @seq: RTNL message seq
4951 * @dev: the netdev being configured
4952 * @filter_mask: filter mask passed in
4953 * @nlflags: netlink flags passed in
4954 *
4955 * Return the bridge mode (VEB/VEPA)
4956 */
4957 static int
4958 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4959 struct net_device *dev, u32 filter_mask, int nlflags)
4960 {
4961 struct ice_netdev_priv *np = netdev_priv(dev);
4962 struct ice_vsi *vsi = np->vsi;
4963 struct ice_pf *pf = vsi->back;
4964 u16 bmode;
4965
4966 bmode = pf->first_sw->bridge_mode;
4967
4968 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4969 filter_mask, NULL);
4970 }
4971
4972 /**
4973 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4974 * @vsi: Pointer to VSI structure
4975 * @bmode: Hardware bridge mode (VEB/VEPA)
4976 *
4977 * Returns 0 on success, negative on failure
4978 */
4979 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4980 {
4981 struct ice_aqc_vsi_props *vsi_props;
4982 struct ice_hw *hw = &vsi->back->hw;
4983 struct ice_vsi_ctx *ctxt;
4984 enum ice_status status;
4985 int ret = 0;
4986
4987 vsi_props = &vsi->info;
4988
4989 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4990 if (!ctxt)
4991 return -ENOMEM;
4992
4993 ctxt->info = vsi->info;
4994
4995 if (bmode == BRIDGE_MODE_VEB)
4996 /* change from VEPA to VEB mode */
4997 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4998 else
4999 /* change from VEB to VEPA mode */
5000 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
5001 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
5002
5003 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
5004 if (status) {
5005 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
5006 bmode, status, hw->adminq.sq_last_status);
5007 ret = -EIO;
5008 goto out;
5009 }
5010 /* Update sw flags for book keeping */
5011 vsi_props->sw_flags = ctxt->info.sw_flags;
5012
5013 out:
5014 kfree(ctxt);
5015 return ret;
5016 }
5017
5018 /**
5019 * ice_bridge_setlink - Set the hardware bridge mode
5020 * @dev: the netdev being configured
5021 * @nlh: RTNL message
5022 * @flags: bridge setlink flags
5023 * @extack: netlink extended ack
5024 *
5025 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
5026 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
5027 * not already set for all VSIs connected to this switch. And also update the
5028 * unicast switch filter rules for the corresponding switch of the netdev.
5029 */
5030 static int
5031 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
5032 u16 __always_unused flags,
5033 struct netlink_ext_ack __always_unused *extack)
5034 {
5035 struct ice_netdev_priv *np = netdev_priv(dev);
5036 struct ice_pf *pf = np->vsi->back;
5037 struct nlattr *attr, *br_spec;
5038 struct ice_hw *hw = &pf->hw;
5039 enum ice_status status;
5040 struct ice_sw *pf_sw;
5041 int rem, v, err = 0;
5042
5043 pf_sw = pf->first_sw;
5044 /* find the attribute in the netlink message */
5045 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
5046
5047 nla_for_each_nested(attr, br_spec, rem) {
5048 __u16 mode;
5049
5050 if (nla_type(attr) != IFLA_BRIDGE_MODE)
5051 continue;
5052 mode = nla_get_u16(attr);
5053 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
5054 return -EINVAL;
5055 /* Continue if bridge mode is not being flipped */
5056 if (mode == pf_sw->bridge_mode)
5057 continue;
5058 /* Iterates through the PF VSI list and update the loopback
5059 * mode of the VSI
5060 */
5061 ice_for_each_vsi(pf, v) {
5062 if (!pf->vsi[v])
5063 continue;
5064 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
5065 if (err)
5066 return err;
5067 }
5068
5069 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
5070 /* Update the unicast switch filter rules for the corresponding
5071 * switch of the netdev
5072 */
5073 status = ice_update_sw_rule_bridge_mode(hw);
5074 if (status) {
5075 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
5076 mode, status, hw->adminq.sq_last_status);
5077 /* revert hw->evb_veb */
5078 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
5079 return -EIO;
5080 }
5081
5082 pf_sw->bridge_mode = mode;
5083 }
5084
5085 return 0;
5086 }
5087
5088 /**
5089 * ice_tx_timeout - Respond to a Tx Hang
5090 * @netdev: network interface device structure
5091 * @txqueue: Tx queue
5092 */
5093 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5094 {
5095 struct ice_netdev_priv *np = netdev_priv(netdev);
5096 struct ice_ring *tx_ring = NULL;
5097 struct ice_vsi *vsi = np->vsi;
5098 struct ice_pf *pf = vsi->back;
5099 u32 i;
5100
5101 pf->tx_timeout_count++;
5102
5103 /* now that we have an index, find the tx_ring struct */
5104 for (i = 0; i < vsi->num_txq; i++)
5105 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
5106 if (txqueue == vsi->tx_rings[i]->q_index) {
5107 tx_ring = vsi->tx_rings[i];
5108 break;
5109 }
5110
5111 /* Reset recovery level if enough time has elapsed after last timeout.
5112 * Also ensure no new reset action happens before next timeout period.
5113 */
5114 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
5115 pf->tx_timeout_recovery_level = 1;
5116 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
5117 netdev->watchdog_timeo)))
5118 return;
5119
5120 if (tx_ring) {
5121 struct ice_hw *hw = &pf->hw;
5122 u32 head, val = 0;
5123
5124 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
5125 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
5126 /* Read interrupt register */
5127 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
5128
5129 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
5130 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
5131 head, tx_ring->next_to_use, val);
5132 }
5133
5134 pf->tx_timeout_last_recovery = jiffies;
5135 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
5136 pf->tx_timeout_recovery_level, txqueue);
5137
5138 switch (pf->tx_timeout_recovery_level) {
5139 case 1:
5140 set_bit(__ICE_PFR_REQ, pf->state);
5141 break;
5142 case 2:
5143 set_bit(__ICE_CORER_REQ, pf->state);
5144 break;
5145 case 3:
5146 set_bit(__ICE_GLOBR_REQ, pf->state);
5147 break;
5148 default:
5149 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
5150 set_bit(__ICE_DOWN, pf->state);
5151 set_bit(__ICE_NEEDS_RESTART, vsi->state);
5152 set_bit(__ICE_SERVICE_DIS, pf->state);
5153 break;
5154 }
5155
5156 ice_service_task_schedule(pf);
5157 pf->tx_timeout_recovery_level++;
5158 }
5159
5160 /**
5161 * ice_open - Called when a network interface becomes active
5162 * @netdev: network interface device structure
5163 *
5164 * The open entry point is called when a network interface is made
5165 * active by the system (IFF_UP). At this point all resources needed
5166 * for transmit and receive operations are allocated, the interrupt
5167 * handler is registered with the OS, the netdev watchdog is enabled,
5168 * and the stack is notified that the interface is ready.
5169 *
5170 * Returns 0 on success, negative value on failure
5171 */
5172 int ice_open(struct net_device *netdev)
5173 {
5174 struct ice_netdev_priv *np = netdev_priv(netdev);
5175 struct ice_vsi *vsi = np->vsi;
5176 struct ice_port_info *pi;
5177 int err;
5178
5179 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
5180 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
5181 return -EIO;
5182 }
5183
5184 netif_carrier_off(netdev);
5185
5186 pi = vsi->port_info;
5187 err = ice_update_link_info(pi);
5188 if (err) {
5189 netdev_err(netdev, "Failed to get link info, error %d\n",
5190 err);
5191 return err;
5192 }
5193
5194 /* Set PHY if there is media, otherwise, turn off PHY */
5195 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
5196 err = ice_force_phys_link_state(vsi, true);
5197 if (err) {
5198 netdev_err(netdev, "Failed to set physical link up, error %d\n",
5199 err);
5200 return err;
5201 }
5202 } else {
5203 err = ice_aq_set_link_restart_an(pi, false, NULL);
5204 if (err) {
5205 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
5206 vsi->vsi_num, err);
5207 return err;
5208 }
5209 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags);
5210 }
5211
5212 err = ice_vsi_open(vsi);
5213 if (err)
5214 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
5215 vsi->vsi_num, vsi->vsw->sw_id);
5216 return err;
5217 }
5218
5219 /**
5220 * ice_stop - Disables a network interface
5221 * @netdev: network interface device structure
5222 *
5223 * The stop entry point is called when an interface is de-activated by the OS,
5224 * and the netdevice enters the DOWN state. The hardware is still under the
5225 * driver's control, but the netdev interface is disabled.
5226 *
5227 * Returns success only - not allowed to fail
5228 */
5229 int ice_stop(struct net_device *netdev)
5230 {
5231 struct ice_netdev_priv *np = netdev_priv(netdev);
5232 struct ice_vsi *vsi = np->vsi;
5233
5234 ice_vsi_close(vsi);
5235
5236 return 0;
5237 }
5238
5239 /**
5240 * ice_features_check - Validate encapsulated packet conforms to limits
5241 * @skb: skb buffer
5242 * @netdev: This port's netdev
5243 * @features: Offload features that the stack believes apply
5244 */
5245 static netdev_features_t
5246 ice_features_check(struct sk_buff *skb,
5247 struct net_device __always_unused *netdev,
5248 netdev_features_t features)
5249 {
5250 size_t len;
5251
5252 /* No point in doing any of this if neither checksum nor GSO are
5253 * being requested for this frame. We can rule out both by just
5254 * checking for CHECKSUM_PARTIAL
5255 */
5256 if (skb->ip_summed != CHECKSUM_PARTIAL)
5257 return features;
5258
5259 /* We cannot support GSO if the MSS is going to be less than
5260 * 64 bytes. If it is then we need to drop support for GSO.
5261 */
5262 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
5263 features &= ~NETIF_F_GSO_MASK;
5264
5265 len = skb_network_header(skb) - skb->data;
5266 if (len & ~(ICE_TXD_MACLEN_MAX))
5267 goto out_rm_features;
5268
5269 len = skb_transport_header(skb) - skb_network_header(skb);
5270 if (len & ~(ICE_TXD_IPLEN_MAX))
5271 goto out_rm_features;
5272
5273 if (skb->encapsulation) {
5274 len = skb_inner_network_header(skb) - skb_transport_header(skb);
5275 if (len & ~(ICE_TXD_L4LEN_MAX))
5276 goto out_rm_features;
5277
5278 len = skb_inner_transport_header(skb) -
5279 skb_inner_network_header(skb);
5280 if (len & ~(ICE_TXD_IPLEN_MAX))
5281 goto out_rm_features;
5282 }
5283
5284 return features;
5285 out_rm_features:
5286 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
5287 }
5288
5289 static const struct net_device_ops ice_netdev_safe_mode_ops = {
5290 .ndo_open = ice_open,
5291 .ndo_stop = ice_stop,
5292 .ndo_start_xmit = ice_start_xmit,
5293 .ndo_set_mac_address = ice_set_mac_address,
5294 .ndo_validate_addr = eth_validate_addr,
5295 .ndo_change_mtu = ice_change_mtu,
5296 .ndo_get_stats64 = ice_get_stats64,
5297 .ndo_tx_timeout = ice_tx_timeout,
5298 };
5299
5300 static const struct net_device_ops ice_netdev_ops = {
5301 .ndo_open = ice_open,
5302 .ndo_stop = ice_stop,
5303 .ndo_start_xmit = ice_start_xmit,
5304 .ndo_features_check = ice_features_check,
5305 .ndo_set_rx_mode = ice_set_rx_mode,
5306 .ndo_set_mac_address = ice_set_mac_address,
5307 .ndo_validate_addr = eth_validate_addr,
5308 .ndo_change_mtu = ice_change_mtu,
5309 .ndo_get_stats64 = ice_get_stats64,
5310 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
5311 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
5312 .ndo_set_vf_mac = ice_set_vf_mac,
5313 .ndo_get_vf_config = ice_get_vf_cfg,
5314 .ndo_set_vf_trust = ice_set_vf_trust,
5315 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
5316 .ndo_set_vf_link_state = ice_set_vf_link_state,
5317 .ndo_get_vf_stats = ice_get_vf_stats,
5318 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
5319 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
5320 .ndo_set_features = ice_set_features,
5321 .ndo_bridge_getlink = ice_bridge_getlink,
5322 .ndo_bridge_setlink = ice_bridge_setlink,
5323 .ndo_fdb_add = ice_fdb_add,
5324 .ndo_fdb_del = ice_fdb_del,
5325 .ndo_tx_timeout = ice_tx_timeout,
5326 .ndo_bpf = ice_xdp,
5327 .ndo_xdp_xmit = ice_xdp_xmit,
5328 .ndo_xsk_wakeup = ice_xsk_wakeup,
5329 };