]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/intel/ice/ice_sriov.c
KVM: Harden copying of userspace-array against overflow
[thirdparty/kernel/stable.git] / drivers / net / ethernet / intel / ice / ice_sriov.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16
17 /**
18 * ice_free_vf_entries - Free all VF entries from the hash table
19 * @pf: pointer to the PF structure
20 *
21 * Iterate over the VF hash table, removing and releasing all VF entries.
22 * Called during VF teardown or as cleanup during failed VF initialization.
23 */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 struct ice_vfs *vfs = &pf->vfs;
27 struct hlist_node *tmp;
28 struct ice_vf *vf;
29 unsigned int bkt;
30
31 /* Remove all VFs from the hash table and release their main
32 * reference. Once all references to the VF are dropped, ice_put_vf()
33 * will call ice_release_vf which will remove the VF memory.
34 */
35 lockdep_assert_held(&vfs->table_lock);
36
37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 hash_del_rcu(&vf->entry);
39 ice_put_vf(vf);
40 }
41 }
42
43 /**
44 * ice_free_vf_res - Free a VF's resources
45 * @vf: pointer to the VF info
46 */
47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 struct ice_pf *pf = vf->pf;
50 int i, last_vector_idx;
51
52 /* First, disable VF's configuration API to prevent OS from
53 * accessing the VF's VSI after it's freed or invalidated.
54 */
55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 ice_vf_fdir_exit(vf);
57 /* free VF control VSI */
58 if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 ice_vf_ctrl_vsi_release(vf);
60
61 /* free VSI and disconnect it from the parent uplink */
62 if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 ice_vf_vsi_release(vf);
64 vf->num_mac = 0;
65 }
66
67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68
69 /* clear VF MDD event information */
70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72
73 /* Disable interrupts so that VF starts in a known state */
74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 ice_flush(&pf->hw);
77 }
78 /* reset some of the state variables keeping track of the resources */
79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82
83 /**
84 * ice_dis_vf_mappings
85 * @vf: pointer to the VF structure
86 */
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 struct ice_pf *pf = vf->pf;
90 struct ice_vsi *vsi;
91 struct device *dev;
92 int first, last, v;
93 struct ice_hw *hw;
94
95 hw = &pf->hw;
96 vsi = ice_get_vf_vsi(vf);
97 if (WARN_ON(!vsi))
98 return;
99
100 dev = ice_pf_to_dev(pf);
101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103
104 first = vf->first_vector_idx;
105 last = first + vf->num_msix - 1;
106 for (v = first; v <= last; v++) {
107 u32 reg;
108
109 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
110 GLINT_VECT2FUNC_IS_PF_M) |
111 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
112 GLINT_VECT2FUNC_PF_NUM_M));
113 wr32(hw, GLINT_VECT2FUNC(v), reg);
114 }
115
116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
118 else
119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
120
121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
123 else
124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
125 }
126
127 /**
128 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
129 * @pf: pointer to the PF structure
130 *
131 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
132 * the pf->sriov_base_vector.
133 *
134 * Returns 0 on success, and -EINVAL on error.
135 */
136 static int ice_sriov_free_msix_res(struct ice_pf *pf)
137 {
138 if (!pf)
139 return -EINVAL;
140
141 bitmap_free(pf->sriov_irq_bm);
142 pf->sriov_irq_size = 0;
143 pf->sriov_base_vector = 0;
144
145 return 0;
146 }
147
148 /**
149 * ice_free_vfs - Free all VFs
150 * @pf: pointer to the PF structure
151 */
152 void ice_free_vfs(struct ice_pf *pf)
153 {
154 struct device *dev = ice_pf_to_dev(pf);
155 struct ice_vfs *vfs = &pf->vfs;
156 struct ice_hw *hw = &pf->hw;
157 struct ice_vf *vf;
158 unsigned int bkt;
159
160 if (!ice_has_vfs(pf))
161 return;
162
163 while (test_and_set_bit(ICE_VF_DIS, pf->state))
164 usleep_range(1000, 2000);
165
166 /* Disable IOV before freeing resources. This lets any VF drivers
167 * running in the host get themselves cleaned up before we yank
168 * the carpet out from underneath their feet.
169 */
170 if (!pci_vfs_assigned(pf->pdev))
171 pci_disable_sriov(pf->pdev);
172 else
173 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
174
175 mutex_lock(&vfs->table_lock);
176
177 ice_eswitch_release(pf);
178
179 ice_for_each_vf(pf, bkt, vf) {
180 mutex_lock(&vf->cfg_lock);
181
182 ice_dis_vf_qs(vf);
183
184 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
185 /* disable VF qp mappings and set VF disable state */
186 ice_dis_vf_mappings(vf);
187 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
188 ice_free_vf_res(vf);
189 }
190
191 if (!pci_vfs_assigned(pf->pdev)) {
192 u32 reg_idx, bit_idx;
193
194 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
195 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
196 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
197 }
198
199 /* clear malicious info since the VF is getting released */
200 list_del(&vf->mbx_info.list_entry);
201
202 mutex_unlock(&vf->cfg_lock);
203 }
204
205 if (ice_sriov_free_msix_res(pf))
206 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
207
208 vfs->num_qps_per = 0;
209 ice_free_vf_entries(pf);
210
211 mutex_unlock(&vfs->table_lock);
212
213 clear_bit(ICE_VF_DIS, pf->state);
214 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
215 }
216
217 /**
218 * ice_vf_vsi_setup - Set up a VF VSI
219 * @vf: VF to setup VSI for
220 *
221 * Returns pointer to the successfully allocated VSI struct on success,
222 * otherwise returns NULL on failure.
223 */
224 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
225 {
226 struct ice_vsi_cfg_params params = {};
227 struct ice_pf *pf = vf->pf;
228 struct ice_vsi *vsi;
229
230 params.type = ICE_VSI_VF;
231 params.pi = ice_vf_get_port_info(vf);
232 params.vf = vf;
233 params.flags = ICE_VSI_FLAG_INIT;
234
235 vsi = ice_vsi_setup(pf, &params);
236
237 if (!vsi) {
238 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
239 ice_vf_invalidate_vsi(vf);
240 return NULL;
241 }
242
243 vf->lan_vsi_idx = vsi->idx;
244 vf->lan_vsi_num = vsi->vsi_num;
245
246 return vsi;
247 }
248
249
250 /**
251 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
252 * @vf: VF to enable MSIX mappings for
253 *
254 * Some of the registers need to be indexed/configured using hardware global
255 * device values and other registers need 0-based values, which represent PF
256 * based values.
257 */
258 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
259 {
260 int device_based_first_msix, device_based_last_msix;
261 int pf_based_first_msix, pf_based_last_msix, v;
262 struct ice_pf *pf = vf->pf;
263 int device_based_vf_id;
264 struct ice_hw *hw;
265 u32 reg;
266
267 hw = &pf->hw;
268 pf_based_first_msix = vf->first_vector_idx;
269 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
270
271 device_based_first_msix = pf_based_first_msix +
272 pf->hw.func_caps.common_cap.msix_vector_first_id;
273 device_based_last_msix =
274 (device_based_first_msix + vf->num_msix) - 1;
275 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
276
277 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
278 VPINT_ALLOC_FIRST_M) |
279 ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
280 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
281 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
282
283 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
284 & VPINT_ALLOC_PCI_FIRST_M) |
285 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
286 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
287 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
288
289 /* map the interrupts to its functions */
290 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
291 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
292 GLINT_VECT2FUNC_VF_NUM_M) |
293 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
294 GLINT_VECT2FUNC_PF_NUM_M));
295 wr32(hw, GLINT_VECT2FUNC(v), reg);
296 }
297
298 /* Map mailbox interrupt to VF MSI-X vector 0 */
299 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
300 }
301
302 /**
303 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
304 * @vf: VF to enable the mappings for
305 * @max_txq: max Tx queues allowed on the VF's VSI
306 * @max_rxq: max Rx queues allowed on the VF's VSI
307 */
308 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
309 {
310 struct device *dev = ice_pf_to_dev(vf->pf);
311 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
312 struct ice_hw *hw = &vf->pf->hw;
313 u32 reg;
314
315 if (WARN_ON(!vsi))
316 return;
317
318 /* set regardless of mapping mode */
319 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
320
321 /* VF Tx queues allocation */
322 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
323 /* set the VF PF Tx queue range
324 * VFNUMQ value should be set to (number of queues - 1). A value
325 * of 0 means 1 queue and a value of 255 means 256 queues
326 */
327 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
328 VPLAN_TX_QBASE_VFFIRSTQ_M) |
329 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
330 VPLAN_TX_QBASE_VFNUMQ_M));
331 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
332 } else {
333 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
334 }
335
336 /* set regardless of mapping mode */
337 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
338
339 /* VF Rx queues allocation */
340 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
341 /* set the VF PF Rx queue range
342 * VFNUMQ value should be set to (number of queues - 1). A value
343 * of 0 means 1 queue and a value of 255 means 256 queues
344 */
345 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
346 VPLAN_RX_QBASE_VFFIRSTQ_M) |
347 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
348 VPLAN_RX_QBASE_VFNUMQ_M));
349 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
350 } else {
351 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
352 }
353 }
354
355 /**
356 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
357 * @vf: pointer to the VF structure
358 */
359 static void ice_ena_vf_mappings(struct ice_vf *vf)
360 {
361 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
362
363 if (WARN_ON(!vsi))
364 return;
365
366 ice_ena_vf_msix_mappings(vf);
367 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
368 }
369
370 /**
371 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
372 * @vf: VF to calculate the register index for
373 * @q_vector: a q_vector associated to the VF
374 */
375 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
376 {
377 struct ice_pf *pf;
378
379 if (!vf || !q_vector)
380 return -EINVAL;
381
382 pf = vf->pf;
383
384 /* always add one to account for the OICR being the first MSIX */
385 return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
386 q_vector->v_idx + 1;
387 }
388
389 /**
390 * ice_sriov_set_msix_res - Set any used MSIX resources
391 * @pf: pointer to PF structure
392 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
393 *
394 * This function allows SR-IOV resources to be taken from the end of the PF's
395 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
396 * just set the pf->sriov_base_vector and return success.
397 *
398 * If there are not enough resources available, return an error. This should
399 * always be caught by ice_set_per_vf_res().
400 *
401 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
402 * in the PF's space available for SR-IOV.
403 */
404 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
405 {
406 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
407 int vectors_used = ice_get_max_used_msix_vector(pf);
408 int sriov_base_vector;
409
410 sriov_base_vector = total_vectors - num_msix_needed;
411
412 /* make sure we only grab irq_tracker entries from the list end and
413 * that we have enough available MSIX vectors
414 */
415 if (sriov_base_vector < vectors_used)
416 return -EINVAL;
417
418 pf->sriov_base_vector = sriov_base_vector;
419
420 return 0;
421 }
422
423 /**
424 * ice_set_per_vf_res - check if vectors and queues are available
425 * @pf: pointer to the PF structure
426 * @num_vfs: the number of SR-IOV VFs being configured
427 *
428 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
429 * get more vectors and can enable more queues per VF. Note that this does not
430 * grab any vectors from the SW pool already allocated. Also note, that all
431 * vector counts include one for each VF's miscellaneous interrupt vector
432 * (i.e. OICR).
433 *
434 * Minimum VFs - 2 vectors, 1 queue pair
435 * Small VFs - 5 vectors, 4 queue pairs
436 * Medium VFs - 17 vectors, 16 queue pairs
437 *
438 * Second, determine number of queue pairs per VF by starting with a pre-defined
439 * maximum each VF supports. If this is not possible, then we adjust based on
440 * queue pairs available on the device.
441 *
442 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
443 * by each VF during VF initialization and reset.
444 */
445 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
446 {
447 int vectors_used = ice_get_max_used_msix_vector(pf);
448 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
449 int msix_avail_per_vf, msix_avail_for_sriov;
450 struct device *dev = ice_pf_to_dev(pf);
451 int err;
452
453 lockdep_assert_held(&pf->vfs.table_lock);
454
455 if (!num_vfs)
456 return -EINVAL;
457
458 /* determine MSI-X resources per VF */
459 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
460 vectors_used;
461 msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
462 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
463 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
464 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
465 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
466 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
467 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
468 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
469 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
470 } else {
471 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
472 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
473 num_vfs);
474 return -ENOSPC;
475 }
476
477 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
478 ICE_MAX_RSS_QS_PER_VF);
479 avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
480 if (!avail_qs)
481 num_txq = 0;
482 else if (num_txq > avail_qs)
483 num_txq = rounddown_pow_of_two(avail_qs);
484
485 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
486 ICE_MAX_RSS_QS_PER_VF);
487 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
488 if (!avail_qs)
489 num_rxq = 0;
490 else if (num_rxq > avail_qs)
491 num_rxq = rounddown_pow_of_two(avail_qs);
492
493 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
494 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
495 ICE_MIN_QS_PER_VF, num_vfs);
496 return -ENOSPC;
497 }
498
499 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
500 if (err) {
501 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
502 num_vfs, err);
503 return err;
504 }
505
506 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
507 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
508 pf->vfs.num_msix_per = num_msix_per_vf;
509 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
510 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
511
512 return 0;
513 }
514
515 /**
516 * ice_sriov_get_irqs - get irqs for SR-IOV usacase
517 * @pf: pointer to PF structure
518 * @needed: number of irqs to get
519 *
520 * This returns the first MSI-X vector index in PF space that is used by this
521 * VF. This index is used when accessing PF relative registers such as
522 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
523 * This will always be the OICR index in the AVF driver so any functionality
524 * using vf->first_vector_idx for queue configuration_id: id of VF which will
525 * use this irqs
526 *
527 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
528 * allocated from the end of global irq index. First bit in sriov_irq_bm means
529 * last irq index etc. It simplifies extension of SRIOV vectors.
530 * They will be always located from sriov_base_vector to the last irq
531 * index. While increasing/decreasing sriov_base_vector can be moved.
532 */
533 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
534 {
535 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
536 pf->sriov_irq_size, 0, needed, 0);
537 /* conversion from number in bitmap to global irq index */
538 int index = pf->sriov_irq_size - res - needed;
539
540 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
541 return -ENOENT;
542
543 bitmap_set(pf->sriov_irq_bm, res, needed);
544 return index;
545 }
546
547 /**
548 * ice_sriov_free_irqs - free irqs used by the VF
549 * @pf: pointer to PF structure
550 * @vf: pointer to VF structure
551 */
552 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
553 {
554 /* Move back from first vector index to first index in bitmap */
555 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
556
557 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
558 vf->first_vector_idx = 0;
559 }
560
561 /**
562 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
563 * @vf: VF to initialize/setup the VSI for
564 *
565 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
566 * VF VSI's broadcast filter and is only used during initial VF creation.
567 */
568 static int ice_init_vf_vsi_res(struct ice_vf *vf)
569 {
570 struct ice_pf *pf = vf->pf;
571 struct ice_vsi *vsi;
572 int err;
573
574 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
575 if (vf->first_vector_idx < 0)
576 return -ENOMEM;
577
578 vsi = ice_vf_vsi_setup(vf);
579 if (!vsi)
580 return -ENOMEM;
581
582 err = ice_vf_init_host_cfg(vf, vsi);
583 if (err)
584 goto release_vsi;
585
586 return 0;
587
588 release_vsi:
589 ice_vf_vsi_release(vf);
590 return err;
591 }
592
593 /**
594 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
595 * @pf: PF the VFs are associated with
596 */
597 static int ice_start_vfs(struct ice_pf *pf)
598 {
599 struct ice_hw *hw = &pf->hw;
600 unsigned int bkt, it_cnt;
601 struct ice_vf *vf;
602 int retval;
603
604 lockdep_assert_held(&pf->vfs.table_lock);
605
606 it_cnt = 0;
607 ice_for_each_vf(pf, bkt, vf) {
608 vf->vf_ops->clear_reset_trigger(vf);
609
610 retval = ice_init_vf_vsi_res(vf);
611 if (retval) {
612 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
613 vf->vf_id, retval);
614 goto teardown;
615 }
616
617 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
618 ice_ena_vf_mappings(vf);
619 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
620 it_cnt++;
621 }
622
623 ice_flush(hw);
624 return 0;
625
626 teardown:
627 ice_for_each_vf(pf, bkt, vf) {
628 if (it_cnt == 0)
629 break;
630
631 ice_dis_vf_mappings(vf);
632 ice_vf_vsi_release(vf);
633 it_cnt--;
634 }
635
636 return retval;
637 }
638
639 /**
640 * ice_sriov_free_vf - Free VF memory after all references are dropped
641 * @vf: pointer to VF to free
642 *
643 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
644 * structure has been dropped.
645 */
646 static void ice_sriov_free_vf(struct ice_vf *vf)
647 {
648 mutex_destroy(&vf->cfg_lock);
649
650 kfree_rcu(vf, rcu);
651 }
652
653 /**
654 * ice_sriov_clear_reset_state - clears VF Reset status register
655 * @vf: the vf to configure
656 */
657 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
658 {
659 struct ice_hw *hw = &vf->pf->hw;
660
661 /* Clear the reset status register so that VF immediately sees that
662 * the device is resetting, even if hardware hasn't yet gotten around
663 * to clearing VFGEN_RSTAT for us.
664 */
665 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
666 }
667
668 /**
669 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
670 * @vf: the vf to configure
671 */
672 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
673 {
674 struct ice_pf *pf = vf->pf;
675
676 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
677 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
678 }
679
680 /**
681 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
682 * @vf: pointer to VF structure
683 * @is_vflr: true if reset occurred due to VFLR
684 *
685 * Trigger and cleanup after a VF reset for a SR-IOV VF.
686 */
687 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
688 {
689 struct ice_pf *pf = vf->pf;
690 u32 reg, reg_idx, bit_idx;
691 unsigned int vf_abs_id, i;
692 struct device *dev;
693 struct ice_hw *hw;
694
695 dev = ice_pf_to_dev(pf);
696 hw = &pf->hw;
697 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
698
699 /* In the case of a VFLR, HW has already reset the VF and we just need
700 * to clean up. Otherwise we must first trigger the reset using the
701 * VFRTRIG register.
702 */
703 if (!is_vflr) {
704 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
705 reg |= VPGEN_VFRTRIG_VFSWR_M;
706 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
707 }
708
709 /* clear the VFLR bit in GLGEN_VFLRSTAT */
710 reg_idx = (vf_abs_id) / 32;
711 bit_idx = (vf_abs_id) % 32;
712 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
713 ice_flush(hw);
714
715 wr32(hw, PF_PCI_CIAA,
716 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
717 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
718 reg = rd32(hw, PF_PCI_CIAD);
719 /* no transactions pending so stop polling */
720 if ((reg & VF_TRANS_PENDING_M) == 0)
721 break;
722
723 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
724 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
725 }
726 }
727
728 /**
729 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
730 * @vf: pointer to VF structure
731 *
732 * Returns true when reset is successful, else returns false
733 */
734 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
735 {
736 struct ice_pf *pf = vf->pf;
737 unsigned int i;
738 u32 reg;
739
740 for (i = 0; i < 10; i++) {
741 /* VF reset requires driver to first reset the VF and then
742 * poll the status register to make sure that the reset
743 * completed successfully.
744 */
745 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
746 if (reg & VPGEN_VFRSTAT_VFRD_M)
747 return true;
748
749 /* only sleep if the reset is not done */
750 usleep_range(10, 20);
751 }
752 return false;
753 }
754
755 /**
756 * ice_sriov_clear_reset_trigger - enable VF to access hardware
757 * @vf: VF to enabled hardware access for
758 */
759 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
760 {
761 struct ice_hw *hw = &vf->pf->hw;
762 u32 reg;
763
764 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
765 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
766 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
767 ice_flush(hw);
768 }
769
770 /**
771 * ice_sriov_create_vsi - Create a new VSI for a VF
772 * @vf: VF to create the VSI for
773 *
774 * This is called by ice_vf_recreate_vsi to create the new VSI after the old
775 * VSI has been released.
776 */
777 static int ice_sriov_create_vsi(struct ice_vf *vf)
778 {
779 struct ice_vsi *vsi;
780
781 vsi = ice_vf_vsi_setup(vf);
782 if (!vsi)
783 return -ENOMEM;
784
785 return 0;
786 }
787
788 /**
789 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
790 * @vf: VF to perform tasks on
791 */
792 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
793 {
794 ice_ena_vf_mappings(vf);
795 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
796 }
797
798 static const struct ice_vf_ops ice_sriov_vf_ops = {
799 .reset_type = ICE_VF_RESET,
800 .free = ice_sriov_free_vf,
801 .clear_reset_state = ice_sriov_clear_reset_state,
802 .clear_mbx_register = ice_sriov_clear_mbx_register,
803 .trigger_reset_register = ice_sriov_trigger_reset_register,
804 .poll_reset_status = ice_sriov_poll_reset_status,
805 .clear_reset_trigger = ice_sriov_clear_reset_trigger,
806 .irq_close = NULL,
807 .create_vsi = ice_sriov_create_vsi,
808 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
809 };
810
811 /**
812 * ice_create_vf_entries - Allocate and insert VF entries
813 * @pf: pointer to the PF structure
814 * @num_vfs: the number of VFs to allocate
815 *
816 * Allocate new VF entries and insert them into the hash table. Set some
817 * basic default fields for initializing the new VFs.
818 *
819 * After this function exits, the hash table will have num_vfs entries
820 * inserted.
821 *
822 * Returns 0 on success or an integer error code on failure.
823 */
824 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
825 {
826 struct pci_dev *pdev = pf->pdev;
827 struct ice_vfs *vfs = &pf->vfs;
828 struct pci_dev *vfdev = NULL;
829 struct ice_vf *vf;
830 u16 vf_pdev_id;
831 int err, pos;
832
833 lockdep_assert_held(&vfs->table_lock);
834
835 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
836 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
837
838 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
839 vf = kzalloc(sizeof(*vf), GFP_KERNEL);
840 if (!vf) {
841 err = -ENOMEM;
842 goto err_free_entries;
843 }
844 kref_init(&vf->refcnt);
845
846 vf->pf = pf;
847 vf->vf_id = vf_id;
848
849 /* set sriov vf ops for VFs created during SRIOV flow */
850 vf->vf_ops = &ice_sriov_vf_ops;
851
852 ice_initialize_vf_entry(vf);
853
854 do {
855 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
856 } while (vfdev && vfdev->physfn != pdev);
857 vf->vfdev = vfdev;
858 vf->vf_sw_id = pf->first_sw;
859
860 pci_dev_get(vfdev);
861
862 /* set default number of MSI-X */
863 vf->num_msix = pf->vfs.num_msix_per;
864 vf->num_vf_qs = pf->vfs.num_qps_per;
865 ice_vc_set_default_allowlist(vf);
866
867 hash_add_rcu(vfs->table, &vf->entry, vf_id);
868 }
869
870 /* Decrement of refcount done by pci_get_device() inside the loop does
871 * not touch the last iteration's vfdev, so it has to be done manually
872 * to balance pci_dev_get() added within the loop.
873 */
874 pci_dev_put(vfdev);
875
876 return 0;
877
878 err_free_entries:
879 ice_free_vf_entries(pf);
880 return err;
881 }
882
883 /**
884 * ice_ena_vfs - enable VFs so they are ready to be used
885 * @pf: pointer to the PF structure
886 * @num_vfs: number of VFs to enable
887 */
888 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
889 {
890 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
891 struct device *dev = ice_pf_to_dev(pf);
892 struct ice_hw *hw = &pf->hw;
893 int ret;
894
895 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
896 if (!pf->sriov_irq_bm)
897 return -ENOMEM;
898 pf->sriov_irq_size = total_vectors;
899
900 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
901 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
902 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
903 set_bit(ICE_OICR_INTR_DIS, pf->state);
904 ice_flush(hw);
905
906 ret = pci_enable_sriov(pf->pdev, num_vfs);
907 if (ret)
908 goto err_unroll_intr;
909
910 mutex_lock(&pf->vfs.table_lock);
911
912 ret = ice_set_per_vf_res(pf, num_vfs);
913 if (ret) {
914 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
915 num_vfs, ret);
916 goto err_unroll_sriov;
917 }
918
919 ret = ice_create_vf_entries(pf, num_vfs);
920 if (ret) {
921 dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
922 num_vfs);
923 goto err_unroll_sriov;
924 }
925
926 ret = ice_start_vfs(pf);
927 if (ret) {
928 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
929 ret = -EAGAIN;
930 goto err_unroll_vf_entries;
931 }
932
933 clear_bit(ICE_VF_DIS, pf->state);
934
935 ret = ice_eswitch_configure(pf);
936 if (ret) {
937 dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
938 goto err_unroll_sriov;
939 }
940
941 /* rearm global interrupts */
942 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
943 ice_irq_dynamic_ena(hw, NULL, NULL);
944
945 mutex_unlock(&pf->vfs.table_lock);
946
947 return 0;
948
949 err_unroll_vf_entries:
950 ice_free_vf_entries(pf);
951 err_unroll_sriov:
952 mutex_unlock(&pf->vfs.table_lock);
953 pci_disable_sriov(pf->pdev);
954 err_unroll_intr:
955 /* rearm interrupts here */
956 ice_irq_dynamic_ena(hw, NULL, NULL);
957 clear_bit(ICE_OICR_INTR_DIS, pf->state);
958 bitmap_free(pf->sriov_irq_bm);
959 return ret;
960 }
961
962 /**
963 * ice_pci_sriov_ena - Enable or change number of VFs
964 * @pf: pointer to the PF structure
965 * @num_vfs: number of VFs to allocate
966 *
967 * Returns 0 on success and negative on failure
968 */
969 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
970 {
971 struct device *dev = ice_pf_to_dev(pf);
972 int err;
973
974 if (!num_vfs) {
975 ice_free_vfs(pf);
976 return 0;
977 }
978
979 if (num_vfs > pf->vfs.num_supported) {
980 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
981 num_vfs, pf->vfs.num_supported);
982 return -EOPNOTSUPP;
983 }
984
985 dev_info(dev, "Enabling %d VFs\n", num_vfs);
986 err = ice_ena_vfs(pf, num_vfs);
987 if (err) {
988 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
989 return err;
990 }
991
992 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
993 return 0;
994 }
995
996 /**
997 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
998 * @pf: PF to enabled SR-IOV on
999 */
1000 static int ice_check_sriov_allowed(struct ice_pf *pf)
1001 {
1002 struct device *dev = ice_pf_to_dev(pf);
1003
1004 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1005 dev_err(dev, "This device is not capable of SR-IOV\n");
1006 return -EOPNOTSUPP;
1007 }
1008
1009 if (ice_is_safe_mode(pf)) {
1010 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1011 return -EOPNOTSUPP;
1012 }
1013
1014 if (!ice_pf_state_is_nominal(pf)) {
1015 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1016 return -EBUSY;
1017 }
1018
1019 return 0;
1020 }
1021
1022 /**
1023 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
1024 * @pdev: pointer to pci_dev struct
1025 *
1026 * The function is called via sysfs ops
1027 */
1028 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
1029 {
1030 struct ice_pf *pf = pci_get_drvdata(pdev);
1031
1032 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
1033 }
1034
1035 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
1036 {
1037 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1038 return -ENOMEM;
1039
1040 pf->sriov_base_vector -= move;
1041 return 0;
1042 }
1043
1044 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1045 {
1046 u16 vf_ids[ICE_MAX_SRIOV_VFS];
1047 struct ice_vf *tmp_vf;
1048 int to_remap = 0, bkt;
1049
1050 /* For better irqs usage try to remap irqs of VFs
1051 * that aren't running yet
1052 */
1053 ice_for_each_vf(pf, bkt, tmp_vf) {
1054 /* skip VF which is changing the number of MSI-X */
1055 if (restricted_id == tmp_vf->vf_id ||
1056 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1057 continue;
1058
1059 ice_dis_vf_mappings(tmp_vf);
1060 ice_sriov_free_irqs(pf, tmp_vf);
1061
1062 vf_ids[to_remap] = tmp_vf->vf_id;
1063 to_remap += 1;
1064 }
1065
1066 for (int i = 0; i < to_remap; i++) {
1067 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1068 if (!tmp_vf)
1069 continue;
1070
1071 tmp_vf->first_vector_idx =
1072 ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1073 /* there is no need to rebuild VSI as we are only changing the
1074 * vector indexes not amount of MSI-X or queues
1075 */
1076 ice_ena_vf_mappings(tmp_vf);
1077 ice_put_vf(tmp_vf);
1078 }
1079 }
1080
1081 /**
1082 * ice_sriov_set_msix_vec_count
1083 * @vf_dev: pointer to pci_dev struct of VF device
1084 * @msix_vec_count: new value for MSI-X amount on this VF
1085 *
1086 * Set requested MSI-X, queues and registers for @vf_dev.
1087 *
1088 * First do some sanity checks like if there are any VFs, if the new value
1089 * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1090 * MSI-X and queues, rebuild VSI and enable new mapping.
1091 *
1092 * If it is possible (driver not binded to VF) try to remap also other VFs to
1093 * linearize irqs register usage.
1094 */
1095 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1096 {
1097 struct pci_dev *pdev = pci_physfn(vf_dev);
1098 struct ice_pf *pf = pci_get_drvdata(pdev);
1099 u16 prev_msix, prev_queues, queues;
1100 bool needs_rebuild = false;
1101 struct ice_vf *vf;
1102 int id;
1103
1104 if (!ice_get_num_vfs(pf))
1105 return -ENOENT;
1106
1107 if (!msix_vec_count)
1108 return 0;
1109
1110 queues = msix_vec_count;
1111 /* add 1 MSI-X for OICR */
1112 msix_vec_count += 1;
1113
1114 if (queues > min(ice_get_avail_txq_count(pf),
1115 ice_get_avail_rxq_count(pf)))
1116 return -EINVAL;
1117
1118 if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1119 return -EINVAL;
1120
1121 /* Transition of PCI VF function number to function_id */
1122 for (id = 0; id < pci_num_vf(pdev); id++) {
1123 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1124 break;
1125 }
1126
1127 if (id == pci_num_vf(pdev))
1128 return -ENOENT;
1129
1130 vf = ice_get_vf_by_id(pf, id);
1131
1132 if (!vf)
1133 return -ENOENT;
1134
1135 prev_msix = vf->num_msix;
1136 prev_queues = vf->num_vf_qs;
1137
1138 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1139 ice_put_vf(vf);
1140 return -ENOSPC;
1141 }
1142
1143 ice_dis_vf_mappings(vf);
1144 ice_sriov_free_irqs(pf, vf);
1145
1146 /* Remap all VFs beside the one is now configured */
1147 ice_sriov_remap_vectors(pf, vf->vf_id);
1148
1149 vf->num_msix = msix_vec_count;
1150 vf->num_vf_qs = queues;
1151 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1152 if (vf->first_vector_idx < 0)
1153 goto unroll;
1154
1155 ice_vf_vsi_release(vf);
1156 if (vf->vf_ops->create_vsi(vf)) {
1157 /* Try to rebuild with previous values */
1158 needs_rebuild = true;
1159 goto unroll;
1160 }
1161
1162 dev_info(ice_pf_to_dev(pf),
1163 "Changing VF %d resources to %d vectors and %d queues\n",
1164 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1165
1166 ice_ena_vf_mappings(vf);
1167 ice_put_vf(vf);
1168
1169 return 0;
1170
1171 unroll:
1172 dev_info(ice_pf_to_dev(pf),
1173 "Can't set %d vectors on VF %d, falling back to %d\n",
1174 vf->num_msix, vf->vf_id, prev_msix);
1175
1176 vf->num_msix = prev_msix;
1177 vf->num_vf_qs = prev_queues;
1178 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1179 if (vf->first_vector_idx < 0)
1180 return -EINVAL;
1181
1182 if (needs_rebuild)
1183 vf->vf_ops->create_vsi(vf);
1184
1185 ice_ena_vf_mappings(vf);
1186 ice_put_vf(vf);
1187
1188 return -EINVAL;
1189 }
1190
1191 /**
1192 * ice_sriov_configure - Enable or change number of VFs via sysfs
1193 * @pdev: pointer to a pci_dev structure
1194 * @num_vfs: number of VFs to allocate or 0 to free VFs
1195 *
1196 * This function is called when the user updates the number of VFs in sysfs. On
1197 * success return whatever num_vfs was set to by the caller. Return negative on
1198 * failure.
1199 */
1200 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1201 {
1202 struct ice_pf *pf = pci_get_drvdata(pdev);
1203 struct device *dev = ice_pf_to_dev(pf);
1204 int err;
1205
1206 err = ice_check_sriov_allowed(pf);
1207 if (err)
1208 return err;
1209
1210 if (!num_vfs) {
1211 if (!pci_vfs_assigned(pdev)) {
1212 ice_free_vfs(pf);
1213 return 0;
1214 }
1215
1216 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1217 return -EBUSY;
1218 }
1219
1220 err = ice_pci_sriov_ena(pf, num_vfs);
1221 if (err)
1222 return err;
1223
1224 return num_vfs;
1225 }
1226
1227 /**
1228 * ice_process_vflr_event - Free VF resources via IRQ calls
1229 * @pf: pointer to the PF structure
1230 *
1231 * called from the VFLR IRQ handler to
1232 * free up VF resources and state variables
1233 */
1234 void ice_process_vflr_event(struct ice_pf *pf)
1235 {
1236 struct ice_hw *hw = &pf->hw;
1237 struct ice_vf *vf;
1238 unsigned int bkt;
1239 u32 reg;
1240
1241 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1242 !ice_has_vfs(pf))
1243 return;
1244
1245 mutex_lock(&pf->vfs.table_lock);
1246 ice_for_each_vf(pf, bkt, vf) {
1247 u32 reg_idx, bit_idx;
1248
1249 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1250 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1251 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1252 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1253 if (reg & BIT(bit_idx))
1254 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1255 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1256 }
1257 mutex_unlock(&pf->vfs.table_lock);
1258 }
1259
1260 /**
1261 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1262 * @pf: PF used to index all VFs
1263 * @pfq: queue index relative to the PF's function space
1264 *
1265 * If no VF is found who owns the pfq then return NULL, otherwise return a
1266 * pointer to the VF who owns the pfq
1267 *
1268 * If this function returns non-NULL, it acquires a reference count of the VF
1269 * structure. The caller is responsible for calling ice_put_vf() to drop this
1270 * reference.
1271 */
1272 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1273 {
1274 struct ice_vf *vf;
1275 unsigned int bkt;
1276
1277 rcu_read_lock();
1278 ice_for_each_vf_rcu(pf, bkt, vf) {
1279 struct ice_vsi *vsi;
1280 u16 rxq_idx;
1281
1282 vsi = ice_get_vf_vsi(vf);
1283 if (!vsi)
1284 continue;
1285
1286 ice_for_each_rxq(vsi, rxq_idx)
1287 if (vsi->rxq_map[rxq_idx] == pfq) {
1288 struct ice_vf *found;
1289
1290 if (kref_get_unless_zero(&vf->refcnt))
1291 found = vf;
1292 else
1293 found = NULL;
1294 rcu_read_unlock();
1295 return found;
1296 }
1297 }
1298 rcu_read_unlock();
1299
1300 return NULL;
1301 }
1302
1303 /**
1304 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1305 * @pf: PF used for conversion
1306 * @globalq: global queue index used to convert to PF space queue index
1307 */
1308 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1309 {
1310 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1311 }
1312
1313 /**
1314 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1315 * @pf: PF that the LAN overflow event happened on
1316 * @event: structure holding the event information for the LAN overflow event
1317 *
1318 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1319 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1320 * reset on the offending VF.
1321 */
1322 void
1323 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1324 {
1325 u32 gldcb_rtctq, queue;
1326 struct ice_vf *vf;
1327
1328 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1329 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1330
1331 /* event returns device global Rx queue number */
1332 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1333 GLDCB_RTCTQ_RXQNUM_S;
1334
1335 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1336 if (!vf)
1337 return;
1338
1339 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1340 ice_put_vf(vf);
1341 }
1342
1343 /**
1344 * ice_set_vf_spoofchk
1345 * @netdev: network interface device structure
1346 * @vf_id: VF identifier
1347 * @ena: flag to enable or disable feature
1348 *
1349 * Enable or disable VF spoof checking
1350 */
1351 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1352 {
1353 struct ice_netdev_priv *np = netdev_priv(netdev);
1354 struct ice_pf *pf = np->vsi->back;
1355 struct ice_vsi *vf_vsi;
1356 struct device *dev;
1357 struct ice_vf *vf;
1358 int ret;
1359
1360 dev = ice_pf_to_dev(pf);
1361
1362 vf = ice_get_vf_by_id(pf, vf_id);
1363 if (!vf)
1364 return -EINVAL;
1365
1366 ret = ice_check_vf_ready_for_cfg(vf);
1367 if (ret)
1368 goto out_put_vf;
1369
1370 vf_vsi = ice_get_vf_vsi(vf);
1371 if (!vf_vsi) {
1372 netdev_err(netdev, "VSI %d for VF %d is null\n",
1373 vf->lan_vsi_idx, vf->vf_id);
1374 ret = -EINVAL;
1375 goto out_put_vf;
1376 }
1377
1378 if (vf_vsi->type != ICE_VSI_VF) {
1379 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1380 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1381 ret = -ENODEV;
1382 goto out_put_vf;
1383 }
1384
1385 if (ena == vf->spoofchk) {
1386 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1387 ret = 0;
1388 goto out_put_vf;
1389 }
1390
1391 ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1392 if (ret)
1393 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1394 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1395 else
1396 vf->spoofchk = ena;
1397
1398 out_put_vf:
1399 ice_put_vf(vf);
1400 return ret;
1401 }
1402
1403 /**
1404 * ice_get_vf_cfg
1405 * @netdev: network interface device structure
1406 * @vf_id: VF identifier
1407 * @ivi: VF configuration structure
1408 *
1409 * return VF configuration
1410 */
1411 int
1412 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1413 {
1414 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1415 struct ice_vf *vf;
1416 int ret;
1417
1418 vf = ice_get_vf_by_id(pf, vf_id);
1419 if (!vf)
1420 return -EINVAL;
1421
1422 ret = ice_check_vf_ready_for_cfg(vf);
1423 if (ret)
1424 goto out_put_vf;
1425
1426 ivi->vf = vf_id;
1427 ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1428
1429 /* VF configuration for VLAN and applicable QoS */
1430 ivi->vlan = ice_vf_get_port_vlan_id(vf);
1431 ivi->qos = ice_vf_get_port_vlan_prio(vf);
1432 if (ice_vf_is_port_vlan_ena(vf))
1433 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1434
1435 ivi->trusted = vf->trusted;
1436 ivi->spoofchk = vf->spoofchk;
1437 if (!vf->link_forced)
1438 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1439 else if (vf->link_up)
1440 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1441 else
1442 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1443 ivi->max_tx_rate = vf->max_tx_rate;
1444 ivi->min_tx_rate = vf->min_tx_rate;
1445
1446 out_put_vf:
1447 ice_put_vf(vf);
1448 return ret;
1449 }
1450
1451 /**
1452 * ice_set_vf_mac
1453 * @netdev: network interface device structure
1454 * @vf_id: VF identifier
1455 * @mac: MAC address
1456 *
1457 * program VF MAC address
1458 */
1459 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1460 {
1461 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1462 struct ice_vf *vf;
1463 int ret;
1464
1465 if (is_multicast_ether_addr(mac)) {
1466 netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1467 return -EINVAL;
1468 }
1469
1470 vf = ice_get_vf_by_id(pf, vf_id);
1471 if (!vf)
1472 return -EINVAL;
1473
1474 /* nothing left to do, unicast MAC already set */
1475 if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1476 ether_addr_equal(vf->hw_lan_addr, mac)) {
1477 ret = 0;
1478 goto out_put_vf;
1479 }
1480
1481 ret = ice_check_vf_ready_for_cfg(vf);
1482 if (ret)
1483 goto out_put_vf;
1484
1485 mutex_lock(&vf->cfg_lock);
1486
1487 /* VF is notified of its new MAC via the PF's response to the
1488 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1489 */
1490 ether_addr_copy(vf->dev_lan_addr, mac);
1491 ether_addr_copy(vf->hw_lan_addr, mac);
1492 if (is_zero_ether_addr(mac)) {
1493 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1494 vf->pf_set_mac = false;
1495 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1496 vf->vf_id);
1497 } else {
1498 /* PF will add MAC rule for the VF */
1499 vf->pf_set_mac = true;
1500 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1501 mac, vf_id);
1502 }
1503
1504 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1505 mutex_unlock(&vf->cfg_lock);
1506
1507 out_put_vf:
1508 ice_put_vf(vf);
1509 return ret;
1510 }
1511
1512 /**
1513 * ice_set_vf_trust
1514 * @netdev: network interface device structure
1515 * @vf_id: VF identifier
1516 * @trusted: Boolean value to enable/disable trusted VF
1517 *
1518 * Enable or disable a given VF as trusted
1519 */
1520 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1521 {
1522 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1523 struct ice_vf *vf;
1524 int ret;
1525
1526 vf = ice_get_vf_by_id(pf, vf_id);
1527 if (!vf)
1528 return -EINVAL;
1529
1530 if (ice_is_eswitch_mode_switchdev(pf)) {
1531 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1532 return -EOPNOTSUPP;
1533 }
1534
1535 ret = ice_check_vf_ready_for_cfg(vf);
1536 if (ret)
1537 goto out_put_vf;
1538
1539 /* Check if already trusted */
1540 if (trusted == vf->trusted) {
1541 ret = 0;
1542 goto out_put_vf;
1543 }
1544
1545 mutex_lock(&vf->cfg_lock);
1546
1547 vf->trusted = trusted;
1548 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1549 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1550 vf_id, trusted ? "" : "un");
1551
1552 mutex_unlock(&vf->cfg_lock);
1553
1554 out_put_vf:
1555 ice_put_vf(vf);
1556 return ret;
1557 }
1558
1559 /**
1560 * ice_set_vf_link_state
1561 * @netdev: network interface device structure
1562 * @vf_id: VF identifier
1563 * @link_state: required link state
1564 *
1565 * Set VF's link state, irrespective of physical link state status
1566 */
1567 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1568 {
1569 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1570 struct ice_vf *vf;
1571 int ret;
1572
1573 vf = ice_get_vf_by_id(pf, vf_id);
1574 if (!vf)
1575 return -EINVAL;
1576
1577 ret = ice_check_vf_ready_for_cfg(vf);
1578 if (ret)
1579 goto out_put_vf;
1580
1581 switch (link_state) {
1582 case IFLA_VF_LINK_STATE_AUTO:
1583 vf->link_forced = false;
1584 break;
1585 case IFLA_VF_LINK_STATE_ENABLE:
1586 vf->link_forced = true;
1587 vf->link_up = true;
1588 break;
1589 case IFLA_VF_LINK_STATE_DISABLE:
1590 vf->link_forced = true;
1591 vf->link_up = false;
1592 break;
1593 default:
1594 ret = -EINVAL;
1595 goto out_put_vf;
1596 }
1597
1598 ice_vc_notify_vf_link_state(vf);
1599
1600 out_put_vf:
1601 ice_put_vf(vf);
1602 return ret;
1603 }
1604
1605 /**
1606 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1607 * @pf: PF associated with VFs
1608 */
1609 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1610 {
1611 struct ice_vf *vf;
1612 unsigned int bkt;
1613 int rate = 0;
1614
1615 rcu_read_lock();
1616 ice_for_each_vf_rcu(pf, bkt, vf)
1617 rate += vf->min_tx_rate;
1618 rcu_read_unlock();
1619
1620 return rate;
1621 }
1622
1623 /**
1624 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1625 * @vf: VF trying to configure min_tx_rate
1626 * @min_tx_rate: min Tx rate in Mbps
1627 *
1628 * Check if the min_tx_rate being passed in will cause oversubscription of total
1629 * min_tx_rate based on the current link speed and all other VFs configured
1630 * min_tx_rate
1631 *
1632 * Return true if the passed min_tx_rate would cause oversubscription, else
1633 * return false
1634 */
1635 static bool
1636 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1637 {
1638 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1639 int all_vfs_min_tx_rate;
1640 int link_speed_mbps;
1641
1642 if (WARN_ON(!vsi))
1643 return false;
1644
1645 link_speed_mbps = ice_get_link_speed_mbps(vsi);
1646 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1647
1648 /* this VF's previous rate is being overwritten */
1649 all_vfs_min_tx_rate -= vf->min_tx_rate;
1650
1651 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1652 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1653 min_tx_rate, vf->vf_id,
1654 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1655 link_speed_mbps);
1656 return true;
1657 }
1658
1659 return false;
1660 }
1661
1662 /**
1663 * ice_set_vf_bw - set min/max VF bandwidth
1664 * @netdev: network interface device structure
1665 * @vf_id: VF identifier
1666 * @min_tx_rate: Minimum Tx rate in Mbps
1667 * @max_tx_rate: Maximum Tx rate in Mbps
1668 */
1669 int
1670 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1671 int max_tx_rate)
1672 {
1673 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1674 struct ice_vsi *vsi;
1675 struct device *dev;
1676 struct ice_vf *vf;
1677 int ret;
1678
1679 dev = ice_pf_to_dev(pf);
1680
1681 vf = ice_get_vf_by_id(pf, vf_id);
1682 if (!vf)
1683 return -EINVAL;
1684
1685 ret = ice_check_vf_ready_for_cfg(vf);
1686 if (ret)
1687 goto out_put_vf;
1688
1689 vsi = ice_get_vf_vsi(vf);
1690 if (!vsi) {
1691 ret = -EINVAL;
1692 goto out_put_vf;
1693 }
1694
1695 if (min_tx_rate && ice_is_dcb_active(pf)) {
1696 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1697 ret = -EOPNOTSUPP;
1698 goto out_put_vf;
1699 }
1700
1701 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1702 ret = -EINVAL;
1703 goto out_put_vf;
1704 }
1705
1706 if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1707 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1708 if (ret) {
1709 dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1710 vf->vf_id);
1711 goto out_put_vf;
1712 }
1713
1714 vf->min_tx_rate = min_tx_rate;
1715 }
1716
1717 if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1718 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1719 if (ret) {
1720 dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1721 vf->vf_id);
1722 goto out_put_vf;
1723 }
1724
1725 vf->max_tx_rate = max_tx_rate;
1726 }
1727
1728 out_put_vf:
1729 ice_put_vf(vf);
1730 return ret;
1731 }
1732
1733 /**
1734 * ice_get_vf_stats - populate some stats for the VF
1735 * @netdev: the netdev of the PF
1736 * @vf_id: the host OS identifier (0-255)
1737 * @vf_stats: pointer to the OS memory to be initialized
1738 */
1739 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1740 struct ifla_vf_stats *vf_stats)
1741 {
1742 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1743 struct ice_eth_stats *stats;
1744 struct ice_vsi *vsi;
1745 struct ice_vf *vf;
1746 int ret;
1747
1748 vf = ice_get_vf_by_id(pf, vf_id);
1749 if (!vf)
1750 return -EINVAL;
1751
1752 ret = ice_check_vf_ready_for_cfg(vf);
1753 if (ret)
1754 goto out_put_vf;
1755
1756 vsi = ice_get_vf_vsi(vf);
1757 if (!vsi) {
1758 ret = -EINVAL;
1759 goto out_put_vf;
1760 }
1761
1762 ice_update_eth_stats(vsi);
1763 stats = &vsi->eth_stats;
1764
1765 memset(vf_stats, 0, sizeof(*vf_stats));
1766
1767 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1768 stats->rx_multicast;
1769 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1770 stats->tx_multicast;
1771 vf_stats->rx_bytes = stats->rx_bytes;
1772 vf_stats->tx_bytes = stats->tx_bytes;
1773 vf_stats->broadcast = stats->rx_broadcast;
1774 vf_stats->multicast = stats->rx_multicast;
1775 vf_stats->rx_dropped = stats->rx_discards;
1776 vf_stats->tx_dropped = stats->tx_discards;
1777
1778 out_put_vf:
1779 ice_put_vf(vf);
1780 return ret;
1781 }
1782
1783 /**
1784 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1785 * @hw: hardware structure used to check the VLAN mode
1786 * @vlan_proto: VLAN TPID being checked
1787 *
1788 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1789 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1790 * Mode (SVM), then only ETH_P_8021Q is supported.
1791 */
1792 static bool
1793 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1794 {
1795 bool is_supported = false;
1796
1797 switch (vlan_proto) {
1798 case ETH_P_8021Q:
1799 is_supported = true;
1800 break;
1801 case ETH_P_8021AD:
1802 if (ice_is_dvm_ena(hw))
1803 is_supported = true;
1804 break;
1805 }
1806
1807 return is_supported;
1808 }
1809
1810 /**
1811 * ice_set_vf_port_vlan
1812 * @netdev: network interface device structure
1813 * @vf_id: VF identifier
1814 * @vlan_id: VLAN ID being set
1815 * @qos: priority setting
1816 * @vlan_proto: VLAN protocol
1817 *
1818 * program VF Port VLAN ID and/or QoS
1819 */
1820 int
1821 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1822 __be16 vlan_proto)
1823 {
1824 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1825 u16 local_vlan_proto = ntohs(vlan_proto);
1826 struct device *dev;
1827 struct ice_vf *vf;
1828 int ret;
1829
1830 dev = ice_pf_to_dev(pf);
1831
1832 if (vlan_id >= VLAN_N_VID || qos > 7) {
1833 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1834 vf_id, vlan_id, qos);
1835 return -EINVAL;
1836 }
1837
1838 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1839 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1840 local_vlan_proto);
1841 return -EPROTONOSUPPORT;
1842 }
1843
1844 vf = ice_get_vf_by_id(pf, vf_id);
1845 if (!vf)
1846 return -EINVAL;
1847
1848 ret = ice_check_vf_ready_for_cfg(vf);
1849 if (ret)
1850 goto out_put_vf;
1851
1852 if (ice_vf_get_port_vlan_prio(vf) == qos &&
1853 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1854 ice_vf_get_port_vlan_id(vf) == vlan_id) {
1855 /* duplicate request, so just return success */
1856 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1857 vlan_id, qos, local_vlan_proto);
1858 ret = 0;
1859 goto out_put_vf;
1860 }
1861
1862 mutex_lock(&vf->cfg_lock);
1863
1864 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1865 if (ice_vf_is_port_vlan_ena(vf))
1866 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1867 vlan_id, qos, local_vlan_proto, vf_id);
1868 else
1869 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1870
1871 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1872 mutex_unlock(&vf->cfg_lock);
1873
1874 out_put_vf:
1875 ice_put_vf(vf);
1876 return ret;
1877 }
1878
1879 /**
1880 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1881 * @vf: pointer to the VF structure
1882 */
1883 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1884 {
1885 struct ice_pf *pf = vf->pf;
1886 struct device *dev;
1887
1888 dev = ice_pf_to_dev(pf);
1889
1890 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1891 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1892 vf->dev_lan_addr,
1893 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1894 ? "on" : "off");
1895 }
1896
1897 /**
1898 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1899 * @pf: pointer to the PF structure
1900 *
1901 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1902 */
1903 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1904 {
1905 struct device *dev = ice_pf_to_dev(pf);
1906 struct ice_hw *hw = &pf->hw;
1907 struct ice_vf *vf;
1908 unsigned int bkt;
1909
1910 /* check that there are pending MDD events to print */
1911 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1912 return;
1913
1914 /* VF MDD event logs are rate limited to one second intervals */
1915 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1916 return;
1917
1918 pf->vfs.last_printed_mdd_jiffies = jiffies;
1919
1920 mutex_lock(&pf->vfs.table_lock);
1921 ice_for_each_vf(pf, bkt, vf) {
1922 /* only print Rx MDD event message if there are new events */
1923 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1924 vf->mdd_rx_events.last_printed =
1925 vf->mdd_rx_events.count;
1926 ice_print_vf_rx_mdd_event(vf);
1927 }
1928
1929 /* only print Tx MDD event message if there are new events */
1930 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1931 vf->mdd_tx_events.last_printed =
1932 vf->mdd_tx_events.count;
1933
1934 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1935 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1936 vf->dev_lan_addr);
1937 }
1938 }
1939 mutex_unlock(&pf->vfs.table_lock);
1940 }
1941
1942 /**
1943 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1944 * @pf: pointer to the PF structure
1945 *
1946 * Called when recovering from a PF FLR to restore interrupt capability to
1947 * the VFs.
1948 */
1949 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1950 {
1951 struct ice_vf *vf;
1952 u32 bkt;
1953
1954 ice_for_each_vf(pf, bkt, vf)
1955 pci_restore_msi_state(vf->vfdev);
1956 }