]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/qlogic/qlge/qlge_main.c
29fea74bff2e6793a0305ef154a73886f1d2a82b
[thirdparty/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147 unsigned int wait_count = 30;
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
151 udelay(100);
152 } while (--wait_count);
153 return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
188 return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217 {
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 return -ENOMEM;
232 }
233
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
242 goto exit;
243 }
244
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256 exit:
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260 }
261
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265 {
266 u32 offset = 0;
267 int status;
268
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 MAC_ADDR_MR, 0);
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
324 status = -EPERM;
325 }
326 exit:
327 return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335 {
336 u32 offset = 0;
337 int status = 0;
338
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
379 status =
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
427 status =
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
442 status = -EPERM;
443 }
444 exit:
445 return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
462 } else {
463 eth_zero_addr(zero_mac_addr);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
477 return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499 int status = 0;
500
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511 exit:
512 return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522 {
523 int status = -EINVAL; /* Return error if no mask match. */
524 u32 value = 0;
525
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614 exit:
615 return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
644 ql_write32(qdev, INTR_EN,
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
648 }
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662 u32 var = 0;
663 struct intr_context *ctx;
664
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
675 ctx->intr_dis_mask);
676 var = ql_read32(qdev, STS);
677 }
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
680 return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718 return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
751 u8 mac_addr[6];
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
756 if (!qdev->port)
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 status = -EINVAL;
780 goto exit;
781 }
782
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
802 mac_addr,
803 qdev->ndev->addr_len);
804
805 exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812 int i;
813 int status;
814 __le32 *p = (__le32 *)&qdev->flash;
815 u32 offset = 0;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
821 if (qdev->port)
822 offset = size;
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
829 if (status) {
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
832 goto exit;
833 }
834
835 }
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
855 exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922 return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927 int status;
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 return status;
942 }
943
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
965 }
966 return status;
967 }
968
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043 {
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092 {
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
1101 return -ENOMEM;
1102 }
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
1110 rx_ring->pg_chunk.page = NULL;
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
1113 return -ENOMEM;
1114 }
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 }
1118
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1121 */
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1126 */
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1135 }
1136 return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
1143 struct bq_desc *lbq_desc;
1144 u64 map;
1145 int i;
1146
1147 while (rx_ring->lbq_free_cnt > 32) {
1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
1152 lbq_desc = &rx_ring->lbq[clean_idx];
1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154 rx_ring->lbq_clean_idx = clean_idx;
1155 netif_err(qdev, ifup, qdev->ndev,
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
1158 return;
1159 }
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
1165 rx_ring->lbq_buf_size);
1166 *lbq_desc->addr = cpu_to_le64(map);
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
1189 }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
1197 struct bq_desc *sbq_desc;
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203 sbq_desc = &rx_ring->sbq[clean_idx];
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
1207 if (sbq_desc->p.skb == NULL) {
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
1214 SMALL_BUFFER_SIZE);
1215 if (sbq_desc->p.skb == NULL) {
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
1230 return;
1231 }
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
1234 rx_ring->sbq_buf_size);
1235 *sbq_desc->addr = cpu_to_le64(map);
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
1255 }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260 {
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
1287 }
1288 pci_unmap_single(qdev->pdev,
1289 dma_unmap_addr(&tx_ring_desc->map[i],
1290 mapaddr),
1291 dma_unmap_len(&tx_ring_desc->map[i],
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
1297 pci_unmap_page(qdev->pdev,
1298 dma_unmap_addr(&tx_ring_desc->map[i],
1299 mapaddr),
1300 dma_unmap_len(&tx_ring_desc->map[i],
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305 }
1306
1307 /* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394 map);
1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402 DMA_TO_DEVICE);
1403
1404 err = dma_mapping_error(&qdev->pdev->dev, map);
1405 if (err) {
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 skb_frag_size(frag));
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425 map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
1439 {
1440 struct nic_stats *stats = &qdev->nic_stats;
1441
1442 stats->rx_err_count++;
1443 rx_ring->rx_errors++;
1444
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1465 }
1466 }
1467
1468 /**
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1471 */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1475 {
1476 u16 *tags;
1477
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1488 }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1497 {
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500 struct napi_struct *napi = &rx_ring->napi;
1501
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1507 }
1508 napi->dev = qdev->ndev;
1509
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1517 }
1518 prefetch(lbq_desc->p.pg_chunk.va);
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
1523
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1528
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
1533 if (vlan_id != 0xffff)
1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535 napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1544 {
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
1550 size_t hlen = ETH_HLEN;
1551
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1557 }
1558
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1561
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1566 }
1567
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1573 */
1574 if (skb->len > ndev->mtu + hlen) {
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1579 }
1580 skb_put_data(skb, addr, hlen);
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
1590
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
1594 skb_checksum_none_assert(skb);
1595
1596 if ((ndev->features & NETIF_F_RXCSUM) &&
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
1606 struct iphdr *iph =
1607 (struct iphdr *)((u8 *)addr + hlen);
1608 if (!(iph->frag_off &
1609 htons(IP_MF|IP_OFFSET))) {
1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
1613 "UDP checksum done!\n");
1614 }
1615 }
1616 }
1617
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
1619 if (vlan_id != 0xffff)
1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
1625 return;
1626 err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1637 {
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
1647 rx_ring->rx_dropped++;
1648 return;
1649 }
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651
1652 pci_dma_sync_single_for_cpu(qdev->pdev,
1653 dma_unmap_addr(sbq_desc, mapaddr),
1654 dma_unmap_len(sbq_desc, maplen),
1655 PCI_DMA_FROMDEVICE);
1656
1657 skb_put_data(new_skb, skb->data, length);
1658
1659 pci_dma_sync_single_for_device(qdev->pdev,
1660 dma_unmap_addr(sbq_desc, mapaddr),
1661 dma_unmap_len(sbq_desc, maplen),
1662 PCI_DMA_FROMDEVICE);
1663 skb = new_skb;
1664
1665 /* Frame error, so drop the packet. */
1666 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1667 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1668 dev_kfree_skb_any(skb);
1669 return;
1670 }
1671
1672 /* loopback self test for ethtool */
1673 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1674 ql_check_lb_frame(qdev, skb);
1675 dev_kfree_skb_any(skb);
1676 return;
1677 }
1678
1679 /* The max framesize filter on this chip is set higher than
1680 * MTU since FCoE uses 2k frames.
1681 */
1682 if (skb->len > ndev->mtu + ETH_HLEN) {
1683 dev_kfree_skb_any(skb);
1684 rx_ring->rx_dropped++;
1685 return;
1686 }
1687
1688 prefetch(skb->data);
1689 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1690 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691 "%s Multicast.\n",
1692 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1693 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1694 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1695 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1696 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1697 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1698 }
1699 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1700 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1701 "Promiscuous Packet.\n");
1702
1703 rx_ring->rx_packets++;
1704 rx_ring->rx_bytes += skb->len;
1705 skb->protocol = eth_type_trans(skb, ndev);
1706 skb_checksum_none_assert(skb);
1707
1708 /* If rx checksum is on, and there are no
1709 * csum or frame errors.
1710 */
1711 if ((ndev->features & NETIF_F_RXCSUM) &&
1712 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1713 /* TCP frame. */
1714 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1715 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1716 "TCP checksum done!\n");
1717 skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1719 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1720 /* Unfragmented ipv4 UDP frame. */
1721 struct iphdr *iph = (struct iphdr *) skb->data;
1722 if (!(iph->frag_off &
1723 htons(IP_MF|IP_OFFSET))) {
1724 skb->ip_summed = CHECKSUM_UNNECESSARY;
1725 netif_printk(qdev, rx_status, KERN_DEBUG,
1726 qdev->ndev,
1727 "UDP checksum done!\n");
1728 }
1729 }
1730 }
1731
1732 skb_record_rx_queue(skb, rx_ring->cq_id);
1733 if (vlan_id != 0xffff)
1734 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1735 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1736 napi_gro_receive(&rx_ring->napi, skb);
1737 else
1738 netif_receive_skb(skb);
1739 }
1740
1741 static void ql_realign_skb(struct sk_buff *skb, int len)
1742 {
1743 void *temp_addr = skb->data;
1744
1745 /* Undo the skb_reserve(skb,32) we did before
1746 * giving to hardware, and realign data on
1747 * a 2-byte boundary.
1748 */
1749 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1750 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1751 skb_copy_to_linear_data(skb, temp_addr,
1752 (unsigned int)len);
1753 }
1754
1755 /*
1756 * This function builds an skb for the given inbound
1757 * completion. It will be rewritten for readability in the near
1758 * future, but for not it works well.
1759 */
1760 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1761 struct rx_ring *rx_ring,
1762 struct ib_mac_iocb_rsp *ib_mac_rsp)
1763 {
1764 struct bq_desc *lbq_desc;
1765 struct bq_desc *sbq_desc;
1766 struct sk_buff *skb = NULL;
1767 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1768 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1769 size_t hlen = ETH_HLEN;
1770
1771 /*
1772 * Handle the header buffer if present.
1773 */
1774 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1775 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1776 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1777 "Header of %d bytes in small buffer.\n", hdr_len);
1778 /*
1779 * Headers fit nicely into a small buffer.
1780 */
1781 sbq_desc = ql_get_curr_sbuf(rx_ring);
1782 pci_unmap_single(qdev->pdev,
1783 dma_unmap_addr(sbq_desc, mapaddr),
1784 dma_unmap_len(sbq_desc, maplen),
1785 PCI_DMA_FROMDEVICE);
1786 skb = sbq_desc->p.skb;
1787 ql_realign_skb(skb, hdr_len);
1788 skb_put(skb, hdr_len);
1789 sbq_desc->p.skb = NULL;
1790 }
1791
1792 /*
1793 * Handle the data buffer(s).
1794 */
1795 if (unlikely(!length)) { /* Is there data too? */
1796 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797 "No Data buffer in this packet.\n");
1798 return skb;
1799 }
1800
1801 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1802 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1803 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1804 "Headers in small, data of %d bytes in small, combine them.\n",
1805 length);
1806 /*
1807 * Data is less than small buffer size so it's
1808 * stuffed in a small buffer.
1809 * For this case we append the data
1810 * from the "data" small buffer to the "header" small
1811 * buffer.
1812 */
1813 sbq_desc = ql_get_curr_sbuf(rx_ring);
1814 pci_dma_sync_single_for_cpu(qdev->pdev,
1815 dma_unmap_addr
1816 (sbq_desc, mapaddr),
1817 dma_unmap_len
1818 (sbq_desc, maplen),
1819 PCI_DMA_FROMDEVICE);
1820 skb_put_data(skb, sbq_desc->p.skb->data, length);
1821 pci_dma_sync_single_for_device(qdev->pdev,
1822 dma_unmap_addr
1823 (sbq_desc,
1824 mapaddr),
1825 dma_unmap_len
1826 (sbq_desc,
1827 maplen),
1828 PCI_DMA_FROMDEVICE);
1829 } else {
1830 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1831 "%d bytes in a single small buffer.\n",
1832 length);
1833 sbq_desc = ql_get_curr_sbuf(rx_ring);
1834 skb = sbq_desc->p.skb;
1835 ql_realign_skb(skb, length);
1836 skb_put(skb, length);
1837 pci_unmap_single(qdev->pdev,
1838 dma_unmap_addr(sbq_desc,
1839 mapaddr),
1840 dma_unmap_len(sbq_desc,
1841 maplen),
1842 PCI_DMA_FROMDEVICE);
1843 sbq_desc->p.skb = NULL;
1844 }
1845 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1846 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1847 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1848 "Header in small, %d bytes in large. Chain large to small!\n",
1849 length);
1850 /*
1851 * The data is in a single large buffer. We
1852 * chain it to the header buffer's skb and let
1853 * it rip.
1854 */
1855 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1856 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1857 "Chaining page at offset = %d, for %d bytes to skb.\n",
1858 lbq_desc->p.pg_chunk.offset, length);
1859 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1860 lbq_desc->p.pg_chunk.offset,
1861 length);
1862 skb->len += length;
1863 skb->data_len += length;
1864 skb->truesize += length;
1865 } else {
1866 /*
1867 * The headers and data are in a single large buffer. We
1868 * copy it to a new skb and let it go. This can happen with
1869 * jumbo mtu on a non-TCP/UDP frame.
1870 */
1871 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1872 skb = netdev_alloc_skb(qdev->ndev, length);
1873 if (skb == NULL) {
1874 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1875 "No skb available, drop the packet.\n");
1876 return NULL;
1877 }
1878 pci_unmap_page(qdev->pdev,
1879 dma_unmap_addr(lbq_desc,
1880 mapaddr),
1881 dma_unmap_len(lbq_desc, maplen),
1882 PCI_DMA_FROMDEVICE);
1883 skb_reserve(skb, NET_IP_ALIGN);
1884 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1885 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1886 length);
1887 skb_fill_page_desc(skb, 0,
1888 lbq_desc->p.pg_chunk.page,
1889 lbq_desc->p.pg_chunk.offset,
1890 length);
1891 skb->len += length;
1892 skb->data_len += length;
1893 skb->truesize += length;
1894 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1895 lbq_desc->p.pg_chunk.va,
1896 &hlen);
1897 __pskb_pull_tail(skb, hlen);
1898 }
1899 } else {
1900 /*
1901 * The data is in a chain of large buffers
1902 * pointed to by a small buffer. We loop
1903 * thru and chain them to the our small header
1904 * buffer's skb.
1905 * frags: There are 18 max frags and our small
1906 * buffer will hold 32 of them. The thing is,
1907 * we'll use 3 max for our 9000 byte jumbo
1908 * frames. If the MTU goes up we could
1909 * eventually be in trouble.
1910 */
1911 int size, i = 0;
1912 sbq_desc = ql_get_curr_sbuf(rx_ring);
1913 pci_unmap_single(qdev->pdev,
1914 dma_unmap_addr(sbq_desc, mapaddr),
1915 dma_unmap_len(sbq_desc, maplen),
1916 PCI_DMA_FROMDEVICE);
1917 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1918 /*
1919 * This is an non TCP/UDP IP frame, so
1920 * the headers aren't split into a small
1921 * buffer. We have to use the small buffer
1922 * that contains our sg list as our skb to
1923 * send upstairs. Copy the sg list here to
1924 * a local buffer and use it to find the
1925 * pages to chain.
1926 */
1927 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1928 "%d bytes of headers & data in chain of large.\n",
1929 length);
1930 skb = sbq_desc->p.skb;
1931 sbq_desc->p.skb = NULL;
1932 skb_reserve(skb, NET_IP_ALIGN);
1933 }
1934 do {
1935 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1936 size = (length < rx_ring->lbq_buf_size) ? length :
1937 rx_ring->lbq_buf_size;
1938
1939 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1940 "Adding page %d to skb for %d bytes.\n",
1941 i, size);
1942 skb_fill_page_desc(skb, i,
1943 lbq_desc->p.pg_chunk.page,
1944 lbq_desc->p.pg_chunk.offset,
1945 size);
1946 skb->len += size;
1947 skb->data_len += size;
1948 skb->truesize += size;
1949 length -= size;
1950 i++;
1951 } while (length > 0);
1952 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1953 &hlen);
1954 __pskb_pull_tail(skb, hlen);
1955 }
1956 return skb;
1957 }
1958
1959 /* Process an inbound completion from an rx ring. */
1960 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1961 struct rx_ring *rx_ring,
1962 struct ib_mac_iocb_rsp *ib_mac_rsp,
1963 u16 vlan_id)
1964 {
1965 struct net_device *ndev = qdev->ndev;
1966 struct sk_buff *skb = NULL;
1967
1968 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1969
1970 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1971 if (unlikely(!skb)) {
1972 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1973 "No skb available, drop packet.\n");
1974 rx_ring->rx_dropped++;
1975 return;
1976 }
1977
1978 /* Frame error, so drop the packet. */
1979 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1980 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1981 dev_kfree_skb_any(skb);
1982 return;
1983 }
1984
1985 /* The max framesize filter on this chip is set higher than
1986 * MTU since FCoE uses 2k frames.
1987 */
1988 if (skb->len > ndev->mtu + ETH_HLEN) {
1989 dev_kfree_skb_any(skb);
1990 rx_ring->rx_dropped++;
1991 return;
1992 }
1993
1994 /* loopback self test for ethtool */
1995 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1996 ql_check_lb_frame(qdev, skb);
1997 dev_kfree_skb_any(skb);
1998 return;
1999 }
2000
2001 prefetch(skb->data);
2002 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2003 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2004 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2005 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2006 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2008 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2009 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2010 rx_ring->rx_multicast++;
2011 }
2012 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2013 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2014 "Promiscuous Packet.\n");
2015 }
2016
2017 skb->protocol = eth_type_trans(skb, ndev);
2018 skb_checksum_none_assert(skb);
2019
2020 /* If rx checksum is on, and there are no
2021 * csum or frame errors.
2022 */
2023 if ((ndev->features & NETIF_F_RXCSUM) &&
2024 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2025 /* TCP frame. */
2026 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2027 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2028 "TCP checksum done!\n");
2029 skb->ip_summed = CHECKSUM_UNNECESSARY;
2030 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2031 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2032 /* Unfragmented ipv4 UDP frame. */
2033 struct iphdr *iph = (struct iphdr *) skb->data;
2034 if (!(iph->frag_off &
2035 htons(IP_MF|IP_OFFSET))) {
2036 skb->ip_summed = CHECKSUM_UNNECESSARY;
2037 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2038 "TCP checksum done!\n");
2039 }
2040 }
2041 }
2042
2043 rx_ring->rx_packets++;
2044 rx_ring->rx_bytes += skb->len;
2045 skb_record_rx_queue(skb, rx_ring->cq_id);
2046 if (vlan_id != 0xffff)
2047 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2048 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2049 napi_gro_receive(&rx_ring->napi, skb);
2050 else
2051 netif_receive_skb(skb);
2052 }
2053
2054 /* Process an inbound completion from an rx ring. */
2055 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2056 struct rx_ring *rx_ring,
2057 struct ib_mac_iocb_rsp *ib_mac_rsp)
2058 {
2059 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2060 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2061 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2062 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2063 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2064
2065 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2066
2067 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2068 /* The data and headers are split into
2069 * separate buffers.
2070 */
2071 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2072 vlan_id);
2073 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2074 /* The data fit in a single small buffer.
2075 * Allocate a new skb, copy the data and
2076 * return the buffer to the free pool.
2077 */
2078 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2079 length, vlan_id);
2080 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2081 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2082 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2083 /* TCP packet in a page chunk that's been checksummed.
2084 * Tack it on to our GRO skb and let it go.
2085 */
2086 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2087 length, vlan_id);
2088 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2089 /* Non-TCP packet in a page chunk. Allocate an
2090 * skb, tack it on frags, and send it up.
2091 */
2092 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2093 length, vlan_id);
2094 } else {
2095 /* Non-TCP/UDP large frames that span multiple buffers
2096 * can be processed corrrectly by the split frame logic.
2097 */
2098 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2099 vlan_id);
2100 }
2101
2102 return (unsigned long)length;
2103 }
2104
2105 /* Process an outbound completion from an rx ring. */
2106 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2107 struct ob_mac_iocb_rsp *mac_rsp)
2108 {
2109 struct tx_ring *tx_ring;
2110 struct tx_ring_desc *tx_ring_desc;
2111
2112 QL_DUMP_OB_MAC_RSP(mac_rsp);
2113 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2114 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2115 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2116 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2117 tx_ring->tx_packets++;
2118 dev_kfree_skb(tx_ring_desc->skb);
2119 tx_ring_desc->skb = NULL;
2120
2121 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2122 OB_MAC_IOCB_RSP_S |
2123 OB_MAC_IOCB_RSP_L |
2124 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2125 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2126 netif_warn(qdev, tx_done, qdev->ndev,
2127 "Total descriptor length did not match transfer length.\n");
2128 }
2129 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2130 netif_warn(qdev, tx_done, qdev->ndev,
2131 "Frame too short to be valid, not sent.\n");
2132 }
2133 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2134 netif_warn(qdev, tx_done, qdev->ndev,
2135 "Frame too long, but sent anyway.\n");
2136 }
2137 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2138 netif_warn(qdev, tx_done, qdev->ndev,
2139 "PCI backplane error. Frame not sent.\n");
2140 }
2141 }
2142 atomic_inc(&tx_ring->tx_count);
2143 }
2144
2145 /* Fire up a handler to reset the MPI processor. */
2146 void ql_queue_fw_error(struct ql_adapter *qdev)
2147 {
2148 ql_link_off(qdev);
2149 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2150 }
2151
2152 void ql_queue_asic_error(struct ql_adapter *qdev)
2153 {
2154 ql_link_off(qdev);
2155 ql_disable_interrupts(qdev);
2156 /* Clear adapter up bit to signal the recovery
2157 * process that it shouldn't kill the reset worker
2158 * thread
2159 */
2160 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2161 /* Set asic recovery bit to indicate reset process that we are
2162 * in fatal error recovery process rather than normal close
2163 */
2164 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2165 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2166 }
2167
2168 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2169 struct ib_ae_iocb_rsp *ib_ae_rsp)
2170 {
2171 switch (ib_ae_rsp->event) {
2172 case MGMT_ERR_EVENT:
2173 netif_err(qdev, rx_err, qdev->ndev,
2174 "Management Processor Fatal Error.\n");
2175 ql_queue_fw_error(qdev);
2176 return;
2177
2178 case CAM_LOOKUP_ERR_EVENT:
2179 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2180 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2181 ql_queue_asic_error(qdev);
2182 return;
2183
2184 case SOFT_ECC_ERROR_EVENT:
2185 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2186 ql_queue_asic_error(qdev);
2187 break;
2188
2189 case PCI_ERR_ANON_BUF_RD:
2190 netdev_err(qdev->ndev, "PCI error occurred when reading "
2191 "anonymous buffers from rx_ring %d.\n",
2192 ib_ae_rsp->q_id);
2193 ql_queue_asic_error(qdev);
2194 break;
2195
2196 default:
2197 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2198 ib_ae_rsp->event);
2199 ql_queue_asic_error(qdev);
2200 break;
2201 }
2202 }
2203
2204 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2205 {
2206 struct ql_adapter *qdev = rx_ring->qdev;
2207 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2208 struct ob_mac_iocb_rsp *net_rsp = NULL;
2209 int count = 0;
2210
2211 struct tx_ring *tx_ring;
2212 /* While there are entries in the completion queue. */
2213 while (prod != rx_ring->cnsmr_idx) {
2214
2215 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2216 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2217 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2218
2219 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2220 rmb();
2221 switch (net_rsp->opcode) {
2222
2223 case OPCODE_OB_MAC_TSO_IOCB:
2224 case OPCODE_OB_MAC_IOCB:
2225 ql_process_mac_tx_intr(qdev, net_rsp);
2226 break;
2227 default:
2228 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2229 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2230 net_rsp->opcode);
2231 }
2232 count++;
2233 ql_update_cq(rx_ring);
2234 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2235 }
2236 if (!net_rsp)
2237 return 0;
2238 ql_write_cq_idx(rx_ring);
2239 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2240 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2241 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2242 /*
2243 * The queue got stopped because the tx_ring was full.
2244 * Wake it up, because it's now at least 25% empty.
2245 */
2246 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2247 }
2248
2249 return count;
2250 }
2251
2252 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2253 {
2254 struct ql_adapter *qdev = rx_ring->qdev;
2255 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2256 struct ql_net_rsp_iocb *net_rsp;
2257 int count = 0;
2258
2259 /* While there are entries in the completion queue. */
2260 while (prod != rx_ring->cnsmr_idx) {
2261
2262 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2263 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2264 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2265
2266 net_rsp = rx_ring->curr_entry;
2267 rmb();
2268 switch (net_rsp->opcode) {
2269 case OPCODE_IB_MAC_IOCB:
2270 ql_process_mac_rx_intr(qdev, rx_ring,
2271 (struct ib_mac_iocb_rsp *)
2272 net_rsp);
2273 break;
2274
2275 case OPCODE_IB_AE_IOCB:
2276 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2277 net_rsp);
2278 break;
2279 default:
2280 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2281 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2282 net_rsp->opcode);
2283 break;
2284 }
2285 count++;
2286 ql_update_cq(rx_ring);
2287 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2288 if (count == budget)
2289 break;
2290 }
2291 ql_update_buffer_queues(qdev, rx_ring);
2292 ql_write_cq_idx(rx_ring);
2293 return count;
2294 }
2295
2296 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2297 {
2298 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2299 struct ql_adapter *qdev = rx_ring->qdev;
2300 struct rx_ring *trx_ring;
2301 int i, work_done = 0;
2302 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2303
2304 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2305 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2306
2307 /* Service the TX rings first. They start
2308 * right after the RSS rings. */
2309 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2310 trx_ring = &qdev->rx_ring[i];
2311 /* If this TX completion ring belongs to this vector and
2312 * it's not empty then service it.
2313 */
2314 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2315 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2316 trx_ring->cnsmr_idx)) {
2317 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2318 "%s: Servicing TX completion ring %d.\n",
2319 __func__, trx_ring->cq_id);
2320 ql_clean_outbound_rx_ring(trx_ring);
2321 }
2322 }
2323
2324 /*
2325 * Now service the RSS ring if it's active.
2326 */
2327 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2328 rx_ring->cnsmr_idx) {
2329 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2330 "%s: Servicing RX completion ring %d.\n",
2331 __func__, rx_ring->cq_id);
2332 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2333 }
2334
2335 if (work_done < budget) {
2336 napi_complete_done(napi, work_done);
2337 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2338 }
2339 return work_done;
2340 }
2341
2342 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2343 {
2344 struct ql_adapter *qdev = netdev_priv(ndev);
2345
2346 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2347 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2348 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2349 } else {
2350 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2351 }
2352 }
2353
2354 /**
2355 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2356 * based on the features to enable/disable hardware vlan accel
2357 */
2358 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2359 netdev_features_t features)
2360 {
2361 struct ql_adapter *qdev = netdev_priv(ndev);
2362 int status = 0;
2363 bool need_restart = netif_running(ndev);
2364
2365 if (need_restart) {
2366 status = ql_adapter_down(qdev);
2367 if (status) {
2368 netif_err(qdev, link, qdev->ndev,
2369 "Failed to bring down the adapter\n");
2370 return status;
2371 }
2372 }
2373
2374 /* update the features with resent change */
2375 ndev->features = features;
2376
2377 if (need_restart) {
2378 status = ql_adapter_up(qdev);
2379 if (status) {
2380 netif_err(qdev, link, qdev->ndev,
2381 "Failed to bring up the adapter\n");
2382 return status;
2383 }
2384 }
2385
2386 return status;
2387 }
2388
2389 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2390 netdev_features_t features)
2391 {
2392 int err;
2393
2394 /* Update the behavior of vlan accel in the adapter */
2395 err = qlge_update_hw_vlan_features(ndev, features);
2396 if (err)
2397 return err;
2398
2399 return features;
2400 }
2401
2402 static int qlge_set_features(struct net_device *ndev,
2403 netdev_features_t features)
2404 {
2405 netdev_features_t changed = ndev->features ^ features;
2406
2407 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2408 qlge_vlan_mode(ndev, features);
2409
2410 return 0;
2411 }
2412
2413 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2414 {
2415 u32 enable_bit = MAC_ADDR_E;
2416 int err;
2417
2418 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2419 MAC_ADDR_TYPE_VLAN, vid);
2420 if (err)
2421 netif_err(qdev, ifup, qdev->ndev,
2422 "Failed to init vlan address.\n");
2423 return err;
2424 }
2425
2426 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2427 {
2428 struct ql_adapter *qdev = netdev_priv(ndev);
2429 int status;
2430 int err;
2431
2432 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2433 if (status)
2434 return status;
2435
2436 err = __qlge_vlan_rx_add_vid(qdev, vid);
2437 set_bit(vid, qdev->active_vlans);
2438
2439 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2440
2441 return err;
2442 }
2443
2444 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2445 {
2446 u32 enable_bit = 0;
2447 int err;
2448
2449 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2450 MAC_ADDR_TYPE_VLAN, vid);
2451 if (err)
2452 netif_err(qdev, ifup, qdev->ndev,
2453 "Failed to clear vlan address.\n");
2454 return err;
2455 }
2456
2457 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2458 {
2459 struct ql_adapter *qdev = netdev_priv(ndev);
2460 int status;
2461 int err;
2462
2463 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2464 if (status)
2465 return status;
2466
2467 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2468 clear_bit(vid, qdev->active_vlans);
2469
2470 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2471
2472 return err;
2473 }
2474
2475 static void qlge_restore_vlan(struct ql_adapter *qdev)
2476 {
2477 int status;
2478 u16 vid;
2479
2480 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2481 if (status)
2482 return;
2483
2484 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2485 __qlge_vlan_rx_add_vid(qdev, vid);
2486
2487 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2488 }
2489
2490 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2491 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2492 {
2493 struct rx_ring *rx_ring = dev_id;
2494 napi_schedule(&rx_ring->napi);
2495 return IRQ_HANDLED;
2496 }
2497
2498 /* This handles a fatal error, MPI activity, and the default
2499 * rx_ring in an MSI-X multiple vector environment.
2500 * In MSI/Legacy environment it also process the rest of
2501 * the rx_rings.
2502 */
2503 static irqreturn_t qlge_isr(int irq, void *dev_id)
2504 {
2505 struct rx_ring *rx_ring = dev_id;
2506 struct ql_adapter *qdev = rx_ring->qdev;
2507 struct intr_context *intr_context = &qdev->intr_context[0];
2508 u32 var;
2509 int work_done = 0;
2510
2511 spin_lock(&qdev->hw_lock);
2512 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2513 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2514 "Shared Interrupt, Not ours!\n");
2515 spin_unlock(&qdev->hw_lock);
2516 return IRQ_NONE;
2517 }
2518 spin_unlock(&qdev->hw_lock);
2519
2520 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2521
2522 /*
2523 * Check for fatal error.
2524 */
2525 if (var & STS_FE) {
2526 ql_queue_asic_error(qdev);
2527 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2528 var = ql_read32(qdev, ERR_STS);
2529 netdev_err(qdev->ndev, "Resetting chip. "
2530 "Error Status Register = 0x%x\n", var);
2531 return IRQ_HANDLED;
2532 }
2533
2534 /*
2535 * Check MPI processor activity.
2536 */
2537 if ((var & STS_PI) &&
2538 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2539 /*
2540 * We've got an async event or mailbox completion.
2541 * Handle it and clear the source of the interrupt.
2542 */
2543 netif_err(qdev, intr, qdev->ndev,
2544 "Got MPI processor interrupt.\n");
2545 ql_disable_completion_interrupt(qdev, intr_context->intr);
2546 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2547 queue_delayed_work_on(smp_processor_id(),
2548 qdev->workqueue, &qdev->mpi_work, 0);
2549 work_done++;
2550 }
2551
2552 /*
2553 * Get the bit-mask that shows the active queues for this
2554 * pass. Compare it to the queues that this irq services
2555 * and call napi if there's a match.
2556 */
2557 var = ql_read32(qdev, ISR1);
2558 if (var & intr_context->irq_mask) {
2559 netif_info(qdev, intr, qdev->ndev,
2560 "Waking handler for rx_ring[0].\n");
2561 ql_disable_completion_interrupt(qdev, intr_context->intr);
2562 napi_schedule(&rx_ring->napi);
2563 work_done++;
2564 }
2565 ql_enable_completion_interrupt(qdev, intr_context->intr);
2566 return work_done ? IRQ_HANDLED : IRQ_NONE;
2567 }
2568
2569 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2570 {
2571
2572 if (skb_is_gso(skb)) {
2573 int err;
2574 __be16 l3_proto = vlan_get_protocol(skb);
2575
2576 err = skb_cow_head(skb, 0);
2577 if (err < 0)
2578 return err;
2579
2580 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2581 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2582 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2583 mac_iocb_ptr->total_hdrs_len =
2584 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2585 mac_iocb_ptr->net_trans_offset =
2586 cpu_to_le16(skb_network_offset(skb) |
2587 skb_transport_offset(skb)
2588 << OB_MAC_TRANSPORT_HDR_SHIFT);
2589 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2590 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2591 if (likely(l3_proto == htons(ETH_P_IP))) {
2592 struct iphdr *iph = ip_hdr(skb);
2593 iph->check = 0;
2594 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2595 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2596 iph->daddr, 0,
2597 IPPROTO_TCP,
2598 0);
2599 } else if (l3_proto == htons(ETH_P_IPV6)) {
2600 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2601 tcp_hdr(skb)->check =
2602 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2603 &ipv6_hdr(skb)->daddr,
2604 0, IPPROTO_TCP, 0);
2605 }
2606 return 1;
2607 }
2608 return 0;
2609 }
2610
2611 static void ql_hw_csum_setup(struct sk_buff *skb,
2612 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2613 {
2614 int len;
2615 struct iphdr *iph = ip_hdr(skb);
2616 __sum16 *check;
2617 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2618 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2619 mac_iocb_ptr->net_trans_offset =
2620 cpu_to_le16(skb_network_offset(skb) |
2621 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2622
2623 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2624 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2625 if (likely(iph->protocol == IPPROTO_TCP)) {
2626 check = &(tcp_hdr(skb)->check);
2627 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2628 mac_iocb_ptr->total_hdrs_len =
2629 cpu_to_le16(skb_transport_offset(skb) +
2630 (tcp_hdr(skb)->doff << 2));
2631 } else {
2632 check = &(udp_hdr(skb)->check);
2633 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2634 mac_iocb_ptr->total_hdrs_len =
2635 cpu_to_le16(skb_transport_offset(skb) +
2636 sizeof(struct udphdr));
2637 }
2638 *check = ~csum_tcpudp_magic(iph->saddr,
2639 iph->daddr, len, iph->protocol, 0);
2640 }
2641
2642 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2643 {
2644 struct tx_ring_desc *tx_ring_desc;
2645 struct ob_mac_iocb_req *mac_iocb_ptr;
2646 struct ql_adapter *qdev = netdev_priv(ndev);
2647 int tso;
2648 struct tx_ring *tx_ring;
2649 u32 tx_ring_idx = (u32) skb->queue_mapping;
2650
2651 tx_ring = &qdev->tx_ring[tx_ring_idx];
2652
2653 if (skb_padto(skb, ETH_ZLEN))
2654 return NETDEV_TX_OK;
2655
2656 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2657 netif_info(qdev, tx_queued, qdev->ndev,
2658 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2659 __func__, tx_ring_idx);
2660 netif_stop_subqueue(ndev, tx_ring->wq_id);
2661 tx_ring->tx_errors++;
2662 return NETDEV_TX_BUSY;
2663 }
2664 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2665 mac_iocb_ptr = tx_ring_desc->queue_entry;
2666 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2667
2668 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2669 mac_iocb_ptr->tid = tx_ring_desc->index;
2670 /* We use the upper 32-bits to store the tx queue for this IO.
2671 * When we get the completion we can use it to establish the context.
2672 */
2673 mac_iocb_ptr->txq_idx = tx_ring_idx;
2674 tx_ring_desc->skb = skb;
2675
2676 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2677
2678 if (skb_vlan_tag_present(skb)) {
2679 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2680 "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2681 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2682 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2683 }
2684 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2685 if (tso < 0) {
2686 dev_kfree_skb_any(skb);
2687 return NETDEV_TX_OK;
2688 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2689 ql_hw_csum_setup(skb,
2690 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2691 }
2692 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2693 NETDEV_TX_OK) {
2694 netif_err(qdev, tx_queued, qdev->ndev,
2695 "Could not map the segments.\n");
2696 tx_ring->tx_errors++;
2697 return NETDEV_TX_BUSY;
2698 }
2699 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2700 tx_ring->prod_idx++;
2701 if (tx_ring->prod_idx == tx_ring->wq_len)
2702 tx_ring->prod_idx = 0;
2703 wmb();
2704
2705 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2706 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2707 "tx queued, slot %d, len %d\n",
2708 tx_ring->prod_idx, skb->len);
2709
2710 atomic_dec(&tx_ring->tx_count);
2711
2712 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2713 netif_stop_subqueue(ndev, tx_ring->wq_id);
2714 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2715 /*
2716 * The queue got stopped because the tx_ring was full.
2717 * Wake it up, because it's now at least 25% empty.
2718 */
2719 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2720 }
2721 return NETDEV_TX_OK;
2722 }
2723
2724
2725 static void ql_free_shadow_space(struct ql_adapter *qdev)
2726 {
2727 if (qdev->rx_ring_shadow_reg_area) {
2728 pci_free_consistent(qdev->pdev,
2729 PAGE_SIZE,
2730 qdev->rx_ring_shadow_reg_area,
2731 qdev->rx_ring_shadow_reg_dma);
2732 qdev->rx_ring_shadow_reg_area = NULL;
2733 }
2734 if (qdev->tx_ring_shadow_reg_area) {
2735 pci_free_consistent(qdev->pdev,
2736 PAGE_SIZE,
2737 qdev->tx_ring_shadow_reg_area,
2738 qdev->tx_ring_shadow_reg_dma);
2739 qdev->tx_ring_shadow_reg_area = NULL;
2740 }
2741 }
2742
2743 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2744 {
2745 qdev->rx_ring_shadow_reg_area =
2746 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2747 &qdev->rx_ring_shadow_reg_dma);
2748 if (qdev->rx_ring_shadow_reg_area == NULL) {
2749 netif_err(qdev, ifup, qdev->ndev,
2750 "Allocation of RX shadow space failed.\n");
2751 return -ENOMEM;
2752 }
2753
2754 qdev->tx_ring_shadow_reg_area =
2755 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2756 &qdev->tx_ring_shadow_reg_dma);
2757 if (qdev->tx_ring_shadow_reg_area == NULL) {
2758 netif_err(qdev, ifup, qdev->ndev,
2759 "Allocation of TX shadow space failed.\n");
2760 goto err_wqp_sh_area;
2761 }
2762 return 0;
2763
2764 err_wqp_sh_area:
2765 pci_free_consistent(qdev->pdev,
2766 PAGE_SIZE,
2767 qdev->rx_ring_shadow_reg_area,
2768 qdev->rx_ring_shadow_reg_dma);
2769 return -ENOMEM;
2770 }
2771
2772 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2773 {
2774 struct tx_ring_desc *tx_ring_desc;
2775 int i;
2776 struct ob_mac_iocb_req *mac_iocb_ptr;
2777
2778 mac_iocb_ptr = tx_ring->wq_base;
2779 tx_ring_desc = tx_ring->q;
2780 for (i = 0; i < tx_ring->wq_len; i++) {
2781 tx_ring_desc->index = i;
2782 tx_ring_desc->skb = NULL;
2783 tx_ring_desc->queue_entry = mac_iocb_ptr;
2784 mac_iocb_ptr++;
2785 tx_ring_desc++;
2786 }
2787 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2788 }
2789
2790 static void ql_free_tx_resources(struct ql_adapter *qdev,
2791 struct tx_ring *tx_ring)
2792 {
2793 if (tx_ring->wq_base) {
2794 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2795 tx_ring->wq_base, tx_ring->wq_base_dma);
2796 tx_ring->wq_base = NULL;
2797 }
2798 kfree(tx_ring->q);
2799 tx_ring->q = NULL;
2800 }
2801
2802 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2803 struct tx_ring *tx_ring)
2804 {
2805 tx_ring->wq_base =
2806 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2807 &tx_ring->wq_base_dma);
2808
2809 if ((tx_ring->wq_base == NULL) ||
2810 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2811 goto pci_alloc_err;
2812
2813 tx_ring->q =
2814 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2815 if (tx_ring->q == NULL)
2816 goto err;
2817
2818 return 0;
2819 err:
2820 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2821 tx_ring->wq_base, tx_ring->wq_base_dma);
2822 tx_ring->wq_base = NULL;
2823 pci_alloc_err:
2824 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2825 return -ENOMEM;
2826 }
2827
2828 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2829 {
2830 struct bq_desc *lbq_desc;
2831
2832 uint32_t curr_idx, clean_idx;
2833
2834 curr_idx = rx_ring->lbq_curr_idx;
2835 clean_idx = rx_ring->lbq_clean_idx;
2836 while (curr_idx != clean_idx) {
2837 lbq_desc = &rx_ring->lbq[curr_idx];
2838
2839 if (lbq_desc->p.pg_chunk.last_flag) {
2840 pci_unmap_page(qdev->pdev,
2841 lbq_desc->p.pg_chunk.map,
2842 ql_lbq_block_size(qdev),
2843 PCI_DMA_FROMDEVICE);
2844 lbq_desc->p.pg_chunk.last_flag = 0;
2845 }
2846
2847 put_page(lbq_desc->p.pg_chunk.page);
2848 lbq_desc->p.pg_chunk.page = NULL;
2849
2850 if (++curr_idx == rx_ring->lbq_len)
2851 curr_idx = 0;
2852
2853 }
2854 if (rx_ring->pg_chunk.page) {
2855 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2856 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2857 put_page(rx_ring->pg_chunk.page);
2858 rx_ring->pg_chunk.page = NULL;
2859 }
2860 }
2861
2862 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2863 {
2864 int i;
2865 struct bq_desc *sbq_desc;
2866
2867 for (i = 0; i < rx_ring->sbq_len; i++) {
2868 sbq_desc = &rx_ring->sbq[i];
2869 if (sbq_desc == NULL) {
2870 netif_err(qdev, ifup, qdev->ndev,
2871 "sbq_desc %d is NULL.\n", i);
2872 return;
2873 }
2874 if (sbq_desc->p.skb) {
2875 pci_unmap_single(qdev->pdev,
2876 dma_unmap_addr(sbq_desc, mapaddr),
2877 dma_unmap_len(sbq_desc, maplen),
2878 PCI_DMA_FROMDEVICE);
2879 dev_kfree_skb(sbq_desc->p.skb);
2880 sbq_desc->p.skb = NULL;
2881 }
2882 }
2883 }
2884
2885 /* Free all large and small rx buffers associated
2886 * with the completion queues for this device.
2887 */
2888 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2889 {
2890 int i;
2891 struct rx_ring *rx_ring;
2892
2893 for (i = 0; i < qdev->rx_ring_count; i++) {
2894 rx_ring = &qdev->rx_ring[i];
2895 if (rx_ring->lbq)
2896 ql_free_lbq_buffers(qdev, rx_ring);
2897 if (rx_ring->sbq)
2898 ql_free_sbq_buffers(qdev, rx_ring);
2899 }
2900 }
2901
2902 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2903 {
2904 struct rx_ring *rx_ring;
2905 int i;
2906
2907 for (i = 0; i < qdev->rx_ring_count; i++) {
2908 rx_ring = &qdev->rx_ring[i];
2909 if (rx_ring->type != TX_Q)
2910 ql_update_buffer_queues(qdev, rx_ring);
2911 }
2912 }
2913
2914 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2915 struct rx_ring *rx_ring)
2916 {
2917 int i;
2918 struct bq_desc *lbq_desc;
2919 __le64 *bq = rx_ring->lbq_base;
2920
2921 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2922 for (i = 0; i < rx_ring->lbq_len; i++) {
2923 lbq_desc = &rx_ring->lbq[i];
2924 memset(lbq_desc, 0, sizeof(*lbq_desc));
2925 lbq_desc->index = i;
2926 lbq_desc->addr = bq;
2927 bq++;
2928 }
2929 }
2930
2931 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2932 struct rx_ring *rx_ring)
2933 {
2934 int i;
2935 struct bq_desc *sbq_desc;
2936 __le64 *bq = rx_ring->sbq_base;
2937
2938 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2939 for (i = 0; i < rx_ring->sbq_len; i++) {
2940 sbq_desc = &rx_ring->sbq[i];
2941 memset(sbq_desc, 0, sizeof(*sbq_desc));
2942 sbq_desc->index = i;
2943 sbq_desc->addr = bq;
2944 bq++;
2945 }
2946 }
2947
2948 static void ql_free_rx_resources(struct ql_adapter *qdev,
2949 struct rx_ring *rx_ring)
2950 {
2951 /* Free the small buffer queue. */
2952 if (rx_ring->sbq_base) {
2953 pci_free_consistent(qdev->pdev,
2954 rx_ring->sbq_size,
2955 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2956 rx_ring->sbq_base = NULL;
2957 }
2958
2959 /* Free the small buffer queue control blocks. */
2960 kfree(rx_ring->sbq);
2961 rx_ring->sbq = NULL;
2962
2963 /* Free the large buffer queue. */
2964 if (rx_ring->lbq_base) {
2965 pci_free_consistent(qdev->pdev,
2966 rx_ring->lbq_size,
2967 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2968 rx_ring->lbq_base = NULL;
2969 }
2970
2971 /* Free the large buffer queue control blocks. */
2972 kfree(rx_ring->lbq);
2973 rx_ring->lbq = NULL;
2974
2975 /* Free the rx queue. */
2976 if (rx_ring->cq_base) {
2977 pci_free_consistent(qdev->pdev,
2978 rx_ring->cq_size,
2979 rx_ring->cq_base, rx_ring->cq_base_dma);
2980 rx_ring->cq_base = NULL;
2981 }
2982 }
2983
2984 /* Allocate queues and buffers for this completions queue based
2985 * on the values in the parameter structure. */
2986 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2987 struct rx_ring *rx_ring)
2988 {
2989
2990 /*
2991 * Allocate the completion queue for this rx_ring.
2992 */
2993 rx_ring->cq_base =
2994 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2995 &rx_ring->cq_base_dma);
2996
2997 if (rx_ring->cq_base == NULL) {
2998 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2999 return -ENOMEM;
3000 }
3001
3002 if (rx_ring->sbq_len) {
3003 /*
3004 * Allocate small buffer queue.
3005 */
3006 rx_ring->sbq_base =
3007 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3008 &rx_ring->sbq_base_dma);
3009
3010 if (rx_ring->sbq_base == NULL) {
3011 netif_err(qdev, ifup, qdev->ndev,
3012 "Small buffer queue allocation failed.\n");
3013 goto err_mem;
3014 }
3015
3016 /*
3017 * Allocate small buffer queue control blocks.
3018 */
3019 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3020 sizeof(struct bq_desc),
3021 GFP_KERNEL);
3022 if (rx_ring->sbq == NULL)
3023 goto err_mem;
3024
3025 ql_init_sbq_ring(qdev, rx_ring);
3026 }
3027
3028 if (rx_ring->lbq_len) {
3029 /*
3030 * Allocate large buffer queue.
3031 */
3032 rx_ring->lbq_base =
3033 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3034 &rx_ring->lbq_base_dma);
3035
3036 if (rx_ring->lbq_base == NULL) {
3037 netif_err(qdev, ifup, qdev->ndev,
3038 "Large buffer queue allocation failed.\n");
3039 goto err_mem;
3040 }
3041 /*
3042 * Allocate large buffer queue control blocks.
3043 */
3044 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3045 sizeof(struct bq_desc),
3046 GFP_KERNEL);
3047 if (rx_ring->lbq == NULL)
3048 goto err_mem;
3049
3050 ql_init_lbq_ring(qdev, rx_ring);
3051 }
3052
3053 return 0;
3054
3055 err_mem:
3056 ql_free_rx_resources(qdev, rx_ring);
3057 return -ENOMEM;
3058 }
3059
3060 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3061 {
3062 struct tx_ring *tx_ring;
3063 struct tx_ring_desc *tx_ring_desc;
3064 int i, j;
3065
3066 /*
3067 * Loop through all queues and free
3068 * any resources.
3069 */
3070 for (j = 0; j < qdev->tx_ring_count; j++) {
3071 tx_ring = &qdev->tx_ring[j];
3072 for (i = 0; i < tx_ring->wq_len; i++) {
3073 tx_ring_desc = &tx_ring->q[i];
3074 if (tx_ring_desc && tx_ring_desc->skb) {
3075 netif_err(qdev, ifdown, qdev->ndev,
3076 "Freeing lost SKB %p, from queue %d, index %d.\n",
3077 tx_ring_desc->skb, j,
3078 tx_ring_desc->index);
3079 ql_unmap_send(qdev, tx_ring_desc,
3080 tx_ring_desc->map_cnt);
3081 dev_kfree_skb(tx_ring_desc->skb);
3082 tx_ring_desc->skb = NULL;
3083 }
3084 }
3085 }
3086 }
3087
3088 static void ql_free_mem_resources(struct ql_adapter *qdev)
3089 {
3090 int i;
3091
3092 for (i = 0; i < qdev->tx_ring_count; i++)
3093 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3094 for (i = 0; i < qdev->rx_ring_count; i++)
3095 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3096 ql_free_shadow_space(qdev);
3097 }
3098
3099 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3100 {
3101 int i;
3102
3103 /* Allocate space for our shadow registers and such. */
3104 if (ql_alloc_shadow_space(qdev))
3105 return -ENOMEM;
3106
3107 for (i = 0; i < qdev->rx_ring_count; i++) {
3108 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3109 netif_err(qdev, ifup, qdev->ndev,
3110 "RX resource allocation failed.\n");
3111 goto err_mem;
3112 }
3113 }
3114 /* Allocate tx queue resources */
3115 for (i = 0; i < qdev->tx_ring_count; i++) {
3116 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3117 netif_err(qdev, ifup, qdev->ndev,
3118 "TX resource allocation failed.\n");
3119 goto err_mem;
3120 }
3121 }
3122 return 0;
3123
3124 err_mem:
3125 ql_free_mem_resources(qdev);
3126 return -ENOMEM;
3127 }
3128
3129 /* Set up the rx ring control block and pass it to the chip.
3130 * The control block is defined as
3131 * "Completion Queue Initialization Control Block", or cqicb.
3132 */
3133 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3134 {
3135 struct cqicb *cqicb = &rx_ring->cqicb;
3136 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3137 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3138 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3139 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3140 void __iomem *doorbell_area =
3141 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3142 int err = 0;
3143 u16 bq_len;
3144 u64 tmp;
3145 __le64 *base_indirect_ptr;
3146 int page_entries;
3147
3148 /* Set up the shadow registers for this ring. */
3149 rx_ring->prod_idx_sh_reg = shadow_reg;
3150 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3151 *rx_ring->prod_idx_sh_reg = 0;
3152 shadow_reg += sizeof(u64);
3153 shadow_reg_dma += sizeof(u64);
3154 rx_ring->lbq_base_indirect = shadow_reg;
3155 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3156 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3157 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3158 rx_ring->sbq_base_indirect = shadow_reg;
3159 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3160
3161 /* PCI doorbell mem area + 0x00 for consumer index register */
3162 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3163 rx_ring->cnsmr_idx = 0;
3164 rx_ring->curr_entry = rx_ring->cq_base;
3165
3166 /* PCI doorbell mem area + 0x04 for valid register */
3167 rx_ring->valid_db_reg = doorbell_area + 0x04;
3168
3169 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3170 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3171
3172 /* PCI doorbell mem area + 0x1c */
3173 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3174
3175 memset((void *)cqicb, 0, sizeof(struct cqicb));
3176 cqicb->msix_vect = rx_ring->irq;
3177
3178 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3179 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3180
3181 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3182
3183 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3184
3185 /*
3186 * Set up the control block load flags.
3187 */
3188 cqicb->flags = FLAGS_LC | /* Load queue base address */
3189 FLAGS_LV | /* Load MSI-X vector */
3190 FLAGS_LI; /* Load irq delay values */
3191 if (rx_ring->lbq_len) {
3192 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3193 tmp = (u64)rx_ring->lbq_base_dma;
3194 base_indirect_ptr = rx_ring->lbq_base_indirect;
3195 page_entries = 0;
3196 do {
3197 *base_indirect_ptr = cpu_to_le64(tmp);
3198 tmp += DB_PAGE_SIZE;
3199 base_indirect_ptr++;
3200 page_entries++;
3201 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3202 cqicb->lbq_addr =
3203 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3204 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3205 (u16) rx_ring->lbq_buf_size;
3206 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3207 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3208 (u16) rx_ring->lbq_len;
3209 cqicb->lbq_len = cpu_to_le16(bq_len);
3210 rx_ring->lbq_prod_idx = 0;
3211 rx_ring->lbq_curr_idx = 0;
3212 rx_ring->lbq_clean_idx = 0;
3213 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3214 }
3215 if (rx_ring->sbq_len) {
3216 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3217 tmp = (u64)rx_ring->sbq_base_dma;
3218 base_indirect_ptr = rx_ring->sbq_base_indirect;
3219 page_entries = 0;
3220 do {
3221 *base_indirect_ptr = cpu_to_le64(tmp);
3222 tmp += DB_PAGE_SIZE;
3223 base_indirect_ptr++;
3224 page_entries++;
3225 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3226 cqicb->sbq_addr =
3227 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3228 cqicb->sbq_buf_size =
3229 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3230 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3231 (u16) rx_ring->sbq_len;
3232 cqicb->sbq_len = cpu_to_le16(bq_len);
3233 rx_ring->sbq_prod_idx = 0;
3234 rx_ring->sbq_curr_idx = 0;
3235 rx_ring->sbq_clean_idx = 0;
3236 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3237 }
3238 switch (rx_ring->type) {
3239 case TX_Q:
3240 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3241 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3242 break;
3243 case RX_Q:
3244 /* Inbound completion handling rx_rings run in
3245 * separate NAPI contexts.
3246 */
3247 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3248 64);
3249 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3250 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3251 break;
3252 default:
3253 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3254 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3255 }
3256 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3257 CFG_LCQ, rx_ring->cq_id);
3258 if (err) {
3259 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3260 return err;
3261 }
3262 return err;
3263 }
3264
3265 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3266 {
3267 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3268 void __iomem *doorbell_area =
3269 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3270 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3271 (tx_ring->wq_id * sizeof(u64));
3272 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3273 (tx_ring->wq_id * sizeof(u64));
3274 int err = 0;
3275
3276 /*
3277 * Assign doorbell registers for this tx_ring.
3278 */
3279 /* TX PCI doorbell mem area for tx producer index */
3280 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3281 tx_ring->prod_idx = 0;
3282 /* TX PCI doorbell mem area + 0x04 */
3283 tx_ring->valid_db_reg = doorbell_area + 0x04;
3284
3285 /*
3286 * Assign shadow registers for this tx_ring.
3287 */
3288 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3289 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3290
3291 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3292 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3293 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3294 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3295 wqicb->rid = 0;
3296 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3297
3298 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3299
3300 ql_init_tx_ring(qdev, tx_ring);
3301
3302 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3303 (u16) tx_ring->wq_id);
3304 if (err) {
3305 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3306 return err;
3307 }
3308 return err;
3309 }
3310
3311 static void ql_disable_msix(struct ql_adapter *qdev)
3312 {
3313 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3314 pci_disable_msix(qdev->pdev);
3315 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3316 kfree(qdev->msi_x_entry);
3317 qdev->msi_x_entry = NULL;
3318 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3319 pci_disable_msi(qdev->pdev);
3320 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3321 }
3322 }
3323
3324 /* We start by trying to get the number of vectors
3325 * stored in qdev->intr_count. If we don't get that
3326 * many then we reduce the count and try again.
3327 */
3328 static void ql_enable_msix(struct ql_adapter *qdev)
3329 {
3330 int i, err;
3331
3332 /* Get the MSIX vectors. */
3333 if (qlge_irq_type == MSIX_IRQ) {
3334 /* Try to alloc space for the msix struct,
3335 * if it fails then go to MSI/legacy.
3336 */
3337 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3338 sizeof(struct msix_entry),
3339 GFP_KERNEL);
3340 if (!qdev->msi_x_entry) {
3341 qlge_irq_type = MSI_IRQ;
3342 goto msi;
3343 }
3344
3345 for (i = 0; i < qdev->intr_count; i++)
3346 qdev->msi_x_entry[i].entry = i;
3347
3348 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3349 1, qdev->intr_count);
3350 if (err < 0) {
3351 kfree(qdev->msi_x_entry);
3352 qdev->msi_x_entry = NULL;
3353 netif_warn(qdev, ifup, qdev->ndev,
3354 "MSI-X Enable failed, trying MSI.\n");
3355 qlge_irq_type = MSI_IRQ;
3356 } else {
3357 qdev->intr_count = err;
3358 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3359 netif_info(qdev, ifup, qdev->ndev,
3360 "MSI-X Enabled, got %d vectors.\n",
3361 qdev->intr_count);
3362 return;
3363 }
3364 }
3365 msi:
3366 qdev->intr_count = 1;
3367 if (qlge_irq_type == MSI_IRQ) {
3368 if (!pci_enable_msi(qdev->pdev)) {
3369 set_bit(QL_MSI_ENABLED, &qdev->flags);
3370 netif_info(qdev, ifup, qdev->ndev,
3371 "Running with MSI interrupts.\n");
3372 return;
3373 }
3374 }
3375 qlge_irq_type = LEG_IRQ;
3376 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3377 "Running with legacy interrupts.\n");
3378 }
3379
3380 /* Each vector services 1 RSS ring and and 1 or more
3381 * TX completion rings. This function loops through
3382 * the TX completion rings and assigns the vector that
3383 * will service it. An example would be if there are
3384 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3385 * This would mean that vector 0 would service RSS ring 0
3386 * and TX completion rings 0,1,2 and 3. Vector 1 would
3387 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3388 */
3389 static void ql_set_tx_vect(struct ql_adapter *qdev)
3390 {
3391 int i, j, vect;
3392 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3393
3394 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3395 /* Assign irq vectors to TX rx_rings.*/
3396 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3397 i < qdev->rx_ring_count; i++) {
3398 if (j == tx_rings_per_vector) {
3399 vect++;
3400 j = 0;
3401 }
3402 qdev->rx_ring[i].irq = vect;
3403 j++;
3404 }
3405 } else {
3406 /* For single vector all rings have an irq
3407 * of zero.
3408 */
3409 for (i = 0; i < qdev->rx_ring_count; i++)
3410 qdev->rx_ring[i].irq = 0;
3411 }
3412 }
3413
3414 /* Set the interrupt mask for this vector. Each vector
3415 * will service 1 RSS ring and 1 or more TX completion
3416 * rings. This function sets up a bit mask per vector
3417 * that indicates which rings it services.
3418 */
3419 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3420 {
3421 int j, vect = ctx->intr;
3422 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3423
3424 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3425 /* Add the RSS ring serviced by this vector
3426 * to the mask.
3427 */
3428 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3429 /* Add the TX ring(s) serviced by this vector
3430 * to the mask. */
3431 for (j = 0; j < tx_rings_per_vector; j++) {
3432 ctx->irq_mask |=
3433 (1 << qdev->rx_ring[qdev->rss_ring_count +
3434 (vect * tx_rings_per_vector) + j].cq_id);
3435 }
3436 } else {
3437 /* For single vector we just shift each queue's
3438 * ID into the mask.
3439 */
3440 for (j = 0; j < qdev->rx_ring_count; j++)
3441 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3442 }
3443 }
3444
3445 /*
3446 * Here we build the intr_context structures based on
3447 * our rx_ring count and intr vector count.
3448 * The intr_context structure is used to hook each vector
3449 * to possibly different handlers.
3450 */
3451 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3452 {
3453 int i = 0;
3454 struct intr_context *intr_context = &qdev->intr_context[0];
3455
3456 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3457 /* Each rx_ring has it's
3458 * own intr_context since we have separate
3459 * vectors for each queue.
3460 */
3461 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3462 qdev->rx_ring[i].irq = i;
3463 intr_context->intr = i;
3464 intr_context->qdev = qdev;
3465 /* Set up this vector's bit-mask that indicates
3466 * which queues it services.
3467 */
3468 ql_set_irq_mask(qdev, intr_context);
3469 /*
3470 * We set up each vectors enable/disable/read bits so
3471 * there's no bit/mask calculations in the critical path.
3472 */
3473 intr_context->intr_en_mask =
3474 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3475 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3476 | i;
3477 intr_context->intr_dis_mask =
3478 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3479 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3480 INTR_EN_IHD | i;
3481 intr_context->intr_read_mask =
3482 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3483 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3484 i;
3485 if (i == 0) {
3486 /* The first vector/queue handles
3487 * broadcast/multicast, fatal errors,
3488 * and firmware events. This in addition
3489 * to normal inbound NAPI processing.
3490 */
3491 intr_context->handler = qlge_isr;
3492 sprintf(intr_context->name, "%s-rx-%d",
3493 qdev->ndev->name, i);
3494 } else {
3495 /*
3496 * Inbound queues handle unicast frames only.
3497 */
3498 intr_context->handler = qlge_msix_rx_isr;
3499 sprintf(intr_context->name, "%s-rx-%d",
3500 qdev->ndev->name, i);
3501 }
3502 }
3503 } else {
3504 /*
3505 * All rx_rings use the same intr_context since
3506 * there is only one vector.
3507 */
3508 intr_context->intr = 0;
3509 intr_context->qdev = qdev;
3510 /*
3511 * We set up each vectors enable/disable/read bits so
3512 * there's no bit/mask calculations in the critical path.
3513 */
3514 intr_context->intr_en_mask =
3515 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3516 intr_context->intr_dis_mask =
3517 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3518 INTR_EN_TYPE_DISABLE;
3519 intr_context->intr_read_mask =
3520 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3521 /*
3522 * Single interrupt means one handler for all rings.
3523 */
3524 intr_context->handler = qlge_isr;
3525 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3526 /* Set up this vector's bit-mask that indicates
3527 * which queues it services. In this case there is
3528 * a single vector so it will service all RSS and
3529 * TX completion rings.
3530 */
3531 ql_set_irq_mask(qdev, intr_context);
3532 }
3533 /* Tell the TX completion rings which MSIx vector
3534 * they will be using.
3535 */
3536 ql_set_tx_vect(qdev);
3537 }
3538
3539 static void ql_free_irq(struct ql_adapter *qdev)
3540 {
3541 int i;
3542 struct intr_context *intr_context = &qdev->intr_context[0];
3543
3544 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3545 if (intr_context->hooked) {
3546 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3547 free_irq(qdev->msi_x_entry[i].vector,
3548 &qdev->rx_ring[i]);
3549 } else {
3550 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3551 }
3552 }
3553 }
3554 ql_disable_msix(qdev);
3555 }
3556
3557 static int ql_request_irq(struct ql_adapter *qdev)
3558 {
3559 int i;
3560 int status = 0;
3561 struct pci_dev *pdev = qdev->pdev;
3562 struct intr_context *intr_context = &qdev->intr_context[0];
3563
3564 ql_resolve_queues_to_irqs(qdev);
3565
3566 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3567 atomic_set(&intr_context->irq_cnt, 0);
3568 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3569 status = request_irq(qdev->msi_x_entry[i].vector,
3570 intr_context->handler,
3571 0,
3572 intr_context->name,
3573 &qdev->rx_ring[i]);
3574 if (status) {
3575 netif_err(qdev, ifup, qdev->ndev,
3576 "Failed request for MSIX interrupt %d.\n",
3577 i);
3578 goto err_irq;
3579 }
3580 } else {
3581 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3582 "trying msi or legacy interrupts.\n");
3583 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584 "%s: irq = %d.\n", __func__, pdev->irq);
3585 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3586 "%s: context->name = %s.\n", __func__,
3587 intr_context->name);
3588 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3589 "%s: dev_id = 0x%p.\n", __func__,
3590 &qdev->rx_ring[0]);
3591 status =
3592 request_irq(pdev->irq, qlge_isr,
3593 test_bit(QL_MSI_ENABLED,
3594 &qdev->
3595 flags) ? 0 : IRQF_SHARED,
3596 intr_context->name, &qdev->rx_ring[0]);
3597 if (status)
3598 goto err_irq;
3599
3600 netif_err(qdev, ifup, qdev->ndev,
3601 "Hooked intr %d, queue type %s, with name %s.\n",
3602 i,
3603 qdev->rx_ring[0].type == DEFAULT_Q ?
3604 "DEFAULT_Q" :
3605 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3606 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3607 intr_context->name);
3608 }
3609 intr_context->hooked = 1;
3610 }
3611 return status;
3612 err_irq:
3613 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3614 ql_free_irq(qdev);
3615 return status;
3616 }
3617
3618 static int ql_start_rss(struct ql_adapter *qdev)
3619 {
3620 static const u8 init_hash_seed[] = {
3621 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3622 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3623 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3624 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3625 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3626 };
3627 struct ricb *ricb = &qdev->ricb;
3628 int status = 0;
3629 int i;
3630 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3631
3632 memset((void *)ricb, 0, sizeof(*ricb));
3633
3634 ricb->base_cq = RSS_L4K;
3635 ricb->flags =
3636 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3637 ricb->mask = cpu_to_le16((u16)(0x3ff));
3638
3639 /*
3640 * Fill out the Indirection Table.
3641 */
3642 for (i = 0; i < 1024; i++)
3643 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3644
3645 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3646 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3647
3648 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3649 if (status) {
3650 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3651 return status;
3652 }
3653 return status;
3654 }
3655
3656 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3657 {
3658 int i, status = 0;
3659
3660 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3661 if (status)
3662 return status;
3663 /* Clear all the entries in the routing table. */
3664 for (i = 0; i < 16; i++) {
3665 status = ql_set_routing_reg(qdev, i, 0, 0);
3666 if (status) {
3667 netif_err(qdev, ifup, qdev->ndev,
3668 "Failed to init routing register for CAM packets.\n");
3669 break;
3670 }
3671 }
3672 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3673 return status;
3674 }
3675
3676 /* Initialize the frame-to-queue routing. */
3677 static int ql_route_initialize(struct ql_adapter *qdev)
3678 {
3679 int status = 0;
3680
3681 /* Clear all the entries in the routing table. */
3682 status = ql_clear_routing_entries(qdev);
3683 if (status)
3684 return status;
3685
3686 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3687 if (status)
3688 return status;
3689
3690 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3691 RT_IDX_IP_CSUM_ERR, 1);
3692 if (status) {
3693 netif_err(qdev, ifup, qdev->ndev,
3694 "Failed to init routing register "
3695 "for IP CSUM error packets.\n");
3696 goto exit;
3697 }
3698 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3699 RT_IDX_TU_CSUM_ERR, 1);
3700 if (status) {
3701 netif_err(qdev, ifup, qdev->ndev,
3702 "Failed to init routing register "
3703 "for TCP/UDP CSUM error packets.\n");
3704 goto exit;
3705 }
3706 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3707 if (status) {
3708 netif_err(qdev, ifup, qdev->ndev,
3709 "Failed to init routing register for broadcast packets.\n");
3710 goto exit;
3711 }
3712 /* If we have more than one inbound queue, then turn on RSS in the
3713 * routing block.
3714 */
3715 if (qdev->rss_ring_count > 1) {
3716 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3717 RT_IDX_RSS_MATCH, 1);
3718 if (status) {
3719 netif_err(qdev, ifup, qdev->ndev,
3720 "Failed to init routing register for MATCH RSS packets.\n");
3721 goto exit;
3722 }
3723 }
3724
3725 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3726 RT_IDX_CAM_HIT, 1);
3727 if (status)
3728 netif_err(qdev, ifup, qdev->ndev,
3729 "Failed to init routing register for CAM packets.\n");
3730 exit:
3731 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3732 return status;
3733 }
3734
3735 int ql_cam_route_initialize(struct ql_adapter *qdev)
3736 {
3737 int status, set;
3738
3739 /* If check if the link is up and use to
3740 * determine if we are setting or clearing
3741 * the MAC address in the CAM.
3742 */
3743 set = ql_read32(qdev, STS);
3744 set &= qdev->port_link_up;
3745 status = ql_set_mac_addr(qdev, set);
3746 if (status) {
3747 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3748 return status;
3749 }
3750
3751 status = ql_route_initialize(qdev);
3752 if (status)
3753 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3754
3755 return status;
3756 }
3757
3758 static int ql_adapter_initialize(struct ql_adapter *qdev)
3759 {
3760 u32 value, mask;
3761 int i;
3762 int status = 0;
3763
3764 /*
3765 * Set up the System register to halt on errors.
3766 */
3767 value = SYS_EFE | SYS_FAE;
3768 mask = value << 16;
3769 ql_write32(qdev, SYS, mask | value);
3770
3771 /* Set the default queue, and VLAN behavior. */
3772 value = NIC_RCV_CFG_DFQ;
3773 mask = NIC_RCV_CFG_DFQ_MASK;
3774 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3775 value |= NIC_RCV_CFG_RV;
3776 mask |= (NIC_RCV_CFG_RV << 16);
3777 }
3778 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3779
3780 /* Set the MPI interrupt to enabled. */
3781 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3782
3783 /* Enable the function, set pagesize, enable error checking. */
3784 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3785 FSC_EC | FSC_VM_PAGE_4K;
3786 value |= SPLT_SETTING;
3787
3788 /* Set/clear header splitting. */
3789 mask = FSC_VM_PAGESIZE_MASK |
3790 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3791 ql_write32(qdev, FSC, mask | value);
3792
3793 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3794
3795 /* Set RX packet routing to use port/pci function on which the
3796 * packet arrived on in addition to usual frame routing.
3797 * This is helpful on bonding where both interfaces can have
3798 * the same MAC address.
3799 */
3800 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3801 /* Reroute all packets to our Interface.
3802 * They may have been routed to MPI firmware
3803 * due to WOL.
3804 */
3805 value = ql_read32(qdev, MGMT_RCV_CFG);
3806 value &= ~MGMT_RCV_CFG_RM;
3807 mask = 0xffff0000;
3808
3809 /* Sticky reg needs clearing due to WOL. */
3810 ql_write32(qdev, MGMT_RCV_CFG, mask);
3811 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3812
3813 /* Default WOL is enable on Mezz cards */
3814 if (qdev->pdev->subsystem_device == 0x0068 ||
3815 qdev->pdev->subsystem_device == 0x0180)
3816 qdev->wol = WAKE_MAGIC;
3817
3818 /* Start up the rx queues. */
3819 for (i = 0; i < qdev->rx_ring_count; i++) {
3820 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3821 if (status) {
3822 netif_err(qdev, ifup, qdev->ndev,
3823 "Failed to start rx ring[%d].\n", i);
3824 return status;
3825 }
3826 }
3827
3828 /* If there is more than one inbound completion queue
3829 * then download a RICB to configure RSS.
3830 */
3831 if (qdev->rss_ring_count > 1) {
3832 status = ql_start_rss(qdev);
3833 if (status) {
3834 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3835 return status;
3836 }
3837 }
3838
3839 /* Start up the tx queues. */
3840 for (i = 0; i < qdev->tx_ring_count; i++) {
3841 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3842 if (status) {
3843 netif_err(qdev, ifup, qdev->ndev,
3844 "Failed to start tx ring[%d].\n", i);
3845 return status;
3846 }
3847 }
3848
3849 /* Initialize the port and set the max framesize. */
3850 status = qdev->nic_ops->port_initialize(qdev);
3851 if (status)
3852 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3853
3854 /* Set up the MAC address and frame routing filter. */
3855 status = ql_cam_route_initialize(qdev);
3856 if (status) {
3857 netif_err(qdev, ifup, qdev->ndev,
3858 "Failed to init CAM/Routing tables.\n");
3859 return status;
3860 }
3861
3862 /* Start NAPI for the RSS queues. */
3863 for (i = 0; i < qdev->rss_ring_count; i++)
3864 napi_enable(&qdev->rx_ring[i].napi);
3865
3866 return status;
3867 }
3868
3869 /* Issue soft reset to chip. */
3870 static int ql_adapter_reset(struct ql_adapter *qdev)
3871 {
3872 u32 value;
3873 int status = 0;
3874 unsigned long end_jiffies;
3875
3876 /* Clear all the entries in the routing table. */
3877 status = ql_clear_routing_entries(qdev);
3878 if (status) {
3879 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3880 return status;
3881 }
3882
3883 /* Check if bit is set then skip the mailbox command and
3884 * clear the bit, else we are in normal reset process.
3885 */
3886 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3887 /* Stop management traffic. */
3888 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3889
3890 /* Wait for the NIC and MGMNT FIFOs to empty. */
3891 ql_wait_fifo_empty(qdev);
3892 } else
3893 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3894
3895 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3896
3897 end_jiffies = jiffies + usecs_to_jiffies(30);
3898 do {
3899 value = ql_read32(qdev, RST_FO);
3900 if ((value & RST_FO_FR) == 0)
3901 break;
3902 cpu_relax();
3903 } while (time_before(jiffies, end_jiffies));
3904
3905 if (value & RST_FO_FR) {
3906 netif_err(qdev, ifdown, qdev->ndev,
3907 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3908 status = -ETIMEDOUT;
3909 }
3910
3911 /* Resume management traffic. */
3912 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3913 return status;
3914 }
3915
3916 static void ql_display_dev_info(struct net_device *ndev)
3917 {
3918 struct ql_adapter *qdev = netdev_priv(ndev);
3919
3920 netif_info(qdev, probe, qdev->ndev,
3921 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3922 "XG Roll = %d, XG Rev = %d.\n",
3923 qdev->func,
3924 qdev->port,
3925 qdev->chip_rev_id & 0x0000000f,
3926 qdev->chip_rev_id >> 4 & 0x0000000f,
3927 qdev->chip_rev_id >> 8 & 0x0000000f,
3928 qdev->chip_rev_id >> 12 & 0x0000000f);
3929 netif_info(qdev, probe, qdev->ndev,
3930 "MAC address %pM\n", ndev->dev_addr);
3931 }
3932
3933 static int ql_wol(struct ql_adapter *qdev)
3934 {
3935 int status = 0;
3936 u32 wol = MB_WOL_DISABLE;
3937
3938 /* The CAM is still intact after a reset, but if we
3939 * are doing WOL, then we may need to program the
3940 * routing regs. We would also need to issue the mailbox
3941 * commands to instruct the MPI what to do per the ethtool
3942 * settings.
3943 */
3944
3945 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3946 WAKE_MCAST | WAKE_BCAST)) {
3947 netif_err(qdev, ifdown, qdev->ndev,
3948 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3949 qdev->wol);
3950 return -EINVAL;
3951 }
3952
3953 if (qdev->wol & WAKE_MAGIC) {
3954 status = ql_mb_wol_set_magic(qdev, 1);
3955 if (status) {
3956 netif_err(qdev, ifdown, qdev->ndev,
3957 "Failed to set magic packet on %s.\n",
3958 qdev->ndev->name);
3959 return status;
3960 } else
3961 netif_info(qdev, drv, qdev->ndev,
3962 "Enabled magic packet successfully on %s.\n",
3963 qdev->ndev->name);
3964
3965 wol |= MB_WOL_MAGIC_PKT;
3966 }
3967
3968 if (qdev->wol) {
3969 wol |= MB_WOL_MODE_ON;
3970 status = ql_mb_wol_mode(qdev, wol);
3971 netif_err(qdev, drv, qdev->ndev,
3972 "WOL %s (wol code 0x%x) on %s\n",
3973 (status == 0) ? "Successfully set" : "Failed",
3974 wol, qdev->ndev->name);
3975 }
3976
3977 return status;
3978 }
3979
3980 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3981 {
3982
3983 /* Don't kill the reset worker thread if we
3984 * are in the process of recovery.
3985 */
3986 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3987 cancel_delayed_work_sync(&qdev->asic_reset_work);
3988 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3989 cancel_delayed_work_sync(&qdev->mpi_work);
3990 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3991 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3992 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3993 }
3994
3995 static int ql_adapter_down(struct ql_adapter *qdev)
3996 {
3997 int i, status = 0;
3998
3999 ql_link_off(qdev);
4000
4001 ql_cancel_all_work_sync(qdev);
4002
4003 for (i = 0; i < qdev->rss_ring_count; i++)
4004 napi_disable(&qdev->rx_ring[i].napi);
4005
4006 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4007
4008 ql_disable_interrupts(qdev);
4009
4010 ql_tx_ring_clean(qdev);
4011
4012 /* Call netif_napi_del() from common point.
4013 */
4014 for (i = 0; i < qdev->rss_ring_count; i++)
4015 netif_napi_del(&qdev->rx_ring[i].napi);
4016
4017 status = ql_adapter_reset(qdev);
4018 if (status)
4019 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4020 qdev->func);
4021 ql_free_rx_buffers(qdev);
4022
4023 return status;
4024 }
4025
4026 static int ql_adapter_up(struct ql_adapter *qdev)
4027 {
4028 int err = 0;
4029
4030 err = ql_adapter_initialize(qdev);
4031 if (err) {
4032 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4033 goto err_init;
4034 }
4035 set_bit(QL_ADAPTER_UP, &qdev->flags);
4036 ql_alloc_rx_buffers(qdev);
4037 /* If the port is initialized and the
4038 * link is up the turn on the carrier.
4039 */
4040 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4041 (ql_read32(qdev, STS) & qdev->port_link_up))
4042 ql_link_on(qdev);
4043 /* Restore rx mode. */
4044 clear_bit(QL_ALLMULTI, &qdev->flags);
4045 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4046 qlge_set_multicast_list(qdev->ndev);
4047
4048 /* Restore vlan setting. */
4049 qlge_restore_vlan(qdev);
4050
4051 ql_enable_interrupts(qdev);
4052 ql_enable_all_completion_interrupts(qdev);
4053 netif_tx_start_all_queues(qdev->ndev);
4054
4055 return 0;
4056 err_init:
4057 ql_adapter_reset(qdev);
4058 return err;
4059 }
4060
4061 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4062 {
4063 ql_free_mem_resources(qdev);
4064 ql_free_irq(qdev);
4065 }
4066
4067 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4068 {
4069 int status = 0;
4070
4071 if (ql_alloc_mem_resources(qdev)) {
4072 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4073 return -ENOMEM;
4074 }
4075 status = ql_request_irq(qdev);
4076 return status;
4077 }
4078
4079 static int qlge_close(struct net_device *ndev)
4080 {
4081 struct ql_adapter *qdev = netdev_priv(ndev);
4082
4083 /* If we hit pci_channel_io_perm_failure
4084 * failure condition, then we already
4085 * brought the adapter down.
4086 */
4087 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4088 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4089 clear_bit(QL_EEH_FATAL, &qdev->flags);
4090 return 0;
4091 }
4092
4093 /*
4094 * Wait for device to recover from a reset.
4095 * (Rarely happens, but possible.)
4096 */
4097 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4098 msleep(1);
4099 ql_adapter_down(qdev);
4100 ql_release_adapter_resources(qdev);
4101 return 0;
4102 }
4103
4104 static int ql_configure_rings(struct ql_adapter *qdev)
4105 {
4106 int i;
4107 struct rx_ring *rx_ring;
4108 struct tx_ring *tx_ring;
4109 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4110 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4111 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4112
4113 qdev->lbq_buf_order = get_order(lbq_buf_len);
4114
4115 /* In a perfect world we have one RSS ring for each CPU
4116 * and each has it's own vector. To do that we ask for
4117 * cpu_cnt vectors. ql_enable_msix() will adjust the
4118 * vector count to what we actually get. We then
4119 * allocate an RSS ring for each.
4120 * Essentially, we are doing min(cpu_count, msix_vector_count).
4121 */
4122 qdev->intr_count = cpu_cnt;
4123 ql_enable_msix(qdev);
4124 /* Adjust the RSS ring count to the actual vector count. */
4125 qdev->rss_ring_count = qdev->intr_count;
4126 qdev->tx_ring_count = cpu_cnt;
4127 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4128
4129 for (i = 0; i < qdev->tx_ring_count; i++) {
4130 tx_ring = &qdev->tx_ring[i];
4131 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4132 tx_ring->qdev = qdev;
4133 tx_ring->wq_id = i;
4134 tx_ring->wq_len = qdev->tx_ring_size;
4135 tx_ring->wq_size =
4136 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4137
4138 /*
4139 * The completion queue ID for the tx rings start
4140 * immediately after the rss rings.
4141 */
4142 tx_ring->cq_id = qdev->rss_ring_count + i;
4143 }
4144
4145 for (i = 0; i < qdev->rx_ring_count; i++) {
4146 rx_ring = &qdev->rx_ring[i];
4147 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4148 rx_ring->qdev = qdev;
4149 rx_ring->cq_id = i;
4150 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4151 if (i < qdev->rss_ring_count) {
4152 /*
4153 * Inbound (RSS) queues.
4154 */
4155 rx_ring->cq_len = qdev->rx_ring_size;
4156 rx_ring->cq_size =
4157 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4158 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4159 rx_ring->lbq_size =
4160 rx_ring->lbq_len * sizeof(__le64);
4161 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4162 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4163 rx_ring->sbq_size =
4164 rx_ring->sbq_len * sizeof(__le64);
4165 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4166 rx_ring->type = RX_Q;
4167 } else {
4168 /*
4169 * Outbound queue handles outbound completions only.
4170 */
4171 /* outbound cq is same size as tx_ring it services. */
4172 rx_ring->cq_len = qdev->tx_ring_size;
4173 rx_ring->cq_size =
4174 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4175 rx_ring->lbq_len = 0;
4176 rx_ring->lbq_size = 0;
4177 rx_ring->lbq_buf_size = 0;
4178 rx_ring->sbq_len = 0;
4179 rx_ring->sbq_size = 0;
4180 rx_ring->sbq_buf_size = 0;
4181 rx_ring->type = TX_Q;
4182 }
4183 }
4184 return 0;
4185 }
4186
4187 static int qlge_open(struct net_device *ndev)
4188 {
4189 int err = 0;
4190 struct ql_adapter *qdev = netdev_priv(ndev);
4191
4192 err = ql_adapter_reset(qdev);
4193 if (err)
4194 return err;
4195
4196 err = ql_configure_rings(qdev);
4197 if (err)
4198 return err;
4199
4200 err = ql_get_adapter_resources(qdev);
4201 if (err)
4202 goto error_up;
4203
4204 err = ql_adapter_up(qdev);
4205 if (err)
4206 goto error_up;
4207
4208 return err;
4209
4210 error_up:
4211 ql_release_adapter_resources(qdev);
4212 return err;
4213 }
4214
4215 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4216 {
4217 struct rx_ring *rx_ring;
4218 int i, status;
4219 u32 lbq_buf_len;
4220
4221 /* Wait for an outstanding reset to complete. */
4222 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4223 int i = 4;
4224
4225 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4226 netif_err(qdev, ifup, qdev->ndev,
4227 "Waiting for adapter UP...\n");
4228 ssleep(1);
4229 }
4230
4231 if (!i) {
4232 netif_err(qdev, ifup, qdev->ndev,
4233 "Timed out waiting for adapter UP\n");
4234 return -ETIMEDOUT;
4235 }
4236 }
4237
4238 status = ql_adapter_down(qdev);
4239 if (status)
4240 goto error;
4241
4242 /* Get the new rx buffer size. */
4243 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4244 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4245 qdev->lbq_buf_order = get_order(lbq_buf_len);
4246
4247 for (i = 0; i < qdev->rss_ring_count; i++) {
4248 rx_ring = &qdev->rx_ring[i];
4249 /* Set the new size. */
4250 rx_ring->lbq_buf_size = lbq_buf_len;
4251 }
4252
4253 status = ql_adapter_up(qdev);
4254 if (status)
4255 goto error;
4256
4257 return status;
4258 error:
4259 netif_alert(qdev, ifup, qdev->ndev,
4260 "Driver up/down cycle failed, closing device.\n");
4261 set_bit(QL_ADAPTER_UP, &qdev->flags);
4262 dev_close(qdev->ndev);
4263 return status;
4264 }
4265
4266 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4267 {
4268 struct ql_adapter *qdev = netdev_priv(ndev);
4269 int status;
4270
4271 if (ndev->mtu == 1500 && new_mtu == 9000) {
4272 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4273 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4274 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4275 } else
4276 return -EINVAL;
4277
4278 queue_delayed_work(qdev->workqueue,
4279 &qdev->mpi_port_cfg_work, 3*HZ);
4280
4281 ndev->mtu = new_mtu;
4282
4283 if (!netif_running(qdev->ndev)) {
4284 return 0;
4285 }
4286
4287 status = ql_change_rx_buffers(qdev);
4288 if (status) {
4289 netif_err(qdev, ifup, qdev->ndev,
4290 "Changing MTU failed.\n");
4291 }
4292
4293 return status;
4294 }
4295
4296 static struct net_device_stats *qlge_get_stats(struct net_device
4297 *ndev)
4298 {
4299 struct ql_adapter *qdev = netdev_priv(ndev);
4300 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4301 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4302 unsigned long pkts, mcast, dropped, errors, bytes;
4303 int i;
4304
4305 /* Get RX stats. */
4306 pkts = mcast = dropped = errors = bytes = 0;
4307 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4308 pkts += rx_ring->rx_packets;
4309 bytes += rx_ring->rx_bytes;
4310 dropped += rx_ring->rx_dropped;
4311 errors += rx_ring->rx_errors;
4312 mcast += rx_ring->rx_multicast;
4313 }
4314 ndev->stats.rx_packets = pkts;
4315 ndev->stats.rx_bytes = bytes;
4316 ndev->stats.rx_dropped = dropped;
4317 ndev->stats.rx_errors = errors;
4318 ndev->stats.multicast = mcast;
4319
4320 /* Get TX stats. */
4321 pkts = errors = bytes = 0;
4322 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4323 pkts += tx_ring->tx_packets;
4324 bytes += tx_ring->tx_bytes;
4325 errors += tx_ring->tx_errors;
4326 }
4327 ndev->stats.tx_packets = pkts;
4328 ndev->stats.tx_bytes = bytes;
4329 ndev->stats.tx_errors = errors;
4330 return &ndev->stats;
4331 }
4332
4333 static void qlge_set_multicast_list(struct net_device *ndev)
4334 {
4335 struct ql_adapter *qdev = netdev_priv(ndev);
4336 struct netdev_hw_addr *ha;
4337 int i, status;
4338
4339 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4340 if (status)
4341 return;
4342 /*
4343 * Set or clear promiscuous mode if a
4344 * transition is taking place.
4345 */
4346 if (ndev->flags & IFF_PROMISC) {
4347 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4348 if (ql_set_routing_reg
4349 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4350 netif_err(qdev, hw, qdev->ndev,
4351 "Failed to set promiscuous mode.\n");
4352 } else {
4353 set_bit(QL_PROMISCUOUS, &qdev->flags);
4354 }
4355 }
4356 } else {
4357 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4358 if (ql_set_routing_reg
4359 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4360 netif_err(qdev, hw, qdev->ndev,
4361 "Failed to clear promiscuous mode.\n");
4362 } else {
4363 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4364 }
4365 }
4366 }
4367
4368 /*
4369 * Set or clear all multicast mode if a
4370 * transition is taking place.
4371 */
4372 if ((ndev->flags & IFF_ALLMULTI) ||
4373 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4374 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4375 if (ql_set_routing_reg
4376 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4377 netif_err(qdev, hw, qdev->ndev,
4378 "Failed to set all-multi mode.\n");
4379 } else {
4380 set_bit(QL_ALLMULTI, &qdev->flags);
4381 }
4382 }
4383 } else {
4384 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4385 if (ql_set_routing_reg
4386 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4387 netif_err(qdev, hw, qdev->ndev,
4388 "Failed to clear all-multi mode.\n");
4389 } else {
4390 clear_bit(QL_ALLMULTI, &qdev->flags);
4391 }
4392 }
4393 }
4394
4395 if (!netdev_mc_empty(ndev)) {
4396 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4397 if (status)
4398 goto exit;
4399 i = 0;
4400 netdev_for_each_mc_addr(ha, ndev) {
4401 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4402 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4403 netif_err(qdev, hw, qdev->ndev,
4404 "Failed to loadmulticast address.\n");
4405 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4406 goto exit;
4407 }
4408 i++;
4409 }
4410 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4411 if (ql_set_routing_reg
4412 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4413 netif_err(qdev, hw, qdev->ndev,
4414 "Failed to set multicast match mode.\n");
4415 } else {
4416 set_bit(QL_ALLMULTI, &qdev->flags);
4417 }
4418 }
4419 exit:
4420 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4421 }
4422
4423 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4424 {
4425 struct ql_adapter *qdev = netdev_priv(ndev);
4426 struct sockaddr *addr = p;
4427 int status;
4428
4429 if (!is_valid_ether_addr(addr->sa_data))
4430 return -EADDRNOTAVAIL;
4431 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4432 /* Update local copy of current mac address. */
4433 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4434
4435 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4436 if (status)
4437 return status;
4438 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4439 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4440 if (status)
4441 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4442 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4443 return status;
4444 }
4445
4446 static void qlge_tx_timeout(struct net_device *ndev)
4447 {
4448 struct ql_adapter *qdev = netdev_priv(ndev);
4449 ql_queue_asic_error(qdev);
4450 }
4451
4452 static void ql_asic_reset_work(struct work_struct *work)
4453 {
4454 struct ql_adapter *qdev =
4455 container_of(work, struct ql_adapter, asic_reset_work.work);
4456 int status;
4457 rtnl_lock();
4458 status = ql_adapter_down(qdev);
4459 if (status)
4460 goto error;
4461
4462 status = ql_adapter_up(qdev);
4463 if (status)
4464 goto error;
4465
4466 /* Restore rx mode. */
4467 clear_bit(QL_ALLMULTI, &qdev->flags);
4468 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4469 qlge_set_multicast_list(qdev->ndev);
4470
4471 rtnl_unlock();
4472 return;
4473 error:
4474 netif_alert(qdev, ifup, qdev->ndev,
4475 "Driver up/down cycle failed, closing device\n");
4476
4477 set_bit(QL_ADAPTER_UP, &qdev->flags);
4478 dev_close(qdev->ndev);
4479 rtnl_unlock();
4480 }
4481
4482 static const struct nic_operations qla8012_nic_ops = {
4483 .get_flash = ql_get_8012_flash_params,
4484 .port_initialize = ql_8012_port_initialize,
4485 };
4486
4487 static const struct nic_operations qla8000_nic_ops = {
4488 .get_flash = ql_get_8000_flash_params,
4489 .port_initialize = ql_8000_port_initialize,
4490 };
4491
4492 /* Find the pcie function number for the other NIC
4493 * on this chip. Since both NIC functions share a
4494 * common firmware we have the lowest enabled function
4495 * do any common work. Examples would be resetting
4496 * after a fatal firmware error, or doing a firmware
4497 * coredump.
4498 */
4499 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4500 {
4501 int status = 0;
4502 u32 temp;
4503 u32 nic_func1, nic_func2;
4504
4505 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4506 &temp);
4507 if (status)
4508 return status;
4509
4510 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4511 MPI_TEST_NIC_FUNC_MASK);
4512 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4513 MPI_TEST_NIC_FUNC_MASK);
4514
4515 if (qdev->func == nic_func1)
4516 qdev->alt_func = nic_func2;
4517 else if (qdev->func == nic_func2)
4518 qdev->alt_func = nic_func1;
4519 else
4520 status = -EIO;
4521
4522 return status;
4523 }
4524
4525 static int ql_get_board_info(struct ql_adapter *qdev)
4526 {
4527 int status;
4528 qdev->func =
4529 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4530 if (qdev->func > 3)
4531 return -EIO;
4532
4533 status = ql_get_alt_pcie_func(qdev);
4534 if (status)
4535 return status;
4536
4537 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4538 if (qdev->port) {
4539 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4540 qdev->port_link_up = STS_PL1;
4541 qdev->port_init = STS_PI1;
4542 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4543 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4544 } else {
4545 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4546 qdev->port_link_up = STS_PL0;
4547 qdev->port_init = STS_PI0;
4548 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4549 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4550 }
4551 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4552 qdev->device_id = qdev->pdev->device;
4553 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4554 qdev->nic_ops = &qla8012_nic_ops;
4555 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4556 qdev->nic_ops = &qla8000_nic_ops;
4557 return status;
4558 }
4559
4560 static void ql_release_all(struct pci_dev *pdev)
4561 {
4562 struct net_device *ndev = pci_get_drvdata(pdev);
4563 struct ql_adapter *qdev = netdev_priv(ndev);
4564
4565 if (qdev->workqueue) {
4566 destroy_workqueue(qdev->workqueue);
4567 qdev->workqueue = NULL;
4568 }
4569
4570 if (qdev->reg_base)
4571 iounmap(qdev->reg_base);
4572 if (qdev->doorbell_area)
4573 iounmap(qdev->doorbell_area);
4574 vfree(qdev->mpi_coredump);
4575 pci_release_regions(pdev);
4576 }
4577
4578 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4579 int cards_found)
4580 {
4581 struct ql_adapter *qdev = netdev_priv(ndev);
4582 int err = 0;
4583
4584 memset((void *)qdev, 0, sizeof(*qdev));
4585 err = pci_enable_device(pdev);
4586 if (err) {
4587 dev_err(&pdev->dev, "PCI device enable failed.\n");
4588 return err;
4589 }
4590
4591 qdev->ndev = ndev;
4592 qdev->pdev = pdev;
4593 pci_set_drvdata(pdev, ndev);
4594
4595 /* Set PCIe read request size */
4596 err = pcie_set_readrq(pdev, 4096);
4597 if (err) {
4598 dev_err(&pdev->dev, "Set readrq failed.\n");
4599 goto err_out1;
4600 }
4601
4602 err = pci_request_regions(pdev, DRV_NAME);
4603 if (err) {
4604 dev_err(&pdev->dev, "PCI region request failed.\n");
4605 return err;
4606 }
4607
4608 pci_set_master(pdev);
4609 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4610 set_bit(QL_DMA64, &qdev->flags);
4611 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4612 } else {
4613 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4614 if (!err)
4615 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4616 }
4617
4618 if (err) {
4619 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4620 goto err_out2;
4621 }
4622
4623 /* Set PCIe reset type for EEH to fundamental. */
4624 pdev->needs_freset = 1;
4625 pci_save_state(pdev);
4626 qdev->reg_base =
4627 ioremap_nocache(pci_resource_start(pdev, 1),
4628 pci_resource_len(pdev, 1));
4629 if (!qdev->reg_base) {
4630 dev_err(&pdev->dev, "Register mapping failed.\n");
4631 err = -ENOMEM;
4632 goto err_out2;
4633 }
4634
4635 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4636 qdev->doorbell_area =
4637 ioremap_nocache(pci_resource_start(pdev, 3),
4638 pci_resource_len(pdev, 3));
4639 if (!qdev->doorbell_area) {
4640 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4641 err = -ENOMEM;
4642 goto err_out2;
4643 }
4644
4645 err = ql_get_board_info(qdev);
4646 if (err) {
4647 dev_err(&pdev->dev, "Register access failed.\n");
4648 err = -EIO;
4649 goto err_out2;
4650 }
4651 qdev->msg_enable = netif_msg_init(debug, default_msg);
4652 spin_lock_init(&qdev->hw_lock);
4653 spin_lock_init(&qdev->stats_lock);
4654
4655 if (qlge_mpi_coredump) {
4656 qdev->mpi_coredump =
4657 vmalloc(sizeof(struct ql_mpi_coredump));
4658 if (qdev->mpi_coredump == NULL) {
4659 err = -ENOMEM;
4660 goto err_out2;
4661 }
4662 if (qlge_force_coredump)
4663 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4664 }
4665 /* make sure the EEPROM is good */
4666 err = qdev->nic_ops->get_flash(qdev);
4667 if (err) {
4668 dev_err(&pdev->dev, "Invalid FLASH.\n");
4669 goto err_out2;
4670 }
4671
4672 /* Keep local copy of current mac address. */
4673 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4674
4675 /* Set up the default ring sizes. */
4676 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4677 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4678
4679 /* Set up the coalescing parameters. */
4680 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4681 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4682 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4683 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4684
4685 /*
4686 * Set up the operating parameters.
4687 */
4688 qdev->workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4689 ndev->name);
4690 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4691 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4692 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4693 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4694 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4695 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4696 init_completion(&qdev->ide_completion);
4697 mutex_init(&qdev->mpi_mutex);
4698
4699 if (!cards_found) {
4700 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4701 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4702 DRV_NAME, DRV_VERSION);
4703 }
4704 return 0;
4705 err_out2:
4706 ql_release_all(pdev);
4707 err_out1:
4708 pci_disable_device(pdev);
4709 return err;
4710 }
4711
4712 static const struct net_device_ops qlge_netdev_ops = {
4713 .ndo_open = qlge_open,
4714 .ndo_stop = qlge_close,
4715 .ndo_start_xmit = qlge_send,
4716 .ndo_change_mtu = qlge_change_mtu,
4717 .ndo_get_stats = qlge_get_stats,
4718 .ndo_set_rx_mode = qlge_set_multicast_list,
4719 .ndo_set_mac_address = qlge_set_mac_address,
4720 .ndo_validate_addr = eth_validate_addr,
4721 .ndo_tx_timeout = qlge_tx_timeout,
4722 .ndo_fix_features = qlge_fix_features,
4723 .ndo_set_features = qlge_set_features,
4724 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4725 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4726 };
4727
4728 static void ql_timer(struct timer_list *t)
4729 {
4730 struct ql_adapter *qdev = from_timer(qdev, t, timer);
4731 u32 var = 0;
4732
4733 var = ql_read32(qdev, STS);
4734 if (pci_channel_offline(qdev->pdev)) {
4735 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4736 return;
4737 }
4738
4739 mod_timer(&qdev->timer, jiffies + (5*HZ));
4740 }
4741
4742 static int qlge_probe(struct pci_dev *pdev,
4743 const struct pci_device_id *pci_entry)
4744 {
4745 struct net_device *ndev = NULL;
4746 struct ql_adapter *qdev = NULL;
4747 static int cards_found = 0;
4748 int err = 0;
4749
4750 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4751 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4752 if (!ndev)
4753 return -ENOMEM;
4754
4755 err = ql_init_device(pdev, ndev, cards_found);
4756 if (err < 0) {
4757 free_netdev(ndev);
4758 return err;
4759 }
4760
4761 qdev = netdev_priv(ndev);
4762 SET_NETDEV_DEV(ndev, &pdev->dev);
4763 ndev->hw_features = NETIF_F_SG |
4764 NETIF_F_IP_CSUM |
4765 NETIF_F_TSO |
4766 NETIF_F_TSO_ECN |
4767 NETIF_F_HW_VLAN_CTAG_TX |
4768 NETIF_F_HW_VLAN_CTAG_RX |
4769 NETIF_F_HW_VLAN_CTAG_FILTER |
4770 NETIF_F_RXCSUM;
4771 ndev->features = ndev->hw_features;
4772 ndev->vlan_features = ndev->hw_features;
4773 /* vlan gets same features (except vlan filter) */
4774 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4775 NETIF_F_HW_VLAN_CTAG_TX |
4776 NETIF_F_HW_VLAN_CTAG_RX);
4777
4778 if (test_bit(QL_DMA64, &qdev->flags))
4779 ndev->features |= NETIF_F_HIGHDMA;
4780
4781 /*
4782 * Set up net_device structure.
4783 */
4784 ndev->tx_queue_len = qdev->tx_ring_size;
4785 ndev->irq = pdev->irq;
4786
4787 ndev->netdev_ops = &qlge_netdev_ops;
4788 ndev->ethtool_ops = &qlge_ethtool_ops;
4789 ndev->watchdog_timeo = 10 * HZ;
4790
4791 /* MTU range: this driver only supports 1500 or 9000, so this only
4792 * filters out values above or below, and we'll rely on
4793 * qlge_change_mtu to make sure only 1500 or 9000 are allowed
4794 */
4795 ndev->min_mtu = ETH_DATA_LEN;
4796 ndev->max_mtu = 9000;
4797
4798 err = register_netdev(ndev);
4799 if (err) {
4800 dev_err(&pdev->dev, "net device registration failed.\n");
4801 ql_release_all(pdev);
4802 pci_disable_device(pdev);
4803 free_netdev(ndev);
4804 return err;
4805 }
4806 /* Start up the timer to trigger EEH if
4807 * the bus goes dead
4808 */
4809 timer_setup(&qdev->timer, ql_timer, TIMER_DEFERRABLE);
4810 mod_timer(&qdev->timer, jiffies + (5*HZ));
4811 ql_link_off(qdev);
4812 ql_display_dev_info(ndev);
4813 atomic_set(&qdev->lb_count, 0);
4814 cards_found++;
4815 return 0;
4816 }
4817
4818 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4819 {
4820 return qlge_send(skb, ndev);
4821 }
4822
4823 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4824 {
4825 return ql_clean_inbound_rx_ring(rx_ring, budget);
4826 }
4827
4828 static void qlge_remove(struct pci_dev *pdev)
4829 {
4830 struct net_device *ndev = pci_get_drvdata(pdev);
4831 struct ql_adapter *qdev = netdev_priv(ndev);
4832 del_timer_sync(&qdev->timer);
4833 ql_cancel_all_work_sync(qdev);
4834 unregister_netdev(ndev);
4835 ql_release_all(pdev);
4836 pci_disable_device(pdev);
4837 free_netdev(ndev);
4838 }
4839
4840 /* Clean up resources without touching hardware. */
4841 static void ql_eeh_close(struct net_device *ndev)
4842 {
4843 int i;
4844 struct ql_adapter *qdev = netdev_priv(ndev);
4845
4846 if (netif_carrier_ok(ndev)) {
4847 netif_carrier_off(ndev);
4848 netif_stop_queue(ndev);
4849 }
4850
4851 /* Disabling the timer */
4852 ql_cancel_all_work_sync(qdev);
4853
4854 for (i = 0; i < qdev->rss_ring_count; i++)
4855 netif_napi_del(&qdev->rx_ring[i].napi);
4856
4857 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4858 ql_tx_ring_clean(qdev);
4859 ql_free_rx_buffers(qdev);
4860 ql_release_adapter_resources(qdev);
4861 }
4862
4863 /*
4864 * This callback is called by the PCI subsystem whenever
4865 * a PCI bus error is detected.
4866 */
4867 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4868 enum pci_channel_state state)
4869 {
4870 struct net_device *ndev = pci_get_drvdata(pdev);
4871 struct ql_adapter *qdev = netdev_priv(ndev);
4872
4873 switch (state) {
4874 case pci_channel_io_normal:
4875 return PCI_ERS_RESULT_CAN_RECOVER;
4876 case pci_channel_io_frozen:
4877 netif_device_detach(ndev);
4878 del_timer_sync(&qdev->timer);
4879 if (netif_running(ndev))
4880 ql_eeh_close(ndev);
4881 pci_disable_device(pdev);
4882 return PCI_ERS_RESULT_NEED_RESET;
4883 case pci_channel_io_perm_failure:
4884 dev_err(&pdev->dev,
4885 "%s: pci_channel_io_perm_failure.\n", __func__);
4886 del_timer_sync(&qdev->timer);
4887 ql_eeh_close(ndev);
4888 set_bit(QL_EEH_FATAL, &qdev->flags);
4889 return PCI_ERS_RESULT_DISCONNECT;
4890 }
4891
4892 /* Request a slot reset. */
4893 return PCI_ERS_RESULT_NEED_RESET;
4894 }
4895
4896 /*
4897 * This callback is called after the PCI buss has been reset.
4898 * Basically, this tries to restart the card from scratch.
4899 * This is a shortened version of the device probe/discovery code,
4900 * it resembles the first-half of the () routine.
4901 */
4902 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4903 {
4904 struct net_device *ndev = pci_get_drvdata(pdev);
4905 struct ql_adapter *qdev = netdev_priv(ndev);
4906
4907 pdev->error_state = pci_channel_io_normal;
4908
4909 pci_restore_state(pdev);
4910 if (pci_enable_device(pdev)) {
4911 netif_err(qdev, ifup, qdev->ndev,
4912 "Cannot re-enable PCI device after reset.\n");
4913 return PCI_ERS_RESULT_DISCONNECT;
4914 }
4915 pci_set_master(pdev);
4916
4917 if (ql_adapter_reset(qdev)) {
4918 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4919 set_bit(QL_EEH_FATAL, &qdev->flags);
4920 return PCI_ERS_RESULT_DISCONNECT;
4921 }
4922
4923 return PCI_ERS_RESULT_RECOVERED;
4924 }
4925
4926 static void qlge_io_resume(struct pci_dev *pdev)
4927 {
4928 struct net_device *ndev = pci_get_drvdata(pdev);
4929 struct ql_adapter *qdev = netdev_priv(ndev);
4930 int err = 0;
4931
4932 if (netif_running(ndev)) {
4933 err = qlge_open(ndev);
4934 if (err) {
4935 netif_err(qdev, ifup, qdev->ndev,
4936 "Device initialization failed after reset.\n");
4937 return;
4938 }
4939 } else {
4940 netif_err(qdev, ifup, qdev->ndev,
4941 "Device was not running prior to EEH.\n");
4942 }
4943 mod_timer(&qdev->timer, jiffies + (5*HZ));
4944 netif_device_attach(ndev);
4945 }
4946
4947 static const struct pci_error_handlers qlge_err_handler = {
4948 .error_detected = qlge_io_error_detected,
4949 .slot_reset = qlge_io_slot_reset,
4950 .resume = qlge_io_resume,
4951 };
4952
4953 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4954 {
4955 struct net_device *ndev = pci_get_drvdata(pdev);
4956 struct ql_adapter *qdev = netdev_priv(ndev);
4957 int err;
4958
4959 netif_device_detach(ndev);
4960 del_timer_sync(&qdev->timer);
4961
4962 if (netif_running(ndev)) {
4963 err = ql_adapter_down(qdev);
4964 if (!err)
4965 return err;
4966 }
4967
4968 ql_wol(qdev);
4969 err = pci_save_state(pdev);
4970 if (err)
4971 return err;
4972
4973 pci_disable_device(pdev);
4974
4975 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4976
4977 return 0;
4978 }
4979
4980 #ifdef CONFIG_PM
4981 static int qlge_resume(struct pci_dev *pdev)
4982 {
4983 struct net_device *ndev = pci_get_drvdata(pdev);
4984 struct ql_adapter *qdev = netdev_priv(ndev);
4985 int err;
4986
4987 pci_set_power_state(pdev, PCI_D0);
4988 pci_restore_state(pdev);
4989 err = pci_enable_device(pdev);
4990 if (err) {
4991 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4992 return err;
4993 }
4994 pci_set_master(pdev);
4995
4996 pci_enable_wake(pdev, PCI_D3hot, 0);
4997 pci_enable_wake(pdev, PCI_D3cold, 0);
4998
4999 if (netif_running(ndev)) {
5000 err = ql_adapter_up(qdev);
5001 if (err)
5002 return err;
5003 }
5004
5005 mod_timer(&qdev->timer, jiffies + (5*HZ));
5006 netif_device_attach(ndev);
5007
5008 return 0;
5009 }
5010 #endif /* CONFIG_PM */
5011
5012 static void qlge_shutdown(struct pci_dev *pdev)
5013 {
5014 qlge_suspend(pdev, PMSG_SUSPEND);
5015 }
5016
5017 static struct pci_driver qlge_driver = {
5018 .name = DRV_NAME,
5019 .id_table = qlge_pci_tbl,
5020 .probe = qlge_probe,
5021 .remove = qlge_remove,
5022 #ifdef CONFIG_PM
5023 .suspend = qlge_suspend,
5024 .resume = qlge_resume,
5025 #endif
5026 .shutdown = qlge_shutdown,
5027 .err_handler = &qlge_err_handler
5028 };
5029
5030 module_pci_driver(qlge_driver);