]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/marvell/octeontx2/af/rvu.c
KVM: Harden copying of userspace-array against overflow
[thirdparty/kernel/stable.git] / drivers / net / ethernet / marvell / octeontx2 / af / rvu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3 *
4 * Copyright (C) 2018 Marvell.
5 *
6 */
7
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23
24 #define DRV_NAME "rvu_af"
25 #define DRV_STRING "Marvell OcteonTX2 RVU Admin Function Driver"
26
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 int type, int num,
35 void (mbox_handler)(struct work_struct *),
36 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 TYPE_AFVF,
39 TYPE_AFPF,
40 };
41
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 { 0, } /* end of table */
46 };
47
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 struct rvu_hwinfo *hw = rvu->hw;
64
65 hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 hw->cap.nix_fixed_txschq_mapping = false;
67 hw->cap.nix_shaping = true;
68 hw->cap.nix_tx_link_bp = true;
69 hw->cap.nix_rx_multicast = true;
70 hw->cap.nix_shaper_toggle_wait = false;
71 hw->cap.npc_hash_extract = false;
72 hw->cap.npc_exact_match_enabled = false;
73 hw->rvu = rvu;
74
75 if (is_rvu_pre_96xx_C0(rvu)) {
76 hw->cap.nix_fixed_txschq_mapping = true;
77 hw->cap.nix_txsch_per_cgx_lmac = 4;
78 hw->cap.nix_txsch_per_lbk_lmac = 132;
79 hw->cap.nix_txsch_per_sdp_lmac = 76;
80 hw->cap.nix_shaping = false;
81 hw->cap.nix_tx_link_bp = false;
82 if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 hw->cap.nix_rx_multicast = false;
84 }
85 if (!is_rvu_pre_96xx_C0(rvu))
86 hw->cap.nix_shaper_toggle_wait = true;
87
88 if (!is_rvu_otx2(rvu))
89 hw->cap.per_pf_mbox_regs = true;
90
91 if (is_rvu_npc_hash_extract_en(rvu))
92 hw->cap.npc_hash_extract = true;
93 }
94
95 /* Poll a RVU block's register 'offset', for a 'zero'
96 * or 'nonzero' at bits specified by 'mask'
97 */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 bool twice = false;
102 void __iomem *reg;
103 u64 reg_val;
104
105 reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 reg_val = readq(reg);
108 if (zero && !(reg_val & mask))
109 return 0;
110 if (!zero && (reg_val & mask))
111 return 0;
112 if (time_before(jiffies, timeout)) {
113 usleep_range(1, 5);
114 goto again;
115 }
116 /* In scenarios where CPU is scheduled out before checking
117 * 'time_before' (above) and gets scheduled in such that
118 * jiffies are beyond timeout value, then check again if HW is
119 * done with the operation in the meantime.
120 */
121 if (!twice) {
122 twice = true;
123 goto again;
124 }
125 return -EBUSY;
126 }
127
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 int id;
131
132 if (!rsrc->bmap)
133 return -EINVAL;
134
135 id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 if (id >= rsrc->max)
137 return -ENOSPC;
138
139 __set_bit(id, rsrc->bmap);
140
141 return id;
142 }
143
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 int start;
147
148 if (!rsrc->bmap)
149 return -EINVAL;
150
151 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 if (start >= rsrc->max)
153 return -ENOSPC;
154
155 bitmap_set(rsrc->bmap, start, nrsrc);
156 return start;
157 }
158
159 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 if (!rsrc->bmap)
162 return;
163 if (start >= rsrc->max)
164 return;
165
166 bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 int start;
172
173 if (!rsrc->bmap)
174 return false;
175
176 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 if (start >= rsrc->max)
178 return false;
179
180 return true;
181 }
182
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 if (!rsrc->bmap)
186 return;
187
188 __clear_bit(id, rsrc->bmap);
189 }
190
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 int used;
194
195 if (!rsrc->bmap)
196 return 0;
197
198 used = bitmap_weight(rsrc->bmap, rsrc->max);
199 return (rsrc->max - used);
200 }
201
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 if (!rsrc->bmap)
205 return false;
206
207 return !test_bit(id, rsrc->bmap);
208 }
209
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 sizeof(long), GFP_KERNEL);
214 if (!rsrc->bmap)
215 return -ENOMEM;
216 return 0;
217 }
218
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 kfree(rsrc->bmap);
222 }
223
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 u16 match = 0;
228 int lf;
229
230 mutex_lock(&rvu->rsrc_lock);
231 for (lf = 0; lf < block->lf.max; lf++) {
232 if (block->fn_map[lf] == pcifunc) {
233 if (slot == match) {
234 mutex_unlock(&rvu->rsrc_lock);
235 return lf;
236 }
237 match++;
238 }
239 }
240 mutex_unlock(&rvu->rsrc_lock);
241 return -ENODEV;
242 }
243
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245 * Some silicon variants of OcteonTX2 supports
246 * multiple blocks of same type.
247 *
248 * @pcifunc has to be zero when no LF is yet attached.
249 *
250 * For a pcifunc if LFs are attached from multiple blocks of same type, then
251 * return blkaddr of first encountered block.
252 */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 int devnum, blkaddr = -ENODEV;
256 u64 cfg, reg;
257 bool is_pf;
258
259 switch (blktype) {
260 case BLKTYPE_NPC:
261 blkaddr = BLKADDR_NPC;
262 goto exit;
263 case BLKTYPE_NPA:
264 blkaddr = BLKADDR_NPA;
265 goto exit;
266 case BLKTYPE_NIX:
267 /* For now assume NIX0 */
268 if (!pcifunc) {
269 blkaddr = BLKADDR_NIX0;
270 goto exit;
271 }
272 break;
273 case BLKTYPE_SSO:
274 blkaddr = BLKADDR_SSO;
275 goto exit;
276 case BLKTYPE_SSOW:
277 blkaddr = BLKADDR_SSOW;
278 goto exit;
279 case BLKTYPE_TIM:
280 blkaddr = BLKADDR_TIM;
281 goto exit;
282 case BLKTYPE_CPT:
283 /* For now assume CPT0 */
284 if (!pcifunc) {
285 blkaddr = BLKADDR_CPT0;
286 goto exit;
287 }
288 break;
289 }
290
291 /* Check if this is a RVU PF or VF */
292 if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 is_pf = false;
294 devnum = rvu_get_hwvf(rvu, pcifunc);
295 } else {
296 is_pf = true;
297 devnum = rvu_get_pf(pcifunc);
298 }
299
300 /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 * 'BLKADDR_NIX1'.
302 */
303 if (blktype == BLKTYPE_NIX) {
304 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 RVU_PRIV_HWVFX_NIXX_CFG(0);
306 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 if (cfg) {
308 blkaddr = BLKADDR_NIX0;
309 goto exit;
310 }
311
312 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 RVU_PRIV_HWVFX_NIXX_CFG(1);
314 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 if (cfg)
316 blkaddr = BLKADDR_NIX1;
317 }
318
319 if (blktype == BLKTYPE_CPT) {
320 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 RVU_PRIV_HWVFX_CPTX_CFG(0);
322 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 if (cfg) {
324 blkaddr = BLKADDR_CPT0;
325 goto exit;
326 }
327
328 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 RVU_PRIV_HWVFX_CPTX_CFG(1);
330 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 if (cfg)
332 blkaddr = BLKADDR_CPT1;
333 }
334
335 exit:
336 if (is_block_implemented(rvu->hw, blkaddr))
337 return blkaddr;
338 return -ENODEV;
339 }
340
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 struct rvu_block *block, u16 pcifunc,
343 u16 lf, bool attach)
344 {
345 int devnum, num_lfs = 0;
346 bool is_pf;
347 u64 reg;
348
349 if (lf >= block->lf.max) {
350 dev_err(&rvu->pdev->dev,
351 "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 __func__, lf, block->name, block->lf.max);
353 return;
354 }
355
356 /* Check if this is for a RVU PF or VF */
357 if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 is_pf = false;
359 devnum = rvu_get_hwvf(rvu, pcifunc);
360 } else {
361 is_pf = true;
362 devnum = rvu_get_pf(pcifunc);
363 }
364
365 block->fn_map[lf] = attach ? pcifunc : 0;
366
367 switch (block->addr) {
368 case BLKADDR_NPA:
369 pfvf->npalf = attach ? true : false;
370 num_lfs = pfvf->npalf;
371 break;
372 case BLKADDR_NIX0:
373 case BLKADDR_NIX1:
374 pfvf->nixlf = attach ? true : false;
375 num_lfs = pfvf->nixlf;
376 break;
377 case BLKADDR_SSO:
378 attach ? pfvf->sso++ : pfvf->sso--;
379 num_lfs = pfvf->sso;
380 break;
381 case BLKADDR_SSOW:
382 attach ? pfvf->ssow++ : pfvf->ssow--;
383 num_lfs = pfvf->ssow;
384 break;
385 case BLKADDR_TIM:
386 attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 num_lfs = pfvf->timlfs;
388 break;
389 case BLKADDR_CPT0:
390 attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 num_lfs = pfvf->cptlfs;
392 break;
393 case BLKADDR_CPT1:
394 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 num_lfs = pfvf->cpt1_lfs;
396 break;
397 }
398
399 reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 u64 cfg;
411
412 /* Get numVFs attached to this PF and first HWVF */
413 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 if (numvfs)
415 *numvfs = (cfg >> 12) & 0xFF;
416 if (hwvf)
417 *hwvf = cfg & 0xFFF;
418 }
419
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 int pf, func;
423 u64 cfg;
424
425 pf = rvu_get_pf(pcifunc);
426 func = pcifunc & RVU_PFVF_FUNC_MASK;
427
428 /* Get first HWVF attached to this PF */
429 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430
431 return ((cfg & 0xFFF) + func - 1);
432 }
433
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 /* Check if it is a PF or VF */
437 if (pcifunc & RVU_PFVF_FUNC_MASK)
438 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 else
440 return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 int pf, vf, nvfs;
446 u64 cfg;
447
448 pf = rvu_get_pf(pcifunc);
449 if (pf >= rvu->hw->total_pfs)
450 return false;
451
452 if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 return true;
454
455 /* Check if VF is within number of VFs attached to this PF */
456 vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 nvfs = (cfg >> 12) & 0xFF;
459 if (vf >= nvfs)
460 return false;
461
462 return true;
463 }
464
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 struct rvu_block *block;
468
469 if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 return false;
471
472 block = &hw->block[blkaddr];
473 return block->implemented;
474 }
475
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 struct rvu_hwinfo *hw = rvu->hw;
479 struct rvu_block *block;
480 int blkid;
481 u64 cfg;
482
483 /* For each block check if 'implemented' bit is set */
484 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 block = &hw->block[blkid];
486 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 if (cfg & BIT_ULL(11))
488 block->implemented = true;
489 }
490 }
491
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 rvu_write64(rvu, BLKADDR_RVUM,
495 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 RVU_BLK_RVUM_REVID);
497 }
498
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 rvu_write64(rvu, BLKADDR_RVUM,
502 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 int err;
508
509 if (!block->implemented)
510 return 0;
511
512 rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 true);
515 return err;
516 }
517
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 struct rvu_block *block = &rvu->hw->block[blkaddr];
521 int err;
522
523 if (!block->implemented)
524 return;
525
526 rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 if (err) {
529 dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 ;
532 }
533 }
534
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 /* Do a HW reset of all RVU blocks */
538 rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 struct rvu_pfvf *pfvf;
556 u64 cfg;
557 int lf;
558
559 for (lf = 0; lf < block->lf.max; lf++) {
560 cfg = rvu_read64(rvu, block->addr,
561 block->lfcfg_reg | (lf << block->lfshift));
562 if (!(cfg & BIT_ULL(63)))
563 continue;
564
565 /* Set this resource as being used */
566 __set_bit(lf, block->lf.bmap);
567
568 /* Get, to whom this LF is attached */
569 pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 rvu_update_rsrc_map(rvu, pfvf, block,
571 (cfg >> 8) & 0xFFFF, lf, true);
572
573 /* Set start MSIX vector for this LF within this PF/VF */
574 rvu_set_msix_offset(rvu, pfvf, block, lf);
575 }
576 }
577
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 int min_vecs;
581
582 if (!vf)
583 goto check_pf;
584
585 if (!nvecs) {
586 dev_warn(rvu->dev,
587 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 pf, vf - 1, nvecs);
589 }
590 return;
591
592 check_pf:
593 if (pf == 0)
594 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 else
596 min_vecs = RVU_PF_INT_VEC_CNT;
597
598 if (!(nvecs < min_vecs))
599 return;
600 dev_warn(rvu->dev,
601 "PF%d is configured with too few vectors, %d, min is %d\n",
602 pf, nvecs, min_vecs);
603 }
604
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 struct rvu_hwinfo *hw = rvu->hw;
608 int pf, vf, numvfs, hwvf, err;
609 int nvecs, offset, max_msix;
610 struct rvu_pfvf *pfvf;
611 u64 cfg, phy_addr;
612 dma_addr_t iova;
613
614 for (pf = 0; pf < hw->total_pfs; pf++) {
615 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 /* If PF is not enabled, nothing to do */
617 if (!((cfg >> 20) & 0x01))
618 continue;
619
620 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621
622 pfvf = &rvu->pf[pf];
623 /* Get num of MSIX vectors attached to this PF */
624 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627
628 /* Alloc msix bitmap for this PF */
629 err = rvu_alloc_bitmap(&pfvf->msix);
630 if (err)
631 return err;
632
633 /* Allocate memory for MSIX vector to RVU block LF mapping */
634 pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 sizeof(u16), GFP_KERNEL);
636 if (!pfvf->msix_lfmap)
637 return -ENOMEM;
638
639 /* For PF0 (AF) firmware will set msix vector offsets for
640 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 */
642 if (!pf)
643 goto setup_vfmsix;
644
645 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 * These are allocated on driver init and never freed,
647 * so no need to set 'msix_lfmap' for these.
648 */
649 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 nvecs = (cfg >> 12) & 0xFF;
651 cfg &= ~0x7FFULL;
652 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 rvu_write64(rvu, BLKADDR_RVUM,
654 RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 /* Alloc msix bitmap for VFs */
657 for (vf = 0; vf < numvfs; vf++) {
658 pfvf = &rvu->hwvf[hwvf + vf];
659 /* Get num of MSIX vectors attached to this VF */
660 cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 RVU_PRIV_PFX_MSIX_CFG(pf));
662 pfvf->msix.max = (cfg & 0xFFF) + 1;
663 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664
665 /* Alloc msix bitmap for this VF */
666 err = rvu_alloc_bitmap(&pfvf->msix);
667 if (err)
668 return err;
669
670 pfvf->msix_lfmap =
671 devm_kcalloc(rvu->dev, pfvf->msix.max,
672 sizeof(u16), GFP_KERNEL);
673 if (!pfvf->msix_lfmap)
674 return -ENOMEM;
675
676 /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 * These are allocated on driver init and never freed,
678 * so no need to set 'msix_lfmap' for these.
679 */
680 cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 nvecs = (cfg >> 12) & 0xFF;
683 cfg &= ~0x7FFULL;
684 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 rvu_write64(rvu, BLKADDR_RVUM,
686 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 cfg | offset);
688 }
689 }
690
691 /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 * create an IOMMU mapping for the physical address configured by
693 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 */
695 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 max_msix = cfg & 0xFFFFF;
697 if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 phy_addr = rvu->fwdata->msixtr_base;
699 else
700 phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701
702 iova = dma_map_resource(rvu->dev, phy_addr,
703 max_msix * PCI_MSIX_ENTRY_SIZE,
704 DMA_BIDIRECTIONAL, 0);
705
706 if (dma_mapping_error(rvu->dev, iova))
707 return -ENOMEM;
708
709 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 rvu->msix_base_iova = iova;
711 rvu->msixtr_base_phy = phy_addr;
712
713 return 0;
714 }
715
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 /* Restore msixtr base register */
719 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 rvu->msixtr_base_phy);
721 }
722
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 struct rvu_hwinfo *hw = rvu->hw;
726 struct rvu_block *block;
727 struct rvu_pfvf *pfvf;
728 int id, max_msix;
729 u64 cfg;
730
731 rvu_npa_freemem(rvu);
732 rvu_npc_freemem(rvu);
733 rvu_nix_freemem(rvu);
734
735 /* Free block LF bitmaps */
736 for (id = 0; id < BLK_COUNT; id++) {
737 block = &hw->block[id];
738 kfree(block->lf.bmap);
739 }
740
741 /* Free MSIX bitmaps */
742 for (id = 0; id < hw->total_pfs; id++) {
743 pfvf = &rvu->pf[id];
744 kfree(pfvf->msix.bmap);
745 }
746
747 for (id = 0; id < hw->total_vfs; id++) {
748 pfvf = &rvu->hwvf[id];
749 kfree(pfvf->msix.bmap);
750 }
751
752 /* Unmap MSIX vector base IOVA mapping */
753 if (!rvu->msix_base_iova)
754 return;
755 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 max_msix = cfg & 0xFFFFF;
757 dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 max_msix * PCI_MSIX_ENTRY_SIZE,
759 DMA_BIDIRECTIONAL, 0);
760
761 rvu_reset_msix(rvu);
762 mutex_destroy(&rvu->rsrc_lock);
763 }
764
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 struct rvu_hwinfo *hw = rvu->hw;
768 int pf, vf, numvfs, hwvf;
769 struct rvu_pfvf *pfvf;
770 u64 *mac;
771
772 for (pf = 0; pf < hw->total_pfs; pf++) {
773 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 if (!pf)
775 goto lbkvf;
776
777 if (!is_pf_cgxmapped(rvu, pf))
778 continue;
779 /* Assign MAC address to PF */
780 pfvf = &rvu->pf[pf];
781 if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 mac = &rvu->fwdata->pf_macs[pf];
783 if (*mac)
784 u64_to_ether_addr(*mac, pfvf->mac_addr);
785 else
786 eth_random_addr(pfvf->mac_addr);
787 } else {
788 eth_random_addr(pfvf->mac_addr);
789 }
790 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791
792 lbkvf:
793 /* Assign MAC address to VFs*/
794 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 pfvf = &rvu->hwvf[hwvf];
797 if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 mac = &rvu->fwdata->vf_macs[hwvf];
799 if (*mac)
800 u64_to_ether_addr(*mac, pfvf->mac_addr);
801 else
802 eth_random_addr(pfvf->mac_addr);
803 } else {
804 eth_random_addr(pfvf->mac_addr);
805 }
806 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 }
808 }
809 }
810
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 u64 fwdbase;
814 int err;
815
816 /* Get firmware data base address */
817 err = cgx_get_fwdata_base(&fwdbase);
818 if (err)
819 goto fail;
820 rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
821 if (!rvu->fwdata)
822 goto fail;
823 if (!is_rvu_fwdata_valid(rvu)) {
824 dev_err(rvu->dev,
825 "Mismatch in 'fwdata' struct btw kernel and firmware\n");
826 iounmap(rvu->fwdata);
827 rvu->fwdata = NULL;
828 return -EINVAL;
829 }
830 return 0;
831 fail:
832 dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
833 return -EIO;
834 }
835
836 static void rvu_fwdata_exit(struct rvu *rvu)
837 {
838 if (rvu->fwdata)
839 iounmap(rvu->fwdata);
840 }
841
842 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
843 {
844 struct rvu_hwinfo *hw = rvu->hw;
845 struct rvu_block *block;
846 int blkid;
847 u64 cfg;
848
849 /* Init NIX LF's bitmap */
850 block = &hw->block[blkaddr];
851 if (!block->implemented)
852 return 0;
853 blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
854 cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
855 block->lf.max = cfg & 0xFFF;
856 block->addr = blkaddr;
857 block->type = BLKTYPE_NIX;
858 block->lfshift = 8;
859 block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
860 block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
861 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
862 block->lfcfg_reg = NIX_PRIV_LFX_CFG;
863 block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
864 block->lfreset_reg = NIX_AF_LF_RST;
865 block->rvu = rvu;
866 sprintf(block->name, "NIX%d", blkid);
867 rvu->nix_blkaddr[blkid] = blkaddr;
868 return rvu_alloc_bitmap(&block->lf);
869 }
870
871 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
872 {
873 struct rvu_hwinfo *hw = rvu->hw;
874 struct rvu_block *block;
875 int blkid;
876 u64 cfg;
877
878 /* Init CPT LF's bitmap */
879 block = &hw->block[blkaddr];
880 if (!block->implemented)
881 return 0;
882 blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
883 cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
884 block->lf.max = cfg & 0xFF;
885 block->addr = blkaddr;
886 block->type = BLKTYPE_CPT;
887 block->multislot = true;
888 block->lfshift = 3;
889 block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
890 block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
891 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
892 block->lfcfg_reg = CPT_PRIV_LFX_CFG;
893 block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
894 block->lfreset_reg = CPT_AF_LF_RST;
895 block->rvu = rvu;
896 sprintf(block->name, "CPT%d", blkid);
897 return rvu_alloc_bitmap(&block->lf);
898 }
899
900 static void rvu_get_lbk_bufsize(struct rvu *rvu)
901 {
902 struct pci_dev *pdev = NULL;
903 void __iomem *base;
904 u64 lbk_const;
905
906 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
907 PCI_DEVID_OCTEONTX2_LBK, pdev);
908 if (!pdev)
909 return;
910
911 base = pci_ioremap_bar(pdev, 0);
912 if (!base)
913 goto err_put;
914
915 lbk_const = readq(base + LBK_CONST);
916
917 /* cache fifo size */
918 rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
919
920 iounmap(base);
921 err_put:
922 pci_dev_put(pdev);
923 }
924
925 static int rvu_setup_hw_resources(struct rvu *rvu)
926 {
927 struct rvu_hwinfo *hw = rvu->hw;
928 struct rvu_block *block;
929 int blkid, err;
930 u64 cfg;
931
932 /* Get HW supported max RVU PF & VF count */
933 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
934 hw->total_pfs = (cfg >> 32) & 0xFF;
935 hw->total_vfs = (cfg >> 20) & 0xFFF;
936 hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
937
938 /* Init NPA LF's bitmap */
939 block = &hw->block[BLKADDR_NPA];
940 if (!block->implemented)
941 goto nix;
942 cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
943 block->lf.max = (cfg >> 16) & 0xFFF;
944 block->addr = BLKADDR_NPA;
945 block->type = BLKTYPE_NPA;
946 block->lfshift = 8;
947 block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
948 block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
949 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
950 block->lfcfg_reg = NPA_PRIV_LFX_CFG;
951 block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
952 block->lfreset_reg = NPA_AF_LF_RST;
953 block->rvu = rvu;
954 sprintf(block->name, "NPA");
955 err = rvu_alloc_bitmap(&block->lf);
956 if (err) {
957 dev_err(rvu->dev,
958 "%s: Failed to allocate NPA LF bitmap\n", __func__);
959 return err;
960 }
961
962 nix:
963 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
964 if (err) {
965 dev_err(rvu->dev,
966 "%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
967 return err;
968 }
969
970 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
971 if (err) {
972 dev_err(rvu->dev,
973 "%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
974 return err;
975 }
976
977 /* Init SSO group's bitmap */
978 block = &hw->block[BLKADDR_SSO];
979 if (!block->implemented)
980 goto ssow;
981 cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
982 block->lf.max = cfg & 0xFFFF;
983 block->addr = BLKADDR_SSO;
984 block->type = BLKTYPE_SSO;
985 block->multislot = true;
986 block->lfshift = 3;
987 block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
988 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
989 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
990 block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
991 block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
992 block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
993 block->rvu = rvu;
994 sprintf(block->name, "SSO GROUP");
995 err = rvu_alloc_bitmap(&block->lf);
996 if (err) {
997 dev_err(rvu->dev,
998 "%s: Failed to allocate SSO LF bitmap\n", __func__);
999 return err;
1000 }
1001
1002 ssow:
1003 /* Init SSO workslot's bitmap */
1004 block = &hw->block[BLKADDR_SSOW];
1005 if (!block->implemented)
1006 goto tim;
1007 block->lf.max = (cfg >> 56) & 0xFF;
1008 block->addr = BLKADDR_SSOW;
1009 block->type = BLKTYPE_SSOW;
1010 block->multislot = true;
1011 block->lfshift = 3;
1012 block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1013 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1014 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1015 block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1016 block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1017 block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1018 block->rvu = rvu;
1019 sprintf(block->name, "SSOWS");
1020 err = rvu_alloc_bitmap(&block->lf);
1021 if (err) {
1022 dev_err(rvu->dev,
1023 "%s: Failed to allocate SSOW LF bitmap\n", __func__);
1024 return err;
1025 }
1026
1027 tim:
1028 /* Init TIM LF's bitmap */
1029 block = &hw->block[BLKADDR_TIM];
1030 if (!block->implemented)
1031 goto cpt;
1032 cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1033 block->lf.max = cfg & 0xFFFF;
1034 block->addr = BLKADDR_TIM;
1035 block->type = BLKTYPE_TIM;
1036 block->multislot = true;
1037 block->lfshift = 3;
1038 block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1039 block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1040 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1041 block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1042 block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1043 block->lfreset_reg = TIM_AF_LF_RST;
1044 block->rvu = rvu;
1045 sprintf(block->name, "TIM");
1046 err = rvu_alloc_bitmap(&block->lf);
1047 if (err) {
1048 dev_err(rvu->dev,
1049 "%s: Failed to allocate TIM LF bitmap\n", __func__);
1050 return err;
1051 }
1052
1053 cpt:
1054 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1055 if (err) {
1056 dev_err(rvu->dev,
1057 "%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1058 return err;
1059 }
1060 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1061 if (err) {
1062 dev_err(rvu->dev,
1063 "%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1064 return err;
1065 }
1066
1067 /* Allocate memory for PFVF data */
1068 rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1069 sizeof(struct rvu_pfvf), GFP_KERNEL);
1070 if (!rvu->pf) {
1071 dev_err(rvu->dev,
1072 "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1073 return -ENOMEM;
1074 }
1075
1076 rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1077 sizeof(struct rvu_pfvf), GFP_KERNEL);
1078 if (!rvu->hwvf) {
1079 dev_err(rvu->dev,
1080 "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1081 return -ENOMEM;
1082 }
1083
1084 mutex_init(&rvu->rsrc_lock);
1085
1086 rvu_fwdata_init(rvu);
1087
1088 err = rvu_setup_msix_resources(rvu);
1089 if (err) {
1090 dev_err(rvu->dev,
1091 "%s: Failed to setup MSIX resources\n", __func__);
1092 return err;
1093 }
1094
1095 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1096 block = &hw->block[blkid];
1097 if (!block->lf.bmap)
1098 continue;
1099
1100 /* Allocate memory for block LF/slot to pcifunc mapping info */
1101 block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1102 sizeof(u16), GFP_KERNEL);
1103 if (!block->fn_map) {
1104 err = -ENOMEM;
1105 goto msix_err;
1106 }
1107
1108 /* Scan all blocks to check if low level firmware has
1109 * already provisioned any of the resources to a PF/VF.
1110 */
1111 rvu_scan_block(rvu, block);
1112 }
1113
1114 err = rvu_set_channels_base(rvu);
1115 if (err)
1116 goto msix_err;
1117
1118 err = rvu_npc_init(rvu);
1119 if (err) {
1120 dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1121 goto npc_err;
1122 }
1123
1124 err = rvu_cgx_init(rvu);
1125 if (err) {
1126 dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1127 goto cgx_err;
1128 }
1129
1130 err = rvu_npc_exact_init(rvu);
1131 if (err) {
1132 dev_err(rvu->dev, "failed to initialize exact match table\n");
1133 return err;
1134 }
1135
1136 /* Assign MACs for CGX mapped functions */
1137 rvu_setup_pfvf_macaddress(rvu);
1138
1139 err = rvu_npa_init(rvu);
1140 if (err) {
1141 dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1142 goto npa_err;
1143 }
1144
1145 rvu_get_lbk_bufsize(rvu);
1146
1147 err = rvu_nix_init(rvu);
1148 if (err) {
1149 dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1150 goto nix_err;
1151 }
1152
1153 err = rvu_sdp_init(rvu);
1154 if (err) {
1155 dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1156 goto nix_err;
1157 }
1158
1159 rvu_program_channels(rvu);
1160
1161 err = rvu_mcs_init(rvu);
1162 if (err) {
1163 dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1164 goto nix_err;
1165 }
1166
1167 err = rvu_cpt_init(rvu);
1168 if (err) {
1169 dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1170 goto mcs_err;
1171 }
1172
1173 return 0;
1174
1175 mcs_err:
1176 rvu_mcs_exit(rvu);
1177 nix_err:
1178 rvu_nix_freemem(rvu);
1179 npa_err:
1180 rvu_npa_freemem(rvu);
1181 cgx_err:
1182 rvu_cgx_exit(rvu);
1183 npc_err:
1184 rvu_npc_freemem(rvu);
1185 rvu_fwdata_exit(rvu);
1186 msix_err:
1187 rvu_reset_msix(rvu);
1188 return err;
1189 }
1190
1191 /* NPA and NIX admin queue APIs */
1192 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1193 {
1194 if (!aq)
1195 return;
1196
1197 qmem_free(rvu->dev, aq->inst);
1198 qmem_free(rvu->dev, aq->res);
1199 devm_kfree(rvu->dev, aq);
1200 }
1201
1202 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1203 int qsize, int inst_size, int res_size)
1204 {
1205 struct admin_queue *aq;
1206 int err;
1207
1208 *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1209 if (!*ad_queue)
1210 return -ENOMEM;
1211 aq = *ad_queue;
1212
1213 /* Alloc memory for instructions i.e AQ */
1214 err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1215 if (err) {
1216 devm_kfree(rvu->dev, aq);
1217 return err;
1218 }
1219
1220 /* Alloc memory for results */
1221 err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1222 if (err) {
1223 rvu_aq_free(rvu, aq);
1224 return err;
1225 }
1226
1227 spin_lock_init(&aq->lock);
1228 return 0;
1229 }
1230
1231 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1232 struct ready_msg_rsp *rsp)
1233 {
1234 if (rvu->fwdata) {
1235 rsp->rclk_freq = rvu->fwdata->rclk;
1236 rsp->sclk_freq = rvu->fwdata->sclk;
1237 }
1238 return 0;
1239 }
1240
1241 /* Get current count of a RVU block's LF/slots
1242 * provisioned to a given RVU func.
1243 */
1244 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1245 {
1246 switch (blkaddr) {
1247 case BLKADDR_NPA:
1248 return pfvf->npalf ? 1 : 0;
1249 case BLKADDR_NIX0:
1250 case BLKADDR_NIX1:
1251 return pfvf->nixlf ? 1 : 0;
1252 case BLKADDR_SSO:
1253 return pfvf->sso;
1254 case BLKADDR_SSOW:
1255 return pfvf->ssow;
1256 case BLKADDR_TIM:
1257 return pfvf->timlfs;
1258 case BLKADDR_CPT0:
1259 return pfvf->cptlfs;
1260 case BLKADDR_CPT1:
1261 return pfvf->cpt1_lfs;
1262 }
1263 return 0;
1264 }
1265
1266 /* Return true if LFs of block type are attached to pcifunc */
1267 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1268 {
1269 switch (blktype) {
1270 case BLKTYPE_NPA:
1271 return pfvf->npalf ? 1 : 0;
1272 case BLKTYPE_NIX:
1273 return pfvf->nixlf ? 1 : 0;
1274 case BLKTYPE_SSO:
1275 return !!pfvf->sso;
1276 case BLKTYPE_SSOW:
1277 return !!pfvf->ssow;
1278 case BLKTYPE_TIM:
1279 return !!pfvf->timlfs;
1280 case BLKTYPE_CPT:
1281 return pfvf->cptlfs || pfvf->cpt1_lfs;
1282 }
1283
1284 return false;
1285 }
1286
1287 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1288 {
1289 struct rvu_pfvf *pfvf;
1290
1291 if (!is_pf_func_valid(rvu, pcifunc))
1292 return false;
1293
1294 pfvf = rvu_get_pfvf(rvu, pcifunc);
1295
1296 /* Check if this PFFUNC has a LF of type blktype attached */
1297 if (!is_blktype_attached(pfvf, blktype))
1298 return false;
1299
1300 return true;
1301 }
1302
1303 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1304 int pcifunc, int slot)
1305 {
1306 u64 val;
1307
1308 val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1309 rvu_write64(rvu, block->addr, block->lookup_reg, val);
1310 /* Wait for the lookup to finish */
1311 /* TODO: put some timeout here */
1312 while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1313 ;
1314
1315 val = rvu_read64(rvu, block->addr, block->lookup_reg);
1316
1317 /* Check LF valid bit */
1318 if (!(val & (1ULL << 12)))
1319 return -1;
1320
1321 return (val & 0xFFF);
1322 }
1323
1324 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1325 u16 global_slot, u16 *slot_in_block)
1326 {
1327 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1328 int numlfs, total_lfs = 0, nr_blocks = 0;
1329 int i, num_blkaddr[BLK_COUNT] = { 0 };
1330 struct rvu_block *block;
1331 int blkaddr;
1332 u16 start_slot;
1333
1334 if (!is_blktype_attached(pfvf, blktype))
1335 return -ENODEV;
1336
1337 /* Get all the block addresses from which LFs are attached to
1338 * the given pcifunc in num_blkaddr[].
1339 */
1340 for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1341 block = &rvu->hw->block[blkaddr];
1342 if (block->type != blktype)
1343 continue;
1344 if (!is_block_implemented(rvu->hw, blkaddr))
1345 continue;
1346
1347 numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1348 if (numlfs) {
1349 total_lfs += numlfs;
1350 num_blkaddr[nr_blocks] = blkaddr;
1351 nr_blocks++;
1352 }
1353 }
1354
1355 if (global_slot >= total_lfs)
1356 return -ENODEV;
1357
1358 /* Based on the given global slot number retrieve the
1359 * correct block address out of all attached block
1360 * addresses and slot number in that block.
1361 */
1362 total_lfs = 0;
1363 blkaddr = -ENODEV;
1364 for (i = 0; i < nr_blocks; i++) {
1365 numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1366 total_lfs += numlfs;
1367 if (global_slot < total_lfs) {
1368 blkaddr = num_blkaddr[i];
1369 start_slot = total_lfs - numlfs;
1370 *slot_in_block = global_slot - start_slot;
1371 break;
1372 }
1373 }
1374
1375 return blkaddr;
1376 }
1377
1378 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1379 {
1380 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1381 struct rvu_hwinfo *hw = rvu->hw;
1382 struct rvu_block *block;
1383 int slot, lf, num_lfs;
1384 int blkaddr;
1385
1386 blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1387 if (blkaddr < 0)
1388 return;
1389
1390 if (blktype == BLKTYPE_NIX)
1391 rvu_nix_reset_mac(pfvf, pcifunc);
1392
1393 block = &hw->block[blkaddr];
1394
1395 num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1396 if (!num_lfs)
1397 return;
1398
1399 for (slot = 0; slot < num_lfs; slot++) {
1400 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1401 if (lf < 0) /* This should never happen */
1402 continue;
1403
1404 /* Disable the LF */
1405 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1406 (lf << block->lfshift), 0x00ULL);
1407
1408 /* Update SW maintained mapping info as well */
1409 rvu_update_rsrc_map(rvu, pfvf, block,
1410 pcifunc, lf, false);
1411
1412 /* Free the resource */
1413 rvu_free_rsrc(&block->lf, lf);
1414
1415 /* Clear MSIX vector offset for this LF */
1416 rvu_clear_msix_offset(rvu, pfvf, block, lf);
1417 }
1418 }
1419
1420 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1421 u16 pcifunc)
1422 {
1423 struct rvu_hwinfo *hw = rvu->hw;
1424 bool detach_all = true;
1425 struct rvu_block *block;
1426 int blkid;
1427
1428 mutex_lock(&rvu->rsrc_lock);
1429
1430 /* Check for partial resource detach */
1431 if (detach && detach->partial)
1432 detach_all = false;
1433
1434 /* Check for RVU block's LFs attached to this func,
1435 * if so, detach them.
1436 */
1437 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1438 block = &hw->block[blkid];
1439 if (!block->lf.bmap)
1440 continue;
1441 if (!detach_all && detach) {
1442 if (blkid == BLKADDR_NPA && !detach->npalf)
1443 continue;
1444 else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1445 continue;
1446 else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1447 continue;
1448 else if ((blkid == BLKADDR_SSO) && !detach->sso)
1449 continue;
1450 else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1451 continue;
1452 else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1453 continue;
1454 else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1455 continue;
1456 else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1457 continue;
1458 }
1459 rvu_detach_block(rvu, pcifunc, block->type);
1460 }
1461
1462 mutex_unlock(&rvu->rsrc_lock);
1463 return 0;
1464 }
1465
1466 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1467 struct rsrc_detach *detach,
1468 struct msg_rsp *rsp)
1469 {
1470 return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1471 }
1472
1473 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1474 {
1475 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1476 int blkaddr = BLKADDR_NIX0, vf;
1477 struct rvu_pfvf *pf;
1478
1479 pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1480
1481 /* All CGX mapped PFs are set with assigned NIX block during init */
1482 if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1483 blkaddr = pf->nix_blkaddr;
1484 } else if (is_afvf(pcifunc)) {
1485 vf = pcifunc - 1;
1486 /* Assign NIX based on VF number. All even numbered VFs get
1487 * NIX0 and odd numbered gets NIX1
1488 */
1489 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1490 /* NIX1 is not present on all silicons */
1491 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1492 blkaddr = BLKADDR_NIX0;
1493 }
1494
1495 /* if SDP1 then the blkaddr is NIX1 */
1496 if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1497 blkaddr = BLKADDR_NIX1;
1498
1499 switch (blkaddr) {
1500 case BLKADDR_NIX1:
1501 pfvf->nix_blkaddr = BLKADDR_NIX1;
1502 pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1503 pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1504 break;
1505 case BLKADDR_NIX0:
1506 default:
1507 pfvf->nix_blkaddr = BLKADDR_NIX0;
1508 pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1509 pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1510 break;
1511 }
1512
1513 return pfvf->nix_blkaddr;
1514 }
1515
1516 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1517 u16 pcifunc, struct rsrc_attach *attach)
1518 {
1519 int blkaddr;
1520
1521 switch (blktype) {
1522 case BLKTYPE_NIX:
1523 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1524 break;
1525 case BLKTYPE_CPT:
1526 if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1527 return rvu_get_blkaddr(rvu, blktype, 0);
1528 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1529 BLKADDR_CPT0;
1530 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1531 return -ENODEV;
1532 break;
1533 default:
1534 return rvu_get_blkaddr(rvu, blktype, 0);
1535 }
1536
1537 if (is_block_implemented(rvu->hw, blkaddr))
1538 return blkaddr;
1539
1540 return -ENODEV;
1541 }
1542
1543 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1544 int num_lfs, struct rsrc_attach *attach)
1545 {
1546 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1547 struct rvu_hwinfo *hw = rvu->hw;
1548 struct rvu_block *block;
1549 int slot, lf;
1550 int blkaddr;
1551 u64 cfg;
1552
1553 if (!num_lfs)
1554 return;
1555
1556 blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1557 if (blkaddr < 0)
1558 return;
1559
1560 block = &hw->block[blkaddr];
1561 if (!block->lf.bmap)
1562 return;
1563
1564 for (slot = 0; slot < num_lfs; slot++) {
1565 /* Allocate the resource */
1566 lf = rvu_alloc_rsrc(&block->lf);
1567 if (lf < 0)
1568 return;
1569
1570 cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1571 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1572 (lf << block->lfshift), cfg);
1573 rvu_update_rsrc_map(rvu, pfvf, block,
1574 pcifunc, lf, true);
1575
1576 /* Set start MSIX vector for this LF within this PF/VF */
1577 rvu_set_msix_offset(rvu, pfvf, block, lf);
1578 }
1579 }
1580
1581 static int rvu_check_rsrc_availability(struct rvu *rvu,
1582 struct rsrc_attach *req, u16 pcifunc)
1583 {
1584 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1585 int free_lfs, mappedlfs, blkaddr;
1586 struct rvu_hwinfo *hw = rvu->hw;
1587 struct rvu_block *block;
1588
1589 /* Only one NPA LF can be attached */
1590 if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1591 block = &hw->block[BLKADDR_NPA];
1592 free_lfs = rvu_rsrc_free_count(&block->lf);
1593 if (!free_lfs)
1594 goto fail;
1595 } else if (req->npalf) {
1596 dev_err(&rvu->pdev->dev,
1597 "Func 0x%x: Invalid req, already has NPA\n",
1598 pcifunc);
1599 return -EINVAL;
1600 }
1601
1602 /* Only one NIX LF can be attached */
1603 if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1604 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1605 pcifunc, req);
1606 if (blkaddr < 0)
1607 return blkaddr;
1608 block = &hw->block[blkaddr];
1609 free_lfs = rvu_rsrc_free_count(&block->lf);
1610 if (!free_lfs)
1611 goto fail;
1612 } else if (req->nixlf) {
1613 dev_err(&rvu->pdev->dev,
1614 "Func 0x%x: Invalid req, already has NIX\n",
1615 pcifunc);
1616 return -EINVAL;
1617 }
1618
1619 if (req->sso) {
1620 block = &hw->block[BLKADDR_SSO];
1621 /* Is request within limits ? */
1622 if (req->sso > block->lf.max) {
1623 dev_err(&rvu->pdev->dev,
1624 "Func 0x%x: Invalid SSO req, %d > max %d\n",
1625 pcifunc, req->sso, block->lf.max);
1626 return -EINVAL;
1627 }
1628 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1629 free_lfs = rvu_rsrc_free_count(&block->lf);
1630 /* Check if additional resources are available */
1631 if (req->sso > mappedlfs &&
1632 ((req->sso - mappedlfs) > free_lfs))
1633 goto fail;
1634 }
1635
1636 if (req->ssow) {
1637 block = &hw->block[BLKADDR_SSOW];
1638 if (req->ssow > block->lf.max) {
1639 dev_err(&rvu->pdev->dev,
1640 "Func 0x%x: Invalid SSOW req, %d > max %d\n",
1641 pcifunc, req->sso, block->lf.max);
1642 return -EINVAL;
1643 }
1644 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1645 free_lfs = rvu_rsrc_free_count(&block->lf);
1646 if (req->ssow > mappedlfs &&
1647 ((req->ssow - mappedlfs) > free_lfs))
1648 goto fail;
1649 }
1650
1651 if (req->timlfs) {
1652 block = &hw->block[BLKADDR_TIM];
1653 if (req->timlfs > block->lf.max) {
1654 dev_err(&rvu->pdev->dev,
1655 "Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1656 pcifunc, req->timlfs, block->lf.max);
1657 return -EINVAL;
1658 }
1659 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1660 free_lfs = rvu_rsrc_free_count(&block->lf);
1661 if (req->timlfs > mappedlfs &&
1662 ((req->timlfs - mappedlfs) > free_lfs))
1663 goto fail;
1664 }
1665
1666 if (req->cptlfs) {
1667 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1668 pcifunc, req);
1669 if (blkaddr < 0)
1670 return blkaddr;
1671 block = &hw->block[blkaddr];
1672 if (req->cptlfs > block->lf.max) {
1673 dev_err(&rvu->pdev->dev,
1674 "Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1675 pcifunc, req->cptlfs, block->lf.max);
1676 return -EINVAL;
1677 }
1678 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1679 free_lfs = rvu_rsrc_free_count(&block->lf);
1680 if (req->cptlfs > mappedlfs &&
1681 ((req->cptlfs - mappedlfs) > free_lfs))
1682 goto fail;
1683 }
1684
1685 return 0;
1686
1687 fail:
1688 dev_info(rvu->dev, "Request for %s failed\n", block->name);
1689 return -ENOSPC;
1690 }
1691
1692 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1693 struct rsrc_attach *attach)
1694 {
1695 int blkaddr, num_lfs;
1696
1697 blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1698 attach->hdr.pcifunc, attach);
1699 if (blkaddr < 0)
1700 return false;
1701
1702 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1703 blkaddr);
1704 /* Requester already has LFs from given block ? */
1705 return !!num_lfs;
1706 }
1707
1708 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1709 struct rsrc_attach *attach,
1710 struct msg_rsp *rsp)
1711 {
1712 u16 pcifunc = attach->hdr.pcifunc;
1713 int err;
1714
1715 /* If first request, detach all existing attached resources */
1716 if (!attach->modify)
1717 rvu_detach_rsrcs(rvu, NULL, pcifunc);
1718
1719 mutex_lock(&rvu->rsrc_lock);
1720
1721 /* Check if the request can be accommodated */
1722 err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1723 if (err)
1724 goto exit;
1725
1726 /* Now attach the requested resources */
1727 if (attach->npalf)
1728 rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1729
1730 if (attach->nixlf)
1731 rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1732
1733 if (attach->sso) {
1734 /* RVU func doesn't know which exact LF or slot is attached
1735 * to it, it always sees as slot 0,1,2. So for a 'modify'
1736 * request, simply detach all existing attached LFs/slots
1737 * and attach a fresh.
1738 */
1739 if (attach->modify)
1740 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1741 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1742 attach->sso, attach);
1743 }
1744
1745 if (attach->ssow) {
1746 if (attach->modify)
1747 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1748 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1749 attach->ssow, attach);
1750 }
1751
1752 if (attach->timlfs) {
1753 if (attach->modify)
1754 rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1755 rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1756 attach->timlfs, attach);
1757 }
1758
1759 if (attach->cptlfs) {
1760 if (attach->modify &&
1761 rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1762 rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1763 rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1764 attach->cptlfs, attach);
1765 }
1766
1767 exit:
1768 mutex_unlock(&rvu->rsrc_lock);
1769 return err;
1770 }
1771
1772 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1773 int blkaddr, int lf)
1774 {
1775 u16 vec;
1776
1777 if (lf < 0)
1778 return MSIX_VECTOR_INVALID;
1779
1780 for (vec = 0; vec < pfvf->msix.max; vec++) {
1781 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1782 return vec;
1783 }
1784 return MSIX_VECTOR_INVALID;
1785 }
1786
1787 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1788 struct rvu_block *block, int lf)
1789 {
1790 u16 nvecs, vec, offset;
1791 u64 cfg;
1792
1793 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1794 (lf << block->lfshift));
1795 nvecs = (cfg >> 12) & 0xFF;
1796
1797 /* Check and alloc MSIX vectors, must be contiguous */
1798 if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1799 return;
1800
1801 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1802
1803 /* Config MSIX offset in LF */
1804 rvu_write64(rvu, block->addr, block->msixcfg_reg |
1805 (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1806
1807 /* Update the bitmap as well */
1808 for (vec = 0; vec < nvecs; vec++)
1809 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1810 }
1811
1812 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1813 struct rvu_block *block, int lf)
1814 {
1815 u16 nvecs, vec, offset;
1816 u64 cfg;
1817
1818 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1819 (lf << block->lfshift));
1820 nvecs = (cfg >> 12) & 0xFF;
1821
1822 /* Clear MSIX offset in LF */
1823 rvu_write64(rvu, block->addr, block->msixcfg_reg |
1824 (lf << block->lfshift), cfg & ~0x7FFULL);
1825
1826 offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1827
1828 /* Update the mapping */
1829 for (vec = 0; vec < nvecs; vec++)
1830 pfvf->msix_lfmap[offset + vec] = 0;
1831
1832 /* Free the same in MSIX bitmap */
1833 rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1834 }
1835
1836 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1837 struct msix_offset_rsp *rsp)
1838 {
1839 struct rvu_hwinfo *hw = rvu->hw;
1840 u16 pcifunc = req->hdr.pcifunc;
1841 struct rvu_pfvf *pfvf;
1842 int lf, slot, blkaddr;
1843
1844 pfvf = rvu_get_pfvf(rvu, pcifunc);
1845 if (!pfvf->msix.bmap)
1846 return 0;
1847
1848 /* Set MSIX offsets for each block's LFs attached to this PF/VF */
1849 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1850 rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1851
1852 /* Get BLKADDR from which LFs are attached to pcifunc */
1853 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1854 if (blkaddr < 0) {
1855 rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1856 } else {
1857 lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1858 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1859 }
1860
1861 rsp->sso = pfvf->sso;
1862 for (slot = 0; slot < rsp->sso; slot++) {
1863 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1864 rsp->sso_msixoff[slot] =
1865 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1866 }
1867
1868 rsp->ssow = pfvf->ssow;
1869 for (slot = 0; slot < rsp->ssow; slot++) {
1870 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1871 rsp->ssow_msixoff[slot] =
1872 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1873 }
1874
1875 rsp->timlfs = pfvf->timlfs;
1876 for (slot = 0; slot < rsp->timlfs; slot++) {
1877 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1878 rsp->timlf_msixoff[slot] =
1879 rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1880 }
1881
1882 rsp->cptlfs = pfvf->cptlfs;
1883 for (slot = 0; slot < rsp->cptlfs; slot++) {
1884 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1885 rsp->cptlf_msixoff[slot] =
1886 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1887 }
1888
1889 rsp->cpt1_lfs = pfvf->cpt1_lfs;
1890 for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1891 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1892 rsp->cpt1_lf_msixoff[slot] =
1893 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1894 }
1895
1896 return 0;
1897 }
1898
1899 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1900 struct free_rsrcs_rsp *rsp)
1901 {
1902 struct rvu_hwinfo *hw = rvu->hw;
1903 struct rvu_block *block;
1904 struct nix_txsch *txsch;
1905 struct nix_hw *nix_hw;
1906
1907 mutex_lock(&rvu->rsrc_lock);
1908
1909 block = &hw->block[BLKADDR_NPA];
1910 rsp->npa = rvu_rsrc_free_count(&block->lf);
1911
1912 block = &hw->block[BLKADDR_NIX0];
1913 rsp->nix = rvu_rsrc_free_count(&block->lf);
1914
1915 block = &hw->block[BLKADDR_NIX1];
1916 rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1917
1918 block = &hw->block[BLKADDR_SSO];
1919 rsp->sso = rvu_rsrc_free_count(&block->lf);
1920
1921 block = &hw->block[BLKADDR_SSOW];
1922 rsp->ssow = rvu_rsrc_free_count(&block->lf);
1923
1924 block = &hw->block[BLKADDR_TIM];
1925 rsp->tim = rvu_rsrc_free_count(&block->lf);
1926
1927 block = &hw->block[BLKADDR_CPT0];
1928 rsp->cpt = rvu_rsrc_free_count(&block->lf);
1929
1930 block = &hw->block[BLKADDR_CPT1];
1931 rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1932
1933 if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1934 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1935 rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1936 rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1937 rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1938 /* NIX1 */
1939 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1940 goto out;
1941 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1942 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1943 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1944 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1945 } else {
1946 nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1947 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1948 rsp->schq[NIX_TXSCH_LVL_SMQ] =
1949 rvu_rsrc_free_count(&txsch->schq);
1950
1951 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1952 rsp->schq[NIX_TXSCH_LVL_TL4] =
1953 rvu_rsrc_free_count(&txsch->schq);
1954
1955 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1956 rsp->schq[NIX_TXSCH_LVL_TL3] =
1957 rvu_rsrc_free_count(&txsch->schq);
1958
1959 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1960 rsp->schq[NIX_TXSCH_LVL_TL2] =
1961 rvu_rsrc_free_count(&txsch->schq);
1962
1963 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1964 goto out;
1965
1966 nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1967 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1968 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1969 rvu_rsrc_free_count(&txsch->schq);
1970
1971 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1972 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1973 rvu_rsrc_free_count(&txsch->schq);
1974
1975 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1976 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1977 rvu_rsrc_free_count(&txsch->schq);
1978
1979 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1980 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1981 rvu_rsrc_free_count(&txsch->schq);
1982 }
1983
1984 rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1985 out:
1986 rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1987 mutex_unlock(&rvu->rsrc_lock);
1988
1989 return 0;
1990 }
1991
1992 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1993 struct msg_rsp *rsp)
1994 {
1995 u16 pcifunc = req->hdr.pcifunc;
1996 u16 vf, numvfs;
1997 u64 cfg;
1998
1999 vf = pcifunc & RVU_PFVF_FUNC_MASK;
2000 cfg = rvu_read64(rvu, BLKADDR_RVUM,
2001 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2002 numvfs = (cfg >> 12) & 0xFF;
2003
2004 if (vf && vf <= numvfs)
2005 __rvu_flr_handler(rvu, pcifunc);
2006 else
2007 return RVU_INVALID_VF_ID;
2008
2009 return 0;
2010 }
2011
2012 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2013 struct get_hw_cap_rsp *rsp)
2014 {
2015 struct rvu_hwinfo *hw = rvu->hw;
2016
2017 rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2018 rsp->nix_shaping = hw->cap.nix_shaping;
2019 rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2020
2021 return 0;
2022 }
2023
2024 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2025 struct msg_rsp *rsp)
2026 {
2027 struct rvu_hwinfo *hw = rvu->hw;
2028 u16 pcifunc = req->hdr.pcifunc;
2029 struct rvu_pfvf *pfvf;
2030 int blkaddr, nixlf;
2031 u16 target;
2032
2033 /* Only PF can add VF permissions */
2034 if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2035 return -EOPNOTSUPP;
2036
2037 target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2038 pfvf = rvu_get_pfvf(rvu, target);
2039
2040 if (req->flags & RESET_VF_PERM) {
2041 pfvf->flags &= RVU_CLEAR_VF_PERM;
2042 } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2043 (req->flags & VF_TRUSTED)) {
2044 change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2045 /* disable multicast and promisc entries */
2046 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2047 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2048 if (blkaddr < 0)
2049 return 0;
2050 nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2051 target, 0);
2052 if (nixlf < 0)
2053 return 0;
2054 npc_enadis_default_mce_entry(rvu, target, nixlf,
2055 NIXLF_ALLMULTI_ENTRY,
2056 false);
2057 npc_enadis_default_mce_entry(rvu, target, nixlf,
2058 NIXLF_PROMISC_ENTRY,
2059 false);
2060 }
2061 }
2062
2063 return 0;
2064 }
2065
2066 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2067 struct mbox_msghdr *req)
2068 {
2069 struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2070
2071 /* Check if valid, if not reply with a invalid msg */
2072 if (req->sig != OTX2_MBOX_REQ_SIG)
2073 goto bad_message;
2074
2075 switch (req->id) {
2076 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
2077 case _id: { \
2078 struct _rsp_type *rsp; \
2079 int err; \
2080 \
2081 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \
2082 mbox, devid, \
2083 sizeof(struct _rsp_type)); \
2084 /* some handlers should complete even if reply */ \
2085 /* could not be allocated */ \
2086 if (!rsp && \
2087 _id != MBOX_MSG_DETACH_RESOURCES && \
2088 _id != MBOX_MSG_NIX_TXSCH_FREE && \
2089 _id != MBOX_MSG_VF_FLR) \
2090 return -ENOMEM; \
2091 if (rsp) { \
2092 rsp->hdr.id = _id; \
2093 rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \
2094 rsp->hdr.pcifunc = req->pcifunc; \
2095 rsp->hdr.rc = 0; \
2096 } \
2097 \
2098 err = rvu_mbox_handler_ ## _fn_name(rvu, \
2099 (struct _req_type *)req, \
2100 rsp); \
2101 if (rsp && err) \
2102 rsp->hdr.rc = err; \
2103 \
2104 trace_otx2_msg_process(mbox->pdev, _id, err); \
2105 return rsp ? err : -ENOMEM; \
2106 }
2107 MBOX_MESSAGES
2108 #undef M
2109
2110 bad_message:
2111 default:
2112 otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2113 return -ENODEV;
2114 }
2115 }
2116
2117 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2118 {
2119 struct rvu *rvu = mwork->rvu;
2120 int offset, err, id, devid;
2121 struct otx2_mbox_dev *mdev;
2122 struct mbox_hdr *req_hdr;
2123 struct mbox_msghdr *msg;
2124 struct mbox_wq_info *mw;
2125 struct otx2_mbox *mbox;
2126
2127 switch (type) {
2128 case TYPE_AFPF:
2129 mw = &rvu->afpf_wq_info;
2130 break;
2131 case TYPE_AFVF:
2132 mw = &rvu->afvf_wq_info;
2133 break;
2134 default:
2135 return;
2136 }
2137
2138 devid = mwork - mw->mbox_wrk;
2139 mbox = &mw->mbox;
2140 mdev = &mbox->dev[devid];
2141
2142 /* Process received mbox messages */
2143 req_hdr = mdev->mbase + mbox->rx_start;
2144 if (mw->mbox_wrk[devid].num_msgs == 0)
2145 return;
2146
2147 offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2148
2149 for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2150 msg = mdev->mbase + offset;
2151
2152 /* Set which PF/VF sent this message based on mbox IRQ */
2153 switch (type) {
2154 case TYPE_AFPF:
2155 msg->pcifunc &=
2156 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2157 msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2158 break;
2159 case TYPE_AFVF:
2160 msg->pcifunc &=
2161 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2162 msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2163 break;
2164 }
2165
2166 err = rvu_process_mbox_msg(mbox, devid, msg);
2167 if (!err) {
2168 offset = mbox->rx_start + msg->next_msgoff;
2169 continue;
2170 }
2171
2172 if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2173 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2174 err, otx2_mbox_id2name(msg->id),
2175 msg->id, rvu_get_pf(msg->pcifunc),
2176 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2177 else
2178 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2179 err, otx2_mbox_id2name(msg->id),
2180 msg->id, devid);
2181 }
2182 mw->mbox_wrk[devid].num_msgs = 0;
2183
2184 /* Send mbox responses to VF/PF */
2185 otx2_mbox_msg_send(mbox, devid);
2186 }
2187
2188 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2189 {
2190 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2191
2192 __rvu_mbox_handler(mwork, TYPE_AFPF);
2193 }
2194
2195 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2196 {
2197 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2198
2199 __rvu_mbox_handler(mwork, TYPE_AFVF);
2200 }
2201
2202 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2203 {
2204 struct rvu *rvu = mwork->rvu;
2205 struct otx2_mbox_dev *mdev;
2206 struct mbox_hdr *rsp_hdr;
2207 struct mbox_msghdr *msg;
2208 struct mbox_wq_info *mw;
2209 struct otx2_mbox *mbox;
2210 int offset, id, devid;
2211
2212 switch (type) {
2213 case TYPE_AFPF:
2214 mw = &rvu->afpf_wq_info;
2215 break;
2216 case TYPE_AFVF:
2217 mw = &rvu->afvf_wq_info;
2218 break;
2219 default:
2220 return;
2221 }
2222
2223 devid = mwork - mw->mbox_wrk_up;
2224 mbox = &mw->mbox_up;
2225 mdev = &mbox->dev[devid];
2226
2227 rsp_hdr = mdev->mbase + mbox->rx_start;
2228 if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2229 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2230 return;
2231 }
2232
2233 offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2234
2235 for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2236 msg = mdev->mbase + offset;
2237
2238 if (msg->id >= MBOX_MSG_MAX) {
2239 dev_err(rvu->dev,
2240 "Mbox msg with unknown ID 0x%x\n", msg->id);
2241 goto end;
2242 }
2243
2244 if (msg->sig != OTX2_MBOX_RSP_SIG) {
2245 dev_err(rvu->dev,
2246 "Mbox msg with wrong signature %x, ID 0x%x\n",
2247 msg->sig, msg->id);
2248 goto end;
2249 }
2250
2251 switch (msg->id) {
2252 case MBOX_MSG_CGX_LINK_EVENT:
2253 break;
2254 default:
2255 if (msg->rc)
2256 dev_err(rvu->dev,
2257 "Mbox msg response has err %d, ID 0x%x\n",
2258 msg->rc, msg->id);
2259 break;
2260 }
2261 end:
2262 offset = mbox->rx_start + msg->next_msgoff;
2263 mdev->msgs_acked++;
2264 }
2265 mw->mbox_wrk_up[devid].up_num_msgs = 0;
2266
2267 otx2_mbox_reset(mbox, devid);
2268 }
2269
2270 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2271 {
2272 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2273
2274 __rvu_mbox_up_handler(mwork, TYPE_AFPF);
2275 }
2276
2277 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2278 {
2279 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2280
2281 __rvu_mbox_up_handler(mwork, TYPE_AFVF);
2282 }
2283
2284 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2285 int num, int type, unsigned long *pf_bmap)
2286 {
2287 struct rvu_hwinfo *hw = rvu->hw;
2288 int region;
2289 u64 bar4;
2290
2291 /* For cn10k platform VF mailbox regions of a PF follows after the
2292 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2293 * RVU_PF_VF_BAR4_ADDR register.
2294 */
2295 if (type == TYPE_AFVF) {
2296 for (region = 0; region < num; region++) {
2297 if (!test_bit(region, pf_bmap))
2298 continue;
2299
2300 if (hw->cap.per_pf_mbox_regs) {
2301 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2302 RVU_AF_PFX_BAR4_ADDR(0)) +
2303 MBOX_SIZE;
2304 bar4 += region * MBOX_SIZE;
2305 } else {
2306 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2307 bar4 += region * MBOX_SIZE;
2308 }
2309 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2310 if (!mbox_addr[region])
2311 goto error;
2312 }
2313 return 0;
2314 }
2315
2316 /* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2317 * PF registers. Whereas for Octeontx2 it is read from
2318 * RVU_AF_PF_BAR4_ADDR register.
2319 */
2320 for (region = 0; region < num; region++) {
2321 if (!test_bit(region, pf_bmap))
2322 continue;
2323
2324 if (hw->cap.per_pf_mbox_regs) {
2325 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2326 RVU_AF_PFX_BAR4_ADDR(region));
2327 } else {
2328 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2329 RVU_AF_PF_BAR4_ADDR);
2330 bar4 += region * MBOX_SIZE;
2331 }
2332 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2333 if (!mbox_addr[region])
2334 goto error;
2335 }
2336 return 0;
2337
2338 error:
2339 while (region--)
2340 iounmap((void __iomem *)mbox_addr[region]);
2341 return -ENOMEM;
2342 }
2343
2344 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2345 int type, int num,
2346 void (mbox_handler)(struct work_struct *),
2347 void (mbox_up_handler)(struct work_struct *))
2348 {
2349 int err = -EINVAL, i, dir, dir_up;
2350 void __iomem *reg_base;
2351 struct rvu_work *mwork;
2352 unsigned long *pf_bmap;
2353 void **mbox_regions;
2354 const char *name;
2355 u64 cfg;
2356
2357 pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2358 if (!pf_bmap)
2359 return -ENOMEM;
2360
2361 /* RVU VFs */
2362 if (type == TYPE_AFVF)
2363 bitmap_set(pf_bmap, 0, num);
2364
2365 if (type == TYPE_AFPF) {
2366 /* Mark enabled PFs in bitmap */
2367 for (i = 0; i < num; i++) {
2368 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2369 if (cfg & BIT_ULL(20))
2370 set_bit(i, pf_bmap);
2371 }
2372 }
2373
2374 mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2375 if (!mbox_regions) {
2376 err = -ENOMEM;
2377 goto free_bitmap;
2378 }
2379
2380 switch (type) {
2381 case TYPE_AFPF:
2382 name = "rvu_afpf_mailbox";
2383 dir = MBOX_DIR_AFPF;
2384 dir_up = MBOX_DIR_AFPF_UP;
2385 reg_base = rvu->afreg_base;
2386 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2387 if (err)
2388 goto free_regions;
2389 break;
2390 case TYPE_AFVF:
2391 name = "rvu_afvf_mailbox";
2392 dir = MBOX_DIR_PFVF;
2393 dir_up = MBOX_DIR_PFVF_UP;
2394 reg_base = rvu->pfreg_base;
2395 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2396 if (err)
2397 goto free_regions;
2398 break;
2399 default:
2400 goto free_regions;
2401 }
2402
2403 mw->mbox_wq = alloc_workqueue(name,
2404 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2405 num);
2406 if (!mw->mbox_wq) {
2407 err = -ENOMEM;
2408 goto unmap_regions;
2409 }
2410
2411 mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2412 sizeof(struct rvu_work), GFP_KERNEL);
2413 if (!mw->mbox_wrk) {
2414 err = -ENOMEM;
2415 goto exit;
2416 }
2417
2418 mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2419 sizeof(struct rvu_work), GFP_KERNEL);
2420 if (!mw->mbox_wrk_up) {
2421 err = -ENOMEM;
2422 goto exit;
2423 }
2424
2425 err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2426 reg_base, dir, num, pf_bmap);
2427 if (err)
2428 goto exit;
2429
2430 err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2431 reg_base, dir_up, num, pf_bmap);
2432 if (err)
2433 goto exit;
2434
2435 for (i = 0; i < num; i++) {
2436 if (!test_bit(i, pf_bmap))
2437 continue;
2438
2439 mwork = &mw->mbox_wrk[i];
2440 mwork->rvu = rvu;
2441 INIT_WORK(&mwork->work, mbox_handler);
2442
2443 mwork = &mw->mbox_wrk_up[i];
2444 mwork->rvu = rvu;
2445 INIT_WORK(&mwork->work, mbox_up_handler);
2446 }
2447 goto free_regions;
2448
2449 exit:
2450 destroy_workqueue(mw->mbox_wq);
2451 unmap_regions:
2452 while (num--)
2453 iounmap((void __iomem *)mbox_regions[num]);
2454 free_regions:
2455 kfree(mbox_regions);
2456 free_bitmap:
2457 bitmap_free(pf_bmap);
2458 return err;
2459 }
2460
2461 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2462 {
2463 struct otx2_mbox *mbox = &mw->mbox;
2464 struct otx2_mbox_dev *mdev;
2465 int devid;
2466
2467 if (mw->mbox_wq) {
2468 destroy_workqueue(mw->mbox_wq);
2469 mw->mbox_wq = NULL;
2470 }
2471
2472 for (devid = 0; devid < mbox->ndevs; devid++) {
2473 mdev = &mbox->dev[devid];
2474 if (mdev->hwbase)
2475 iounmap((void __iomem *)mdev->hwbase);
2476 }
2477
2478 otx2_mbox_destroy(&mw->mbox);
2479 otx2_mbox_destroy(&mw->mbox_up);
2480 }
2481
2482 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2483 int mdevs, u64 intr)
2484 {
2485 struct otx2_mbox_dev *mdev;
2486 struct otx2_mbox *mbox;
2487 struct mbox_hdr *hdr;
2488 int i;
2489
2490 for (i = first; i < mdevs; i++) {
2491 /* start from 0 */
2492 if (!(intr & BIT_ULL(i - first)))
2493 continue;
2494
2495 mbox = &mw->mbox;
2496 mdev = &mbox->dev[i];
2497 hdr = mdev->mbase + mbox->rx_start;
2498
2499 /*The hdr->num_msgs is set to zero immediately in the interrupt
2500 * handler to ensure that it holds a correct value next time
2501 * when the interrupt handler is called.
2502 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2503 * pf>mbox.up_num_msgs holds the data for use in
2504 * pfaf_mbox_up_handler.
2505 */
2506
2507 if (hdr->num_msgs) {
2508 mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2509 hdr->num_msgs = 0;
2510 queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2511 }
2512 mbox = &mw->mbox_up;
2513 mdev = &mbox->dev[i];
2514 hdr = mdev->mbase + mbox->rx_start;
2515 if (hdr->num_msgs) {
2516 mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2517 hdr->num_msgs = 0;
2518 queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2519 }
2520 }
2521 }
2522
2523 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2524 {
2525 struct rvu *rvu = (struct rvu *)rvu_irq;
2526 int vfs = rvu->vfs;
2527 u64 intr;
2528
2529 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2530 /* Clear interrupts */
2531 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2532 if (intr)
2533 trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2534
2535 /* Sync with mbox memory region */
2536 rmb();
2537
2538 rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2539
2540 /* Handle VF interrupts */
2541 if (vfs > 64) {
2542 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2543 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2544
2545 rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2546 vfs -= 64;
2547 }
2548
2549 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2550 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2551 if (intr)
2552 trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2553
2554 rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2555
2556 return IRQ_HANDLED;
2557 }
2558
2559 static void rvu_enable_mbox_intr(struct rvu *rvu)
2560 {
2561 struct rvu_hwinfo *hw = rvu->hw;
2562
2563 /* Clear spurious irqs, if any */
2564 rvu_write64(rvu, BLKADDR_RVUM,
2565 RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2566
2567 /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2568 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2569 INTR_MASK(hw->total_pfs) & ~1ULL);
2570 }
2571
2572 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2573 {
2574 struct rvu_block *block;
2575 int slot, lf, num_lfs;
2576 int err;
2577
2578 block = &rvu->hw->block[blkaddr];
2579 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2580 block->addr);
2581 if (!num_lfs)
2582 return;
2583 for (slot = 0; slot < num_lfs; slot++) {
2584 lf = rvu_get_lf(rvu, block, pcifunc, slot);
2585 if (lf < 0)
2586 continue;
2587
2588 /* Cleanup LF and reset it */
2589 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2590 rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2591 else if (block->addr == BLKADDR_NPA)
2592 rvu_npa_lf_teardown(rvu, pcifunc, lf);
2593 else if ((block->addr == BLKADDR_CPT0) ||
2594 (block->addr == BLKADDR_CPT1))
2595 rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2596 slot);
2597
2598 err = rvu_lf_reset(rvu, block, lf);
2599 if (err) {
2600 dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2601 block->addr, lf);
2602 }
2603 }
2604 }
2605
2606 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2607 {
2608 if (rvu_npc_exact_has_match_table(rvu))
2609 rvu_npc_exact_reset(rvu, pcifunc);
2610
2611 mutex_lock(&rvu->flr_lock);
2612 /* Reset order should reflect inter-block dependencies:
2613 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2614 * 2. Flush and reset SSO/SSOW
2615 * 3. Cleanup pools (NPA)
2616 */
2617 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2618 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2619 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2620 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2621 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2622 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2623 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2624 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2625 rvu_reset_lmt_map_tbl(rvu, pcifunc);
2626 rvu_detach_rsrcs(rvu, NULL, pcifunc);
2627 /* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2628 * entries, check and free the MCAM entries explicitly to avoid leak.
2629 * Since LF is detached use LF number as -1.
2630 */
2631 rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2632 rvu_mac_reset(rvu, pcifunc);
2633
2634 mutex_unlock(&rvu->flr_lock);
2635 }
2636
2637 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2638 {
2639 int reg = 0;
2640
2641 /* pcifunc = 0(PF0) | (vf + 1) */
2642 __rvu_flr_handler(rvu, vf + 1);
2643
2644 if (vf >= 64) {
2645 reg = 1;
2646 vf = vf - 64;
2647 }
2648
2649 /* Signal FLR finish and enable IRQ */
2650 rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2651 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2652 }
2653
2654 static void rvu_flr_handler(struct work_struct *work)
2655 {
2656 struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2657 struct rvu *rvu = flrwork->rvu;
2658 u16 pcifunc, numvfs, vf;
2659 u64 cfg;
2660 int pf;
2661
2662 pf = flrwork - rvu->flr_wrk;
2663 if (pf >= rvu->hw->total_pfs) {
2664 rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2665 return;
2666 }
2667
2668 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2669 numvfs = (cfg >> 12) & 0xFF;
2670 pcifunc = pf << RVU_PFVF_PF_SHIFT;
2671
2672 for (vf = 0; vf < numvfs; vf++)
2673 __rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2674
2675 __rvu_flr_handler(rvu, pcifunc);
2676
2677 /* Signal FLR finish */
2678 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2679
2680 /* Enable interrupt */
2681 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, BIT_ULL(pf));
2682 }
2683
2684 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2685 {
2686 int dev, vf, reg = 0;
2687 u64 intr;
2688
2689 if (start_vf >= 64)
2690 reg = 1;
2691
2692 intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2693 if (!intr)
2694 return;
2695
2696 for (vf = 0; vf < numvfs; vf++) {
2697 if (!(intr & BIT_ULL(vf)))
2698 continue;
2699 /* Clear and disable the interrupt */
2700 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2701 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2702
2703 dev = vf + start_vf + rvu->hw->total_pfs;
2704 queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2705 }
2706 }
2707
2708 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2709 {
2710 struct rvu *rvu = (struct rvu *)rvu_irq;
2711 u64 intr;
2712 u8 pf;
2713
2714 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2715 if (!intr)
2716 goto afvf_flr;
2717
2718 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2719 if (intr & (1ULL << pf)) {
2720 /* clear interrupt */
2721 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2722 BIT_ULL(pf));
2723 /* Disable the interrupt */
2724 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2725 BIT_ULL(pf));
2726 /* PF is already dead do only AF related operations */
2727 queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2728 }
2729 }
2730
2731 afvf_flr:
2732 rvu_afvf_queue_flr_work(rvu, 0, 64);
2733 if (rvu->vfs > 64)
2734 rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2735
2736 return IRQ_HANDLED;
2737 }
2738
2739 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2740 {
2741 int vf;
2742
2743 /* Nothing to be done here other than clearing the
2744 * TRPEND bit.
2745 */
2746 for (vf = 0; vf < 64; vf++) {
2747 if (intr & (1ULL << vf)) {
2748 /* clear the trpend due to ME(master enable) */
2749 rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2750 /* clear interrupt */
2751 rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2752 }
2753 }
2754 }
2755
2756 /* Handles ME interrupts from VFs of AF */
2757 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2758 {
2759 struct rvu *rvu = (struct rvu *)rvu_irq;
2760 int vfset;
2761 u64 intr;
2762
2763 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2764
2765 for (vfset = 0; vfset <= 1; vfset++) {
2766 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2767 if (intr)
2768 rvu_me_handle_vfset(rvu, vfset, intr);
2769 }
2770
2771 return IRQ_HANDLED;
2772 }
2773
2774 /* Handles ME interrupts from PFs */
2775 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2776 {
2777 struct rvu *rvu = (struct rvu *)rvu_irq;
2778 u64 intr;
2779 u8 pf;
2780
2781 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2782
2783 /* Nothing to be done here other than clearing the
2784 * TRPEND bit.
2785 */
2786 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2787 if (intr & (1ULL << pf)) {
2788 /* clear the trpend due to ME(master enable) */
2789 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2790 BIT_ULL(pf));
2791 /* clear interrupt */
2792 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2793 BIT_ULL(pf));
2794 }
2795 }
2796
2797 return IRQ_HANDLED;
2798 }
2799
2800 static void rvu_unregister_interrupts(struct rvu *rvu)
2801 {
2802 int irq;
2803
2804 rvu_cpt_unregister_interrupts(rvu);
2805
2806 /* Disable the Mbox interrupt */
2807 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2808 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2809
2810 /* Disable the PF FLR interrupt */
2811 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2812 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2813
2814 /* Disable the PF ME interrupt */
2815 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2816 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2817
2818 for (irq = 0; irq < rvu->num_vec; irq++) {
2819 if (rvu->irq_allocated[irq]) {
2820 free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2821 rvu->irq_allocated[irq] = false;
2822 }
2823 }
2824
2825 pci_free_irq_vectors(rvu->pdev);
2826 rvu->num_vec = 0;
2827 }
2828
2829 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2830 {
2831 struct rvu_pfvf *pfvf = &rvu->pf[0];
2832 int offset;
2833
2834 pfvf = &rvu->pf[0];
2835 offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2836
2837 /* Make sure there are enough MSIX vectors configured so that
2838 * VF interrupts can be handled. Offset equal to zero means
2839 * that PF vectors are not configured and overlapping AF vectors.
2840 */
2841 return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2842 offset;
2843 }
2844
2845 static int rvu_register_interrupts(struct rvu *rvu)
2846 {
2847 int ret, offset, pf_vec_start;
2848
2849 rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2850
2851 rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2852 NAME_SIZE, GFP_KERNEL);
2853 if (!rvu->irq_name)
2854 return -ENOMEM;
2855
2856 rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2857 sizeof(bool), GFP_KERNEL);
2858 if (!rvu->irq_allocated)
2859 return -ENOMEM;
2860
2861 /* Enable MSI-X */
2862 ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2863 rvu->num_vec, PCI_IRQ_MSIX);
2864 if (ret < 0) {
2865 dev_err(rvu->dev,
2866 "RVUAF: Request for %d msix vectors failed, ret %d\n",
2867 rvu->num_vec, ret);
2868 return ret;
2869 }
2870
2871 /* Register mailbox interrupt handler */
2872 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2873 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2874 rvu_mbox_intr_handler, 0,
2875 &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2876 if (ret) {
2877 dev_err(rvu->dev,
2878 "RVUAF: IRQ registration failed for mbox irq\n");
2879 goto fail;
2880 }
2881
2882 rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2883
2884 /* Enable mailbox interrupts from all PFs */
2885 rvu_enable_mbox_intr(rvu);
2886
2887 /* Register FLR interrupt handler */
2888 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2889 "RVUAF FLR");
2890 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2891 rvu_flr_intr_handler, 0,
2892 &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2893 rvu);
2894 if (ret) {
2895 dev_err(rvu->dev,
2896 "RVUAF: IRQ registration failed for FLR\n");
2897 goto fail;
2898 }
2899 rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2900
2901 /* Enable FLR interrupt for all PFs*/
2902 rvu_write64(rvu, BLKADDR_RVUM,
2903 RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2904
2905 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2906 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2907
2908 /* Register ME interrupt handler */
2909 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2910 "RVUAF ME");
2911 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2912 rvu_me_pf_intr_handler, 0,
2913 &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2914 rvu);
2915 if (ret) {
2916 dev_err(rvu->dev,
2917 "RVUAF: IRQ registration failed for ME\n");
2918 }
2919 rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2920
2921 /* Clear TRPEND bit for all PF */
2922 rvu_write64(rvu, BLKADDR_RVUM,
2923 RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2924 /* Enable ME interrupt for all PFs*/
2925 rvu_write64(rvu, BLKADDR_RVUM,
2926 RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2927
2928 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2929 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2930
2931 if (!rvu_afvf_msix_vectors_num_ok(rvu))
2932 return 0;
2933
2934 /* Get PF MSIX vectors offset. */
2935 pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2936 RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2937
2938 /* Register MBOX0 interrupt. */
2939 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2940 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2941 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2942 rvu_mbox_intr_handler, 0,
2943 &rvu->irq_name[offset * NAME_SIZE],
2944 rvu);
2945 if (ret)
2946 dev_err(rvu->dev,
2947 "RVUAF: IRQ registration failed for Mbox0\n");
2948
2949 rvu->irq_allocated[offset] = true;
2950
2951 /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2952 * simply increment current offset by 1.
2953 */
2954 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2955 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2956 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2957 rvu_mbox_intr_handler, 0,
2958 &rvu->irq_name[offset * NAME_SIZE],
2959 rvu);
2960 if (ret)
2961 dev_err(rvu->dev,
2962 "RVUAF: IRQ registration failed for Mbox1\n");
2963
2964 rvu->irq_allocated[offset] = true;
2965
2966 /* Register FLR interrupt handler for AF's VFs */
2967 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2968 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2969 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2970 rvu_flr_intr_handler, 0,
2971 &rvu->irq_name[offset * NAME_SIZE], rvu);
2972 if (ret) {
2973 dev_err(rvu->dev,
2974 "RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2975 goto fail;
2976 }
2977 rvu->irq_allocated[offset] = true;
2978
2979 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2980 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2981 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2982 rvu_flr_intr_handler, 0,
2983 &rvu->irq_name[offset * NAME_SIZE], rvu);
2984 if (ret) {
2985 dev_err(rvu->dev,
2986 "RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2987 goto fail;
2988 }
2989 rvu->irq_allocated[offset] = true;
2990
2991 /* Register ME interrupt handler for AF's VFs */
2992 offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2993 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2994 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2995 rvu_me_vf_intr_handler, 0,
2996 &rvu->irq_name[offset * NAME_SIZE], rvu);
2997 if (ret) {
2998 dev_err(rvu->dev,
2999 "RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3000 goto fail;
3001 }
3002 rvu->irq_allocated[offset] = true;
3003
3004 offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3005 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3006 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3007 rvu_me_vf_intr_handler, 0,
3008 &rvu->irq_name[offset * NAME_SIZE], rvu);
3009 if (ret) {
3010 dev_err(rvu->dev,
3011 "RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3012 goto fail;
3013 }
3014 rvu->irq_allocated[offset] = true;
3015
3016 ret = rvu_cpt_register_interrupts(rvu);
3017 if (ret)
3018 goto fail;
3019
3020 return 0;
3021
3022 fail:
3023 rvu_unregister_interrupts(rvu);
3024 return ret;
3025 }
3026
3027 static void rvu_flr_wq_destroy(struct rvu *rvu)
3028 {
3029 if (rvu->flr_wq) {
3030 destroy_workqueue(rvu->flr_wq);
3031 rvu->flr_wq = NULL;
3032 }
3033 }
3034
3035 static int rvu_flr_init(struct rvu *rvu)
3036 {
3037 int dev, num_devs;
3038 u64 cfg;
3039 int pf;
3040
3041 /* Enable FLR for all PFs*/
3042 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3043 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3044 rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3045 cfg | BIT_ULL(22));
3046 }
3047
3048 rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3049 WQ_HIGHPRI | WQ_MEM_RECLAIM);
3050 if (!rvu->flr_wq)
3051 return -ENOMEM;
3052
3053 num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3054 rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3055 sizeof(struct rvu_work), GFP_KERNEL);
3056 if (!rvu->flr_wrk) {
3057 destroy_workqueue(rvu->flr_wq);
3058 return -ENOMEM;
3059 }
3060
3061 for (dev = 0; dev < num_devs; dev++) {
3062 rvu->flr_wrk[dev].rvu = rvu;
3063 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3064 }
3065
3066 mutex_init(&rvu->flr_lock);
3067
3068 return 0;
3069 }
3070
3071 static void rvu_disable_afvf_intr(struct rvu *rvu)
3072 {
3073 int vfs = rvu->vfs;
3074
3075 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3076 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3077 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3078 if (vfs <= 64)
3079 return;
3080
3081 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3082 INTR_MASK(vfs - 64));
3083 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3084 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3085 }
3086
3087 static void rvu_enable_afvf_intr(struct rvu *rvu)
3088 {
3089 int vfs = rvu->vfs;
3090
3091 /* Clear any pending interrupts and enable AF VF interrupts for
3092 * the first 64 VFs.
3093 */
3094 /* Mbox */
3095 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3096 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3097
3098 /* FLR */
3099 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3100 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3101 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3102
3103 /* Same for remaining VFs, if any. */
3104 if (vfs <= 64)
3105 return;
3106
3107 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3108 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3109 INTR_MASK(vfs - 64));
3110
3111 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3112 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3113 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3114 }
3115
3116 int rvu_get_num_lbk_chans(void)
3117 {
3118 struct pci_dev *pdev;
3119 void __iomem *base;
3120 int ret = -EIO;
3121
3122 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3123 NULL);
3124 if (!pdev)
3125 goto err;
3126
3127 base = pci_ioremap_bar(pdev, 0);
3128 if (!base)
3129 goto err_put;
3130
3131 /* Read number of available LBK channels from LBK(0)_CONST register. */
3132 ret = (readq(base + 0x10) >> 32) & 0xffff;
3133 iounmap(base);
3134 err_put:
3135 pci_dev_put(pdev);
3136 err:
3137 return ret;
3138 }
3139
3140 static int rvu_enable_sriov(struct rvu *rvu)
3141 {
3142 struct pci_dev *pdev = rvu->pdev;
3143 int err, chans, vfs;
3144
3145 if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3146 dev_warn(&pdev->dev,
3147 "Skipping SRIOV enablement since not enough IRQs are available\n");
3148 return 0;
3149 }
3150
3151 chans = rvu_get_num_lbk_chans();
3152 if (chans < 0)
3153 return chans;
3154
3155 vfs = pci_sriov_get_totalvfs(pdev);
3156
3157 /* Limit VFs in case we have more VFs than LBK channels available. */
3158 if (vfs > chans)
3159 vfs = chans;
3160
3161 if (!vfs)
3162 return 0;
3163
3164 /* LBK channel number 63 is used for switching packets between
3165 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3166 */
3167 if (vfs > 62)
3168 vfs = 62;
3169
3170 /* Save VFs number for reference in VF interrupts handlers.
3171 * Since interrupts might start arriving during SRIOV enablement
3172 * ordinary API cannot be used to get number of enabled VFs.
3173 */
3174 rvu->vfs = vfs;
3175
3176 err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3177 rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3178 if (err)
3179 return err;
3180
3181 rvu_enable_afvf_intr(rvu);
3182 /* Make sure IRQs are enabled before SRIOV. */
3183 mb();
3184
3185 err = pci_enable_sriov(pdev, vfs);
3186 if (err) {
3187 rvu_disable_afvf_intr(rvu);
3188 rvu_mbox_destroy(&rvu->afvf_wq_info);
3189 return err;
3190 }
3191
3192 return 0;
3193 }
3194
3195 static void rvu_disable_sriov(struct rvu *rvu)
3196 {
3197 rvu_disable_afvf_intr(rvu);
3198 rvu_mbox_destroy(&rvu->afvf_wq_info);
3199 pci_disable_sriov(rvu->pdev);
3200 }
3201
3202 static void rvu_update_module_params(struct rvu *rvu)
3203 {
3204 const char *default_pfl_name = "default";
3205
3206 strscpy(rvu->mkex_pfl_name,
3207 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3208 strscpy(rvu->kpu_pfl_name,
3209 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3210 }
3211
3212 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3213 {
3214 struct device *dev = &pdev->dev;
3215 struct rvu *rvu;
3216 int err;
3217
3218 rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3219 if (!rvu)
3220 return -ENOMEM;
3221
3222 rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3223 if (!rvu->hw) {
3224 devm_kfree(dev, rvu);
3225 return -ENOMEM;
3226 }
3227
3228 pci_set_drvdata(pdev, rvu);
3229 rvu->pdev = pdev;
3230 rvu->dev = &pdev->dev;
3231
3232 err = pci_enable_device(pdev);
3233 if (err) {
3234 dev_err(dev, "Failed to enable PCI device\n");
3235 goto err_freemem;
3236 }
3237
3238 err = pci_request_regions(pdev, DRV_NAME);
3239 if (err) {
3240 dev_err(dev, "PCI request regions failed 0x%x\n", err);
3241 goto err_disable_device;
3242 }
3243
3244 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3245 if (err) {
3246 dev_err(dev, "DMA mask config failed, abort\n");
3247 goto err_release_regions;
3248 }
3249
3250 pci_set_master(pdev);
3251
3252 rvu->ptp = ptp_get();
3253 if (IS_ERR(rvu->ptp)) {
3254 err = PTR_ERR(rvu->ptp);
3255 if (err)
3256 goto err_release_regions;
3257 rvu->ptp = NULL;
3258 }
3259
3260 /* Map Admin function CSRs */
3261 rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3262 rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3263 if (!rvu->afreg_base || !rvu->pfreg_base) {
3264 dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3265 err = -ENOMEM;
3266 goto err_put_ptp;
3267 }
3268
3269 /* Store module params in rvu structure */
3270 rvu_update_module_params(rvu);
3271
3272 /* Check which blocks the HW supports */
3273 rvu_check_block_implemented(rvu);
3274
3275 rvu_reset_all_blocks(rvu);
3276
3277 rvu_setup_hw_capabilities(rvu);
3278
3279 err = rvu_setup_hw_resources(rvu);
3280 if (err)
3281 goto err_put_ptp;
3282
3283 /* Init mailbox btw AF and PFs */
3284 err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3285 rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3286 rvu_afpf_mbox_up_handler);
3287 if (err) {
3288 dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3289 goto err_hwsetup;
3290 }
3291
3292 err = rvu_flr_init(rvu);
3293 if (err) {
3294 dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3295 goto err_mbox;
3296 }
3297
3298 err = rvu_register_interrupts(rvu);
3299 if (err) {
3300 dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3301 goto err_flr;
3302 }
3303
3304 err = rvu_register_dl(rvu);
3305 if (err) {
3306 dev_err(dev, "%s: Failed to register devlink\n", __func__);
3307 goto err_irq;
3308 }
3309
3310 rvu_setup_rvum_blk_revid(rvu);
3311
3312 /* Enable AF's VFs (if any) */
3313 err = rvu_enable_sriov(rvu);
3314 if (err) {
3315 dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3316 goto err_dl;
3317 }
3318
3319 /* Initialize debugfs */
3320 rvu_dbg_init(rvu);
3321
3322 mutex_init(&rvu->rswitch.switch_lock);
3323
3324 if (rvu->fwdata)
3325 ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3326 rvu->fwdata->ptp_ext_tstamp);
3327
3328 return 0;
3329 err_dl:
3330 rvu_unregister_dl(rvu);
3331 err_irq:
3332 rvu_unregister_interrupts(rvu);
3333 err_flr:
3334 rvu_flr_wq_destroy(rvu);
3335 err_mbox:
3336 rvu_mbox_destroy(&rvu->afpf_wq_info);
3337 err_hwsetup:
3338 rvu_cgx_exit(rvu);
3339 rvu_fwdata_exit(rvu);
3340 rvu_mcs_exit(rvu);
3341 rvu_reset_all_blocks(rvu);
3342 rvu_free_hw_resources(rvu);
3343 rvu_clear_rvum_blk_revid(rvu);
3344 err_put_ptp:
3345 ptp_put(rvu->ptp);
3346 err_release_regions:
3347 pci_release_regions(pdev);
3348 err_disable_device:
3349 pci_disable_device(pdev);
3350 err_freemem:
3351 pci_set_drvdata(pdev, NULL);
3352 devm_kfree(&pdev->dev, rvu->hw);
3353 devm_kfree(dev, rvu);
3354 return err;
3355 }
3356
3357 static void rvu_remove(struct pci_dev *pdev)
3358 {
3359 struct rvu *rvu = pci_get_drvdata(pdev);
3360
3361 rvu_dbg_exit(rvu);
3362 rvu_unregister_dl(rvu);
3363 rvu_unregister_interrupts(rvu);
3364 rvu_flr_wq_destroy(rvu);
3365 rvu_cgx_exit(rvu);
3366 rvu_fwdata_exit(rvu);
3367 rvu_mcs_exit(rvu);
3368 rvu_mbox_destroy(&rvu->afpf_wq_info);
3369 rvu_disable_sriov(rvu);
3370 rvu_reset_all_blocks(rvu);
3371 rvu_free_hw_resources(rvu);
3372 rvu_clear_rvum_blk_revid(rvu);
3373 ptp_put(rvu->ptp);
3374 pci_release_regions(pdev);
3375 pci_disable_device(pdev);
3376 pci_set_drvdata(pdev, NULL);
3377
3378 devm_kfree(&pdev->dev, rvu->hw);
3379 devm_kfree(&pdev->dev, rvu);
3380 }
3381
3382 static struct pci_driver rvu_driver = {
3383 .name = DRV_NAME,
3384 .id_table = rvu_id_table,
3385 .probe = rvu_probe,
3386 .remove = rvu_remove,
3387 };
3388
3389 static int __init rvu_init_module(void)
3390 {
3391 int err;
3392
3393 pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3394
3395 err = pci_register_driver(&cgx_driver);
3396 if (err < 0)
3397 return err;
3398
3399 err = pci_register_driver(&ptp_driver);
3400 if (err < 0)
3401 goto ptp_err;
3402
3403 err = pci_register_driver(&mcs_driver);
3404 if (err < 0)
3405 goto mcs_err;
3406
3407 err = pci_register_driver(&rvu_driver);
3408 if (err < 0)
3409 goto rvu_err;
3410
3411 return 0;
3412 rvu_err:
3413 pci_unregister_driver(&mcs_driver);
3414 mcs_err:
3415 pci_unregister_driver(&ptp_driver);
3416 ptp_err:
3417 pci_unregister_driver(&cgx_driver);
3418
3419 return err;
3420 }
3421
3422 static void __exit rvu_cleanup_module(void)
3423 {
3424 pci_unregister_driver(&rvu_driver);
3425 pci_unregister_driver(&mcs_driver);
3426 pci_unregister_driver(&ptp_driver);
3427 pci_unregister_driver(&cgx_driver);
3428 }
3429
3430 module_init(rvu_init_module);
3431 module_exit(rvu_cleanup_module);