]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/marvell/octeontx2/af/rvu.c
octeontx2: Detect the mbox up or down message via register
[thirdparty/linux.git] / drivers / net / ethernet / marvell / octeontx2 / af / rvu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3 *
4 * Copyright (C) 2018 Marvell.
5 *
6 */
7
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23
24 #define DRV_NAME "rvu_af"
25 #define DRV_STRING "Marvell OcteonTX2 RVU Admin Function Driver"
26
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 int type, int num,
35 void (mbox_handler)(struct work_struct *),
36 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 TYPE_AFVF,
39 TYPE_AFPF,
40 };
41
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 { 0, } /* end of table */
46 };
47
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 struct rvu_hwinfo *hw = rvu->hw;
64
65 hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 hw->cap.nix_fixed_txschq_mapping = false;
67 hw->cap.nix_shaping = true;
68 hw->cap.nix_tx_link_bp = true;
69 hw->cap.nix_rx_multicast = true;
70 hw->cap.nix_shaper_toggle_wait = false;
71 hw->cap.npc_hash_extract = false;
72 hw->cap.npc_exact_match_enabled = false;
73 hw->rvu = rvu;
74
75 if (is_rvu_pre_96xx_C0(rvu)) {
76 hw->cap.nix_fixed_txschq_mapping = true;
77 hw->cap.nix_txsch_per_cgx_lmac = 4;
78 hw->cap.nix_txsch_per_lbk_lmac = 132;
79 hw->cap.nix_txsch_per_sdp_lmac = 76;
80 hw->cap.nix_shaping = false;
81 hw->cap.nix_tx_link_bp = false;
82 if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 hw->cap.nix_rx_multicast = false;
84 }
85 if (!is_rvu_pre_96xx_C0(rvu))
86 hw->cap.nix_shaper_toggle_wait = true;
87
88 if (!is_rvu_otx2(rvu))
89 hw->cap.per_pf_mbox_regs = true;
90
91 if (is_rvu_npc_hash_extract_en(rvu))
92 hw->cap.npc_hash_extract = true;
93 }
94
95 /* Poll a RVU block's register 'offset', for a 'zero'
96 * or 'nonzero' at bits specified by 'mask'
97 */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 bool twice = false;
102 void __iomem *reg;
103 u64 reg_val;
104
105 reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 reg_val = readq(reg);
108 if (zero && !(reg_val & mask))
109 return 0;
110 if (!zero && (reg_val & mask))
111 return 0;
112 if (time_before(jiffies, timeout)) {
113 usleep_range(1, 5);
114 goto again;
115 }
116 /* In scenarios where CPU is scheduled out before checking
117 * 'time_before' (above) and gets scheduled in such that
118 * jiffies are beyond timeout value, then check again if HW is
119 * done with the operation in the meantime.
120 */
121 if (!twice) {
122 twice = true;
123 goto again;
124 }
125 return -EBUSY;
126 }
127
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 int id;
131
132 if (!rsrc->bmap)
133 return -EINVAL;
134
135 id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 if (id >= rsrc->max)
137 return -ENOSPC;
138
139 __set_bit(id, rsrc->bmap);
140
141 return id;
142 }
143
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 int start;
147
148 if (!rsrc->bmap)
149 return -EINVAL;
150
151 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 if (start >= rsrc->max)
153 return -ENOSPC;
154
155 bitmap_set(rsrc->bmap, start, nrsrc);
156 return start;
157 }
158
159 void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 if (!rsrc->bmap)
162 return;
163 if (start >= rsrc->max)
164 return;
165
166 bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 int start;
172
173 if (!rsrc->bmap)
174 return false;
175
176 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 if (start >= rsrc->max)
178 return false;
179
180 return true;
181 }
182
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 if (!rsrc->bmap)
186 return;
187
188 __clear_bit(id, rsrc->bmap);
189 }
190
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 int used;
194
195 if (!rsrc->bmap)
196 return 0;
197
198 used = bitmap_weight(rsrc->bmap, rsrc->max);
199 return (rsrc->max - used);
200 }
201
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 if (!rsrc->bmap)
205 return false;
206
207 return !test_bit(id, rsrc->bmap);
208 }
209
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 sizeof(long), GFP_KERNEL);
214 if (!rsrc->bmap)
215 return -ENOMEM;
216 return 0;
217 }
218
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 kfree(rsrc->bmap);
222 }
223
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 u16 match = 0;
228 int lf;
229
230 mutex_lock(&rvu->rsrc_lock);
231 for (lf = 0; lf < block->lf.max; lf++) {
232 if (block->fn_map[lf] == pcifunc) {
233 if (slot == match) {
234 mutex_unlock(&rvu->rsrc_lock);
235 return lf;
236 }
237 match++;
238 }
239 }
240 mutex_unlock(&rvu->rsrc_lock);
241 return -ENODEV;
242 }
243
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245 * Some silicon variants of OcteonTX2 supports
246 * multiple blocks of same type.
247 *
248 * @pcifunc has to be zero when no LF is yet attached.
249 *
250 * For a pcifunc if LFs are attached from multiple blocks of same type, then
251 * return blkaddr of first encountered block.
252 */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 int devnum, blkaddr = -ENODEV;
256 u64 cfg, reg;
257 bool is_pf;
258
259 switch (blktype) {
260 case BLKTYPE_NPC:
261 blkaddr = BLKADDR_NPC;
262 goto exit;
263 case BLKTYPE_NPA:
264 blkaddr = BLKADDR_NPA;
265 goto exit;
266 case BLKTYPE_NIX:
267 /* For now assume NIX0 */
268 if (!pcifunc) {
269 blkaddr = BLKADDR_NIX0;
270 goto exit;
271 }
272 break;
273 case BLKTYPE_SSO:
274 blkaddr = BLKADDR_SSO;
275 goto exit;
276 case BLKTYPE_SSOW:
277 blkaddr = BLKADDR_SSOW;
278 goto exit;
279 case BLKTYPE_TIM:
280 blkaddr = BLKADDR_TIM;
281 goto exit;
282 case BLKTYPE_CPT:
283 /* For now assume CPT0 */
284 if (!pcifunc) {
285 blkaddr = BLKADDR_CPT0;
286 goto exit;
287 }
288 break;
289 }
290
291 /* Check if this is a RVU PF or VF */
292 if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 is_pf = false;
294 devnum = rvu_get_hwvf(rvu, pcifunc);
295 } else {
296 is_pf = true;
297 devnum = rvu_get_pf(pcifunc);
298 }
299
300 /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 * 'BLKADDR_NIX1'.
302 */
303 if (blktype == BLKTYPE_NIX) {
304 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 RVU_PRIV_HWVFX_NIXX_CFG(0);
306 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 if (cfg) {
308 blkaddr = BLKADDR_NIX0;
309 goto exit;
310 }
311
312 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 RVU_PRIV_HWVFX_NIXX_CFG(1);
314 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 if (cfg)
316 blkaddr = BLKADDR_NIX1;
317 }
318
319 if (blktype == BLKTYPE_CPT) {
320 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 RVU_PRIV_HWVFX_CPTX_CFG(0);
322 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 if (cfg) {
324 blkaddr = BLKADDR_CPT0;
325 goto exit;
326 }
327
328 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 RVU_PRIV_HWVFX_CPTX_CFG(1);
330 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 if (cfg)
332 blkaddr = BLKADDR_CPT1;
333 }
334
335 exit:
336 if (is_block_implemented(rvu->hw, blkaddr))
337 return blkaddr;
338 return -ENODEV;
339 }
340
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 struct rvu_block *block, u16 pcifunc,
343 u16 lf, bool attach)
344 {
345 int devnum, num_lfs = 0;
346 bool is_pf;
347 u64 reg;
348
349 if (lf >= block->lf.max) {
350 dev_err(&rvu->pdev->dev,
351 "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 __func__, lf, block->name, block->lf.max);
353 return;
354 }
355
356 /* Check if this is for a RVU PF or VF */
357 if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 is_pf = false;
359 devnum = rvu_get_hwvf(rvu, pcifunc);
360 } else {
361 is_pf = true;
362 devnum = rvu_get_pf(pcifunc);
363 }
364
365 block->fn_map[lf] = attach ? pcifunc : 0;
366
367 switch (block->addr) {
368 case BLKADDR_NPA:
369 pfvf->npalf = attach ? true : false;
370 num_lfs = pfvf->npalf;
371 break;
372 case BLKADDR_NIX0:
373 case BLKADDR_NIX1:
374 pfvf->nixlf = attach ? true : false;
375 num_lfs = pfvf->nixlf;
376 break;
377 case BLKADDR_SSO:
378 attach ? pfvf->sso++ : pfvf->sso--;
379 num_lfs = pfvf->sso;
380 break;
381 case BLKADDR_SSOW:
382 attach ? pfvf->ssow++ : pfvf->ssow--;
383 num_lfs = pfvf->ssow;
384 break;
385 case BLKADDR_TIM:
386 attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 num_lfs = pfvf->timlfs;
388 break;
389 case BLKADDR_CPT0:
390 attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 num_lfs = pfvf->cptlfs;
392 break;
393 case BLKADDR_CPT1:
394 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 num_lfs = pfvf->cpt1_lfs;
396 break;
397 }
398
399 reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 u64 cfg;
411
412 /* Get numVFs attached to this PF and first HWVF */
413 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 if (numvfs)
415 *numvfs = (cfg >> 12) & 0xFF;
416 if (hwvf)
417 *hwvf = cfg & 0xFFF;
418 }
419
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 int pf, func;
423 u64 cfg;
424
425 pf = rvu_get_pf(pcifunc);
426 func = pcifunc & RVU_PFVF_FUNC_MASK;
427
428 /* Get first HWVF attached to this PF */
429 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430
431 return ((cfg & 0xFFF) + func - 1);
432 }
433
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 /* Check if it is a PF or VF */
437 if (pcifunc & RVU_PFVF_FUNC_MASK)
438 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 else
440 return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 int pf, vf, nvfs;
446 u64 cfg;
447
448 pf = rvu_get_pf(pcifunc);
449 if (pf >= rvu->hw->total_pfs)
450 return false;
451
452 if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 return true;
454
455 /* Check if VF is within number of VFs attached to this PF */
456 vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 nvfs = (cfg >> 12) & 0xFF;
459 if (vf >= nvfs)
460 return false;
461
462 return true;
463 }
464
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 struct rvu_block *block;
468
469 if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 return false;
471
472 block = &hw->block[blkaddr];
473 return block->implemented;
474 }
475
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 struct rvu_hwinfo *hw = rvu->hw;
479 struct rvu_block *block;
480 int blkid;
481 u64 cfg;
482
483 /* For each block check if 'implemented' bit is set */
484 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 block = &hw->block[blkid];
486 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 if (cfg & BIT_ULL(11))
488 block->implemented = true;
489 }
490 }
491
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 rvu_write64(rvu, BLKADDR_RVUM,
495 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 RVU_BLK_RVUM_REVID);
497 }
498
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 rvu_write64(rvu, BLKADDR_RVUM,
502 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 int err;
508
509 if (!block->implemented)
510 return 0;
511
512 rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 true);
515 return err;
516 }
517
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 struct rvu_block *block = &rvu->hw->block[blkaddr];
521 int err;
522
523 if (!block->implemented)
524 return;
525
526 rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 if (err) {
529 dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 ;
532 }
533 }
534
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 /* Do a HW reset of all RVU blocks */
538 rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 struct rvu_pfvf *pfvf;
556 u64 cfg;
557 int lf;
558
559 for (lf = 0; lf < block->lf.max; lf++) {
560 cfg = rvu_read64(rvu, block->addr,
561 block->lfcfg_reg | (lf << block->lfshift));
562 if (!(cfg & BIT_ULL(63)))
563 continue;
564
565 /* Set this resource as being used */
566 __set_bit(lf, block->lf.bmap);
567
568 /* Get, to whom this LF is attached */
569 pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 rvu_update_rsrc_map(rvu, pfvf, block,
571 (cfg >> 8) & 0xFFFF, lf, true);
572
573 /* Set start MSIX vector for this LF within this PF/VF */
574 rvu_set_msix_offset(rvu, pfvf, block, lf);
575 }
576 }
577
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 int min_vecs;
581
582 if (!vf)
583 goto check_pf;
584
585 if (!nvecs) {
586 dev_warn(rvu->dev,
587 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 pf, vf - 1, nvecs);
589 }
590 return;
591
592 check_pf:
593 if (pf == 0)
594 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 else
596 min_vecs = RVU_PF_INT_VEC_CNT;
597
598 if (!(nvecs < min_vecs))
599 return;
600 dev_warn(rvu->dev,
601 "PF%d is configured with too few vectors, %d, min is %d\n",
602 pf, nvecs, min_vecs);
603 }
604
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 struct rvu_hwinfo *hw = rvu->hw;
608 int pf, vf, numvfs, hwvf, err;
609 int nvecs, offset, max_msix;
610 struct rvu_pfvf *pfvf;
611 u64 cfg, phy_addr;
612 dma_addr_t iova;
613
614 for (pf = 0; pf < hw->total_pfs; pf++) {
615 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 /* If PF is not enabled, nothing to do */
617 if (!((cfg >> 20) & 0x01))
618 continue;
619
620 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621
622 pfvf = &rvu->pf[pf];
623 /* Get num of MSIX vectors attached to this PF */
624 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627
628 /* Alloc msix bitmap for this PF */
629 err = rvu_alloc_bitmap(&pfvf->msix);
630 if (err)
631 return err;
632
633 /* Allocate memory for MSIX vector to RVU block LF mapping */
634 pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 sizeof(u16), GFP_KERNEL);
636 if (!pfvf->msix_lfmap)
637 return -ENOMEM;
638
639 /* For PF0 (AF) firmware will set msix vector offsets for
640 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 */
642 if (!pf)
643 goto setup_vfmsix;
644
645 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 * These are allocated on driver init and never freed,
647 * so no need to set 'msix_lfmap' for these.
648 */
649 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 nvecs = (cfg >> 12) & 0xFF;
651 cfg &= ~0x7FFULL;
652 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 rvu_write64(rvu, BLKADDR_RVUM,
654 RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 /* Alloc msix bitmap for VFs */
657 for (vf = 0; vf < numvfs; vf++) {
658 pfvf = &rvu->hwvf[hwvf + vf];
659 /* Get num of MSIX vectors attached to this VF */
660 cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 RVU_PRIV_PFX_MSIX_CFG(pf));
662 pfvf->msix.max = (cfg & 0xFFF) + 1;
663 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664
665 /* Alloc msix bitmap for this VF */
666 err = rvu_alloc_bitmap(&pfvf->msix);
667 if (err)
668 return err;
669
670 pfvf->msix_lfmap =
671 devm_kcalloc(rvu->dev, pfvf->msix.max,
672 sizeof(u16), GFP_KERNEL);
673 if (!pfvf->msix_lfmap)
674 return -ENOMEM;
675
676 /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 * These are allocated on driver init and never freed,
678 * so no need to set 'msix_lfmap' for these.
679 */
680 cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 nvecs = (cfg >> 12) & 0xFF;
683 cfg &= ~0x7FFULL;
684 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 rvu_write64(rvu, BLKADDR_RVUM,
686 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 cfg | offset);
688 }
689 }
690
691 /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 * create an IOMMU mapping for the physical address configured by
693 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 */
695 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 max_msix = cfg & 0xFFFFF;
697 if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 phy_addr = rvu->fwdata->msixtr_base;
699 else
700 phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701
702 iova = dma_map_resource(rvu->dev, phy_addr,
703 max_msix * PCI_MSIX_ENTRY_SIZE,
704 DMA_BIDIRECTIONAL, 0);
705
706 if (dma_mapping_error(rvu->dev, iova))
707 return -ENOMEM;
708
709 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 rvu->msix_base_iova = iova;
711 rvu->msixtr_base_phy = phy_addr;
712
713 return 0;
714 }
715
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 /* Restore msixtr base register */
719 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 rvu->msixtr_base_phy);
721 }
722
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 struct rvu_hwinfo *hw = rvu->hw;
726 struct rvu_block *block;
727 struct rvu_pfvf *pfvf;
728 int id, max_msix;
729 u64 cfg;
730
731 rvu_npa_freemem(rvu);
732 rvu_npc_freemem(rvu);
733 rvu_nix_freemem(rvu);
734
735 /* Free block LF bitmaps */
736 for (id = 0; id < BLK_COUNT; id++) {
737 block = &hw->block[id];
738 kfree(block->lf.bmap);
739 }
740
741 /* Free MSIX bitmaps */
742 for (id = 0; id < hw->total_pfs; id++) {
743 pfvf = &rvu->pf[id];
744 kfree(pfvf->msix.bmap);
745 }
746
747 for (id = 0; id < hw->total_vfs; id++) {
748 pfvf = &rvu->hwvf[id];
749 kfree(pfvf->msix.bmap);
750 }
751
752 /* Unmap MSIX vector base IOVA mapping */
753 if (!rvu->msix_base_iova)
754 return;
755 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 max_msix = cfg & 0xFFFFF;
757 dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 max_msix * PCI_MSIX_ENTRY_SIZE,
759 DMA_BIDIRECTIONAL, 0);
760
761 rvu_reset_msix(rvu);
762 mutex_destroy(&rvu->rsrc_lock);
763 }
764
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 struct rvu_hwinfo *hw = rvu->hw;
768 int pf, vf, numvfs, hwvf;
769 struct rvu_pfvf *pfvf;
770 u64 *mac;
771
772 for (pf = 0; pf < hw->total_pfs; pf++) {
773 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 if (!pf)
775 goto lbkvf;
776
777 if (!is_pf_cgxmapped(rvu, pf))
778 continue;
779 /* Assign MAC address to PF */
780 pfvf = &rvu->pf[pf];
781 if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 mac = &rvu->fwdata->pf_macs[pf];
783 if (*mac)
784 u64_to_ether_addr(*mac, pfvf->mac_addr);
785 else
786 eth_random_addr(pfvf->mac_addr);
787 } else {
788 eth_random_addr(pfvf->mac_addr);
789 }
790 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791
792 lbkvf:
793 /* Assign MAC address to VFs*/
794 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 pfvf = &rvu->hwvf[hwvf];
797 if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 mac = &rvu->fwdata->vf_macs[hwvf];
799 if (*mac)
800 u64_to_ether_addr(*mac, pfvf->mac_addr);
801 else
802 eth_random_addr(pfvf->mac_addr);
803 } else {
804 eth_random_addr(pfvf->mac_addr);
805 }
806 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 }
808 }
809 }
810
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 u64 fwdbase;
814 int err;
815
816 /* Get firmware data base address */
817 err = cgx_get_fwdata_base(&fwdbase);
818 if (err)
819 goto fail;
820
821 BUILD_BUG_ON(offsetof(struct rvu_fwdata, cgx_fw_data) > FWDATA_CGX_LMAC_OFFSET);
822 rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
823 if (!rvu->fwdata)
824 goto fail;
825 if (!is_rvu_fwdata_valid(rvu)) {
826 dev_err(rvu->dev,
827 "Mismatch in 'fwdata' struct btw kernel and firmware\n");
828 iounmap(rvu->fwdata);
829 rvu->fwdata = NULL;
830 return -EINVAL;
831 }
832 return 0;
833 fail:
834 dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
835 return -EIO;
836 }
837
838 static void rvu_fwdata_exit(struct rvu *rvu)
839 {
840 if (rvu->fwdata)
841 iounmap(rvu->fwdata);
842 }
843
844 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846 struct rvu_hwinfo *hw = rvu->hw;
847 struct rvu_block *block;
848 int blkid;
849 u64 cfg;
850
851 /* Init NIX LF's bitmap */
852 block = &hw->block[blkaddr];
853 if (!block->implemented)
854 return 0;
855 blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
856 cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
857 block->lf.max = cfg & 0xFFF;
858 block->addr = blkaddr;
859 block->type = BLKTYPE_NIX;
860 block->lfshift = 8;
861 block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
862 block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
863 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
864 block->lfcfg_reg = NIX_PRIV_LFX_CFG;
865 block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
866 block->lfreset_reg = NIX_AF_LF_RST;
867 block->rvu = rvu;
868 sprintf(block->name, "NIX%d", blkid);
869 rvu->nix_blkaddr[blkid] = blkaddr;
870 return rvu_alloc_bitmap(&block->lf);
871 }
872
873 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
874 {
875 struct rvu_hwinfo *hw = rvu->hw;
876 struct rvu_block *block;
877 int blkid;
878 u64 cfg;
879
880 /* Init CPT LF's bitmap */
881 block = &hw->block[blkaddr];
882 if (!block->implemented)
883 return 0;
884 blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
885 cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
886 block->lf.max = cfg & 0xFF;
887 block->addr = blkaddr;
888 block->type = BLKTYPE_CPT;
889 block->multislot = true;
890 block->lfshift = 3;
891 block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
892 block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
893 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
894 block->lfcfg_reg = CPT_PRIV_LFX_CFG;
895 block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
896 block->lfreset_reg = CPT_AF_LF_RST;
897 block->rvu = rvu;
898 sprintf(block->name, "CPT%d", blkid);
899 return rvu_alloc_bitmap(&block->lf);
900 }
901
902 static void rvu_get_lbk_bufsize(struct rvu *rvu)
903 {
904 struct pci_dev *pdev = NULL;
905 void __iomem *base;
906 u64 lbk_const;
907
908 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
909 PCI_DEVID_OCTEONTX2_LBK, pdev);
910 if (!pdev)
911 return;
912
913 base = pci_ioremap_bar(pdev, 0);
914 if (!base)
915 goto err_put;
916
917 lbk_const = readq(base + LBK_CONST);
918
919 /* cache fifo size */
920 rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
921
922 iounmap(base);
923 err_put:
924 pci_dev_put(pdev);
925 }
926
927 static int rvu_setup_hw_resources(struct rvu *rvu)
928 {
929 struct rvu_hwinfo *hw = rvu->hw;
930 struct rvu_block *block;
931 int blkid, err;
932 u64 cfg;
933
934 /* Get HW supported max RVU PF & VF count */
935 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
936 hw->total_pfs = (cfg >> 32) & 0xFF;
937 hw->total_vfs = (cfg >> 20) & 0xFFF;
938 hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
939
940 if (!is_rvu_otx2(rvu))
941 rvu_apr_block_cn10k_init(rvu);
942
943 /* Init NPA LF's bitmap */
944 block = &hw->block[BLKADDR_NPA];
945 if (!block->implemented)
946 goto nix;
947 cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
948 block->lf.max = (cfg >> 16) & 0xFFF;
949 block->addr = BLKADDR_NPA;
950 block->type = BLKTYPE_NPA;
951 block->lfshift = 8;
952 block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
953 block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
954 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
955 block->lfcfg_reg = NPA_PRIV_LFX_CFG;
956 block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
957 block->lfreset_reg = NPA_AF_LF_RST;
958 block->rvu = rvu;
959 sprintf(block->name, "NPA");
960 err = rvu_alloc_bitmap(&block->lf);
961 if (err) {
962 dev_err(rvu->dev,
963 "%s: Failed to allocate NPA LF bitmap\n", __func__);
964 return err;
965 }
966
967 nix:
968 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
969 if (err) {
970 dev_err(rvu->dev,
971 "%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
972 return err;
973 }
974
975 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
976 if (err) {
977 dev_err(rvu->dev,
978 "%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
979 return err;
980 }
981
982 /* Init SSO group's bitmap */
983 block = &hw->block[BLKADDR_SSO];
984 if (!block->implemented)
985 goto ssow;
986 cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
987 block->lf.max = cfg & 0xFFFF;
988 block->addr = BLKADDR_SSO;
989 block->type = BLKTYPE_SSO;
990 block->multislot = true;
991 block->lfshift = 3;
992 block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
993 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
994 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
995 block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
996 block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
997 block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
998 block->rvu = rvu;
999 sprintf(block->name, "SSO GROUP");
1000 err = rvu_alloc_bitmap(&block->lf);
1001 if (err) {
1002 dev_err(rvu->dev,
1003 "%s: Failed to allocate SSO LF bitmap\n", __func__);
1004 return err;
1005 }
1006
1007 ssow:
1008 /* Init SSO workslot's bitmap */
1009 block = &hw->block[BLKADDR_SSOW];
1010 if (!block->implemented)
1011 goto tim;
1012 block->lf.max = (cfg >> 56) & 0xFF;
1013 block->addr = BLKADDR_SSOW;
1014 block->type = BLKTYPE_SSOW;
1015 block->multislot = true;
1016 block->lfshift = 3;
1017 block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1018 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1019 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1020 block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1021 block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1022 block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1023 block->rvu = rvu;
1024 sprintf(block->name, "SSOWS");
1025 err = rvu_alloc_bitmap(&block->lf);
1026 if (err) {
1027 dev_err(rvu->dev,
1028 "%s: Failed to allocate SSOW LF bitmap\n", __func__);
1029 return err;
1030 }
1031
1032 tim:
1033 /* Init TIM LF's bitmap */
1034 block = &hw->block[BLKADDR_TIM];
1035 if (!block->implemented)
1036 goto cpt;
1037 cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1038 block->lf.max = cfg & 0xFFFF;
1039 block->addr = BLKADDR_TIM;
1040 block->type = BLKTYPE_TIM;
1041 block->multislot = true;
1042 block->lfshift = 3;
1043 block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1044 block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1045 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1046 block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1047 block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1048 block->lfreset_reg = TIM_AF_LF_RST;
1049 block->rvu = rvu;
1050 sprintf(block->name, "TIM");
1051 err = rvu_alloc_bitmap(&block->lf);
1052 if (err) {
1053 dev_err(rvu->dev,
1054 "%s: Failed to allocate TIM LF bitmap\n", __func__);
1055 return err;
1056 }
1057
1058 cpt:
1059 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1060 if (err) {
1061 dev_err(rvu->dev,
1062 "%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1063 return err;
1064 }
1065 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1066 if (err) {
1067 dev_err(rvu->dev,
1068 "%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1069 return err;
1070 }
1071
1072 /* Allocate memory for PFVF data */
1073 rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1074 sizeof(struct rvu_pfvf), GFP_KERNEL);
1075 if (!rvu->pf) {
1076 dev_err(rvu->dev,
1077 "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1078 return -ENOMEM;
1079 }
1080
1081 rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1082 sizeof(struct rvu_pfvf), GFP_KERNEL);
1083 if (!rvu->hwvf) {
1084 dev_err(rvu->dev,
1085 "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1086 return -ENOMEM;
1087 }
1088
1089 mutex_init(&rvu->rsrc_lock);
1090
1091 rvu_fwdata_init(rvu);
1092
1093 err = rvu_setup_msix_resources(rvu);
1094 if (err) {
1095 dev_err(rvu->dev,
1096 "%s: Failed to setup MSIX resources\n", __func__);
1097 return err;
1098 }
1099
1100 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1101 block = &hw->block[blkid];
1102 if (!block->lf.bmap)
1103 continue;
1104
1105 /* Allocate memory for block LF/slot to pcifunc mapping info */
1106 block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1107 sizeof(u16), GFP_KERNEL);
1108 if (!block->fn_map) {
1109 err = -ENOMEM;
1110 goto msix_err;
1111 }
1112
1113 /* Scan all blocks to check if low level firmware has
1114 * already provisioned any of the resources to a PF/VF.
1115 */
1116 rvu_scan_block(rvu, block);
1117 }
1118
1119 err = rvu_set_channels_base(rvu);
1120 if (err)
1121 goto msix_err;
1122
1123 err = rvu_npc_init(rvu);
1124 if (err) {
1125 dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1126 goto npc_err;
1127 }
1128
1129 err = rvu_cgx_init(rvu);
1130 if (err) {
1131 dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1132 goto cgx_err;
1133 }
1134
1135 err = rvu_npc_exact_init(rvu);
1136 if (err) {
1137 dev_err(rvu->dev, "failed to initialize exact match table\n");
1138 return err;
1139 }
1140
1141 /* Assign MACs for CGX mapped functions */
1142 rvu_setup_pfvf_macaddress(rvu);
1143
1144 err = rvu_npa_init(rvu);
1145 if (err) {
1146 dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1147 goto npa_err;
1148 }
1149
1150 rvu_get_lbk_bufsize(rvu);
1151
1152 err = rvu_nix_init(rvu);
1153 if (err) {
1154 dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1155 goto nix_err;
1156 }
1157
1158 err = rvu_sdp_init(rvu);
1159 if (err) {
1160 dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1161 goto nix_err;
1162 }
1163
1164 rvu_program_channels(rvu);
1165
1166 err = rvu_mcs_init(rvu);
1167 if (err) {
1168 dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1169 goto nix_err;
1170 }
1171
1172 err = rvu_cpt_init(rvu);
1173 if (err) {
1174 dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1175 goto mcs_err;
1176 }
1177
1178 return 0;
1179
1180 mcs_err:
1181 rvu_mcs_exit(rvu);
1182 nix_err:
1183 rvu_nix_freemem(rvu);
1184 npa_err:
1185 rvu_npa_freemem(rvu);
1186 cgx_err:
1187 rvu_cgx_exit(rvu);
1188 npc_err:
1189 rvu_npc_freemem(rvu);
1190 rvu_fwdata_exit(rvu);
1191 msix_err:
1192 rvu_reset_msix(rvu);
1193 return err;
1194 }
1195
1196 /* NPA and NIX admin queue APIs */
1197 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1198 {
1199 if (!aq)
1200 return;
1201
1202 qmem_free(rvu->dev, aq->inst);
1203 qmem_free(rvu->dev, aq->res);
1204 devm_kfree(rvu->dev, aq);
1205 }
1206
1207 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1208 int qsize, int inst_size, int res_size)
1209 {
1210 struct admin_queue *aq;
1211 int err;
1212
1213 *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1214 if (!*ad_queue)
1215 return -ENOMEM;
1216 aq = *ad_queue;
1217
1218 /* Alloc memory for instructions i.e AQ */
1219 err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1220 if (err) {
1221 devm_kfree(rvu->dev, aq);
1222 return err;
1223 }
1224
1225 /* Alloc memory for results */
1226 err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1227 if (err) {
1228 rvu_aq_free(rvu, aq);
1229 return err;
1230 }
1231
1232 spin_lock_init(&aq->lock);
1233 return 0;
1234 }
1235
1236 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1237 struct ready_msg_rsp *rsp)
1238 {
1239 if (rvu->fwdata) {
1240 rsp->rclk_freq = rvu->fwdata->rclk;
1241 rsp->sclk_freq = rvu->fwdata->sclk;
1242 }
1243 return 0;
1244 }
1245
1246 /* Get current count of a RVU block's LF/slots
1247 * provisioned to a given RVU func.
1248 */
1249 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1250 {
1251 switch (blkaddr) {
1252 case BLKADDR_NPA:
1253 return pfvf->npalf ? 1 : 0;
1254 case BLKADDR_NIX0:
1255 case BLKADDR_NIX1:
1256 return pfvf->nixlf ? 1 : 0;
1257 case BLKADDR_SSO:
1258 return pfvf->sso;
1259 case BLKADDR_SSOW:
1260 return pfvf->ssow;
1261 case BLKADDR_TIM:
1262 return pfvf->timlfs;
1263 case BLKADDR_CPT0:
1264 return pfvf->cptlfs;
1265 case BLKADDR_CPT1:
1266 return pfvf->cpt1_lfs;
1267 }
1268 return 0;
1269 }
1270
1271 /* Return true if LFs of block type are attached to pcifunc */
1272 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1273 {
1274 switch (blktype) {
1275 case BLKTYPE_NPA:
1276 return pfvf->npalf ? 1 : 0;
1277 case BLKTYPE_NIX:
1278 return pfvf->nixlf ? 1 : 0;
1279 case BLKTYPE_SSO:
1280 return !!pfvf->sso;
1281 case BLKTYPE_SSOW:
1282 return !!pfvf->ssow;
1283 case BLKTYPE_TIM:
1284 return !!pfvf->timlfs;
1285 case BLKTYPE_CPT:
1286 return pfvf->cptlfs || pfvf->cpt1_lfs;
1287 }
1288
1289 return false;
1290 }
1291
1292 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1293 {
1294 struct rvu_pfvf *pfvf;
1295
1296 if (!is_pf_func_valid(rvu, pcifunc))
1297 return false;
1298
1299 pfvf = rvu_get_pfvf(rvu, pcifunc);
1300
1301 /* Check if this PFFUNC has a LF of type blktype attached */
1302 if (!is_blktype_attached(pfvf, blktype))
1303 return false;
1304
1305 return true;
1306 }
1307
1308 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1309 int pcifunc, int slot)
1310 {
1311 u64 val;
1312
1313 val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1314 rvu_write64(rvu, block->addr, block->lookup_reg, val);
1315 /* Wait for the lookup to finish */
1316 /* TODO: put some timeout here */
1317 while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1318 ;
1319
1320 val = rvu_read64(rvu, block->addr, block->lookup_reg);
1321
1322 /* Check LF valid bit */
1323 if (!(val & (1ULL << 12)))
1324 return -1;
1325
1326 return (val & 0xFFF);
1327 }
1328
1329 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1330 u16 global_slot, u16 *slot_in_block)
1331 {
1332 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1333 int numlfs, total_lfs = 0, nr_blocks = 0;
1334 int i, num_blkaddr[BLK_COUNT] = { 0 };
1335 struct rvu_block *block;
1336 int blkaddr;
1337 u16 start_slot;
1338
1339 if (!is_blktype_attached(pfvf, blktype))
1340 return -ENODEV;
1341
1342 /* Get all the block addresses from which LFs are attached to
1343 * the given pcifunc in num_blkaddr[].
1344 */
1345 for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1346 block = &rvu->hw->block[blkaddr];
1347 if (block->type != blktype)
1348 continue;
1349 if (!is_block_implemented(rvu->hw, blkaddr))
1350 continue;
1351
1352 numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1353 if (numlfs) {
1354 total_lfs += numlfs;
1355 num_blkaddr[nr_blocks] = blkaddr;
1356 nr_blocks++;
1357 }
1358 }
1359
1360 if (global_slot >= total_lfs)
1361 return -ENODEV;
1362
1363 /* Based on the given global slot number retrieve the
1364 * correct block address out of all attached block
1365 * addresses and slot number in that block.
1366 */
1367 total_lfs = 0;
1368 blkaddr = -ENODEV;
1369 for (i = 0; i < nr_blocks; i++) {
1370 numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1371 total_lfs += numlfs;
1372 if (global_slot < total_lfs) {
1373 blkaddr = num_blkaddr[i];
1374 start_slot = total_lfs - numlfs;
1375 *slot_in_block = global_slot - start_slot;
1376 break;
1377 }
1378 }
1379
1380 return blkaddr;
1381 }
1382
1383 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1384 {
1385 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1386 struct rvu_hwinfo *hw = rvu->hw;
1387 struct rvu_block *block;
1388 int slot, lf, num_lfs;
1389 int blkaddr;
1390
1391 blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1392 if (blkaddr < 0)
1393 return;
1394
1395 if (blktype == BLKTYPE_NIX)
1396 rvu_nix_reset_mac(pfvf, pcifunc);
1397
1398 block = &hw->block[blkaddr];
1399
1400 num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1401 if (!num_lfs)
1402 return;
1403
1404 for (slot = 0; slot < num_lfs; slot++) {
1405 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1406 if (lf < 0) /* This should never happen */
1407 continue;
1408
1409 /* Disable the LF */
1410 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1411 (lf << block->lfshift), 0x00ULL);
1412
1413 /* Update SW maintained mapping info as well */
1414 rvu_update_rsrc_map(rvu, pfvf, block,
1415 pcifunc, lf, false);
1416
1417 /* Free the resource */
1418 rvu_free_rsrc(&block->lf, lf);
1419
1420 /* Clear MSIX vector offset for this LF */
1421 rvu_clear_msix_offset(rvu, pfvf, block, lf);
1422 }
1423 }
1424
1425 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1426 u16 pcifunc)
1427 {
1428 struct rvu_hwinfo *hw = rvu->hw;
1429 bool detach_all = true;
1430 struct rvu_block *block;
1431 int blkid;
1432
1433 mutex_lock(&rvu->rsrc_lock);
1434
1435 /* Check for partial resource detach */
1436 if (detach && detach->partial)
1437 detach_all = false;
1438
1439 /* Check for RVU block's LFs attached to this func,
1440 * if so, detach them.
1441 */
1442 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1443 block = &hw->block[blkid];
1444 if (!block->lf.bmap)
1445 continue;
1446 if (!detach_all && detach) {
1447 if (blkid == BLKADDR_NPA && !detach->npalf)
1448 continue;
1449 else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1450 continue;
1451 else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1452 continue;
1453 else if ((blkid == BLKADDR_SSO) && !detach->sso)
1454 continue;
1455 else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1456 continue;
1457 else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1458 continue;
1459 else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1460 continue;
1461 else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1462 continue;
1463 }
1464 rvu_detach_block(rvu, pcifunc, block->type);
1465 }
1466
1467 mutex_unlock(&rvu->rsrc_lock);
1468 return 0;
1469 }
1470
1471 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1472 struct rsrc_detach *detach,
1473 struct msg_rsp *rsp)
1474 {
1475 return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1476 }
1477
1478 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1479 {
1480 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1481 int blkaddr = BLKADDR_NIX0, vf;
1482 struct rvu_pfvf *pf;
1483
1484 pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1485
1486 /* All CGX mapped PFs are set with assigned NIX block during init */
1487 if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1488 blkaddr = pf->nix_blkaddr;
1489 } else if (is_lbk_vf(rvu, pcifunc)) {
1490 vf = pcifunc - 1;
1491 /* Assign NIX based on VF number. All even numbered VFs get
1492 * NIX0 and odd numbered gets NIX1
1493 */
1494 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1495 /* NIX1 is not present on all silicons */
1496 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1497 blkaddr = BLKADDR_NIX0;
1498 }
1499
1500 /* if SDP1 then the blkaddr is NIX1 */
1501 if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1502 blkaddr = BLKADDR_NIX1;
1503
1504 switch (blkaddr) {
1505 case BLKADDR_NIX1:
1506 pfvf->nix_blkaddr = BLKADDR_NIX1;
1507 pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1508 pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1509 break;
1510 case BLKADDR_NIX0:
1511 default:
1512 pfvf->nix_blkaddr = BLKADDR_NIX0;
1513 pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1514 pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1515 break;
1516 }
1517
1518 return pfvf->nix_blkaddr;
1519 }
1520
1521 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1522 u16 pcifunc, struct rsrc_attach *attach)
1523 {
1524 int blkaddr;
1525
1526 switch (blktype) {
1527 case BLKTYPE_NIX:
1528 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1529 break;
1530 case BLKTYPE_CPT:
1531 if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1532 return rvu_get_blkaddr(rvu, blktype, 0);
1533 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1534 BLKADDR_CPT0;
1535 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1536 return -ENODEV;
1537 break;
1538 default:
1539 return rvu_get_blkaddr(rvu, blktype, 0);
1540 }
1541
1542 if (is_block_implemented(rvu->hw, blkaddr))
1543 return blkaddr;
1544
1545 return -ENODEV;
1546 }
1547
1548 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1549 int num_lfs, struct rsrc_attach *attach)
1550 {
1551 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1552 struct rvu_hwinfo *hw = rvu->hw;
1553 struct rvu_block *block;
1554 int slot, lf;
1555 int blkaddr;
1556 u64 cfg;
1557
1558 if (!num_lfs)
1559 return;
1560
1561 blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1562 if (blkaddr < 0)
1563 return;
1564
1565 block = &hw->block[blkaddr];
1566 if (!block->lf.bmap)
1567 return;
1568
1569 for (slot = 0; slot < num_lfs; slot++) {
1570 /* Allocate the resource */
1571 lf = rvu_alloc_rsrc(&block->lf);
1572 if (lf < 0)
1573 return;
1574
1575 cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1576 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1577 (lf << block->lfshift), cfg);
1578 rvu_update_rsrc_map(rvu, pfvf, block,
1579 pcifunc, lf, true);
1580
1581 /* Set start MSIX vector for this LF within this PF/VF */
1582 rvu_set_msix_offset(rvu, pfvf, block, lf);
1583 }
1584 }
1585
1586 static int rvu_check_rsrc_availability(struct rvu *rvu,
1587 struct rsrc_attach *req, u16 pcifunc)
1588 {
1589 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1590 int free_lfs, mappedlfs, blkaddr;
1591 struct rvu_hwinfo *hw = rvu->hw;
1592 struct rvu_block *block;
1593
1594 /* Only one NPA LF can be attached */
1595 if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1596 block = &hw->block[BLKADDR_NPA];
1597 free_lfs = rvu_rsrc_free_count(&block->lf);
1598 if (!free_lfs)
1599 goto fail;
1600 } else if (req->npalf) {
1601 dev_err(&rvu->pdev->dev,
1602 "Func 0x%x: Invalid req, already has NPA\n",
1603 pcifunc);
1604 return -EINVAL;
1605 }
1606
1607 /* Only one NIX LF can be attached */
1608 if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1609 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1610 pcifunc, req);
1611 if (blkaddr < 0)
1612 return blkaddr;
1613 block = &hw->block[blkaddr];
1614 free_lfs = rvu_rsrc_free_count(&block->lf);
1615 if (!free_lfs)
1616 goto fail;
1617 } else if (req->nixlf) {
1618 dev_err(&rvu->pdev->dev,
1619 "Func 0x%x: Invalid req, already has NIX\n",
1620 pcifunc);
1621 return -EINVAL;
1622 }
1623
1624 if (req->sso) {
1625 block = &hw->block[BLKADDR_SSO];
1626 /* Is request within limits ? */
1627 if (req->sso > block->lf.max) {
1628 dev_err(&rvu->pdev->dev,
1629 "Func 0x%x: Invalid SSO req, %d > max %d\n",
1630 pcifunc, req->sso, block->lf.max);
1631 return -EINVAL;
1632 }
1633 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1634 free_lfs = rvu_rsrc_free_count(&block->lf);
1635 /* Check if additional resources are available */
1636 if (req->sso > mappedlfs &&
1637 ((req->sso - mappedlfs) > free_lfs))
1638 goto fail;
1639 }
1640
1641 if (req->ssow) {
1642 block = &hw->block[BLKADDR_SSOW];
1643 if (req->ssow > block->lf.max) {
1644 dev_err(&rvu->pdev->dev,
1645 "Func 0x%x: Invalid SSOW req, %d > max %d\n",
1646 pcifunc, req->sso, block->lf.max);
1647 return -EINVAL;
1648 }
1649 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1650 free_lfs = rvu_rsrc_free_count(&block->lf);
1651 if (req->ssow > mappedlfs &&
1652 ((req->ssow - mappedlfs) > free_lfs))
1653 goto fail;
1654 }
1655
1656 if (req->timlfs) {
1657 block = &hw->block[BLKADDR_TIM];
1658 if (req->timlfs > block->lf.max) {
1659 dev_err(&rvu->pdev->dev,
1660 "Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1661 pcifunc, req->timlfs, block->lf.max);
1662 return -EINVAL;
1663 }
1664 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1665 free_lfs = rvu_rsrc_free_count(&block->lf);
1666 if (req->timlfs > mappedlfs &&
1667 ((req->timlfs - mappedlfs) > free_lfs))
1668 goto fail;
1669 }
1670
1671 if (req->cptlfs) {
1672 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1673 pcifunc, req);
1674 if (blkaddr < 0)
1675 return blkaddr;
1676 block = &hw->block[blkaddr];
1677 if (req->cptlfs > block->lf.max) {
1678 dev_err(&rvu->pdev->dev,
1679 "Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1680 pcifunc, req->cptlfs, block->lf.max);
1681 return -EINVAL;
1682 }
1683 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1684 free_lfs = rvu_rsrc_free_count(&block->lf);
1685 if (req->cptlfs > mappedlfs &&
1686 ((req->cptlfs - mappedlfs) > free_lfs))
1687 goto fail;
1688 }
1689
1690 return 0;
1691
1692 fail:
1693 dev_info(rvu->dev, "Request for %s failed\n", block->name);
1694 return -ENOSPC;
1695 }
1696
1697 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1698 struct rsrc_attach *attach)
1699 {
1700 int blkaddr, num_lfs;
1701
1702 blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1703 attach->hdr.pcifunc, attach);
1704 if (blkaddr < 0)
1705 return false;
1706
1707 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1708 blkaddr);
1709 /* Requester already has LFs from given block ? */
1710 return !!num_lfs;
1711 }
1712
1713 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1714 struct rsrc_attach *attach,
1715 struct msg_rsp *rsp)
1716 {
1717 u16 pcifunc = attach->hdr.pcifunc;
1718 int err;
1719
1720 /* If first request, detach all existing attached resources */
1721 if (!attach->modify)
1722 rvu_detach_rsrcs(rvu, NULL, pcifunc);
1723
1724 mutex_lock(&rvu->rsrc_lock);
1725
1726 /* Check if the request can be accommodated */
1727 err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1728 if (err)
1729 goto exit;
1730
1731 /* Now attach the requested resources */
1732 if (attach->npalf)
1733 rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1734
1735 if (attach->nixlf)
1736 rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1737
1738 if (attach->sso) {
1739 /* RVU func doesn't know which exact LF or slot is attached
1740 * to it, it always sees as slot 0,1,2. So for a 'modify'
1741 * request, simply detach all existing attached LFs/slots
1742 * and attach a fresh.
1743 */
1744 if (attach->modify)
1745 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1746 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1747 attach->sso, attach);
1748 }
1749
1750 if (attach->ssow) {
1751 if (attach->modify)
1752 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1753 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1754 attach->ssow, attach);
1755 }
1756
1757 if (attach->timlfs) {
1758 if (attach->modify)
1759 rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1760 rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1761 attach->timlfs, attach);
1762 }
1763
1764 if (attach->cptlfs) {
1765 if (attach->modify &&
1766 rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1767 rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1768 rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1769 attach->cptlfs, attach);
1770 }
1771
1772 exit:
1773 mutex_unlock(&rvu->rsrc_lock);
1774 return err;
1775 }
1776
1777 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1778 int blkaddr, int lf)
1779 {
1780 u16 vec;
1781
1782 if (lf < 0)
1783 return MSIX_VECTOR_INVALID;
1784
1785 for (vec = 0; vec < pfvf->msix.max; vec++) {
1786 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1787 return vec;
1788 }
1789 return MSIX_VECTOR_INVALID;
1790 }
1791
1792 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1793 struct rvu_block *block, int lf)
1794 {
1795 u16 nvecs, vec, offset;
1796 u64 cfg;
1797
1798 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1799 (lf << block->lfshift));
1800 nvecs = (cfg >> 12) & 0xFF;
1801
1802 /* Check and alloc MSIX vectors, must be contiguous */
1803 if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1804 return;
1805
1806 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1807
1808 /* Config MSIX offset in LF */
1809 rvu_write64(rvu, block->addr, block->msixcfg_reg |
1810 (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1811
1812 /* Update the bitmap as well */
1813 for (vec = 0; vec < nvecs; vec++)
1814 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1815 }
1816
1817 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1818 struct rvu_block *block, int lf)
1819 {
1820 u16 nvecs, vec, offset;
1821 u64 cfg;
1822
1823 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1824 (lf << block->lfshift));
1825 nvecs = (cfg >> 12) & 0xFF;
1826
1827 /* Clear MSIX offset in LF */
1828 rvu_write64(rvu, block->addr, block->msixcfg_reg |
1829 (lf << block->lfshift), cfg & ~0x7FFULL);
1830
1831 offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1832
1833 /* Update the mapping */
1834 for (vec = 0; vec < nvecs; vec++)
1835 pfvf->msix_lfmap[offset + vec] = 0;
1836
1837 /* Free the same in MSIX bitmap */
1838 rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1839 }
1840
1841 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1842 struct msix_offset_rsp *rsp)
1843 {
1844 struct rvu_hwinfo *hw = rvu->hw;
1845 u16 pcifunc = req->hdr.pcifunc;
1846 struct rvu_pfvf *pfvf;
1847 int lf, slot, blkaddr;
1848
1849 pfvf = rvu_get_pfvf(rvu, pcifunc);
1850 if (!pfvf->msix.bmap)
1851 return 0;
1852
1853 /* Set MSIX offsets for each block's LFs attached to this PF/VF */
1854 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1855 rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1856
1857 /* Get BLKADDR from which LFs are attached to pcifunc */
1858 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1859 if (blkaddr < 0) {
1860 rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1861 } else {
1862 lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1863 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1864 }
1865
1866 rsp->sso = pfvf->sso;
1867 for (slot = 0; slot < rsp->sso; slot++) {
1868 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1869 rsp->sso_msixoff[slot] =
1870 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1871 }
1872
1873 rsp->ssow = pfvf->ssow;
1874 for (slot = 0; slot < rsp->ssow; slot++) {
1875 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1876 rsp->ssow_msixoff[slot] =
1877 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1878 }
1879
1880 rsp->timlfs = pfvf->timlfs;
1881 for (slot = 0; slot < rsp->timlfs; slot++) {
1882 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1883 rsp->timlf_msixoff[slot] =
1884 rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1885 }
1886
1887 rsp->cptlfs = pfvf->cptlfs;
1888 for (slot = 0; slot < rsp->cptlfs; slot++) {
1889 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1890 rsp->cptlf_msixoff[slot] =
1891 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1892 }
1893
1894 rsp->cpt1_lfs = pfvf->cpt1_lfs;
1895 for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1896 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1897 rsp->cpt1_lf_msixoff[slot] =
1898 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1899 }
1900
1901 return 0;
1902 }
1903
1904 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1905 struct free_rsrcs_rsp *rsp)
1906 {
1907 struct rvu_hwinfo *hw = rvu->hw;
1908 struct rvu_block *block;
1909 struct nix_txsch *txsch;
1910 struct nix_hw *nix_hw;
1911
1912 mutex_lock(&rvu->rsrc_lock);
1913
1914 block = &hw->block[BLKADDR_NPA];
1915 rsp->npa = rvu_rsrc_free_count(&block->lf);
1916
1917 block = &hw->block[BLKADDR_NIX0];
1918 rsp->nix = rvu_rsrc_free_count(&block->lf);
1919
1920 block = &hw->block[BLKADDR_NIX1];
1921 rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1922
1923 block = &hw->block[BLKADDR_SSO];
1924 rsp->sso = rvu_rsrc_free_count(&block->lf);
1925
1926 block = &hw->block[BLKADDR_SSOW];
1927 rsp->ssow = rvu_rsrc_free_count(&block->lf);
1928
1929 block = &hw->block[BLKADDR_TIM];
1930 rsp->tim = rvu_rsrc_free_count(&block->lf);
1931
1932 block = &hw->block[BLKADDR_CPT0];
1933 rsp->cpt = rvu_rsrc_free_count(&block->lf);
1934
1935 block = &hw->block[BLKADDR_CPT1];
1936 rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1937
1938 if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1939 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1940 rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1941 rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1942 rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1943 /* NIX1 */
1944 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1945 goto out;
1946 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1947 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1948 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1949 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1950 } else {
1951 nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1952 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1953 rsp->schq[NIX_TXSCH_LVL_SMQ] =
1954 rvu_rsrc_free_count(&txsch->schq);
1955
1956 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1957 rsp->schq[NIX_TXSCH_LVL_TL4] =
1958 rvu_rsrc_free_count(&txsch->schq);
1959
1960 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1961 rsp->schq[NIX_TXSCH_LVL_TL3] =
1962 rvu_rsrc_free_count(&txsch->schq);
1963
1964 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1965 rsp->schq[NIX_TXSCH_LVL_TL2] =
1966 rvu_rsrc_free_count(&txsch->schq);
1967
1968 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1969 goto out;
1970
1971 nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1972 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1973 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1974 rvu_rsrc_free_count(&txsch->schq);
1975
1976 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1977 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1978 rvu_rsrc_free_count(&txsch->schq);
1979
1980 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1981 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1982 rvu_rsrc_free_count(&txsch->schq);
1983
1984 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1985 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1986 rvu_rsrc_free_count(&txsch->schq);
1987 }
1988
1989 rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1990 out:
1991 rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1992 mutex_unlock(&rvu->rsrc_lock);
1993
1994 return 0;
1995 }
1996
1997 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1998 struct msg_rsp *rsp)
1999 {
2000 u16 pcifunc = req->hdr.pcifunc;
2001 u16 vf, numvfs;
2002 u64 cfg;
2003
2004 vf = pcifunc & RVU_PFVF_FUNC_MASK;
2005 cfg = rvu_read64(rvu, BLKADDR_RVUM,
2006 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2007 numvfs = (cfg >> 12) & 0xFF;
2008
2009 if (vf && vf <= numvfs)
2010 __rvu_flr_handler(rvu, pcifunc);
2011 else
2012 return RVU_INVALID_VF_ID;
2013
2014 return 0;
2015 }
2016
2017 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2018 struct get_hw_cap_rsp *rsp)
2019 {
2020 struct rvu_hwinfo *hw = rvu->hw;
2021
2022 rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2023 rsp->nix_shaping = hw->cap.nix_shaping;
2024 rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2025
2026 return 0;
2027 }
2028
2029 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2030 struct msg_rsp *rsp)
2031 {
2032 struct rvu_hwinfo *hw = rvu->hw;
2033 u16 pcifunc = req->hdr.pcifunc;
2034 struct rvu_pfvf *pfvf;
2035 int blkaddr, nixlf;
2036 u16 target;
2037
2038 /* Only PF can add VF permissions */
2039 if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_lbk_vf(rvu, pcifunc))
2040 return -EOPNOTSUPP;
2041
2042 target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2043 pfvf = rvu_get_pfvf(rvu, target);
2044
2045 if (req->flags & RESET_VF_PERM) {
2046 pfvf->flags &= RVU_CLEAR_VF_PERM;
2047 } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2048 (req->flags & VF_TRUSTED)) {
2049 change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2050 /* disable multicast and promisc entries */
2051 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2052 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2053 if (blkaddr < 0)
2054 return 0;
2055 nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2056 target, 0);
2057 if (nixlf < 0)
2058 return 0;
2059 npc_enadis_default_mce_entry(rvu, target, nixlf,
2060 NIXLF_ALLMULTI_ENTRY,
2061 false);
2062 npc_enadis_default_mce_entry(rvu, target, nixlf,
2063 NIXLF_PROMISC_ENTRY,
2064 false);
2065 }
2066 }
2067
2068 return 0;
2069 }
2070
2071 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2072 struct mbox_msghdr *req)
2073 {
2074 struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2075
2076 /* Check if valid, if not reply with a invalid msg */
2077 if (req->sig != OTX2_MBOX_REQ_SIG)
2078 goto bad_message;
2079
2080 switch (req->id) {
2081 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
2082 case _id: { \
2083 struct _rsp_type *rsp; \
2084 int err; \
2085 \
2086 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \
2087 mbox, devid, \
2088 sizeof(struct _rsp_type)); \
2089 /* some handlers should complete even if reply */ \
2090 /* could not be allocated */ \
2091 if (!rsp && \
2092 _id != MBOX_MSG_DETACH_RESOURCES && \
2093 _id != MBOX_MSG_NIX_TXSCH_FREE && \
2094 _id != MBOX_MSG_VF_FLR) \
2095 return -ENOMEM; \
2096 if (rsp) { \
2097 rsp->hdr.id = _id; \
2098 rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \
2099 rsp->hdr.pcifunc = req->pcifunc; \
2100 rsp->hdr.rc = 0; \
2101 } \
2102 \
2103 err = rvu_mbox_handler_ ## _fn_name(rvu, \
2104 (struct _req_type *)req, \
2105 rsp); \
2106 if (rsp && err) \
2107 rsp->hdr.rc = err; \
2108 \
2109 trace_otx2_msg_process(mbox->pdev, _id, err); \
2110 return rsp ? err : -ENOMEM; \
2111 }
2112 MBOX_MESSAGES
2113 #undef M
2114
2115 bad_message:
2116 default:
2117 otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2118 return -ENODEV;
2119 }
2120 }
2121
2122 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2123 {
2124 struct rvu *rvu = mwork->rvu;
2125 int offset, err, id, devid;
2126 struct otx2_mbox_dev *mdev;
2127 struct mbox_hdr *req_hdr;
2128 struct mbox_msghdr *msg;
2129 struct mbox_wq_info *mw;
2130 struct otx2_mbox *mbox;
2131
2132 switch (type) {
2133 case TYPE_AFPF:
2134 mw = &rvu->afpf_wq_info;
2135 break;
2136 case TYPE_AFVF:
2137 mw = &rvu->afvf_wq_info;
2138 break;
2139 default:
2140 return;
2141 }
2142
2143 devid = mwork - mw->mbox_wrk;
2144 mbox = &mw->mbox;
2145 mdev = &mbox->dev[devid];
2146
2147 /* Process received mbox messages */
2148 req_hdr = mdev->mbase + mbox->rx_start;
2149 if (mw->mbox_wrk[devid].num_msgs == 0)
2150 return;
2151
2152 offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2153
2154 for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2155 msg = mdev->mbase + offset;
2156
2157 /* Set which PF/VF sent this message based on mbox IRQ */
2158 switch (type) {
2159 case TYPE_AFPF:
2160 msg->pcifunc &=
2161 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2162 msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2163 break;
2164 case TYPE_AFVF:
2165 msg->pcifunc &=
2166 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2167 msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2168 break;
2169 }
2170
2171 err = rvu_process_mbox_msg(mbox, devid, msg);
2172 if (!err) {
2173 offset = mbox->rx_start + msg->next_msgoff;
2174 continue;
2175 }
2176
2177 if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2178 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2179 err, otx2_mbox_id2name(msg->id),
2180 msg->id, rvu_get_pf(msg->pcifunc),
2181 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2182 else
2183 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2184 err, otx2_mbox_id2name(msg->id),
2185 msg->id, devid);
2186 }
2187 mw->mbox_wrk[devid].num_msgs = 0;
2188
2189 if (poll)
2190 otx2_mbox_wait_for_zero(mbox, devid);
2191
2192 /* Send mbox responses to VF/PF */
2193 otx2_mbox_msg_send(mbox, devid);
2194 }
2195
2196 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2197 {
2198 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2199 struct rvu *rvu = mwork->rvu;
2200
2201 mutex_lock(&rvu->mbox_lock);
2202 __rvu_mbox_handler(mwork, TYPE_AFPF, true);
2203 mutex_unlock(&rvu->mbox_lock);
2204 }
2205
2206 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2207 {
2208 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2209
2210 __rvu_mbox_handler(mwork, TYPE_AFVF, false);
2211 }
2212
2213 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2214 {
2215 struct rvu *rvu = mwork->rvu;
2216 struct otx2_mbox_dev *mdev;
2217 struct mbox_hdr *rsp_hdr;
2218 struct mbox_msghdr *msg;
2219 struct mbox_wq_info *mw;
2220 struct otx2_mbox *mbox;
2221 int offset, id, devid;
2222
2223 switch (type) {
2224 case TYPE_AFPF:
2225 mw = &rvu->afpf_wq_info;
2226 break;
2227 case TYPE_AFVF:
2228 mw = &rvu->afvf_wq_info;
2229 break;
2230 default:
2231 return;
2232 }
2233
2234 devid = mwork - mw->mbox_wrk_up;
2235 mbox = &mw->mbox_up;
2236 mdev = &mbox->dev[devid];
2237
2238 rsp_hdr = mdev->mbase + mbox->rx_start;
2239 if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2240 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2241 return;
2242 }
2243
2244 offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2245
2246 for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2247 msg = mdev->mbase + offset;
2248
2249 if (msg->id >= MBOX_MSG_MAX) {
2250 dev_err(rvu->dev,
2251 "Mbox msg with unknown ID 0x%x\n", msg->id);
2252 goto end;
2253 }
2254
2255 if (msg->sig != OTX2_MBOX_RSP_SIG) {
2256 dev_err(rvu->dev,
2257 "Mbox msg with wrong signature %x, ID 0x%x\n",
2258 msg->sig, msg->id);
2259 goto end;
2260 }
2261
2262 switch (msg->id) {
2263 case MBOX_MSG_CGX_LINK_EVENT:
2264 break;
2265 default:
2266 if (msg->rc)
2267 dev_err(rvu->dev,
2268 "Mbox msg response has err %d, ID 0x%x\n",
2269 msg->rc, msg->id);
2270 break;
2271 }
2272 end:
2273 offset = mbox->rx_start + msg->next_msgoff;
2274 mdev->msgs_acked++;
2275 }
2276 mw->mbox_wrk_up[devid].up_num_msgs = 0;
2277
2278 otx2_mbox_reset(mbox, devid);
2279 }
2280
2281 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2282 {
2283 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2284
2285 __rvu_mbox_up_handler(mwork, TYPE_AFPF);
2286 }
2287
2288 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2289 {
2290 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2291
2292 __rvu_mbox_up_handler(mwork, TYPE_AFVF);
2293 }
2294
2295 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2296 int num, int type, unsigned long *pf_bmap)
2297 {
2298 struct rvu_hwinfo *hw = rvu->hw;
2299 int region;
2300 u64 bar4;
2301
2302 /* For cn10k platform VF mailbox regions of a PF follows after the
2303 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2304 * RVU_PF_VF_BAR4_ADDR register.
2305 */
2306 if (type == TYPE_AFVF) {
2307 for (region = 0; region < num; region++) {
2308 if (!test_bit(region, pf_bmap))
2309 continue;
2310
2311 if (hw->cap.per_pf_mbox_regs) {
2312 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2313 RVU_AF_PFX_BAR4_ADDR(0)) +
2314 MBOX_SIZE;
2315 bar4 += region * MBOX_SIZE;
2316 } else {
2317 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2318 bar4 += region * MBOX_SIZE;
2319 }
2320 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2321 if (!mbox_addr[region])
2322 goto error;
2323 }
2324 return 0;
2325 }
2326
2327 /* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2328 * PF registers. Whereas for Octeontx2 it is read from
2329 * RVU_AF_PF_BAR4_ADDR register.
2330 */
2331 for (region = 0; region < num; region++) {
2332 if (!test_bit(region, pf_bmap))
2333 continue;
2334
2335 if (hw->cap.per_pf_mbox_regs) {
2336 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2337 RVU_AF_PFX_BAR4_ADDR(region));
2338 } else {
2339 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2340 RVU_AF_PF_BAR4_ADDR);
2341 bar4 += region * MBOX_SIZE;
2342 }
2343 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2344 if (!mbox_addr[region])
2345 goto error;
2346 }
2347 return 0;
2348
2349 error:
2350 while (region--)
2351 iounmap((void __iomem *)mbox_addr[region]);
2352 return -ENOMEM;
2353 }
2354
2355 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2356 int type, int num,
2357 void (mbox_handler)(struct work_struct *),
2358 void (mbox_up_handler)(struct work_struct *))
2359 {
2360 int err = -EINVAL, i, dir, dir_up;
2361 void __iomem *reg_base;
2362 struct rvu_work *mwork;
2363 unsigned long *pf_bmap;
2364 void **mbox_regions;
2365 const char *name;
2366 u64 cfg;
2367
2368 pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2369 if (!pf_bmap)
2370 return -ENOMEM;
2371
2372 /* RVU VFs */
2373 if (type == TYPE_AFVF)
2374 bitmap_set(pf_bmap, 0, num);
2375
2376 if (type == TYPE_AFPF) {
2377 /* Mark enabled PFs in bitmap */
2378 for (i = 0; i < num; i++) {
2379 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2380 if (cfg & BIT_ULL(20))
2381 set_bit(i, pf_bmap);
2382 }
2383 }
2384
2385 mutex_init(&rvu->mbox_lock);
2386
2387 mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2388 if (!mbox_regions) {
2389 err = -ENOMEM;
2390 goto free_bitmap;
2391 }
2392
2393 switch (type) {
2394 case TYPE_AFPF:
2395 name = "rvu_afpf_mailbox";
2396 dir = MBOX_DIR_AFPF;
2397 dir_up = MBOX_DIR_AFPF_UP;
2398 reg_base = rvu->afreg_base;
2399 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2400 if (err)
2401 goto free_regions;
2402 break;
2403 case TYPE_AFVF:
2404 name = "rvu_afvf_mailbox";
2405 dir = MBOX_DIR_PFVF;
2406 dir_up = MBOX_DIR_PFVF_UP;
2407 reg_base = rvu->pfreg_base;
2408 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2409 if (err)
2410 goto free_regions;
2411 break;
2412 default:
2413 goto free_regions;
2414 }
2415
2416 mw->mbox_wq = alloc_workqueue(name,
2417 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2418 num);
2419 if (!mw->mbox_wq) {
2420 err = -ENOMEM;
2421 goto unmap_regions;
2422 }
2423
2424 mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2425 sizeof(struct rvu_work), GFP_KERNEL);
2426 if (!mw->mbox_wrk) {
2427 err = -ENOMEM;
2428 goto exit;
2429 }
2430
2431 mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2432 sizeof(struct rvu_work), GFP_KERNEL);
2433 if (!mw->mbox_wrk_up) {
2434 err = -ENOMEM;
2435 goto exit;
2436 }
2437
2438 err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2439 reg_base, dir, num, pf_bmap);
2440 if (err)
2441 goto exit;
2442
2443 err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2444 reg_base, dir_up, num, pf_bmap);
2445 if (err)
2446 goto exit;
2447
2448 for (i = 0; i < num; i++) {
2449 if (!test_bit(i, pf_bmap))
2450 continue;
2451
2452 mwork = &mw->mbox_wrk[i];
2453 mwork->rvu = rvu;
2454 INIT_WORK(&mwork->work, mbox_handler);
2455
2456 mwork = &mw->mbox_wrk_up[i];
2457 mwork->rvu = rvu;
2458 INIT_WORK(&mwork->work, mbox_up_handler);
2459 }
2460 goto free_regions;
2461
2462 exit:
2463 destroy_workqueue(mw->mbox_wq);
2464 unmap_regions:
2465 while (num--)
2466 iounmap((void __iomem *)mbox_regions[num]);
2467 free_regions:
2468 kfree(mbox_regions);
2469 free_bitmap:
2470 bitmap_free(pf_bmap);
2471 return err;
2472 }
2473
2474 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2475 {
2476 struct otx2_mbox *mbox = &mw->mbox;
2477 struct otx2_mbox_dev *mdev;
2478 int devid;
2479
2480 if (mw->mbox_wq) {
2481 destroy_workqueue(mw->mbox_wq);
2482 mw->mbox_wq = NULL;
2483 }
2484
2485 for (devid = 0; devid < mbox->ndevs; devid++) {
2486 mdev = &mbox->dev[devid];
2487 if (mdev->hwbase)
2488 iounmap((void __iomem *)mdev->hwbase);
2489 }
2490
2491 otx2_mbox_destroy(&mw->mbox);
2492 otx2_mbox_destroy(&mw->mbox_up);
2493 }
2494
2495 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2496 int mdevs, u64 intr)
2497 {
2498 struct otx2_mbox_dev *mdev;
2499 struct otx2_mbox *mbox;
2500 struct mbox_hdr *hdr;
2501 int i;
2502
2503 for (i = first; i < mdevs; i++) {
2504 /* start from 0 */
2505 if (!(intr & BIT_ULL(i - first)))
2506 continue;
2507
2508 mbox = &mw->mbox;
2509 mdev = &mbox->dev[i];
2510 hdr = mdev->mbase + mbox->rx_start;
2511
2512 /*The hdr->num_msgs is set to zero immediately in the interrupt
2513 * handler to ensure that it holds a correct value next time
2514 * when the interrupt handler is called.
2515 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2516 * pf>mbox.up_num_msgs holds the data for use in
2517 * pfaf_mbox_up_handler.
2518 */
2519
2520 if (hdr->num_msgs) {
2521 mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2522 hdr->num_msgs = 0;
2523 queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2524 }
2525 mbox = &mw->mbox_up;
2526 mdev = &mbox->dev[i];
2527 hdr = mdev->mbase + mbox->rx_start;
2528 if (hdr->num_msgs) {
2529 mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2530 hdr->num_msgs = 0;
2531 queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2532 }
2533 }
2534 }
2535
2536 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2537 {
2538 struct rvu *rvu = (struct rvu *)rvu_irq;
2539 int vfs = rvu->vfs;
2540 u64 intr;
2541
2542 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2543 /* Clear interrupts */
2544 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2545 if (intr)
2546 trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2547
2548 /* Sync with mbox memory region */
2549 rmb();
2550
2551 rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2552
2553 /* Handle VF interrupts */
2554 if (vfs > 64) {
2555 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2556 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2557
2558 rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2559 vfs -= 64;
2560 }
2561
2562 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2563 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2564 if (intr)
2565 trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2566
2567 rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2568
2569 return IRQ_HANDLED;
2570 }
2571
2572 static void rvu_enable_mbox_intr(struct rvu *rvu)
2573 {
2574 struct rvu_hwinfo *hw = rvu->hw;
2575
2576 /* Clear spurious irqs, if any */
2577 rvu_write64(rvu, BLKADDR_RVUM,
2578 RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2579
2580 /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2581 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2582 INTR_MASK(hw->total_pfs) & ~1ULL);
2583 }
2584
2585 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2586 {
2587 struct rvu_block *block;
2588 int slot, lf, num_lfs;
2589 int err;
2590
2591 block = &rvu->hw->block[blkaddr];
2592 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2593 block->addr);
2594 if (!num_lfs)
2595 return;
2596 for (slot = 0; slot < num_lfs; slot++) {
2597 lf = rvu_get_lf(rvu, block, pcifunc, slot);
2598 if (lf < 0)
2599 continue;
2600
2601 /* Cleanup LF and reset it */
2602 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2603 rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2604 else if (block->addr == BLKADDR_NPA)
2605 rvu_npa_lf_teardown(rvu, pcifunc, lf);
2606 else if ((block->addr == BLKADDR_CPT0) ||
2607 (block->addr == BLKADDR_CPT1))
2608 rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2609 slot);
2610
2611 err = rvu_lf_reset(rvu, block, lf);
2612 if (err) {
2613 dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2614 block->addr, lf);
2615 }
2616 }
2617 }
2618
2619 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2620 {
2621 if (rvu_npc_exact_has_match_table(rvu))
2622 rvu_npc_exact_reset(rvu, pcifunc);
2623
2624 mutex_lock(&rvu->flr_lock);
2625 /* Reset order should reflect inter-block dependencies:
2626 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2627 * 2. Flush and reset SSO/SSOW
2628 * 3. Cleanup pools (NPA)
2629 */
2630
2631 /* Free allocated BPIDs */
2632 rvu_nix_flr_free_bpids(rvu, pcifunc);
2633
2634 /* Free multicast/mirror node associated with the 'pcifunc' */
2635 rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2636
2637 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2638 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2639 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2640 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2641 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2642 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2643 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2644 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2645 rvu_reset_lmt_map_tbl(rvu, pcifunc);
2646 rvu_detach_rsrcs(rvu, NULL, pcifunc);
2647 /* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2648 * entries, check and free the MCAM entries explicitly to avoid leak.
2649 * Since LF is detached use LF number as -1.
2650 */
2651 rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2652 rvu_mac_reset(rvu, pcifunc);
2653
2654 if (rvu->mcs_blk_cnt)
2655 rvu_mcs_flr_handler(rvu, pcifunc);
2656
2657 mutex_unlock(&rvu->flr_lock);
2658 }
2659
2660 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2661 {
2662 int reg = 0;
2663
2664 /* pcifunc = 0(PF0) | (vf + 1) */
2665 __rvu_flr_handler(rvu, vf + 1);
2666
2667 if (vf >= 64) {
2668 reg = 1;
2669 vf = vf - 64;
2670 }
2671
2672 /* Signal FLR finish and enable IRQ */
2673 rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2674 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2675 }
2676
2677 static void rvu_flr_handler(struct work_struct *work)
2678 {
2679 struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2680 struct rvu *rvu = flrwork->rvu;
2681 u16 pcifunc, numvfs, vf;
2682 u64 cfg;
2683 int pf;
2684
2685 pf = flrwork - rvu->flr_wrk;
2686 if (pf >= rvu->hw->total_pfs) {
2687 rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2688 return;
2689 }
2690
2691 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2692 numvfs = (cfg >> 12) & 0xFF;
2693 pcifunc = pf << RVU_PFVF_PF_SHIFT;
2694
2695 for (vf = 0; vf < numvfs; vf++)
2696 __rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2697
2698 __rvu_flr_handler(rvu, pcifunc);
2699
2700 /* Signal FLR finish */
2701 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2702
2703 /* Enable interrupt */
2704 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, BIT_ULL(pf));
2705 }
2706
2707 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2708 {
2709 int dev, vf, reg = 0;
2710 u64 intr;
2711
2712 if (start_vf >= 64)
2713 reg = 1;
2714
2715 intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2716 if (!intr)
2717 return;
2718
2719 for (vf = 0; vf < numvfs; vf++) {
2720 if (!(intr & BIT_ULL(vf)))
2721 continue;
2722 /* Clear and disable the interrupt */
2723 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2724 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2725
2726 dev = vf + start_vf + rvu->hw->total_pfs;
2727 queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2728 }
2729 }
2730
2731 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2732 {
2733 struct rvu *rvu = (struct rvu *)rvu_irq;
2734 u64 intr;
2735 u8 pf;
2736
2737 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2738 if (!intr)
2739 goto afvf_flr;
2740
2741 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2742 if (intr & (1ULL << pf)) {
2743 /* clear interrupt */
2744 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2745 BIT_ULL(pf));
2746 /* Disable the interrupt */
2747 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2748 BIT_ULL(pf));
2749 /* PF is already dead do only AF related operations */
2750 queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2751 }
2752 }
2753
2754 afvf_flr:
2755 rvu_afvf_queue_flr_work(rvu, 0, 64);
2756 if (rvu->vfs > 64)
2757 rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2758
2759 return IRQ_HANDLED;
2760 }
2761
2762 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2763 {
2764 int vf;
2765
2766 /* Nothing to be done here other than clearing the
2767 * TRPEND bit.
2768 */
2769 for (vf = 0; vf < 64; vf++) {
2770 if (intr & (1ULL << vf)) {
2771 /* clear the trpend due to ME(master enable) */
2772 rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2773 /* clear interrupt */
2774 rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2775 }
2776 }
2777 }
2778
2779 /* Handles ME interrupts from VFs of AF */
2780 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2781 {
2782 struct rvu *rvu = (struct rvu *)rvu_irq;
2783 int vfset;
2784 u64 intr;
2785
2786 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2787
2788 for (vfset = 0; vfset <= 1; vfset++) {
2789 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2790 if (intr)
2791 rvu_me_handle_vfset(rvu, vfset, intr);
2792 }
2793
2794 return IRQ_HANDLED;
2795 }
2796
2797 /* Handles ME interrupts from PFs */
2798 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2799 {
2800 struct rvu *rvu = (struct rvu *)rvu_irq;
2801 u64 intr;
2802 u8 pf;
2803
2804 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2805
2806 /* Nothing to be done here other than clearing the
2807 * TRPEND bit.
2808 */
2809 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2810 if (intr & (1ULL << pf)) {
2811 /* clear the trpend due to ME(master enable) */
2812 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2813 BIT_ULL(pf));
2814 /* clear interrupt */
2815 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2816 BIT_ULL(pf));
2817 }
2818 }
2819
2820 return IRQ_HANDLED;
2821 }
2822
2823 static void rvu_unregister_interrupts(struct rvu *rvu)
2824 {
2825 int irq;
2826
2827 rvu_cpt_unregister_interrupts(rvu);
2828
2829 /* Disable the Mbox interrupt */
2830 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2831 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2832
2833 /* Disable the PF FLR interrupt */
2834 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2835 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2836
2837 /* Disable the PF ME interrupt */
2838 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2839 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2840
2841 for (irq = 0; irq < rvu->num_vec; irq++) {
2842 if (rvu->irq_allocated[irq]) {
2843 free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2844 rvu->irq_allocated[irq] = false;
2845 }
2846 }
2847
2848 pci_free_irq_vectors(rvu->pdev);
2849 rvu->num_vec = 0;
2850 }
2851
2852 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2853 {
2854 struct rvu_pfvf *pfvf = &rvu->pf[0];
2855 int offset;
2856
2857 pfvf = &rvu->pf[0];
2858 offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2859
2860 /* Make sure there are enough MSIX vectors configured so that
2861 * VF interrupts can be handled. Offset equal to zero means
2862 * that PF vectors are not configured and overlapping AF vectors.
2863 */
2864 return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2865 offset;
2866 }
2867
2868 static int rvu_register_interrupts(struct rvu *rvu)
2869 {
2870 int ret, offset, pf_vec_start;
2871
2872 rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2873
2874 rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2875 NAME_SIZE, GFP_KERNEL);
2876 if (!rvu->irq_name)
2877 return -ENOMEM;
2878
2879 rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2880 sizeof(bool), GFP_KERNEL);
2881 if (!rvu->irq_allocated)
2882 return -ENOMEM;
2883
2884 /* Enable MSI-X */
2885 ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2886 rvu->num_vec, PCI_IRQ_MSIX);
2887 if (ret < 0) {
2888 dev_err(rvu->dev,
2889 "RVUAF: Request for %d msix vectors failed, ret %d\n",
2890 rvu->num_vec, ret);
2891 return ret;
2892 }
2893
2894 /* Register mailbox interrupt handler */
2895 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2896 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2897 rvu_mbox_intr_handler, 0,
2898 &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2899 if (ret) {
2900 dev_err(rvu->dev,
2901 "RVUAF: IRQ registration failed for mbox irq\n");
2902 goto fail;
2903 }
2904
2905 rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2906
2907 /* Enable mailbox interrupts from all PFs */
2908 rvu_enable_mbox_intr(rvu);
2909
2910 /* Register FLR interrupt handler */
2911 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2912 "RVUAF FLR");
2913 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2914 rvu_flr_intr_handler, 0,
2915 &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2916 rvu);
2917 if (ret) {
2918 dev_err(rvu->dev,
2919 "RVUAF: IRQ registration failed for FLR\n");
2920 goto fail;
2921 }
2922 rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2923
2924 /* Enable FLR interrupt for all PFs*/
2925 rvu_write64(rvu, BLKADDR_RVUM,
2926 RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2927
2928 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2929 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2930
2931 /* Register ME interrupt handler */
2932 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2933 "RVUAF ME");
2934 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2935 rvu_me_pf_intr_handler, 0,
2936 &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2937 rvu);
2938 if (ret) {
2939 dev_err(rvu->dev,
2940 "RVUAF: IRQ registration failed for ME\n");
2941 }
2942 rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2943
2944 /* Clear TRPEND bit for all PF */
2945 rvu_write64(rvu, BLKADDR_RVUM,
2946 RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2947 /* Enable ME interrupt for all PFs*/
2948 rvu_write64(rvu, BLKADDR_RVUM,
2949 RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2950
2951 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2952 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2953
2954 if (!rvu_afvf_msix_vectors_num_ok(rvu))
2955 return 0;
2956
2957 /* Get PF MSIX vectors offset. */
2958 pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2959 RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2960
2961 /* Register MBOX0 interrupt. */
2962 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2963 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2964 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2965 rvu_mbox_intr_handler, 0,
2966 &rvu->irq_name[offset * NAME_SIZE],
2967 rvu);
2968 if (ret)
2969 dev_err(rvu->dev,
2970 "RVUAF: IRQ registration failed for Mbox0\n");
2971
2972 rvu->irq_allocated[offset] = true;
2973
2974 /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2975 * simply increment current offset by 1.
2976 */
2977 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2978 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2979 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2980 rvu_mbox_intr_handler, 0,
2981 &rvu->irq_name[offset * NAME_SIZE],
2982 rvu);
2983 if (ret)
2984 dev_err(rvu->dev,
2985 "RVUAF: IRQ registration failed for Mbox1\n");
2986
2987 rvu->irq_allocated[offset] = true;
2988
2989 /* Register FLR interrupt handler for AF's VFs */
2990 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2991 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2992 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2993 rvu_flr_intr_handler, 0,
2994 &rvu->irq_name[offset * NAME_SIZE], rvu);
2995 if (ret) {
2996 dev_err(rvu->dev,
2997 "RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2998 goto fail;
2999 }
3000 rvu->irq_allocated[offset] = true;
3001
3002 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3003 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3004 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3005 rvu_flr_intr_handler, 0,
3006 &rvu->irq_name[offset * NAME_SIZE], rvu);
3007 if (ret) {
3008 dev_err(rvu->dev,
3009 "RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3010 goto fail;
3011 }
3012 rvu->irq_allocated[offset] = true;
3013
3014 /* Register ME interrupt handler for AF's VFs */
3015 offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3016 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3017 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3018 rvu_me_vf_intr_handler, 0,
3019 &rvu->irq_name[offset * NAME_SIZE], rvu);
3020 if (ret) {
3021 dev_err(rvu->dev,
3022 "RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3023 goto fail;
3024 }
3025 rvu->irq_allocated[offset] = true;
3026
3027 offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3028 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3029 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3030 rvu_me_vf_intr_handler, 0,
3031 &rvu->irq_name[offset * NAME_SIZE], rvu);
3032 if (ret) {
3033 dev_err(rvu->dev,
3034 "RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3035 goto fail;
3036 }
3037 rvu->irq_allocated[offset] = true;
3038
3039 ret = rvu_cpt_register_interrupts(rvu);
3040 if (ret)
3041 goto fail;
3042
3043 return 0;
3044
3045 fail:
3046 rvu_unregister_interrupts(rvu);
3047 return ret;
3048 }
3049
3050 static void rvu_flr_wq_destroy(struct rvu *rvu)
3051 {
3052 if (rvu->flr_wq) {
3053 destroy_workqueue(rvu->flr_wq);
3054 rvu->flr_wq = NULL;
3055 }
3056 }
3057
3058 static int rvu_flr_init(struct rvu *rvu)
3059 {
3060 int dev, num_devs;
3061 u64 cfg;
3062 int pf;
3063
3064 /* Enable FLR for all PFs*/
3065 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3066 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3067 rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3068 cfg | BIT_ULL(22));
3069 }
3070
3071 rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3072 WQ_HIGHPRI | WQ_MEM_RECLAIM);
3073 if (!rvu->flr_wq)
3074 return -ENOMEM;
3075
3076 num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3077 rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3078 sizeof(struct rvu_work), GFP_KERNEL);
3079 if (!rvu->flr_wrk) {
3080 destroy_workqueue(rvu->flr_wq);
3081 return -ENOMEM;
3082 }
3083
3084 for (dev = 0; dev < num_devs; dev++) {
3085 rvu->flr_wrk[dev].rvu = rvu;
3086 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3087 }
3088
3089 mutex_init(&rvu->flr_lock);
3090
3091 return 0;
3092 }
3093
3094 static void rvu_disable_afvf_intr(struct rvu *rvu)
3095 {
3096 int vfs = rvu->vfs;
3097
3098 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3099 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3100 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3101 if (vfs <= 64)
3102 return;
3103
3104 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3105 INTR_MASK(vfs - 64));
3106 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3107 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3108 }
3109
3110 static void rvu_enable_afvf_intr(struct rvu *rvu)
3111 {
3112 int vfs = rvu->vfs;
3113
3114 /* Clear any pending interrupts and enable AF VF interrupts for
3115 * the first 64 VFs.
3116 */
3117 /* Mbox */
3118 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3119 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3120
3121 /* FLR */
3122 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3123 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3124 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3125
3126 /* Same for remaining VFs, if any. */
3127 if (vfs <= 64)
3128 return;
3129
3130 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3131 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3132 INTR_MASK(vfs - 64));
3133
3134 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3135 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3136 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3137 }
3138
3139 int rvu_get_num_lbk_chans(void)
3140 {
3141 struct pci_dev *pdev;
3142 void __iomem *base;
3143 int ret = -EIO;
3144
3145 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3146 NULL);
3147 if (!pdev)
3148 goto err;
3149
3150 base = pci_ioremap_bar(pdev, 0);
3151 if (!base)
3152 goto err_put;
3153
3154 /* Read number of available LBK channels from LBK(0)_CONST register. */
3155 ret = (readq(base + 0x10) >> 32) & 0xffff;
3156 iounmap(base);
3157 err_put:
3158 pci_dev_put(pdev);
3159 err:
3160 return ret;
3161 }
3162
3163 static int rvu_enable_sriov(struct rvu *rvu)
3164 {
3165 struct pci_dev *pdev = rvu->pdev;
3166 int err, chans, vfs;
3167 int pos = 0;
3168
3169 if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3170 dev_warn(&pdev->dev,
3171 "Skipping SRIOV enablement since not enough IRQs are available\n");
3172 return 0;
3173 }
3174
3175 /* Get RVU VFs device id */
3176 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3177 if (!pos)
3178 return 0;
3179 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &rvu->vf_devid);
3180
3181 chans = rvu_get_num_lbk_chans();
3182 if (chans < 0)
3183 return chans;
3184
3185 vfs = pci_sriov_get_totalvfs(pdev);
3186
3187 /* Limit VFs in case we have more VFs than LBK channels available. */
3188 if (vfs > chans)
3189 vfs = chans;
3190
3191 if (!vfs)
3192 return 0;
3193
3194 /* LBK channel number 63 is used for switching packets between
3195 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3196 */
3197 if (vfs > 62)
3198 vfs = 62;
3199
3200 /* Save VFs number for reference in VF interrupts handlers.
3201 * Since interrupts might start arriving during SRIOV enablement
3202 * ordinary API cannot be used to get number of enabled VFs.
3203 */
3204 rvu->vfs = vfs;
3205
3206 err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3207 rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3208 if (err)
3209 return err;
3210
3211 rvu_enable_afvf_intr(rvu);
3212 /* Make sure IRQs are enabled before SRIOV. */
3213 mb();
3214
3215 err = pci_enable_sriov(pdev, vfs);
3216 if (err) {
3217 rvu_disable_afvf_intr(rvu);
3218 rvu_mbox_destroy(&rvu->afvf_wq_info);
3219 return err;
3220 }
3221
3222 return 0;
3223 }
3224
3225 static void rvu_disable_sriov(struct rvu *rvu)
3226 {
3227 rvu_disable_afvf_intr(rvu);
3228 rvu_mbox_destroy(&rvu->afvf_wq_info);
3229 pci_disable_sriov(rvu->pdev);
3230 }
3231
3232 static void rvu_update_module_params(struct rvu *rvu)
3233 {
3234 const char *default_pfl_name = "default";
3235
3236 strscpy(rvu->mkex_pfl_name,
3237 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3238 strscpy(rvu->kpu_pfl_name,
3239 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3240 }
3241
3242 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3243 {
3244 struct device *dev = &pdev->dev;
3245 struct rvu *rvu;
3246 int err;
3247
3248 rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3249 if (!rvu)
3250 return -ENOMEM;
3251
3252 rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3253 if (!rvu->hw) {
3254 devm_kfree(dev, rvu);
3255 return -ENOMEM;
3256 }
3257
3258 pci_set_drvdata(pdev, rvu);
3259 rvu->pdev = pdev;
3260 rvu->dev = &pdev->dev;
3261
3262 err = pci_enable_device(pdev);
3263 if (err) {
3264 dev_err(dev, "Failed to enable PCI device\n");
3265 goto err_freemem;
3266 }
3267
3268 err = pci_request_regions(pdev, DRV_NAME);
3269 if (err) {
3270 dev_err(dev, "PCI request regions failed 0x%x\n", err);
3271 goto err_disable_device;
3272 }
3273
3274 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3275 if (err) {
3276 dev_err(dev, "DMA mask config failed, abort\n");
3277 goto err_release_regions;
3278 }
3279
3280 pci_set_master(pdev);
3281
3282 rvu->ptp = ptp_get();
3283 if (IS_ERR(rvu->ptp)) {
3284 err = PTR_ERR(rvu->ptp);
3285 if (err)
3286 goto err_release_regions;
3287 rvu->ptp = NULL;
3288 }
3289
3290 /* Map Admin function CSRs */
3291 rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3292 rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3293 if (!rvu->afreg_base || !rvu->pfreg_base) {
3294 dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3295 err = -ENOMEM;
3296 goto err_put_ptp;
3297 }
3298
3299 /* Store module params in rvu structure */
3300 rvu_update_module_params(rvu);
3301
3302 /* Check which blocks the HW supports */
3303 rvu_check_block_implemented(rvu);
3304
3305 rvu_reset_all_blocks(rvu);
3306
3307 rvu_setup_hw_capabilities(rvu);
3308
3309 err = rvu_setup_hw_resources(rvu);
3310 if (err)
3311 goto err_put_ptp;
3312
3313 /* Init mailbox btw AF and PFs */
3314 err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3315 rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3316 rvu_afpf_mbox_up_handler);
3317 if (err) {
3318 dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3319 goto err_hwsetup;
3320 }
3321
3322 err = rvu_flr_init(rvu);
3323 if (err) {
3324 dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3325 goto err_mbox;
3326 }
3327
3328 err = rvu_register_interrupts(rvu);
3329 if (err) {
3330 dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3331 goto err_flr;
3332 }
3333
3334 err = rvu_register_dl(rvu);
3335 if (err) {
3336 dev_err(dev, "%s: Failed to register devlink\n", __func__);
3337 goto err_irq;
3338 }
3339
3340 rvu_setup_rvum_blk_revid(rvu);
3341
3342 /* Enable AF's VFs (if any) */
3343 err = rvu_enable_sriov(rvu);
3344 if (err) {
3345 dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3346 goto err_dl;
3347 }
3348
3349 /* Initialize debugfs */
3350 rvu_dbg_init(rvu);
3351
3352 mutex_init(&rvu->rswitch.switch_lock);
3353
3354 if (rvu->fwdata)
3355 ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3356 rvu->fwdata->ptp_ext_tstamp);
3357
3358 return 0;
3359 err_dl:
3360 rvu_unregister_dl(rvu);
3361 err_irq:
3362 rvu_unregister_interrupts(rvu);
3363 err_flr:
3364 rvu_flr_wq_destroy(rvu);
3365 err_mbox:
3366 rvu_mbox_destroy(&rvu->afpf_wq_info);
3367 err_hwsetup:
3368 rvu_cgx_exit(rvu);
3369 rvu_fwdata_exit(rvu);
3370 rvu_mcs_exit(rvu);
3371 rvu_reset_all_blocks(rvu);
3372 rvu_free_hw_resources(rvu);
3373 rvu_clear_rvum_blk_revid(rvu);
3374 err_put_ptp:
3375 ptp_put(rvu->ptp);
3376 err_release_regions:
3377 pci_release_regions(pdev);
3378 err_disable_device:
3379 pci_disable_device(pdev);
3380 err_freemem:
3381 pci_set_drvdata(pdev, NULL);
3382 devm_kfree(&pdev->dev, rvu->hw);
3383 devm_kfree(dev, rvu);
3384 return err;
3385 }
3386
3387 static void rvu_remove(struct pci_dev *pdev)
3388 {
3389 struct rvu *rvu = pci_get_drvdata(pdev);
3390
3391 rvu_dbg_exit(rvu);
3392 rvu_unregister_dl(rvu);
3393 rvu_unregister_interrupts(rvu);
3394 rvu_flr_wq_destroy(rvu);
3395 rvu_cgx_exit(rvu);
3396 rvu_fwdata_exit(rvu);
3397 rvu_mcs_exit(rvu);
3398 rvu_mbox_destroy(&rvu->afpf_wq_info);
3399 rvu_disable_sriov(rvu);
3400 rvu_reset_all_blocks(rvu);
3401 rvu_free_hw_resources(rvu);
3402 rvu_clear_rvum_blk_revid(rvu);
3403 ptp_put(rvu->ptp);
3404 pci_release_regions(pdev);
3405 pci_disable_device(pdev);
3406 pci_set_drvdata(pdev, NULL);
3407
3408 devm_kfree(&pdev->dev, rvu->hw);
3409 devm_kfree(&pdev->dev, rvu);
3410 }
3411
3412 static struct pci_driver rvu_driver = {
3413 .name = DRV_NAME,
3414 .id_table = rvu_id_table,
3415 .probe = rvu_probe,
3416 .remove = rvu_remove,
3417 };
3418
3419 static int __init rvu_init_module(void)
3420 {
3421 int err;
3422
3423 pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3424
3425 err = pci_register_driver(&cgx_driver);
3426 if (err < 0)
3427 return err;
3428
3429 err = pci_register_driver(&ptp_driver);
3430 if (err < 0)
3431 goto ptp_err;
3432
3433 err = pci_register_driver(&mcs_driver);
3434 if (err < 0)
3435 goto mcs_err;
3436
3437 err = pci_register_driver(&rvu_driver);
3438 if (err < 0)
3439 goto rvu_err;
3440
3441 return 0;
3442 rvu_err:
3443 pci_unregister_driver(&mcs_driver);
3444 mcs_err:
3445 pci_unregister_driver(&ptp_driver);
3446 ptp_err:
3447 pci_unregister_driver(&cgx_driver);
3448
3449 return err;
3450 }
3451
3452 static void __exit rvu_cleanup_module(void)
3453 {
3454 pci_unregister_driver(&rvu_driver);
3455 pci_unregister_driver(&mcs_driver);
3456 pci_unregister_driver(&ptp_driver);
3457 pci_unregister_driver(&cgx_driver);
3458 }
3459
3460 module_init(rvu_init_module);
3461 module_exit(rvu_cleanup_module);