]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/sfc/falcon/rx.c
6a8406dc0c2b47dbdb4c2466e028ff04fd35e1c9
[thirdparty/linux.git] / drivers / net / ethernet / sfc / falcon / rx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
21 #include <net/ip.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "filter.h"
26 #include "nic.h"
27 #include "selftest.h"
28 #include "workarounds.h"
29
30 /* Preferred number of descriptors to fill at once */
31 #define EF4_RX_PREFERRED_BATCH 8U
32
33 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
34 * ring, this number is divided by the number of buffers per page to calculate
35 * the number of pages to store in the RX page recycle ring.
36 */
37 #define EF4_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EF4_RECYCLE_RING_SIZE_NOIOMMU (2 * EF4_RX_PREFERRED_BATCH)
39
40 /* Size of buffer allocated for skb header area. */
41 #define EF4_SKB_HEADERS 128u
42
43 /* This is the percentage fill level below which new RX descriptors
44 * will be added to the RX descriptor ring.
45 */
46 static unsigned int rx_refill_threshold;
47
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EF4_RX_MAX_FRAGS DIV_ROUND_UP(EF4_MAX_FRAME_LEN(EF4_MAX_MTU), \
50 EF4_RX_USR_BUF_SIZE)
51
52 /*
53 * RX maximum head room required.
54 *
55 * This must be at least 1 to prevent overflow, plus one packet-worth
56 * to allow pipelined receives.
57 */
58 #define EF4_RXD_HEAD_ROOM (1 + EF4_RX_MAX_FRAGS)
59
60 static inline u8 *ef4_rx_buf_va(struct ef4_rx_buffer *buf)
61 {
62 return page_address(buf->page) + buf->page_offset;
63 }
64
65 static inline u32 ef4_rx_buf_hash(struct ef4_nic *efx, const u8 *eh)
66 {
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
69 #else
70 const u8 *data = eh + efx->rx_packet_hash_offset;
71 return (u32)data[0] |
72 (u32)data[1] << 8 |
73 (u32)data[2] << 16 |
74 (u32)data[3] << 24;
75 #endif
76 }
77
78 static inline struct ef4_rx_buffer *
79 ef4_rx_buf_next(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf)
80 {
81 if (unlikely(rx_buf == ef4_rx_buffer(rx_queue, rx_queue->ptr_mask)))
82 return ef4_rx_buffer(rx_queue, 0);
83 else
84 return rx_buf + 1;
85 }
86
87 static inline void ef4_sync_rx_buffer(struct ef4_nic *efx,
88 struct ef4_rx_buffer *rx_buf,
89 unsigned int len)
90 {
91 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
92 DMA_FROM_DEVICE);
93 }
94
95 void ef4_rx_config_page_split(struct ef4_nic *efx)
96 {
97 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
98 EF4_RX_BUF_ALIGNMENT);
99 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
100 ((PAGE_SIZE - sizeof(struct ef4_rx_page_state)) /
101 efx->rx_page_buf_step);
102 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
103 efx->rx_bufs_per_page;
104 efx->rx_pages_per_batch = DIV_ROUND_UP(EF4_RX_PREFERRED_BATCH,
105 efx->rx_bufs_per_page);
106 }
107
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page *ef4_reuse_page(struct ef4_rx_queue *rx_queue)
110 {
111 struct ef4_nic *efx = rx_queue->efx;
112 struct page *page;
113 struct ef4_rx_page_state *state;
114 unsigned index;
115
116 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
117 page = rx_queue->page_ring[index];
118 if (page == NULL)
119 return NULL;
120
121 rx_queue->page_ring[index] = NULL;
122 /* page_remove cannot exceed page_add. */
123 if (rx_queue->page_remove != rx_queue->page_add)
124 ++rx_queue->page_remove;
125
126 /* If page_count is 1 then we hold the only reference to this page. */
127 if (page_count(page) == 1) {
128 ++rx_queue->page_recycle_count;
129 return page;
130 } else {
131 state = page_address(page);
132 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
133 PAGE_SIZE << efx->rx_buffer_order,
134 DMA_FROM_DEVICE);
135 put_page(page);
136 ++rx_queue->page_recycle_failed;
137 }
138
139 return NULL;
140 }
141
142 /**
143 * ef4_init_rx_buffers - create EF4_RX_BATCH page-based RX buffers
144 *
145 * @rx_queue: Efx RX queue
146 *
147 * This allocates a batch of pages, maps them for DMA, and populates
148 * struct ef4_rx_buffers for each one. Return a negative error code or
149 * 0 on success. If a single page can be used for multiple buffers,
150 * then the page will either be inserted fully, or not at all.
151 */
152 static int ef4_init_rx_buffers(struct ef4_rx_queue *rx_queue, bool atomic)
153 {
154 struct ef4_nic *efx = rx_queue->efx;
155 struct ef4_rx_buffer *rx_buf;
156 struct page *page;
157 unsigned int page_offset;
158 struct ef4_rx_page_state *state;
159 dma_addr_t dma_addr;
160 unsigned index, count;
161
162 count = 0;
163 do {
164 page = ef4_reuse_page(rx_queue);
165 if (page == NULL) {
166 page = alloc_pages(__GFP_COLD | __GFP_COMP |
167 (atomic ? GFP_ATOMIC : GFP_KERNEL),
168 efx->rx_buffer_order);
169 if (unlikely(page == NULL))
170 return -ENOMEM;
171 dma_addr =
172 dma_map_page(&efx->pci_dev->dev, page, 0,
173 PAGE_SIZE << efx->rx_buffer_order,
174 DMA_FROM_DEVICE);
175 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
176 dma_addr))) {
177 __free_pages(page, efx->rx_buffer_order);
178 return -EIO;
179 }
180 state = page_address(page);
181 state->dma_addr = dma_addr;
182 } else {
183 state = page_address(page);
184 dma_addr = state->dma_addr;
185 }
186
187 dma_addr += sizeof(struct ef4_rx_page_state);
188 page_offset = sizeof(struct ef4_rx_page_state);
189
190 do {
191 index = rx_queue->added_count & rx_queue->ptr_mask;
192 rx_buf = ef4_rx_buffer(rx_queue, index);
193 rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
194 rx_buf->page = page;
195 rx_buf->page_offset = page_offset + efx->rx_ip_align;
196 rx_buf->len = efx->rx_dma_len;
197 rx_buf->flags = 0;
198 ++rx_queue->added_count;
199 get_page(page);
200 dma_addr += efx->rx_page_buf_step;
201 page_offset += efx->rx_page_buf_step;
202 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
203
204 rx_buf->flags = EF4_RX_BUF_LAST_IN_PAGE;
205 } while (++count < efx->rx_pages_per_batch);
206
207 return 0;
208 }
209
210 /* Unmap a DMA-mapped page. This function is only called for the final RX
211 * buffer in a page.
212 */
213 static void ef4_unmap_rx_buffer(struct ef4_nic *efx,
214 struct ef4_rx_buffer *rx_buf)
215 {
216 struct page *page = rx_buf->page;
217
218 if (page) {
219 struct ef4_rx_page_state *state = page_address(page);
220 dma_unmap_page(&efx->pci_dev->dev,
221 state->dma_addr,
222 PAGE_SIZE << efx->rx_buffer_order,
223 DMA_FROM_DEVICE);
224 }
225 }
226
227 static void ef4_free_rx_buffers(struct ef4_rx_queue *rx_queue,
228 struct ef4_rx_buffer *rx_buf,
229 unsigned int num_bufs)
230 {
231 do {
232 if (rx_buf->page) {
233 put_page(rx_buf->page);
234 rx_buf->page = NULL;
235 }
236 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
237 } while (--num_bufs);
238 }
239
240 /* Attempt to recycle the page if there is an RX recycle ring; the page can
241 * only be added if this is the final RX buffer, to prevent pages being used in
242 * the descriptor ring and appearing in the recycle ring simultaneously.
243 */
244 static void ef4_recycle_rx_page(struct ef4_channel *channel,
245 struct ef4_rx_buffer *rx_buf)
246 {
247 struct page *page = rx_buf->page;
248 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
249 struct ef4_nic *efx = rx_queue->efx;
250 unsigned index;
251
252 /* Only recycle the page after processing the final buffer. */
253 if (!(rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE))
254 return;
255
256 index = rx_queue->page_add & rx_queue->page_ptr_mask;
257 if (rx_queue->page_ring[index] == NULL) {
258 unsigned read_index = rx_queue->page_remove &
259 rx_queue->page_ptr_mask;
260
261 /* The next slot in the recycle ring is available, but
262 * increment page_remove if the read pointer currently
263 * points here.
264 */
265 if (read_index == index)
266 ++rx_queue->page_remove;
267 rx_queue->page_ring[index] = page;
268 ++rx_queue->page_add;
269 return;
270 }
271 ++rx_queue->page_recycle_full;
272 ef4_unmap_rx_buffer(efx, rx_buf);
273 put_page(rx_buf->page);
274 }
275
276 static void ef4_fini_rx_buffer(struct ef4_rx_queue *rx_queue,
277 struct ef4_rx_buffer *rx_buf)
278 {
279 /* Release the page reference we hold for the buffer. */
280 if (rx_buf->page)
281 put_page(rx_buf->page);
282
283 /* If this is the last buffer in a page, unmap and free it. */
284 if (rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE) {
285 ef4_unmap_rx_buffer(rx_queue->efx, rx_buf);
286 ef4_free_rx_buffers(rx_queue, rx_buf, 1);
287 }
288 rx_buf->page = NULL;
289 }
290
291 /* Recycle the pages that are used by buffers that have just been received. */
292 static void ef4_recycle_rx_pages(struct ef4_channel *channel,
293 struct ef4_rx_buffer *rx_buf,
294 unsigned int n_frags)
295 {
296 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
297
298 do {
299 ef4_recycle_rx_page(channel, rx_buf);
300 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
301 } while (--n_frags);
302 }
303
304 static void ef4_discard_rx_packet(struct ef4_channel *channel,
305 struct ef4_rx_buffer *rx_buf,
306 unsigned int n_frags)
307 {
308 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
309
310 ef4_recycle_rx_pages(channel, rx_buf, n_frags);
311
312 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
313 }
314
315 /**
316 * ef4_fast_push_rx_descriptors - push new RX descriptors quickly
317 * @rx_queue: RX descriptor queue
318 *
319 * This will aim to fill the RX descriptor queue up to
320 * @rx_queue->@max_fill. If there is insufficient atomic
321 * memory to do so, a slow fill will be scheduled.
322 *
323 * The caller must provide serialisation (none is used here). In practise,
324 * this means this function must run from the NAPI handler, or be called
325 * when NAPI is disabled.
326 */
327 void ef4_fast_push_rx_descriptors(struct ef4_rx_queue *rx_queue, bool atomic)
328 {
329 struct ef4_nic *efx = rx_queue->efx;
330 unsigned int fill_level, batch_size;
331 int space, rc = 0;
332
333 if (!rx_queue->refill_enabled)
334 return;
335
336 /* Calculate current fill level, and exit if we don't need to fill */
337 fill_level = (rx_queue->added_count - rx_queue->removed_count);
338 EF4_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
339 if (fill_level >= rx_queue->fast_fill_trigger)
340 goto out;
341
342 /* Record minimum fill level */
343 if (unlikely(fill_level < rx_queue->min_fill)) {
344 if (fill_level)
345 rx_queue->min_fill = fill_level;
346 }
347
348 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
349 space = rx_queue->max_fill - fill_level;
350 EF4_BUG_ON_PARANOID(space < batch_size);
351
352 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
353 "RX queue %d fast-filling descriptor ring from"
354 " level %d to level %d\n",
355 ef4_rx_queue_index(rx_queue), fill_level,
356 rx_queue->max_fill);
357
358
359 do {
360 rc = ef4_init_rx_buffers(rx_queue, atomic);
361 if (unlikely(rc)) {
362 /* Ensure that we don't leave the rx queue empty */
363 if (rx_queue->added_count == rx_queue->removed_count)
364 ef4_schedule_slow_fill(rx_queue);
365 goto out;
366 }
367 } while ((space -= batch_size) >= batch_size);
368
369 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
370 "RX queue %d fast-filled descriptor ring "
371 "to level %d\n", ef4_rx_queue_index(rx_queue),
372 rx_queue->added_count - rx_queue->removed_count);
373
374 out:
375 if (rx_queue->notified_count != rx_queue->added_count)
376 ef4_nic_notify_rx_desc(rx_queue);
377 }
378
379 void ef4_rx_slow_fill(unsigned long context)
380 {
381 struct ef4_rx_queue *rx_queue = (struct ef4_rx_queue *)context;
382
383 /* Post an event to cause NAPI to run and refill the queue */
384 ef4_nic_generate_fill_event(rx_queue);
385 ++rx_queue->slow_fill_count;
386 }
387
388 static void ef4_rx_packet__check_len(struct ef4_rx_queue *rx_queue,
389 struct ef4_rx_buffer *rx_buf,
390 int len)
391 {
392 struct ef4_nic *efx = rx_queue->efx;
393 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
394
395 if (likely(len <= max_len))
396 return;
397
398 /* The packet must be discarded, but this is only a fatal error
399 * if the caller indicated it was
400 */
401 rx_buf->flags |= EF4_RX_PKT_DISCARD;
402
403 if ((len > rx_buf->len) && EF4_WORKAROUND_8071(efx)) {
404 if (net_ratelimit())
405 netif_err(efx, rx_err, efx->net_dev,
406 " RX queue %d seriously overlength "
407 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
408 ef4_rx_queue_index(rx_queue), len, max_len,
409 efx->type->rx_buffer_padding);
410 ef4_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
411 } else {
412 if (net_ratelimit())
413 netif_err(efx, rx_err, efx->net_dev,
414 " RX queue %d overlength RX event "
415 "(0x%x > 0x%x)\n",
416 ef4_rx_queue_index(rx_queue), len, max_len);
417 }
418
419 ef4_rx_queue_channel(rx_queue)->n_rx_overlength++;
420 }
421
422 /* Pass a received packet up through GRO. GRO can handle pages
423 * regardless of checksum state and skbs with a good checksum.
424 */
425 static void
426 ef4_rx_packet_gro(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf,
427 unsigned int n_frags, u8 *eh)
428 {
429 struct napi_struct *napi = &channel->napi_str;
430 gro_result_t gro_result;
431 struct ef4_nic *efx = channel->efx;
432 struct sk_buff *skb;
433
434 skb = napi_get_frags(napi);
435 if (unlikely(!skb)) {
436 struct ef4_rx_queue *rx_queue;
437
438 rx_queue = ef4_channel_get_rx_queue(channel);
439 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
440 return;
441 }
442
443 if (efx->net_dev->features & NETIF_F_RXHASH)
444 skb_set_hash(skb, ef4_rx_buf_hash(efx, eh),
445 PKT_HASH_TYPE_L3);
446 skb->ip_summed = ((rx_buf->flags & EF4_RX_PKT_CSUMMED) ?
447 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
448
449 for (;;) {
450 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
451 rx_buf->page, rx_buf->page_offset,
452 rx_buf->len);
453 rx_buf->page = NULL;
454 skb->len += rx_buf->len;
455 if (skb_shinfo(skb)->nr_frags == n_frags)
456 break;
457
458 rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
459 }
460
461 skb->data_len = skb->len;
462 skb->truesize += n_frags * efx->rx_buffer_truesize;
463
464 skb_record_rx_queue(skb, channel->rx_queue.core_index);
465
466 gro_result = napi_gro_frags(napi);
467 if (gro_result != GRO_DROP)
468 channel->irq_mod_score += 2;
469 }
470
471 /* Allocate and construct an SKB around page fragments */
472 static struct sk_buff *ef4_rx_mk_skb(struct ef4_channel *channel,
473 struct ef4_rx_buffer *rx_buf,
474 unsigned int n_frags,
475 u8 *eh, int hdr_len)
476 {
477 struct ef4_nic *efx = channel->efx;
478 struct sk_buff *skb;
479
480 /* Allocate an SKB to store the headers */
481 skb = netdev_alloc_skb(efx->net_dev,
482 efx->rx_ip_align + efx->rx_prefix_size +
483 hdr_len);
484 if (unlikely(skb == NULL)) {
485 atomic_inc(&efx->n_rx_noskb_drops);
486 return NULL;
487 }
488
489 EF4_BUG_ON_PARANOID(rx_buf->len < hdr_len);
490
491 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
492 efx->rx_prefix_size + hdr_len);
493 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
494 __skb_put(skb, hdr_len);
495
496 /* Append the remaining page(s) onto the frag list */
497 if (rx_buf->len > hdr_len) {
498 rx_buf->page_offset += hdr_len;
499 rx_buf->len -= hdr_len;
500
501 for (;;) {
502 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
503 rx_buf->page, rx_buf->page_offset,
504 rx_buf->len);
505 rx_buf->page = NULL;
506 skb->len += rx_buf->len;
507 skb->data_len += rx_buf->len;
508 if (skb_shinfo(skb)->nr_frags == n_frags)
509 break;
510
511 rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
512 }
513 } else {
514 __free_pages(rx_buf->page, efx->rx_buffer_order);
515 rx_buf->page = NULL;
516 n_frags = 0;
517 }
518
519 skb->truesize += n_frags * efx->rx_buffer_truesize;
520
521 /* Move past the ethernet header */
522 skb->protocol = eth_type_trans(skb, efx->net_dev);
523
524 skb_mark_napi_id(skb, &channel->napi_str);
525
526 return skb;
527 }
528
529 void ef4_rx_packet(struct ef4_rx_queue *rx_queue, unsigned int index,
530 unsigned int n_frags, unsigned int len, u16 flags)
531 {
532 struct ef4_nic *efx = rx_queue->efx;
533 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
534 struct ef4_rx_buffer *rx_buf;
535
536 rx_queue->rx_packets++;
537
538 rx_buf = ef4_rx_buffer(rx_queue, index);
539 rx_buf->flags |= flags;
540
541 /* Validate the number of fragments and completed length */
542 if (n_frags == 1) {
543 if (!(flags & EF4_RX_PKT_PREFIX_LEN))
544 ef4_rx_packet__check_len(rx_queue, rx_buf, len);
545 } else if (unlikely(n_frags > EF4_RX_MAX_FRAGS) ||
546 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
547 unlikely(len > n_frags * efx->rx_dma_len) ||
548 unlikely(!efx->rx_scatter)) {
549 /* If this isn't an explicit discard request, either
550 * the hardware or the driver is broken.
551 */
552 WARN_ON(!(len == 0 && rx_buf->flags & EF4_RX_PKT_DISCARD));
553 rx_buf->flags |= EF4_RX_PKT_DISCARD;
554 }
555
556 netif_vdbg(efx, rx_status, efx->net_dev,
557 "RX queue %d received ids %x-%x len %d %s%s\n",
558 ef4_rx_queue_index(rx_queue), index,
559 (index + n_frags - 1) & rx_queue->ptr_mask, len,
560 (rx_buf->flags & EF4_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
561 (rx_buf->flags & EF4_RX_PKT_DISCARD) ? " [DISCARD]" : "");
562
563 /* Discard packet, if instructed to do so. Process the
564 * previous receive first.
565 */
566 if (unlikely(rx_buf->flags & EF4_RX_PKT_DISCARD)) {
567 ef4_rx_flush_packet(channel);
568 ef4_discard_rx_packet(channel, rx_buf, n_frags);
569 return;
570 }
571
572 if (n_frags == 1 && !(flags & EF4_RX_PKT_PREFIX_LEN))
573 rx_buf->len = len;
574
575 /* Release and/or sync the DMA mapping - assumes all RX buffers
576 * consumed in-order per RX queue.
577 */
578 ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
579
580 /* Prefetch nice and early so data will (hopefully) be in cache by
581 * the time we look at it.
582 */
583 prefetch(ef4_rx_buf_va(rx_buf));
584
585 rx_buf->page_offset += efx->rx_prefix_size;
586 rx_buf->len -= efx->rx_prefix_size;
587
588 if (n_frags > 1) {
589 /* Release/sync DMA mapping for additional fragments.
590 * Fix length for last fragment.
591 */
592 unsigned int tail_frags = n_frags - 1;
593
594 for (;;) {
595 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
596 if (--tail_frags == 0)
597 break;
598 ef4_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
599 }
600 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
601 ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
602 }
603
604 /* All fragments have been DMA-synced, so recycle pages. */
605 rx_buf = ef4_rx_buffer(rx_queue, index);
606 ef4_recycle_rx_pages(channel, rx_buf, n_frags);
607
608 /* Pipeline receives so that we give time for packet headers to be
609 * prefetched into cache.
610 */
611 ef4_rx_flush_packet(channel);
612 channel->rx_pkt_n_frags = n_frags;
613 channel->rx_pkt_index = index;
614 }
615
616 static void ef4_rx_deliver(struct ef4_channel *channel, u8 *eh,
617 struct ef4_rx_buffer *rx_buf,
618 unsigned int n_frags)
619 {
620 struct sk_buff *skb;
621 u16 hdr_len = min_t(u16, rx_buf->len, EF4_SKB_HEADERS);
622
623 skb = ef4_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
624 if (unlikely(skb == NULL)) {
625 struct ef4_rx_queue *rx_queue;
626
627 rx_queue = ef4_channel_get_rx_queue(channel);
628 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
629 return;
630 }
631 skb_record_rx_queue(skb, channel->rx_queue.core_index);
632
633 /* Set the SKB flags */
634 skb_checksum_none_assert(skb);
635 if (likely(rx_buf->flags & EF4_RX_PKT_CSUMMED))
636 skb->ip_summed = CHECKSUM_UNNECESSARY;
637
638 if (channel->type->receive_skb)
639 if (channel->type->receive_skb(channel, skb))
640 return;
641
642 /* Pass the packet up */
643 netif_receive_skb(skb);
644 }
645
646 /* Handle a received packet. Second half: Touches packet payload. */
647 void __ef4_rx_packet(struct ef4_channel *channel)
648 {
649 struct ef4_nic *efx = channel->efx;
650 struct ef4_rx_buffer *rx_buf =
651 ef4_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
652 u8 *eh = ef4_rx_buf_va(rx_buf);
653
654 /* Read length from the prefix if necessary. This already
655 * excludes the length of the prefix itself.
656 */
657 if (rx_buf->flags & EF4_RX_PKT_PREFIX_LEN)
658 rx_buf->len = le16_to_cpup((__le16 *)
659 (eh + efx->rx_packet_len_offset));
660
661 /* If we're in loopback test, then pass the packet directly to the
662 * loopback layer, and free the rx_buf here
663 */
664 if (unlikely(efx->loopback_selftest)) {
665 struct ef4_rx_queue *rx_queue;
666
667 ef4_loopback_rx_packet(efx, eh, rx_buf->len);
668 rx_queue = ef4_channel_get_rx_queue(channel);
669 ef4_free_rx_buffers(rx_queue, rx_buf,
670 channel->rx_pkt_n_frags);
671 goto out;
672 }
673
674 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
675 rx_buf->flags &= ~EF4_RX_PKT_CSUMMED;
676
677 if ((rx_buf->flags & EF4_RX_PKT_TCP) && !channel->type->receive_skb)
678 ef4_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
679 else
680 ef4_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
681 out:
682 channel->rx_pkt_n_frags = 0;
683 }
684
685 int ef4_probe_rx_queue(struct ef4_rx_queue *rx_queue)
686 {
687 struct ef4_nic *efx = rx_queue->efx;
688 unsigned int entries;
689 int rc;
690
691 /* Create the smallest power-of-two aligned ring */
692 entries = max(roundup_pow_of_two(efx->rxq_entries), EF4_MIN_DMAQ_SIZE);
693 EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
694 rx_queue->ptr_mask = entries - 1;
695
696 netif_dbg(efx, probe, efx->net_dev,
697 "creating RX queue %d size %#x mask %#x\n",
698 ef4_rx_queue_index(rx_queue), efx->rxq_entries,
699 rx_queue->ptr_mask);
700
701 /* Allocate RX buffers */
702 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
703 GFP_KERNEL);
704 if (!rx_queue->buffer)
705 return -ENOMEM;
706
707 rc = ef4_nic_probe_rx(rx_queue);
708 if (rc) {
709 kfree(rx_queue->buffer);
710 rx_queue->buffer = NULL;
711 }
712
713 return rc;
714 }
715
716 static void ef4_init_rx_recycle_ring(struct ef4_nic *efx,
717 struct ef4_rx_queue *rx_queue)
718 {
719 unsigned int bufs_in_recycle_ring, page_ring_size;
720
721 /* Set the RX recycle ring size */
722 #ifdef CONFIG_PPC64
723 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
724 #else
725 if (iommu_present(&pci_bus_type))
726 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
727 else
728 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_NOIOMMU;
729 #endif /* CONFIG_PPC64 */
730
731 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
732 efx->rx_bufs_per_page);
733 rx_queue->page_ring = kcalloc(page_ring_size,
734 sizeof(*rx_queue->page_ring), GFP_KERNEL);
735 rx_queue->page_ptr_mask = page_ring_size - 1;
736 }
737
738 void ef4_init_rx_queue(struct ef4_rx_queue *rx_queue)
739 {
740 struct ef4_nic *efx = rx_queue->efx;
741 unsigned int max_fill, trigger, max_trigger;
742
743 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
744 "initialising RX queue %d\n", ef4_rx_queue_index(rx_queue));
745
746 /* Initialise ptr fields */
747 rx_queue->added_count = 0;
748 rx_queue->notified_count = 0;
749 rx_queue->removed_count = 0;
750 rx_queue->min_fill = -1U;
751 ef4_init_rx_recycle_ring(efx, rx_queue);
752
753 rx_queue->page_remove = 0;
754 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
755 rx_queue->page_recycle_count = 0;
756 rx_queue->page_recycle_failed = 0;
757 rx_queue->page_recycle_full = 0;
758
759 /* Initialise limit fields */
760 max_fill = efx->rxq_entries - EF4_RXD_HEAD_ROOM;
761 max_trigger =
762 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
763 if (rx_refill_threshold != 0) {
764 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
765 if (trigger > max_trigger)
766 trigger = max_trigger;
767 } else {
768 trigger = max_trigger;
769 }
770
771 rx_queue->max_fill = max_fill;
772 rx_queue->fast_fill_trigger = trigger;
773 rx_queue->refill_enabled = true;
774
775 /* Set up RX descriptor ring */
776 ef4_nic_init_rx(rx_queue);
777 }
778
779 void ef4_fini_rx_queue(struct ef4_rx_queue *rx_queue)
780 {
781 int i;
782 struct ef4_nic *efx = rx_queue->efx;
783 struct ef4_rx_buffer *rx_buf;
784
785 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
786 "shutting down RX queue %d\n", ef4_rx_queue_index(rx_queue));
787
788 del_timer_sync(&rx_queue->slow_fill);
789
790 /* Release RX buffers from the current read ptr to the write ptr */
791 if (rx_queue->buffer) {
792 for (i = rx_queue->removed_count; i < rx_queue->added_count;
793 i++) {
794 unsigned index = i & rx_queue->ptr_mask;
795 rx_buf = ef4_rx_buffer(rx_queue, index);
796 ef4_fini_rx_buffer(rx_queue, rx_buf);
797 }
798 }
799
800 /* Unmap and release the pages in the recycle ring. Remove the ring. */
801 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
802 struct page *page = rx_queue->page_ring[i];
803 struct ef4_rx_page_state *state;
804
805 if (page == NULL)
806 continue;
807
808 state = page_address(page);
809 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
810 PAGE_SIZE << efx->rx_buffer_order,
811 DMA_FROM_DEVICE);
812 put_page(page);
813 }
814 kfree(rx_queue->page_ring);
815 rx_queue->page_ring = NULL;
816 }
817
818 void ef4_remove_rx_queue(struct ef4_rx_queue *rx_queue)
819 {
820 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
821 "destroying RX queue %d\n", ef4_rx_queue_index(rx_queue));
822
823 ef4_nic_remove_rx(rx_queue);
824
825 kfree(rx_queue->buffer);
826 rx_queue->buffer = NULL;
827 }
828
829
830 module_param(rx_refill_threshold, uint, 0444);
831 MODULE_PARM_DESC(rx_refill_threshold,
832 "RX descriptor ring refill threshold (%)");
833
834 #ifdef CONFIG_RFS_ACCEL
835
836 int ef4_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
837 u16 rxq_index, u32 flow_id)
838 {
839 struct ef4_nic *efx = netdev_priv(net_dev);
840 struct ef4_channel *channel;
841 struct ef4_filter_spec spec;
842 struct flow_keys fk;
843 int rc;
844
845 if (flow_id == RPS_FLOW_ID_INVALID)
846 return -EINVAL;
847
848 if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
849 return -EPROTONOSUPPORT;
850
851 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6))
852 return -EPROTONOSUPPORT;
853 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT)
854 return -EPROTONOSUPPORT;
855
856 ef4_filter_init_rx(&spec, EF4_FILTER_PRI_HINT,
857 efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0,
858 rxq_index);
859 spec.match_flags =
860 EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
861 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
862 EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT;
863 spec.ether_type = fk.basic.n_proto;
864 spec.ip_proto = fk.basic.ip_proto;
865
866 if (fk.basic.n_proto == htons(ETH_P_IP)) {
867 spec.rem_host[0] = fk.addrs.v4addrs.src;
868 spec.loc_host[0] = fk.addrs.v4addrs.dst;
869 } else {
870 memcpy(spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr));
871 memcpy(spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr));
872 }
873
874 spec.rem_port = fk.ports.src;
875 spec.loc_port = fk.ports.dst;
876
877 rc = efx->type->filter_rfs_insert(efx, &spec);
878 if (rc < 0)
879 return rc;
880
881 /* Remember this so we can check whether to expire the filter later */
882 channel = ef4_get_channel(efx, rxq_index);
883 channel->rps_flow_id[rc] = flow_id;
884 ++channel->rfs_filters_added;
885
886 if (spec.ether_type == htons(ETH_P_IP))
887 netif_info(efx, rx_status, efx->net_dev,
888 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
889 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
890 spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
891 ntohs(spec.loc_port), rxq_index, flow_id, rc);
892 else
893 netif_info(efx, rx_status, efx->net_dev,
894 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
895 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
896 spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
897 ntohs(spec.loc_port), rxq_index, flow_id, rc);
898
899 return rc;
900 }
901
902 bool __ef4_filter_rfs_expire(struct ef4_nic *efx, unsigned int quota)
903 {
904 bool (*expire_one)(struct ef4_nic *efx, u32 flow_id, unsigned int index);
905 unsigned int channel_idx, index, size;
906 u32 flow_id;
907
908 if (!spin_trylock_bh(&efx->filter_lock))
909 return false;
910
911 expire_one = efx->type->filter_rfs_expire_one;
912 channel_idx = efx->rps_expire_channel;
913 index = efx->rps_expire_index;
914 size = efx->type->max_rx_ip_filters;
915 while (quota--) {
916 struct ef4_channel *channel = ef4_get_channel(efx, channel_idx);
917 flow_id = channel->rps_flow_id[index];
918
919 if (flow_id != RPS_FLOW_ID_INVALID &&
920 expire_one(efx, flow_id, index)) {
921 netif_info(efx, rx_status, efx->net_dev,
922 "expired filter %d [queue %u flow %u]\n",
923 index, channel_idx, flow_id);
924 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
925 }
926 if (++index == size) {
927 if (++channel_idx == efx->n_channels)
928 channel_idx = 0;
929 index = 0;
930 }
931 }
932 efx->rps_expire_channel = channel_idx;
933 efx->rps_expire_index = index;
934
935 spin_unlock_bh(&efx->filter_lock);
936 return true;
937 }
938
939 #endif /* CONFIG_RFS_ACCEL */
940
941 /**
942 * ef4_filter_is_mc_recipient - test whether spec is a multicast recipient
943 * @spec: Specification to test
944 *
945 * Return: %true if the specification is a non-drop RX filter that
946 * matches a local MAC address I/G bit value of 1 or matches a local
947 * IPv4 or IPv6 address value in the respective multicast address
948 * range. Otherwise %false.
949 */
950 bool ef4_filter_is_mc_recipient(const struct ef4_filter_spec *spec)
951 {
952 if (!(spec->flags & EF4_FILTER_FLAG_RX) ||
953 spec->dmaq_id == EF4_FILTER_RX_DMAQ_ID_DROP)
954 return false;
955
956 if (spec->match_flags &
957 (EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_LOC_MAC_IG) &&
958 is_multicast_ether_addr(spec->loc_mac))
959 return true;
960
961 if ((spec->match_flags &
962 (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) ==
963 (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) {
964 if (spec->ether_type == htons(ETH_P_IP) &&
965 ipv4_is_multicast(spec->loc_host[0]))
966 return true;
967 if (spec->ether_type == htons(ETH_P_IPV6) &&
968 ((const u8 *)spec->loc_host)[0] == 0xff)
969 return true;
970 }
971
972 return false;
973 }