]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/intel/ice/ice_sriov.c
Merge tag 'loongarch-kvm-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhu...
[thirdparty/kernel/stable.git] / drivers / net / ethernet / intel / ice / ice_sriov.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16
17 /**
18 * ice_free_vf_entries - Free all VF entries from the hash table
19 * @pf: pointer to the PF structure
20 *
21 * Iterate over the VF hash table, removing and releasing all VF entries.
22 * Called during VF teardown or as cleanup during failed VF initialization.
23 */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 struct ice_vfs *vfs = &pf->vfs;
27 struct hlist_node *tmp;
28 struct ice_vf *vf;
29 unsigned int bkt;
30
31 /* Remove all VFs from the hash table and release their main
32 * reference. Once all references to the VF are dropped, ice_put_vf()
33 * will call ice_release_vf which will remove the VF memory.
34 */
35 lockdep_assert_held(&vfs->table_lock);
36
37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 hash_del_rcu(&vf->entry);
39 ice_put_vf(vf);
40 }
41 }
42
43 /**
44 * ice_free_vf_res - Free a VF's resources
45 * @vf: pointer to the VF info
46 */
47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 struct ice_pf *pf = vf->pf;
50 int i, last_vector_idx;
51
52 /* First, disable VF's configuration API to prevent OS from
53 * accessing the VF's VSI after it's freed or invalidated.
54 */
55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 ice_vf_fdir_exit(vf);
57 /* free VF control VSI */
58 if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 ice_vf_ctrl_vsi_release(vf);
60
61 /* free VSI and disconnect it from the parent uplink */
62 if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 ice_vf_vsi_release(vf);
64 vf->num_mac = 0;
65 }
66
67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68
69 /* clear VF MDD event information */
70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72
73 /* Disable interrupts so that VF starts in a known state */
74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 ice_flush(&pf->hw);
77 }
78 /* reset some of the state variables keeping track of the resources */
79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82
83 /**
84 * ice_dis_vf_mappings
85 * @vf: pointer to the VF structure
86 */
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 struct ice_pf *pf = vf->pf;
90 struct ice_vsi *vsi;
91 struct device *dev;
92 int first, last, v;
93 struct ice_hw *hw;
94
95 hw = &pf->hw;
96 vsi = ice_get_vf_vsi(vf);
97 if (WARN_ON(!vsi))
98 return;
99
100 dev = ice_pf_to_dev(pf);
101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103
104 first = vf->first_vector_idx;
105 last = first + vf->num_msix - 1;
106 for (v = first; v <= last; v++) {
107 u32 reg;
108
109 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
110 GLINT_VECT2FUNC_IS_PF_M) |
111 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
112 GLINT_VECT2FUNC_PF_NUM_M));
113 wr32(hw, GLINT_VECT2FUNC(v), reg);
114 }
115
116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
118 else
119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
120
121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
123 else
124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
125 }
126
127 /**
128 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
129 * @pf: pointer to the PF structure
130 *
131 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
132 * the pf->sriov_base_vector.
133 *
134 * Returns 0 on success, and -EINVAL on error.
135 */
136 static int ice_sriov_free_msix_res(struct ice_pf *pf)
137 {
138 if (!pf)
139 return -EINVAL;
140
141 bitmap_free(pf->sriov_irq_bm);
142 pf->sriov_irq_size = 0;
143 pf->sriov_base_vector = 0;
144
145 return 0;
146 }
147
148 /**
149 * ice_free_vfs - Free all VFs
150 * @pf: pointer to the PF structure
151 */
152 void ice_free_vfs(struct ice_pf *pf)
153 {
154 struct device *dev = ice_pf_to_dev(pf);
155 struct ice_vfs *vfs = &pf->vfs;
156 struct ice_hw *hw = &pf->hw;
157 struct ice_vf *vf;
158 unsigned int bkt;
159
160 if (!ice_has_vfs(pf))
161 return;
162
163 while (test_and_set_bit(ICE_VF_DIS, pf->state))
164 usleep_range(1000, 2000);
165
166 /* Disable IOV before freeing resources. This lets any VF drivers
167 * running in the host get themselves cleaned up before we yank
168 * the carpet out from underneath their feet.
169 */
170 if (!pci_vfs_assigned(pf->pdev))
171 pci_disable_sriov(pf->pdev);
172 else
173 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
174
175 mutex_lock(&vfs->table_lock);
176
177 ice_eswitch_release(pf);
178
179 ice_for_each_vf(pf, bkt, vf) {
180 mutex_lock(&vf->cfg_lock);
181
182 ice_dis_vf_qs(vf);
183
184 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
185 /* disable VF qp mappings and set VF disable state */
186 ice_dis_vf_mappings(vf);
187 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
188 ice_free_vf_res(vf);
189 }
190
191 if (!pci_vfs_assigned(pf->pdev)) {
192 u32 reg_idx, bit_idx;
193
194 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
195 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
196 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
197 }
198
199 /* clear malicious info since the VF is getting released */
200 list_del(&vf->mbx_info.list_entry);
201
202 mutex_unlock(&vf->cfg_lock);
203 }
204
205 if (ice_sriov_free_msix_res(pf))
206 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
207
208 vfs->num_qps_per = 0;
209 ice_free_vf_entries(pf);
210
211 mutex_unlock(&vfs->table_lock);
212
213 clear_bit(ICE_VF_DIS, pf->state);
214 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
215 }
216
217 /**
218 * ice_vf_vsi_setup - Set up a VF VSI
219 * @vf: VF to setup VSI for
220 *
221 * Returns pointer to the successfully allocated VSI struct on success,
222 * otherwise returns NULL on failure.
223 */
224 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
225 {
226 struct ice_vsi_cfg_params params = {};
227 struct ice_pf *pf = vf->pf;
228 struct ice_vsi *vsi;
229
230 params.type = ICE_VSI_VF;
231 params.pi = ice_vf_get_port_info(vf);
232 params.vf = vf;
233 params.flags = ICE_VSI_FLAG_INIT;
234
235 vsi = ice_vsi_setup(pf, &params);
236
237 if (!vsi) {
238 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
239 ice_vf_invalidate_vsi(vf);
240 return NULL;
241 }
242
243 vf->lan_vsi_idx = vsi->idx;
244 vf->lan_vsi_num = vsi->vsi_num;
245
246 return vsi;
247 }
248
249
250 /**
251 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
252 * @vf: VF to enable MSIX mappings for
253 *
254 * Some of the registers need to be indexed/configured using hardware global
255 * device values and other registers need 0-based values, which represent PF
256 * based values.
257 */
258 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
259 {
260 int device_based_first_msix, device_based_last_msix;
261 int pf_based_first_msix, pf_based_last_msix, v;
262 struct ice_pf *pf = vf->pf;
263 int device_based_vf_id;
264 struct ice_hw *hw;
265 u32 reg;
266
267 hw = &pf->hw;
268 pf_based_first_msix = vf->first_vector_idx;
269 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
270
271 device_based_first_msix = pf_based_first_msix +
272 pf->hw.func_caps.common_cap.msix_vector_first_id;
273 device_based_last_msix =
274 (device_based_first_msix + vf->num_msix) - 1;
275 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
276
277 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
278 VPINT_ALLOC_FIRST_M) |
279 ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
280 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
281 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
282
283 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
284 & VPINT_ALLOC_PCI_FIRST_M) |
285 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
286 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
287 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
288
289 /* map the interrupts to its functions */
290 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
291 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
292 GLINT_VECT2FUNC_VF_NUM_M) |
293 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
294 GLINT_VECT2FUNC_PF_NUM_M));
295 wr32(hw, GLINT_VECT2FUNC(v), reg);
296 }
297
298 /* Map mailbox interrupt to VF MSI-X vector 0 */
299 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
300 }
301
302 /**
303 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
304 * @vf: VF to enable the mappings for
305 * @max_txq: max Tx queues allowed on the VF's VSI
306 * @max_rxq: max Rx queues allowed on the VF's VSI
307 */
308 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
309 {
310 struct device *dev = ice_pf_to_dev(vf->pf);
311 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
312 struct ice_hw *hw = &vf->pf->hw;
313 u32 reg;
314
315 if (WARN_ON(!vsi))
316 return;
317
318 /* set regardless of mapping mode */
319 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
320
321 /* VF Tx queues allocation */
322 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
323 /* set the VF PF Tx queue range
324 * VFNUMQ value should be set to (number of queues - 1). A value
325 * of 0 means 1 queue and a value of 255 means 256 queues
326 */
327 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
328 VPLAN_TX_QBASE_VFFIRSTQ_M) |
329 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
330 VPLAN_TX_QBASE_VFNUMQ_M));
331 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
332 } else {
333 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
334 }
335
336 /* set regardless of mapping mode */
337 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
338
339 /* VF Rx queues allocation */
340 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
341 /* set the VF PF Rx queue range
342 * VFNUMQ value should be set to (number of queues - 1). A value
343 * of 0 means 1 queue and a value of 255 means 256 queues
344 */
345 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
346 VPLAN_RX_QBASE_VFFIRSTQ_M) |
347 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
348 VPLAN_RX_QBASE_VFNUMQ_M));
349 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
350 } else {
351 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
352 }
353 }
354
355 /**
356 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
357 * @vf: pointer to the VF structure
358 */
359 static void ice_ena_vf_mappings(struct ice_vf *vf)
360 {
361 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
362
363 if (WARN_ON(!vsi))
364 return;
365
366 ice_ena_vf_msix_mappings(vf);
367 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
368 }
369
370 /**
371 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
372 * @vf: VF to calculate the register index for
373 * @q_vector: a q_vector associated to the VF
374 */
375 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
376 {
377 if (!vf || !q_vector)
378 return -EINVAL;
379
380 /* always add one to account for the OICR being the first MSIX */
381 return vf->first_vector_idx + q_vector->v_idx + 1;
382 }
383
384 /**
385 * ice_sriov_set_msix_res - Set any used MSIX resources
386 * @pf: pointer to PF structure
387 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
388 *
389 * This function allows SR-IOV resources to be taken from the end of the PF's
390 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
391 * just set the pf->sriov_base_vector and return success.
392 *
393 * If there are not enough resources available, return an error. This should
394 * always be caught by ice_set_per_vf_res().
395 *
396 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
397 * in the PF's space available for SR-IOV.
398 */
399 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
400 {
401 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
402 int vectors_used = ice_get_max_used_msix_vector(pf);
403 int sriov_base_vector;
404
405 sriov_base_vector = total_vectors - num_msix_needed;
406
407 /* make sure we only grab irq_tracker entries from the list end and
408 * that we have enough available MSIX vectors
409 */
410 if (sriov_base_vector < vectors_used)
411 return -EINVAL;
412
413 pf->sriov_base_vector = sriov_base_vector;
414
415 return 0;
416 }
417
418 /**
419 * ice_set_per_vf_res - check if vectors and queues are available
420 * @pf: pointer to the PF structure
421 * @num_vfs: the number of SR-IOV VFs being configured
422 *
423 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
424 * get more vectors and can enable more queues per VF. Note that this does not
425 * grab any vectors from the SW pool already allocated. Also note, that all
426 * vector counts include one for each VF's miscellaneous interrupt vector
427 * (i.e. OICR).
428 *
429 * Minimum VFs - 2 vectors, 1 queue pair
430 * Small VFs - 5 vectors, 4 queue pairs
431 * Medium VFs - 17 vectors, 16 queue pairs
432 *
433 * Second, determine number of queue pairs per VF by starting with a pre-defined
434 * maximum each VF supports. If this is not possible, then we adjust based on
435 * queue pairs available on the device.
436 *
437 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
438 * by each VF during VF initialization and reset.
439 */
440 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
441 {
442 int vectors_used = ice_get_max_used_msix_vector(pf);
443 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
444 int msix_avail_per_vf, msix_avail_for_sriov;
445 struct device *dev = ice_pf_to_dev(pf);
446 int err;
447
448 lockdep_assert_held(&pf->vfs.table_lock);
449
450 if (!num_vfs)
451 return -EINVAL;
452
453 /* determine MSI-X resources per VF */
454 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
455 vectors_used;
456 msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
457 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
458 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
459 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
460 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
461 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
462 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
463 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
464 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
465 } else {
466 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
467 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
468 num_vfs);
469 return -ENOSPC;
470 }
471
472 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
473 ICE_MAX_RSS_QS_PER_VF);
474 avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
475 if (!avail_qs)
476 num_txq = 0;
477 else if (num_txq > avail_qs)
478 num_txq = rounddown_pow_of_two(avail_qs);
479
480 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
481 ICE_MAX_RSS_QS_PER_VF);
482 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
483 if (!avail_qs)
484 num_rxq = 0;
485 else if (num_rxq > avail_qs)
486 num_rxq = rounddown_pow_of_two(avail_qs);
487
488 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
489 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
490 ICE_MIN_QS_PER_VF, num_vfs);
491 return -ENOSPC;
492 }
493
494 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
495 if (err) {
496 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
497 num_vfs, err);
498 return err;
499 }
500
501 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
502 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
503 pf->vfs.num_msix_per = num_msix_per_vf;
504 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
505 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
506
507 return 0;
508 }
509
510 /**
511 * ice_sriov_get_irqs - get irqs for SR-IOV usacase
512 * @pf: pointer to PF structure
513 * @needed: number of irqs to get
514 *
515 * This returns the first MSI-X vector index in PF space that is used by this
516 * VF. This index is used when accessing PF relative registers such as
517 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
518 * This will always be the OICR index in the AVF driver so any functionality
519 * using vf->first_vector_idx for queue configuration_id: id of VF which will
520 * use this irqs
521 *
522 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
523 * allocated from the end of global irq index. First bit in sriov_irq_bm means
524 * last irq index etc. It simplifies extension of SRIOV vectors.
525 * They will be always located from sriov_base_vector to the last irq
526 * index. While increasing/decreasing sriov_base_vector can be moved.
527 */
528 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
529 {
530 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
531 pf->sriov_irq_size, 0, needed, 0);
532 /* conversion from number in bitmap to global irq index */
533 int index = pf->sriov_irq_size - res - needed;
534
535 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
536 return -ENOENT;
537
538 bitmap_set(pf->sriov_irq_bm, res, needed);
539 return index;
540 }
541
542 /**
543 * ice_sriov_free_irqs - free irqs used by the VF
544 * @pf: pointer to PF structure
545 * @vf: pointer to VF structure
546 */
547 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
548 {
549 /* Move back from first vector index to first index in bitmap */
550 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
551
552 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
553 vf->first_vector_idx = 0;
554 }
555
556 /**
557 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
558 * @vf: VF to initialize/setup the VSI for
559 *
560 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
561 * VF VSI's broadcast filter and is only used during initial VF creation.
562 */
563 static int ice_init_vf_vsi_res(struct ice_vf *vf)
564 {
565 struct ice_pf *pf = vf->pf;
566 struct ice_vsi *vsi;
567 int err;
568
569 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
570 if (vf->first_vector_idx < 0)
571 return -ENOMEM;
572
573 vsi = ice_vf_vsi_setup(vf);
574 if (!vsi)
575 return -ENOMEM;
576
577 err = ice_vf_init_host_cfg(vf, vsi);
578 if (err)
579 goto release_vsi;
580
581 return 0;
582
583 release_vsi:
584 ice_vf_vsi_release(vf);
585 return err;
586 }
587
588 /**
589 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
590 * @pf: PF the VFs are associated with
591 */
592 static int ice_start_vfs(struct ice_pf *pf)
593 {
594 struct ice_hw *hw = &pf->hw;
595 unsigned int bkt, it_cnt;
596 struct ice_vf *vf;
597 int retval;
598
599 lockdep_assert_held(&pf->vfs.table_lock);
600
601 it_cnt = 0;
602 ice_for_each_vf(pf, bkt, vf) {
603 vf->vf_ops->clear_reset_trigger(vf);
604
605 retval = ice_init_vf_vsi_res(vf);
606 if (retval) {
607 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
608 vf->vf_id, retval);
609 goto teardown;
610 }
611
612 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
613 ice_ena_vf_mappings(vf);
614 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
615 it_cnt++;
616 }
617
618 ice_flush(hw);
619 return 0;
620
621 teardown:
622 ice_for_each_vf(pf, bkt, vf) {
623 if (it_cnt == 0)
624 break;
625
626 ice_dis_vf_mappings(vf);
627 ice_vf_vsi_release(vf);
628 it_cnt--;
629 }
630
631 return retval;
632 }
633
634 /**
635 * ice_sriov_free_vf - Free VF memory after all references are dropped
636 * @vf: pointer to VF to free
637 *
638 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
639 * structure has been dropped.
640 */
641 static void ice_sriov_free_vf(struct ice_vf *vf)
642 {
643 mutex_destroy(&vf->cfg_lock);
644
645 kfree_rcu(vf, rcu);
646 }
647
648 /**
649 * ice_sriov_clear_reset_state - clears VF Reset status register
650 * @vf: the vf to configure
651 */
652 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
653 {
654 struct ice_hw *hw = &vf->pf->hw;
655
656 /* Clear the reset status register so that VF immediately sees that
657 * the device is resetting, even if hardware hasn't yet gotten around
658 * to clearing VFGEN_RSTAT for us.
659 */
660 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
661 }
662
663 /**
664 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
665 * @vf: the vf to configure
666 */
667 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
668 {
669 struct ice_pf *pf = vf->pf;
670
671 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
672 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
673 }
674
675 /**
676 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
677 * @vf: pointer to VF structure
678 * @is_vflr: true if reset occurred due to VFLR
679 *
680 * Trigger and cleanup after a VF reset for a SR-IOV VF.
681 */
682 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
683 {
684 struct ice_pf *pf = vf->pf;
685 u32 reg, reg_idx, bit_idx;
686 unsigned int vf_abs_id, i;
687 struct device *dev;
688 struct ice_hw *hw;
689
690 dev = ice_pf_to_dev(pf);
691 hw = &pf->hw;
692 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
693
694 /* In the case of a VFLR, HW has already reset the VF and we just need
695 * to clean up. Otherwise we must first trigger the reset using the
696 * VFRTRIG register.
697 */
698 if (!is_vflr) {
699 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
700 reg |= VPGEN_VFRTRIG_VFSWR_M;
701 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
702 }
703
704 /* clear the VFLR bit in GLGEN_VFLRSTAT */
705 reg_idx = (vf_abs_id) / 32;
706 bit_idx = (vf_abs_id) % 32;
707 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
708 ice_flush(hw);
709
710 wr32(hw, PF_PCI_CIAA,
711 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
712 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
713 reg = rd32(hw, PF_PCI_CIAD);
714 /* no transactions pending so stop polling */
715 if ((reg & VF_TRANS_PENDING_M) == 0)
716 break;
717
718 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
719 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
720 }
721 }
722
723 /**
724 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
725 * @vf: pointer to VF structure
726 *
727 * Returns true when reset is successful, else returns false
728 */
729 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
730 {
731 struct ice_pf *pf = vf->pf;
732 unsigned int i;
733 u32 reg;
734
735 for (i = 0; i < 10; i++) {
736 /* VF reset requires driver to first reset the VF and then
737 * poll the status register to make sure that the reset
738 * completed successfully.
739 */
740 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
741 if (reg & VPGEN_VFRSTAT_VFRD_M)
742 return true;
743
744 /* only sleep if the reset is not done */
745 usleep_range(10, 20);
746 }
747 return false;
748 }
749
750 /**
751 * ice_sriov_clear_reset_trigger - enable VF to access hardware
752 * @vf: VF to enabled hardware access for
753 */
754 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
755 {
756 struct ice_hw *hw = &vf->pf->hw;
757 u32 reg;
758
759 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
760 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
761 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
762 ice_flush(hw);
763 }
764
765 /**
766 * ice_sriov_create_vsi - Create a new VSI for a VF
767 * @vf: VF to create the VSI for
768 *
769 * This is called by ice_vf_recreate_vsi to create the new VSI after the old
770 * VSI has been released.
771 */
772 static int ice_sriov_create_vsi(struct ice_vf *vf)
773 {
774 struct ice_vsi *vsi;
775
776 vsi = ice_vf_vsi_setup(vf);
777 if (!vsi)
778 return -ENOMEM;
779
780 return 0;
781 }
782
783 /**
784 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
785 * @vf: VF to perform tasks on
786 */
787 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
788 {
789 ice_ena_vf_mappings(vf);
790 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
791 }
792
793 static const struct ice_vf_ops ice_sriov_vf_ops = {
794 .reset_type = ICE_VF_RESET,
795 .free = ice_sriov_free_vf,
796 .clear_reset_state = ice_sriov_clear_reset_state,
797 .clear_mbx_register = ice_sriov_clear_mbx_register,
798 .trigger_reset_register = ice_sriov_trigger_reset_register,
799 .poll_reset_status = ice_sriov_poll_reset_status,
800 .clear_reset_trigger = ice_sriov_clear_reset_trigger,
801 .irq_close = NULL,
802 .create_vsi = ice_sriov_create_vsi,
803 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
804 };
805
806 /**
807 * ice_create_vf_entries - Allocate and insert VF entries
808 * @pf: pointer to the PF structure
809 * @num_vfs: the number of VFs to allocate
810 *
811 * Allocate new VF entries and insert them into the hash table. Set some
812 * basic default fields for initializing the new VFs.
813 *
814 * After this function exits, the hash table will have num_vfs entries
815 * inserted.
816 *
817 * Returns 0 on success or an integer error code on failure.
818 */
819 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
820 {
821 struct pci_dev *pdev = pf->pdev;
822 struct ice_vfs *vfs = &pf->vfs;
823 struct pci_dev *vfdev = NULL;
824 struct ice_vf *vf;
825 u16 vf_pdev_id;
826 int err, pos;
827
828 lockdep_assert_held(&vfs->table_lock);
829
830 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
831 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
832
833 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
834 vf = kzalloc(sizeof(*vf), GFP_KERNEL);
835 if (!vf) {
836 err = -ENOMEM;
837 goto err_free_entries;
838 }
839 kref_init(&vf->refcnt);
840
841 vf->pf = pf;
842 vf->vf_id = vf_id;
843
844 /* set sriov vf ops for VFs created during SRIOV flow */
845 vf->vf_ops = &ice_sriov_vf_ops;
846
847 ice_initialize_vf_entry(vf);
848
849 do {
850 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
851 } while (vfdev && vfdev->physfn != pdev);
852 vf->vfdev = vfdev;
853 vf->vf_sw_id = pf->first_sw;
854
855 pci_dev_get(vfdev);
856
857 /* set default number of MSI-X */
858 vf->num_msix = pf->vfs.num_msix_per;
859 vf->num_vf_qs = pf->vfs.num_qps_per;
860 ice_vc_set_default_allowlist(vf);
861
862 hash_add_rcu(vfs->table, &vf->entry, vf_id);
863 }
864
865 /* Decrement of refcount done by pci_get_device() inside the loop does
866 * not touch the last iteration's vfdev, so it has to be done manually
867 * to balance pci_dev_get() added within the loop.
868 */
869 pci_dev_put(vfdev);
870
871 return 0;
872
873 err_free_entries:
874 ice_free_vf_entries(pf);
875 return err;
876 }
877
878 /**
879 * ice_ena_vfs - enable VFs so they are ready to be used
880 * @pf: pointer to the PF structure
881 * @num_vfs: number of VFs to enable
882 */
883 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
884 {
885 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
886 struct device *dev = ice_pf_to_dev(pf);
887 struct ice_hw *hw = &pf->hw;
888 int ret;
889
890 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
891 if (!pf->sriov_irq_bm)
892 return -ENOMEM;
893 pf->sriov_irq_size = total_vectors;
894
895 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
896 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
897 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
898 set_bit(ICE_OICR_INTR_DIS, pf->state);
899 ice_flush(hw);
900
901 ret = pci_enable_sriov(pf->pdev, num_vfs);
902 if (ret)
903 goto err_unroll_intr;
904
905 mutex_lock(&pf->vfs.table_lock);
906
907 ret = ice_set_per_vf_res(pf, num_vfs);
908 if (ret) {
909 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
910 num_vfs, ret);
911 goto err_unroll_sriov;
912 }
913
914 ret = ice_create_vf_entries(pf, num_vfs);
915 if (ret) {
916 dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
917 num_vfs);
918 goto err_unroll_sriov;
919 }
920
921 ret = ice_start_vfs(pf);
922 if (ret) {
923 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
924 ret = -EAGAIN;
925 goto err_unroll_vf_entries;
926 }
927
928 clear_bit(ICE_VF_DIS, pf->state);
929
930 ret = ice_eswitch_configure(pf);
931 if (ret) {
932 dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
933 goto err_unroll_sriov;
934 }
935
936 /* rearm global interrupts */
937 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
938 ice_irq_dynamic_ena(hw, NULL, NULL);
939
940 mutex_unlock(&pf->vfs.table_lock);
941
942 return 0;
943
944 err_unroll_vf_entries:
945 ice_free_vf_entries(pf);
946 err_unroll_sriov:
947 mutex_unlock(&pf->vfs.table_lock);
948 pci_disable_sriov(pf->pdev);
949 err_unroll_intr:
950 /* rearm interrupts here */
951 ice_irq_dynamic_ena(hw, NULL, NULL);
952 clear_bit(ICE_OICR_INTR_DIS, pf->state);
953 bitmap_free(pf->sriov_irq_bm);
954 return ret;
955 }
956
957 /**
958 * ice_pci_sriov_ena - Enable or change number of VFs
959 * @pf: pointer to the PF structure
960 * @num_vfs: number of VFs to allocate
961 *
962 * Returns 0 on success and negative on failure
963 */
964 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
965 {
966 struct device *dev = ice_pf_to_dev(pf);
967 int err;
968
969 if (!num_vfs) {
970 ice_free_vfs(pf);
971 return 0;
972 }
973
974 if (num_vfs > pf->vfs.num_supported) {
975 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
976 num_vfs, pf->vfs.num_supported);
977 return -EOPNOTSUPP;
978 }
979
980 dev_info(dev, "Enabling %d VFs\n", num_vfs);
981 err = ice_ena_vfs(pf, num_vfs);
982 if (err) {
983 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
984 return err;
985 }
986
987 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
988 return 0;
989 }
990
991 /**
992 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
993 * @pf: PF to enabled SR-IOV on
994 */
995 static int ice_check_sriov_allowed(struct ice_pf *pf)
996 {
997 struct device *dev = ice_pf_to_dev(pf);
998
999 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1000 dev_err(dev, "This device is not capable of SR-IOV\n");
1001 return -EOPNOTSUPP;
1002 }
1003
1004 if (ice_is_safe_mode(pf)) {
1005 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1006 return -EOPNOTSUPP;
1007 }
1008
1009 if (!ice_pf_state_is_nominal(pf)) {
1010 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1011 return -EBUSY;
1012 }
1013
1014 return 0;
1015 }
1016
1017 /**
1018 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
1019 * @pdev: pointer to pci_dev struct
1020 *
1021 * The function is called via sysfs ops
1022 */
1023 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
1024 {
1025 struct ice_pf *pf = pci_get_drvdata(pdev);
1026
1027 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
1028 }
1029
1030 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
1031 {
1032 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1033 return -ENOMEM;
1034
1035 pf->sriov_base_vector -= move;
1036 return 0;
1037 }
1038
1039 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1040 {
1041 u16 vf_ids[ICE_MAX_SRIOV_VFS];
1042 struct ice_vf *tmp_vf;
1043 int to_remap = 0, bkt;
1044
1045 /* For better irqs usage try to remap irqs of VFs
1046 * that aren't running yet
1047 */
1048 ice_for_each_vf(pf, bkt, tmp_vf) {
1049 /* skip VF which is changing the number of MSI-X */
1050 if (restricted_id == tmp_vf->vf_id ||
1051 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1052 continue;
1053
1054 ice_dis_vf_mappings(tmp_vf);
1055 ice_sriov_free_irqs(pf, tmp_vf);
1056
1057 vf_ids[to_remap] = tmp_vf->vf_id;
1058 to_remap += 1;
1059 }
1060
1061 for (int i = 0; i < to_remap; i++) {
1062 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1063 if (!tmp_vf)
1064 continue;
1065
1066 tmp_vf->first_vector_idx =
1067 ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1068 /* there is no need to rebuild VSI as we are only changing the
1069 * vector indexes not amount of MSI-X or queues
1070 */
1071 ice_ena_vf_mappings(tmp_vf);
1072 ice_put_vf(tmp_vf);
1073 }
1074 }
1075
1076 /**
1077 * ice_sriov_set_msix_vec_count
1078 * @vf_dev: pointer to pci_dev struct of VF device
1079 * @msix_vec_count: new value for MSI-X amount on this VF
1080 *
1081 * Set requested MSI-X, queues and registers for @vf_dev.
1082 *
1083 * First do some sanity checks like if there are any VFs, if the new value
1084 * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1085 * MSI-X and queues, rebuild VSI and enable new mapping.
1086 *
1087 * If it is possible (driver not binded to VF) try to remap also other VFs to
1088 * linearize irqs register usage.
1089 */
1090 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1091 {
1092 struct pci_dev *pdev = pci_physfn(vf_dev);
1093 struct ice_pf *pf = pci_get_drvdata(pdev);
1094 u16 prev_msix, prev_queues, queues;
1095 bool needs_rebuild = false;
1096 struct ice_vf *vf;
1097 int id;
1098
1099 if (!ice_get_num_vfs(pf))
1100 return -ENOENT;
1101
1102 if (!msix_vec_count)
1103 return 0;
1104
1105 queues = msix_vec_count;
1106 /* add 1 MSI-X for OICR */
1107 msix_vec_count += 1;
1108
1109 if (queues > min(ice_get_avail_txq_count(pf),
1110 ice_get_avail_rxq_count(pf)))
1111 return -EINVAL;
1112
1113 if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1114 return -EINVAL;
1115
1116 /* Transition of PCI VF function number to function_id */
1117 for (id = 0; id < pci_num_vf(pdev); id++) {
1118 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1119 break;
1120 }
1121
1122 if (id == pci_num_vf(pdev))
1123 return -ENOENT;
1124
1125 vf = ice_get_vf_by_id(pf, id);
1126
1127 if (!vf)
1128 return -ENOENT;
1129
1130 prev_msix = vf->num_msix;
1131 prev_queues = vf->num_vf_qs;
1132
1133 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1134 ice_put_vf(vf);
1135 return -ENOSPC;
1136 }
1137
1138 ice_dis_vf_mappings(vf);
1139 ice_sriov_free_irqs(pf, vf);
1140
1141 /* Remap all VFs beside the one is now configured */
1142 ice_sriov_remap_vectors(pf, vf->vf_id);
1143
1144 vf->num_msix = msix_vec_count;
1145 vf->num_vf_qs = queues;
1146 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1147 if (vf->first_vector_idx < 0)
1148 goto unroll;
1149
1150 ice_vf_vsi_release(vf);
1151 if (vf->vf_ops->create_vsi(vf)) {
1152 /* Try to rebuild with previous values */
1153 needs_rebuild = true;
1154 goto unroll;
1155 }
1156
1157 dev_info(ice_pf_to_dev(pf),
1158 "Changing VF %d resources to %d vectors and %d queues\n",
1159 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1160
1161 ice_ena_vf_mappings(vf);
1162 ice_put_vf(vf);
1163
1164 return 0;
1165
1166 unroll:
1167 dev_info(ice_pf_to_dev(pf),
1168 "Can't set %d vectors on VF %d, falling back to %d\n",
1169 vf->num_msix, vf->vf_id, prev_msix);
1170
1171 vf->num_msix = prev_msix;
1172 vf->num_vf_qs = prev_queues;
1173 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1174 if (vf->first_vector_idx < 0)
1175 return -EINVAL;
1176
1177 if (needs_rebuild)
1178 vf->vf_ops->create_vsi(vf);
1179
1180 ice_ena_vf_mappings(vf);
1181 ice_put_vf(vf);
1182
1183 return -EINVAL;
1184 }
1185
1186 /**
1187 * ice_sriov_configure - Enable or change number of VFs via sysfs
1188 * @pdev: pointer to a pci_dev structure
1189 * @num_vfs: number of VFs to allocate or 0 to free VFs
1190 *
1191 * This function is called when the user updates the number of VFs in sysfs. On
1192 * success return whatever num_vfs was set to by the caller. Return negative on
1193 * failure.
1194 */
1195 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1196 {
1197 struct ice_pf *pf = pci_get_drvdata(pdev);
1198 struct device *dev = ice_pf_to_dev(pf);
1199 int err;
1200
1201 err = ice_check_sriov_allowed(pf);
1202 if (err)
1203 return err;
1204
1205 if (!num_vfs) {
1206 if (!pci_vfs_assigned(pdev)) {
1207 ice_free_vfs(pf);
1208 return 0;
1209 }
1210
1211 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1212 return -EBUSY;
1213 }
1214
1215 err = ice_pci_sriov_ena(pf, num_vfs);
1216 if (err)
1217 return err;
1218
1219 return num_vfs;
1220 }
1221
1222 /**
1223 * ice_process_vflr_event - Free VF resources via IRQ calls
1224 * @pf: pointer to the PF structure
1225 *
1226 * called from the VFLR IRQ handler to
1227 * free up VF resources and state variables
1228 */
1229 void ice_process_vflr_event(struct ice_pf *pf)
1230 {
1231 struct ice_hw *hw = &pf->hw;
1232 struct ice_vf *vf;
1233 unsigned int bkt;
1234 u32 reg;
1235
1236 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1237 !ice_has_vfs(pf))
1238 return;
1239
1240 mutex_lock(&pf->vfs.table_lock);
1241 ice_for_each_vf(pf, bkt, vf) {
1242 u32 reg_idx, bit_idx;
1243
1244 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1245 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1246 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1247 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1248 if (reg & BIT(bit_idx))
1249 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1250 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1251 }
1252 mutex_unlock(&pf->vfs.table_lock);
1253 }
1254
1255 /**
1256 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1257 * @pf: PF used to index all VFs
1258 * @pfq: queue index relative to the PF's function space
1259 *
1260 * If no VF is found who owns the pfq then return NULL, otherwise return a
1261 * pointer to the VF who owns the pfq
1262 *
1263 * If this function returns non-NULL, it acquires a reference count of the VF
1264 * structure. The caller is responsible for calling ice_put_vf() to drop this
1265 * reference.
1266 */
1267 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1268 {
1269 struct ice_vf *vf;
1270 unsigned int bkt;
1271
1272 rcu_read_lock();
1273 ice_for_each_vf_rcu(pf, bkt, vf) {
1274 struct ice_vsi *vsi;
1275 u16 rxq_idx;
1276
1277 vsi = ice_get_vf_vsi(vf);
1278 if (!vsi)
1279 continue;
1280
1281 ice_for_each_rxq(vsi, rxq_idx)
1282 if (vsi->rxq_map[rxq_idx] == pfq) {
1283 struct ice_vf *found;
1284
1285 if (kref_get_unless_zero(&vf->refcnt))
1286 found = vf;
1287 else
1288 found = NULL;
1289 rcu_read_unlock();
1290 return found;
1291 }
1292 }
1293 rcu_read_unlock();
1294
1295 return NULL;
1296 }
1297
1298 /**
1299 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1300 * @pf: PF used for conversion
1301 * @globalq: global queue index used to convert to PF space queue index
1302 */
1303 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1304 {
1305 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1306 }
1307
1308 /**
1309 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1310 * @pf: PF that the LAN overflow event happened on
1311 * @event: structure holding the event information for the LAN overflow event
1312 *
1313 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1314 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1315 * reset on the offending VF.
1316 */
1317 void
1318 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1319 {
1320 u32 gldcb_rtctq, queue;
1321 struct ice_vf *vf;
1322
1323 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1324 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1325
1326 /* event returns device global Rx queue number */
1327 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1328 GLDCB_RTCTQ_RXQNUM_S;
1329
1330 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1331 if (!vf)
1332 return;
1333
1334 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1335 ice_put_vf(vf);
1336 }
1337
1338 /**
1339 * ice_set_vf_spoofchk
1340 * @netdev: network interface device structure
1341 * @vf_id: VF identifier
1342 * @ena: flag to enable or disable feature
1343 *
1344 * Enable or disable VF spoof checking
1345 */
1346 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1347 {
1348 struct ice_netdev_priv *np = netdev_priv(netdev);
1349 struct ice_pf *pf = np->vsi->back;
1350 struct ice_vsi *vf_vsi;
1351 struct device *dev;
1352 struct ice_vf *vf;
1353 int ret;
1354
1355 dev = ice_pf_to_dev(pf);
1356
1357 vf = ice_get_vf_by_id(pf, vf_id);
1358 if (!vf)
1359 return -EINVAL;
1360
1361 ret = ice_check_vf_ready_for_cfg(vf);
1362 if (ret)
1363 goto out_put_vf;
1364
1365 vf_vsi = ice_get_vf_vsi(vf);
1366 if (!vf_vsi) {
1367 netdev_err(netdev, "VSI %d for VF %d is null\n",
1368 vf->lan_vsi_idx, vf->vf_id);
1369 ret = -EINVAL;
1370 goto out_put_vf;
1371 }
1372
1373 if (vf_vsi->type != ICE_VSI_VF) {
1374 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1375 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1376 ret = -ENODEV;
1377 goto out_put_vf;
1378 }
1379
1380 if (ena == vf->spoofchk) {
1381 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1382 ret = 0;
1383 goto out_put_vf;
1384 }
1385
1386 ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1387 if (ret)
1388 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1389 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1390 else
1391 vf->spoofchk = ena;
1392
1393 out_put_vf:
1394 ice_put_vf(vf);
1395 return ret;
1396 }
1397
1398 /**
1399 * ice_get_vf_cfg
1400 * @netdev: network interface device structure
1401 * @vf_id: VF identifier
1402 * @ivi: VF configuration structure
1403 *
1404 * return VF configuration
1405 */
1406 int
1407 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1408 {
1409 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1410 struct ice_vf *vf;
1411 int ret;
1412
1413 vf = ice_get_vf_by_id(pf, vf_id);
1414 if (!vf)
1415 return -EINVAL;
1416
1417 ret = ice_check_vf_ready_for_cfg(vf);
1418 if (ret)
1419 goto out_put_vf;
1420
1421 ivi->vf = vf_id;
1422 ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1423
1424 /* VF configuration for VLAN and applicable QoS */
1425 ivi->vlan = ice_vf_get_port_vlan_id(vf);
1426 ivi->qos = ice_vf_get_port_vlan_prio(vf);
1427 if (ice_vf_is_port_vlan_ena(vf))
1428 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1429
1430 ivi->trusted = vf->trusted;
1431 ivi->spoofchk = vf->spoofchk;
1432 if (!vf->link_forced)
1433 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1434 else if (vf->link_up)
1435 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1436 else
1437 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1438 ivi->max_tx_rate = vf->max_tx_rate;
1439 ivi->min_tx_rate = vf->min_tx_rate;
1440
1441 out_put_vf:
1442 ice_put_vf(vf);
1443 return ret;
1444 }
1445
1446 /**
1447 * ice_set_vf_mac
1448 * @netdev: network interface device structure
1449 * @vf_id: VF identifier
1450 * @mac: MAC address
1451 *
1452 * program VF MAC address
1453 */
1454 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1455 {
1456 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1457 struct ice_vf *vf;
1458 int ret;
1459
1460 if (is_multicast_ether_addr(mac)) {
1461 netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1462 return -EINVAL;
1463 }
1464
1465 vf = ice_get_vf_by_id(pf, vf_id);
1466 if (!vf)
1467 return -EINVAL;
1468
1469 /* nothing left to do, unicast MAC already set */
1470 if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1471 ether_addr_equal(vf->hw_lan_addr, mac)) {
1472 ret = 0;
1473 goto out_put_vf;
1474 }
1475
1476 ret = ice_check_vf_ready_for_cfg(vf);
1477 if (ret)
1478 goto out_put_vf;
1479
1480 mutex_lock(&vf->cfg_lock);
1481
1482 /* VF is notified of its new MAC via the PF's response to the
1483 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1484 */
1485 ether_addr_copy(vf->dev_lan_addr, mac);
1486 ether_addr_copy(vf->hw_lan_addr, mac);
1487 if (is_zero_ether_addr(mac)) {
1488 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1489 vf->pf_set_mac = false;
1490 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1491 vf->vf_id);
1492 } else {
1493 /* PF will add MAC rule for the VF */
1494 vf->pf_set_mac = true;
1495 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1496 mac, vf_id);
1497 }
1498
1499 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1500 mutex_unlock(&vf->cfg_lock);
1501
1502 out_put_vf:
1503 ice_put_vf(vf);
1504 return ret;
1505 }
1506
1507 /**
1508 * ice_set_vf_trust
1509 * @netdev: network interface device structure
1510 * @vf_id: VF identifier
1511 * @trusted: Boolean value to enable/disable trusted VF
1512 *
1513 * Enable or disable a given VF as trusted
1514 */
1515 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1516 {
1517 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1518 struct ice_vf *vf;
1519 int ret;
1520
1521 vf = ice_get_vf_by_id(pf, vf_id);
1522 if (!vf)
1523 return -EINVAL;
1524
1525 if (ice_is_eswitch_mode_switchdev(pf)) {
1526 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1527 return -EOPNOTSUPP;
1528 }
1529
1530 ret = ice_check_vf_ready_for_cfg(vf);
1531 if (ret)
1532 goto out_put_vf;
1533
1534 /* Check if already trusted */
1535 if (trusted == vf->trusted) {
1536 ret = 0;
1537 goto out_put_vf;
1538 }
1539
1540 mutex_lock(&vf->cfg_lock);
1541
1542 vf->trusted = trusted;
1543 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1544 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1545 vf_id, trusted ? "" : "un");
1546
1547 mutex_unlock(&vf->cfg_lock);
1548
1549 out_put_vf:
1550 ice_put_vf(vf);
1551 return ret;
1552 }
1553
1554 /**
1555 * ice_set_vf_link_state
1556 * @netdev: network interface device structure
1557 * @vf_id: VF identifier
1558 * @link_state: required link state
1559 *
1560 * Set VF's link state, irrespective of physical link state status
1561 */
1562 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1563 {
1564 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1565 struct ice_vf *vf;
1566 int ret;
1567
1568 vf = ice_get_vf_by_id(pf, vf_id);
1569 if (!vf)
1570 return -EINVAL;
1571
1572 ret = ice_check_vf_ready_for_cfg(vf);
1573 if (ret)
1574 goto out_put_vf;
1575
1576 switch (link_state) {
1577 case IFLA_VF_LINK_STATE_AUTO:
1578 vf->link_forced = false;
1579 break;
1580 case IFLA_VF_LINK_STATE_ENABLE:
1581 vf->link_forced = true;
1582 vf->link_up = true;
1583 break;
1584 case IFLA_VF_LINK_STATE_DISABLE:
1585 vf->link_forced = true;
1586 vf->link_up = false;
1587 break;
1588 default:
1589 ret = -EINVAL;
1590 goto out_put_vf;
1591 }
1592
1593 ice_vc_notify_vf_link_state(vf);
1594
1595 out_put_vf:
1596 ice_put_vf(vf);
1597 return ret;
1598 }
1599
1600 /**
1601 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1602 * @pf: PF associated with VFs
1603 */
1604 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1605 {
1606 struct ice_vf *vf;
1607 unsigned int bkt;
1608 int rate = 0;
1609
1610 rcu_read_lock();
1611 ice_for_each_vf_rcu(pf, bkt, vf)
1612 rate += vf->min_tx_rate;
1613 rcu_read_unlock();
1614
1615 return rate;
1616 }
1617
1618 /**
1619 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1620 * @vf: VF trying to configure min_tx_rate
1621 * @min_tx_rate: min Tx rate in Mbps
1622 *
1623 * Check if the min_tx_rate being passed in will cause oversubscription of total
1624 * min_tx_rate based on the current link speed and all other VFs configured
1625 * min_tx_rate
1626 *
1627 * Return true if the passed min_tx_rate would cause oversubscription, else
1628 * return false
1629 */
1630 static bool
1631 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1632 {
1633 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1634 int all_vfs_min_tx_rate;
1635 int link_speed_mbps;
1636
1637 if (WARN_ON(!vsi))
1638 return false;
1639
1640 link_speed_mbps = ice_get_link_speed_mbps(vsi);
1641 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1642
1643 /* this VF's previous rate is being overwritten */
1644 all_vfs_min_tx_rate -= vf->min_tx_rate;
1645
1646 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1647 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1648 min_tx_rate, vf->vf_id,
1649 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1650 link_speed_mbps);
1651 return true;
1652 }
1653
1654 return false;
1655 }
1656
1657 /**
1658 * ice_set_vf_bw - set min/max VF bandwidth
1659 * @netdev: network interface device structure
1660 * @vf_id: VF identifier
1661 * @min_tx_rate: Minimum Tx rate in Mbps
1662 * @max_tx_rate: Maximum Tx rate in Mbps
1663 */
1664 int
1665 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1666 int max_tx_rate)
1667 {
1668 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1669 struct ice_vsi *vsi;
1670 struct device *dev;
1671 struct ice_vf *vf;
1672 int ret;
1673
1674 dev = ice_pf_to_dev(pf);
1675
1676 vf = ice_get_vf_by_id(pf, vf_id);
1677 if (!vf)
1678 return -EINVAL;
1679
1680 ret = ice_check_vf_ready_for_cfg(vf);
1681 if (ret)
1682 goto out_put_vf;
1683
1684 vsi = ice_get_vf_vsi(vf);
1685 if (!vsi) {
1686 ret = -EINVAL;
1687 goto out_put_vf;
1688 }
1689
1690 if (min_tx_rate && ice_is_dcb_active(pf)) {
1691 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1692 ret = -EOPNOTSUPP;
1693 goto out_put_vf;
1694 }
1695
1696 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1697 ret = -EINVAL;
1698 goto out_put_vf;
1699 }
1700
1701 if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1702 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1703 if (ret) {
1704 dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1705 vf->vf_id);
1706 goto out_put_vf;
1707 }
1708
1709 vf->min_tx_rate = min_tx_rate;
1710 }
1711
1712 if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1713 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1714 if (ret) {
1715 dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1716 vf->vf_id);
1717 goto out_put_vf;
1718 }
1719
1720 vf->max_tx_rate = max_tx_rate;
1721 }
1722
1723 out_put_vf:
1724 ice_put_vf(vf);
1725 return ret;
1726 }
1727
1728 /**
1729 * ice_get_vf_stats - populate some stats for the VF
1730 * @netdev: the netdev of the PF
1731 * @vf_id: the host OS identifier (0-255)
1732 * @vf_stats: pointer to the OS memory to be initialized
1733 */
1734 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1735 struct ifla_vf_stats *vf_stats)
1736 {
1737 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1738 struct ice_eth_stats *stats;
1739 struct ice_vsi *vsi;
1740 struct ice_vf *vf;
1741 int ret;
1742
1743 vf = ice_get_vf_by_id(pf, vf_id);
1744 if (!vf)
1745 return -EINVAL;
1746
1747 ret = ice_check_vf_ready_for_cfg(vf);
1748 if (ret)
1749 goto out_put_vf;
1750
1751 vsi = ice_get_vf_vsi(vf);
1752 if (!vsi) {
1753 ret = -EINVAL;
1754 goto out_put_vf;
1755 }
1756
1757 ice_update_eth_stats(vsi);
1758 stats = &vsi->eth_stats;
1759
1760 memset(vf_stats, 0, sizeof(*vf_stats));
1761
1762 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1763 stats->rx_multicast;
1764 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1765 stats->tx_multicast;
1766 vf_stats->rx_bytes = stats->rx_bytes;
1767 vf_stats->tx_bytes = stats->tx_bytes;
1768 vf_stats->broadcast = stats->rx_broadcast;
1769 vf_stats->multicast = stats->rx_multicast;
1770 vf_stats->rx_dropped = stats->rx_discards;
1771 vf_stats->tx_dropped = stats->tx_discards;
1772
1773 out_put_vf:
1774 ice_put_vf(vf);
1775 return ret;
1776 }
1777
1778 /**
1779 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1780 * @hw: hardware structure used to check the VLAN mode
1781 * @vlan_proto: VLAN TPID being checked
1782 *
1783 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1784 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1785 * Mode (SVM), then only ETH_P_8021Q is supported.
1786 */
1787 static bool
1788 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1789 {
1790 bool is_supported = false;
1791
1792 switch (vlan_proto) {
1793 case ETH_P_8021Q:
1794 is_supported = true;
1795 break;
1796 case ETH_P_8021AD:
1797 if (ice_is_dvm_ena(hw))
1798 is_supported = true;
1799 break;
1800 }
1801
1802 return is_supported;
1803 }
1804
1805 /**
1806 * ice_set_vf_port_vlan
1807 * @netdev: network interface device structure
1808 * @vf_id: VF identifier
1809 * @vlan_id: VLAN ID being set
1810 * @qos: priority setting
1811 * @vlan_proto: VLAN protocol
1812 *
1813 * program VF Port VLAN ID and/or QoS
1814 */
1815 int
1816 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1817 __be16 vlan_proto)
1818 {
1819 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1820 u16 local_vlan_proto = ntohs(vlan_proto);
1821 struct device *dev;
1822 struct ice_vf *vf;
1823 int ret;
1824
1825 dev = ice_pf_to_dev(pf);
1826
1827 if (vlan_id >= VLAN_N_VID || qos > 7) {
1828 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1829 vf_id, vlan_id, qos);
1830 return -EINVAL;
1831 }
1832
1833 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1834 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1835 local_vlan_proto);
1836 return -EPROTONOSUPPORT;
1837 }
1838
1839 vf = ice_get_vf_by_id(pf, vf_id);
1840 if (!vf)
1841 return -EINVAL;
1842
1843 ret = ice_check_vf_ready_for_cfg(vf);
1844 if (ret)
1845 goto out_put_vf;
1846
1847 if (ice_vf_get_port_vlan_prio(vf) == qos &&
1848 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1849 ice_vf_get_port_vlan_id(vf) == vlan_id) {
1850 /* duplicate request, so just return success */
1851 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1852 vlan_id, qos, local_vlan_proto);
1853 ret = 0;
1854 goto out_put_vf;
1855 }
1856
1857 mutex_lock(&vf->cfg_lock);
1858
1859 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1860 if (ice_vf_is_port_vlan_ena(vf))
1861 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1862 vlan_id, qos, local_vlan_proto, vf_id);
1863 else
1864 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1865
1866 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1867 mutex_unlock(&vf->cfg_lock);
1868
1869 out_put_vf:
1870 ice_put_vf(vf);
1871 return ret;
1872 }
1873
1874 /**
1875 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1876 * @vf: pointer to the VF structure
1877 */
1878 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1879 {
1880 struct ice_pf *pf = vf->pf;
1881 struct device *dev;
1882
1883 dev = ice_pf_to_dev(pf);
1884
1885 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1886 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1887 vf->dev_lan_addr,
1888 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1889 ? "on" : "off");
1890 }
1891
1892 /**
1893 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1894 * @pf: pointer to the PF structure
1895 *
1896 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1897 */
1898 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1899 {
1900 struct device *dev = ice_pf_to_dev(pf);
1901 struct ice_hw *hw = &pf->hw;
1902 struct ice_vf *vf;
1903 unsigned int bkt;
1904
1905 /* check that there are pending MDD events to print */
1906 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1907 return;
1908
1909 /* VF MDD event logs are rate limited to one second intervals */
1910 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1911 return;
1912
1913 pf->vfs.last_printed_mdd_jiffies = jiffies;
1914
1915 mutex_lock(&pf->vfs.table_lock);
1916 ice_for_each_vf(pf, bkt, vf) {
1917 /* only print Rx MDD event message if there are new events */
1918 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1919 vf->mdd_rx_events.last_printed =
1920 vf->mdd_rx_events.count;
1921 ice_print_vf_rx_mdd_event(vf);
1922 }
1923
1924 /* only print Tx MDD event message if there are new events */
1925 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1926 vf->mdd_tx_events.last_printed =
1927 vf->mdd_tx_events.count;
1928
1929 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1930 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1931 vf->dev_lan_addr);
1932 }
1933 }
1934 mutex_unlock(&pf->vfs.table_lock);
1935 }
1936
1937 /**
1938 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1939 * @pf: pointer to the PF structure
1940 *
1941 * Called when recovering from a PF FLR to restore interrupt capability to
1942 * the VFs.
1943 */
1944 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1945 {
1946 struct ice_vf *vf;
1947 u32 bkt;
1948
1949 ice_for_each_vf(pf, bkt, vf)
1950 pci_restore_msi_state(vf->vfdev);
1951 }