]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
KVM: clean up directives to compile out irqfds
[thirdparty/kernel/stable.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/page_pool/helpers.h>
43 #include <net/pkt_cls.h>
44 #include <net/xdp_sock_drv.h>
45 #include "stmmac_ptp.h"
46 #include "stmmac.h"
47 #include "stmmac_xdp.h"
48 #include <linux/reset.h>
49 #include <linux/of_mdio.h>
50 #include "dwmac1000.h"
51 #include "dwxgmac2.h"
52 #include "hwif.h"
53
54 /* As long as the interface is active, we keep the timestamping counter enabled
55 * with fine resolution and binary rollover. This avoid non-monotonic behavior
56 * (clock jumps) when changing timestamping settings at runtime.
57 */
58 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
59 PTP_TCR_TSCTRLSSR)
60
61 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
62 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
63
64 /* Module parameters */
65 #define TX_TIMEO 5000
66 static int watchdog = TX_TIMEO;
67 module_param(watchdog, int, 0644);
68 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
69
70 static int debug = -1;
71 module_param(debug, int, 0644);
72 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
73
74 static int phyaddr = -1;
75 module_param(phyaddr, int, 0444);
76 MODULE_PARM_DESC(phyaddr, "Physical device address");
77
78 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4)
79 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4)
80
81 /* Limit to make sure XDP TX and slow path can coexist */
82 #define STMMAC_XSK_TX_BUDGET_MAX 256
83 #define STMMAC_TX_XSK_AVAIL 16
84 #define STMMAC_RX_FILL_BATCH 16
85
86 #define STMMAC_XDP_PASS 0
87 #define STMMAC_XDP_CONSUMED BIT(0)
88 #define STMMAC_XDP_TX BIT(1)
89 #define STMMAC_XDP_REDIRECT BIT(2)
90
91 static int flow_ctrl = FLOW_AUTO;
92 module_param(flow_ctrl, int, 0644);
93 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
94
95 static int pause = PAUSE_TIME;
96 module_param(pause, int, 0644);
97 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
98
99 #define TC_DEFAULT 64
100 static int tc = TC_DEFAULT;
101 module_param(tc, int, 0644);
102 MODULE_PARM_DESC(tc, "DMA threshold control value");
103
104 #define DEFAULT_BUFSIZE 1536
105 static int buf_sz = DEFAULT_BUFSIZE;
106 module_param(buf_sz, int, 0644);
107 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
108
109 #define STMMAC_RX_COPYBREAK 256
110
111 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
112 NETIF_MSG_LINK | NETIF_MSG_IFUP |
113 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
114
115 #define STMMAC_DEFAULT_LPI_TIMER 1000
116 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
117 module_param(eee_timer, int, 0644);
118 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
119 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
120
121 /* By default the driver will use the ring mode to manage tx and rx descriptors,
122 * but allow user to force to use the chain instead of the ring
123 */
124 static unsigned int chain_mode;
125 module_param(chain_mode, int, 0444);
126 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
127
128 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
129 /* For MSI interrupts handling */
130 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
132 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
133 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
134 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
136 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
137 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
138 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
139 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
140 u32 rxmode, u32 chan);
141
142 #ifdef CONFIG_DEBUG_FS
143 static const struct net_device_ops stmmac_netdev_ops;
144 static void stmmac_init_fs(struct net_device *dev);
145 static void stmmac_exit_fs(struct net_device *dev);
146 #endif
147
148 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
149
150 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
151 {
152 int ret = 0;
153
154 if (enabled) {
155 ret = clk_prepare_enable(priv->plat->stmmac_clk);
156 if (ret)
157 return ret;
158 ret = clk_prepare_enable(priv->plat->pclk);
159 if (ret) {
160 clk_disable_unprepare(priv->plat->stmmac_clk);
161 return ret;
162 }
163 if (priv->plat->clks_config) {
164 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
165 if (ret) {
166 clk_disable_unprepare(priv->plat->stmmac_clk);
167 clk_disable_unprepare(priv->plat->pclk);
168 return ret;
169 }
170 }
171 } else {
172 clk_disable_unprepare(priv->plat->stmmac_clk);
173 clk_disable_unprepare(priv->plat->pclk);
174 if (priv->plat->clks_config)
175 priv->plat->clks_config(priv->plat->bsp_priv, enabled);
176 }
177
178 return ret;
179 }
180 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
181
182 /**
183 * stmmac_verify_args - verify the driver parameters.
184 * Description: it checks the driver parameters and set a default in case of
185 * errors.
186 */
187 static void stmmac_verify_args(void)
188 {
189 if (unlikely(watchdog < 0))
190 watchdog = TX_TIMEO;
191 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
192 buf_sz = DEFAULT_BUFSIZE;
193 if (unlikely(flow_ctrl > 1))
194 flow_ctrl = FLOW_AUTO;
195 else if (likely(flow_ctrl < 0))
196 flow_ctrl = FLOW_OFF;
197 if (unlikely((pause < 0) || (pause > 0xffff)))
198 pause = PAUSE_TIME;
199 if (eee_timer < 0)
200 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
201 }
202
203 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
204 {
205 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
206 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
207 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
208 u32 queue;
209
210 for (queue = 0; queue < maxq; queue++) {
211 struct stmmac_channel *ch = &priv->channel[queue];
212
213 if (stmmac_xdp_is_enabled(priv) &&
214 test_bit(queue, priv->af_xdp_zc_qps)) {
215 napi_disable(&ch->rxtx_napi);
216 continue;
217 }
218
219 if (queue < rx_queues_cnt)
220 napi_disable(&ch->rx_napi);
221 if (queue < tx_queues_cnt)
222 napi_disable(&ch->tx_napi);
223 }
224 }
225
226 /**
227 * stmmac_disable_all_queues - Disable all queues
228 * @priv: driver private structure
229 */
230 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
231 {
232 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
233 struct stmmac_rx_queue *rx_q;
234 u32 queue;
235
236 /* synchronize_rcu() needed for pending XDP buffers to drain */
237 for (queue = 0; queue < rx_queues_cnt; queue++) {
238 rx_q = &priv->dma_conf.rx_queue[queue];
239 if (rx_q->xsk_pool) {
240 synchronize_rcu();
241 break;
242 }
243 }
244
245 __stmmac_disable_all_queues(priv);
246 }
247
248 /**
249 * stmmac_enable_all_queues - Enable all queues
250 * @priv: driver private structure
251 */
252 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
253 {
254 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
255 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
256 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
257 u32 queue;
258
259 for (queue = 0; queue < maxq; queue++) {
260 struct stmmac_channel *ch = &priv->channel[queue];
261
262 if (stmmac_xdp_is_enabled(priv) &&
263 test_bit(queue, priv->af_xdp_zc_qps)) {
264 napi_enable(&ch->rxtx_napi);
265 continue;
266 }
267
268 if (queue < rx_queues_cnt)
269 napi_enable(&ch->rx_napi);
270 if (queue < tx_queues_cnt)
271 napi_enable(&ch->tx_napi);
272 }
273 }
274
275 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
276 {
277 if (!test_bit(STMMAC_DOWN, &priv->state) &&
278 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
279 queue_work(priv->wq, &priv->service_task);
280 }
281
282 static void stmmac_global_err(struct stmmac_priv *priv)
283 {
284 netif_carrier_off(priv->dev);
285 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
286 stmmac_service_event_schedule(priv);
287 }
288
289 /**
290 * stmmac_clk_csr_set - dynamically set the MDC clock
291 * @priv: driver private structure
292 * Description: this is to dynamically set the MDC clock according to the csr
293 * clock input.
294 * Note:
295 * If a specific clk_csr value is passed from the platform
296 * this means that the CSR Clock Range selection cannot be
297 * changed at run-time and it is fixed (as reported in the driver
298 * documentation). Viceversa the driver will try to set the MDC
299 * clock dynamically according to the actual clock input.
300 */
301 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
302 {
303 u32 clk_rate;
304
305 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
306
307 /* Platform provided default clk_csr would be assumed valid
308 * for all other cases except for the below mentioned ones.
309 * For values higher than the IEEE 802.3 specified frequency
310 * we can not estimate the proper divider as it is not known
311 * the frequency of clk_csr_i. So we do not change the default
312 * divider.
313 */
314 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
315 if (clk_rate < CSR_F_35M)
316 priv->clk_csr = STMMAC_CSR_20_35M;
317 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
318 priv->clk_csr = STMMAC_CSR_35_60M;
319 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
320 priv->clk_csr = STMMAC_CSR_60_100M;
321 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
322 priv->clk_csr = STMMAC_CSR_100_150M;
323 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
324 priv->clk_csr = STMMAC_CSR_150_250M;
325 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
326 priv->clk_csr = STMMAC_CSR_250_300M;
327 }
328
329 if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) {
330 if (clk_rate > 160000000)
331 priv->clk_csr = 0x03;
332 else if (clk_rate > 80000000)
333 priv->clk_csr = 0x02;
334 else if (clk_rate > 40000000)
335 priv->clk_csr = 0x01;
336 else
337 priv->clk_csr = 0;
338 }
339
340 if (priv->plat->has_xgmac) {
341 if (clk_rate > 400000000)
342 priv->clk_csr = 0x5;
343 else if (clk_rate > 350000000)
344 priv->clk_csr = 0x4;
345 else if (clk_rate > 300000000)
346 priv->clk_csr = 0x3;
347 else if (clk_rate > 250000000)
348 priv->clk_csr = 0x2;
349 else if (clk_rate > 150000000)
350 priv->clk_csr = 0x1;
351 else
352 priv->clk_csr = 0x0;
353 }
354 }
355
356 static void print_pkt(unsigned char *buf, int len)
357 {
358 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
359 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
360 }
361
362 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
363 {
364 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
365 u32 avail;
366
367 if (tx_q->dirty_tx > tx_q->cur_tx)
368 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
369 else
370 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
371
372 return avail;
373 }
374
375 /**
376 * stmmac_rx_dirty - Get RX queue dirty
377 * @priv: driver private structure
378 * @queue: RX queue index
379 */
380 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
381 {
382 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
383 u32 dirty;
384
385 if (rx_q->dirty_rx <= rx_q->cur_rx)
386 dirty = rx_q->cur_rx - rx_q->dirty_rx;
387 else
388 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
389
390 return dirty;
391 }
392
393 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
394 {
395 int tx_lpi_timer;
396
397 /* Clear/set the SW EEE timer flag based on LPI ET enablement */
398 priv->eee_sw_timer_en = en ? 0 : 1;
399 tx_lpi_timer = en ? priv->tx_lpi_timer : 0;
400 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
401 }
402
403 /**
404 * stmmac_enable_eee_mode - check and enter in LPI mode
405 * @priv: driver private structure
406 * Description: this function is to verify and enter in LPI mode in case of
407 * EEE.
408 */
409 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
410 {
411 u32 tx_cnt = priv->plat->tx_queues_to_use;
412 u32 queue;
413
414 /* check if all TX queues have the work finished */
415 for (queue = 0; queue < tx_cnt; queue++) {
416 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
417
418 if (tx_q->dirty_tx != tx_q->cur_tx)
419 return -EBUSY; /* still unfinished work */
420 }
421
422 /* Check and enter in LPI mode */
423 if (!priv->tx_path_in_lpi_mode)
424 stmmac_set_eee_mode(priv, priv->hw,
425 priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING);
426 return 0;
427 }
428
429 /**
430 * stmmac_disable_eee_mode - disable and exit from LPI mode
431 * @priv: driver private structure
432 * Description: this function is to exit and disable EEE in case of
433 * LPI state is true. This is called by the xmit.
434 */
435 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
436 {
437 if (!priv->eee_sw_timer_en) {
438 stmmac_lpi_entry_timer_config(priv, 0);
439 return;
440 }
441
442 stmmac_reset_eee_mode(priv, priv->hw);
443 del_timer_sync(&priv->eee_ctrl_timer);
444 priv->tx_path_in_lpi_mode = false;
445 }
446
447 /**
448 * stmmac_eee_ctrl_timer - EEE TX SW timer.
449 * @t: timer_list struct containing private info
450 * Description:
451 * if there is no data transfer and if we are not in LPI state,
452 * then MAC Transmitter can be moved to LPI state.
453 */
454 static void stmmac_eee_ctrl_timer(struct timer_list *t)
455 {
456 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
457
458 if (stmmac_enable_eee_mode(priv))
459 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
460 }
461
462 /**
463 * stmmac_eee_init - init EEE
464 * @priv: driver private structure
465 * Description:
466 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
467 * can also manage EEE, this function enable the LPI state and start related
468 * timer.
469 */
470 bool stmmac_eee_init(struct stmmac_priv *priv)
471 {
472 int eee_tw_timer = priv->eee_tw_timer;
473
474 /* Using PCS we cannot dial with the phy registers at this stage
475 * so we do not support extra feature like EEE.
476 */
477 if (priv->hw->pcs == STMMAC_PCS_TBI ||
478 priv->hw->pcs == STMMAC_PCS_RTBI)
479 return false;
480
481 /* Check if MAC core supports the EEE feature. */
482 if (!priv->dma_cap.eee)
483 return false;
484
485 mutex_lock(&priv->lock);
486
487 /* Check if it needs to be deactivated */
488 if (!priv->eee_active) {
489 if (priv->eee_enabled) {
490 netdev_dbg(priv->dev, "disable EEE\n");
491 stmmac_lpi_entry_timer_config(priv, 0);
492 del_timer_sync(&priv->eee_ctrl_timer);
493 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
494 if (priv->hw->xpcs)
495 xpcs_config_eee(priv->hw->xpcs,
496 priv->plat->mult_fact_100ns,
497 false);
498 }
499 mutex_unlock(&priv->lock);
500 return false;
501 }
502
503 if (priv->eee_active && !priv->eee_enabled) {
504 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
505 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
506 eee_tw_timer);
507 if (priv->hw->xpcs)
508 xpcs_config_eee(priv->hw->xpcs,
509 priv->plat->mult_fact_100ns,
510 true);
511 }
512
513 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
514 del_timer_sync(&priv->eee_ctrl_timer);
515 priv->tx_path_in_lpi_mode = false;
516 stmmac_lpi_entry_timer_config(priv, 1);
517 } else {
518 stmmac_lpi_entry_timer_config(priv, 0);
519 mod_timer(&priv->eee_ctrl_timer,
520 STMMAC_LPI_T(priv->tx_lpi_timer));
521 }
522
523 mutex_unlock(&priv->lock);
524 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
525 return true;
526 }
527
528 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
529 * @priv: driver private structure
530 * @p : descriptor pointer
531 * @skb : the socket buffer
532 * Description :
533 * This function will read timestamp from the descriptor & pass it to stack.
534 * and also perform some sanity checks.
535 */
536 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
537 struct dma_desc *p, struct sk_buff *skb)
538 {
539 struct skb_shared_hwtstamps shhwtstamp;
540 bool found = false;
541 u64 ns = 0;
542
543 if (!priv->hwts_tx_en)
544 return;
545
546 /* exit if skb doesn't support hw tstamp */
547 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
548 return;
549
550 /* check tx tstamp status */
551 if (stmmac_get_tx_timestamp_status(priv, p)) {
552 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
553 found = true;
554 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
555 found = true;
556 }
557
558 if (found) {
559 ns -= priv->plat->cdc_error_adj;
560
561 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
562 shhwtstamp.hwtstamp = ns_to_ktime(ns);
563
564 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
565 /* pass tstamp to stack */
566 skb_tstamp_tx(skb, &shhwtstamp);
567 }
568 }
569
570 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
571 * @priv: driver private structure
572 * @p : descriptor pointer
573 * @np : next descriptor pointer
574 * @skb : the socket buffer
575 * Description :
576 * This function will read received packet's timestamp from the descriptor
577 * and pass it to stack. It also perform some sanity checks.
578 */
579 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
580 struct dma_desc *np, struct sk_buff *skb)
581 {
582 struct skb_shared_hwtstamps *shhwtstamp = NULL;
583 struct dma_desc *desc = p;
584 u64 ns = 0;
585
586 if (!priv->hwts_rx_en)
587 return;
588 /* For GMAC4, the valid timestamp is from CTX next desc. */
589 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
590 desc = np;
591
592 /* Check if timestamp is available */
593 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
594 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
595
596 ns -= priv->plat->cdc_error_adj;
597
598 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
599 shhwtstamp = skb_hwtstamps(skb);
600 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
601 shhwtstamp->hwtstamp = ns_to_ktime(ns);
602 } else {
603 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
604 }
605 }
606
607 /**
608 * stmmac_hwtstamp_set - control hardware timestamping.
609 * @dev: device pointer.
610 * @ifr: An IOCTL specific structure, that can contain a pointer to
611 * a proprietary structure used to pass information to the driver.
612 * Description:
613 * This function configures the MAC to enable/disable both outgoing(TX)
614 * and incoming(RX) packets time stamping based on user input.
615 * Return Value:
616 * 0 on success and an appropriate -ve integer on failure.
617 */
618 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
619 {
620 struct stmmac_priv *priv = netdev_priv(dev);
621 struct hwtstamp_config config;
622 u32 ptp_v2 = 0;
623 u32 tstamp_all = 0;
624 u32 ptp_over_ipv4_udp = 0;
625 u32 ptp_over_ipv6_udp = 0;
626 u32 ptp_over_ethernet = 0;
627 u32 snap_type_sel = 0;
628 u32 ts_master_en = 0;
629 u32 ts_event_en = 0;
630
631 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
632 netdev_alert(priv->dev, "No support for HW time stamping\n");
633 priv->hwts_tx_en = 0;
634 priv->hwts_rx_en = 0;
635
636 return -EOPNOTSUPP;
637 }
638
639 if (copy_from_user(&config, ifr->ifr_data,
640 sizeof(config)))
641 return -EFAULT;
642
643 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
644 __func__, config.flags, config.tx_type, config.rx_filter);
645
646 if (config.tx_type != HWTSTAMP_TX_OFF &&
647 config.tx_type != HWTSTAMP_TX_ON)
648 return -ERANGE;
649
650 if (priv->adv_ts) {
651 switch (config.rx_filter) {
652 case HWTSTAMP_FILTER_NONE:
653 /* time stamp no incoming packet at all */
654 config.rx_filter = HWTSTAMP_FILTER_NONE;
655 break;
656
657 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 /* PTP v1, UDP, any kind of event packet */
659 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 /* 'xmac' hardware can support Sync, Pdelay_Req and
661 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 * This leaves Delay_Req timestamps out.
663 * Enable all events *and* general purpose message
664 * timestamping
665 */
666 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 break;
670
671 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 /* PTP v1, UDP, Sync packet */
673 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 /* take time stamp for SYNC messages only */
675 ts_event_en = PTP_TCR_TSEVNTENA;
676
677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 break;
680
681 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 /* PTP v1, UDP, Delay_req packet */
683 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 /* take time stamp for Delay_Req messages only */
685 ts_master_en = PTP_TCR_TSMSTRENA;
686 ts_event_en = PTP_TCR_TSEVNTENA;
687
688 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 break;
691
692 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 /* PTP v2, UDP, any kind of event packet */
694 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 ptp_v2 = PTP_TCR_TSVER2ENA;
696 /* take time stamp for all event messages */
697 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698
699 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 break;
702
703 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 /* PTP v2, UDP, Sync packet */
705 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 ptp_v2 = PTP_TCR_TSVER2ENA;
707 /* take time stamp for SYNC messages only */
708 ts_event_en = PTP_TCR_TSEVNTENA;
709
710 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 break;
713
714 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 /* PTP v2, UDP, Delay_req packet */
716 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 ptp_v2 = PTP_TCR_TSVER2ENA;
718 /* take time stamp for Delay_Req messages only */
719 ts_master_en = PTP_TCR_TSMSTRENA;
720 ts_event_en = PTP_TCR_TSEVNTENA;
721
722 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 break;
725
726 case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 /* PTP v2/802.AS1 any layer, any kind of event packet */
728 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 ptp_v2 = PTP_TCR_TSVER2ENA;
730 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 if (priv->synopsys_id < DWMAC_CORE_4_10)
732 ts_event_en = PTP_TCR_TSEVNTENA;
733 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 ptp_over_ethernet = PTP_TCR_TSIPENA;
736 break;
737
738 case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 /* PTP v2/802.AS1, any layer, Sync packet */
740 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 ptp_v2 = PTP_TCR_TSVER2ENA;
742 /* take time stamp for SYNC messages only */
743 ts_event_en = PTP_TCR_TSEVNTENA;
744
745 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 ptp_over_ethernet = PTP_TCR_TSIPENA;
748 break;
749
750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 /* PTP v2/802.AS1, any layer, Delay_req packet */
752 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 ptp_v2 = PTP_TCR_TSVER2ENA;
754 /* take time stamp for Delay_Req messages only */
755 ts_master_en = PTP_TCR_TSMSTRENA;
756 ts_event_en = PTP_TCR_TSEVNTENA;
757
758 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 ptp_over_ethernet = PTP_TCR_TSIPENA;
761 break;
762
763 case HWTSTAMP_FILTER_NTP_ALL:
764 case HWTSTAMP_FILTER_ALL:
765 /* time stamp any incoming packet */
766 config.rx_filter = HWTSTAMP_FILTER_ALL;
767 tstamp_all = PTP_TCR_TSENALL;
768 break;
769
770 default:
771 return -ERANGE;
772 }
773 } else {
774 switch (config.rx_filter) {
775 case HWTSTAMP_FILTER_NONE:
776 config.rx_filter = HWTSTAMP_FILTER_NONE;
777 break;
778 default:
779 /* PTP v1, UDP, any kind of event packet */
780 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 break;
782 }
783 }
784 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786
787 priv->systime_flags = STMMAC_HWTS_ACTIVE;
788
789 if (priv->hwts_tx_en || priv->hwts_rx_en) {
790 priv->systime_flags |= tstamp_all | ptp_v2 |
791 ptp_over_ethernet | ptp_over_ipv6_udp |
792 ptp_over_ipv4_udp | ts_event_en |
793 ts_master_en | snap_type_sel;
794 }
795
796 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
797
798 memcpy(&priv->tstamp_config, &config, sizeof(config));
799
800 return copy_to_user(ifr->ifr_data, &config,
801 sizeof(config)) ? -EFAULT : 0;
802 }
803
804 /**
805 * stmmac_hwtstamp_get - read hardware timestamping.
806 * @dev: device pointer.
807 * @ifr: An IOCTL specific structure, that can contain a pointer to
808 * a proprietary structure used to pass information to the driver.
809 * Description:
810 * This function obtain the current hardware timestamping settings
811 * as requested.
812 */
813 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
814 {
815 struct stmmac_priv *priv = netdev_priv(dev);
816 struct hwtstamp_config *config = &priv->tstamp_config;
817
818 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
819 return -EOPNOTSUPP;
820
821 return copy_to_user(ifr->ifr_data, config,
822 sizeof(*config)) ? -EFAULT : 0;
823 }
824
825 /**
826 * stmmac_init_tstamp_counter - init hardware timestamping counter
827 * @priv: driver private structure
828 * @systime_flags: timestamping flags
829 * Description:
830 * Initialize hardware counter for packet timestamping.
831 * This is valid as long as the interface is open and not suspended.
832 * Will be rerun after resuming from suspend, case in which the timestamping
833 * flags updated by stmmac_hwtstamp_set() also need to be restored.
834 */
835 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
836 {
837 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
838 struct timespec64 now;
839 u32 sec_inc = 0;
840 u64 temp = 0;
841
842 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
843 return -EOPNOTSUPP;
844
845 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
846 priv->systime_flags = systime_flags;
847
848 /* program Sub Second Increment reg */
849 stmmac_config_sub_second_increment(priv, priv->ptpaddr,
850 priv->plat->clk_ptp_rate,
851 xmac, &sec_inc);
852 temp = div_u64(1000000000ULL, sec_inc);
853
854 /* Store sub second increment for later use */
855 priv->sub_second_inc = sec_inc;
856
857 /* calculate default added value:
858 * formula is :
859 * addend = (2^32)/freq_div_ratio;
860 * where, freq_div_ratio = 1e9ns/sec_inc
861 */
862 temp = (u64)(temp << 32);
863 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
864 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
865
866 /* initialize system time */
867 ktime_get_real_ts64(&now);
868
869 /* lower 32 bits of tv_sec are safe until y2106 */
870 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
871
872 return 0;
873 }
874 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
875
876 /**
877 * stmmac_init_ptp - init PTP
878 * @priv: driver private structure
879 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
880 * This is done by looking at the HW cap. register.
881 * This function also registers the ptp driver.
882 */
883 static int stmmac_init_ptp(struct stmmac_priv *priv)
884 {
885 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
886 int ret;
887
888 if (priv->plat->ptp_clk_freq_config)
889 priv->plat->ptp_clk_freq_config(priv);
890
891 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
892 if (ret)
893 return ret;
894
895 priv->adv_ts = 0;
896 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
897 if (xmac && priv->dma_cap.atime_stamp)
898 priv->adv_ts = 1;
899 /* Dwmac 3.x core with extend_desc can support adv_ts */
900 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
901 priv->adv_ts = 1;
902
903 if (priv->dma_cap.time_stamp)
904 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
905
906 if (priv->adv_ts)
907 netdev_info(priv->dev,
908 "IEEE 1588-2008 Advanced Timestamp supported\n");
909
910 priv->hwts_tx_en = 0;
911 priv->hwts_rx_en = 0;
912
913 if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
914 stmmac_hwtstamp_correct_latency(priv, priv);
915
916 return 0;
917 }
918
919 static void stmmac_release_ptp(struct stmmac_priv *priv)
920 {
921 clk_disable_unprepare(priv->plat->clk_ptp_ref);
922 stmmac_ptp_unregister(priv);
923 }
924
925 /**
926 * stmmac_mac_flow_ctrl - Configure flow control in all queues
927 * @priv: driver private structure
928 * @duplex: duplex passed to the next function
929 * Description: It is used for configuring the flow control in all queues
930 */
931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
932 {
933 u32 tx_cnt = priv->plat->tx_queues_to_use;
934
935 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
936 priv->pause, tx_cnt);
937 }
938
939 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
940 phy_interface_t interface)
941 {
942 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943
944 if (priv->hw->xpcs)
945 return &priv->hw->xpcs->pcs;
946
947 if (priv->hw->lynx_pcs)
948 return priv->hw->lynx_pcs;
949
950 return NULL;
951 }
952
953 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
954 const struct phylink_link_state *state)
955 {
956 /* Nothing to do, xpcs_config() handles everything */
957 }
958
959 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
960 {
961 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
962 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
963 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
964 bool *hs_enable = &fpe_cfg->hs_enable;
965
966 if (is_up && *hs_enable) {
967 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
968 } else {
969 *lo_state = FPE_STATE_OFF;
970 *lp_state = FPE_STATE_OFF;
971 }
972 }
973
974 static void stmmac_mac_link_down(struct phylink_config *config,
975 unsigned int mode, phy_interface_t interface)
976 {
977 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
978
979 stmmac_mac_set(priv, priv->ioaddr, false);
980 priv->eee_active = false;
981 priv->tx_lpi_enabled = false;
982 priv->eee_enabled = stmmac_eee_init(priv);
983 stmmac_set_eee_pls(priv, priv->hw, false);
984
985 if (priv->dma_cap.fpesel)
986 stmmac_fpe_link_state_handle(priv, false);
987 }
988
989 static void stmmac_mac_link_up(struct phylink_config *config,
990 struct phy_device *phy,
991 unsigned int mode, phy_interface_t interface,
992 int speed, int duplex,
993 bool tx_pause, bool rx_pause)
994 {
995 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
996 u32 old_ctrl, ctrl;
997
998 if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
999 priv->plat->serdes_powerup)
1000 priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
1001
1002 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1003 ctrl = old_ctrl & ~priv->hw->link.speed_mask;
1004
1005 if (interface == PHY_INTERFACE_MODE_USXGMII) {
1006 switch (speed) {
1007 case SPEED_10000:
1008 ctrl |= priv->hw->link.xgmii.speed10000;
1009 break;
1010 case SPEED_5000:
1011 ctrl |= priv->hw->link.xgmii.speed5000;
1012 break;
1013 case SPEED_2500:
1014 ctrl |= priv->hw->link.xgmii.speed2500;
1015 break;
1016 default:
1017 return;
1018 }
1019 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1020 switch (speed) {
1021 case SPEED_100000:
1022 ctrl |= priv->hw->link.xlgmii.speed100000;
1023 break;
1024 case SPEED_50000:
1025 ctrl |= priv->hw->link.xlgmii.speed50000;
1026 break;
1027 case SPEED_40000:
1028 ctrl |= priv->hw->link.xlgmii.speed40000;
1029 break;
1030 case SPEED_25000:
1031 ctrl |= priv->hw->link.xlgmii.speed25000;
1032 break;
1033 case SPEED_10000:
1034 ctrl |= priv->hw->link.xgmii.speed10000;
1035 break;
1036 case SPEED_2500:
1037 ctrl |= priv->hw->link.speed2500;
1038 break;
1039 case SPEED_1000:
1040 ctrl |= priv->hw->link.speed1000;
1041 break;
1042 default:
1043 return;
1044 }
1045 } else {
1046 switch (speed) {
1047 case SPEED_2500:
1048 ctrl |= priv->hw->link.speed2500;
1049 break;
1050 case SPEED_1000:
1051 ctrl |= priv->hw->link.speed1000;
1052 break;
1053 case SPEED_100:
1054 ctrl |= priv->hw->link.speed100;
1055 break;
1056 case SPEED_10:
1057 ctrl |= priv->hw->link.speed10;
1058 break;
1059 default:
1060 return;
1061 }
1062 }
1063
1064 priv->speed = speed;
1065
1066 if (priv->plat->fix_mac_speed)
1067 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode);
1068
1069 if (!duplex)
1070 ctrl &= ~priv->hw->link.duplex;
1071 else
1072 ctrl |= priv->hw->link.duplex;
1073
1074 /* Flow Control operation */
1075 if (rx_pause && tx_pause)
1076 priv->flow_ctrl = FLOW_AUTO;
1077 else if (rx_pause && !tx_pause)
1078 priv->flow_ctrl = FLOW_RX;
1079 else if (!rx_pause && tx_pause)
1080 priv->flow_ctrl = FLOW_TX;
1081 else
1082 priv->flow_ctrl = FLOW_OFF;
1083
1084 stmmac_mac_flow_ctrl(priv, duplex);
1085
1086 if (ctrl != old_ctrl)
1087 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1088
1089 stmmac_mac_set(priv, priv->ioaddr, true);
1090 if (phy && priv->dma_cap.eee) {
1091 priv->eee_active =
1092 phy_init_eee(phy, !(priv->plat->flags &
1093 STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0;
1094 priv->eee_enabled = stmmac_eee_init(priv);
1095 priv->tx_lpi_enabled = priv->eee_enabled;
1096 stmmac_set_eee_pls(priv, priv->hw, true);
1097 }
1098
1099 if (priv->dma_cap.fpesel)
1100 stmmac_fpe_link_state_handle(priv, true);
1101
1102 if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
1103 stmmac_hwtstamp_correct_latency(priv, priv);
1104 }
1105
1106 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1107 .mac_select_pcs = stmmac_mac_select_pcs,
1108 .mac_config = stmmac_mac_config,
1109 .mac_link_down = stmmac_mac_link_down,
1110 .mac_link_up = stmmac_mac_link_up,
1111 };
1112
1113 /**
1114 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1115 * @priv: driver private structure
1116 * Description: this is to verify if the HW supports the PCS.
1117 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1118 * configured for the TBI, RTBI, or SGMII PHY interface.
1119 */
1120 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1121 {
1122 int interface = priv->plat->mac_interface;
1123
1124 if (priv->dma_cap.pcs) {
1125 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1126 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1127 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1128 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1129 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1130 priv->hw->pcs = STMMAC_PCS_RGMII;
1131 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1132 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1133 priv->hw->pcs = STMMAC_PCS_SGMII;
1134 }
1135 }
1136 }
1137
1138 /**
1139 * stmmac_init_phy - PHY initialization
1140 * @dev: net device structure
1141 * Description: it initializes the driver's PHY state, and attaches the PHY
1142 * to the mac driver.
1143 * Return value:
1144 * 0 on success
1145 */
1146 static int stmmac_init_phy(struct net_device *dev)
1147 {
1148 struct stmmac_priv *priv = netdev_priv(dev);
1149 struct fwnode_handle *phy_fwnode;
1150 struct fwnode_handle *fwnode;
1151 int ret;
1152
1153 if (!phylink_expects_phy(priv->phylink))
1154 return 0;
1155
1156 fwnode = priv->plat->port_node;
1157 if (!fwnode)
1158 fwnode = dev_fwnode(priv->device);
1159
1160 if (fwnode)
1161 phy_fwnode = fwnode_get_phy_node(fwnode);
1162 else
1163 phy_fwnode = NULL;
1164
1165 /* Some DT bindings do not set-up the PHY handle. Let's try to
1166 * manually parse it
1167 */
1168 if (!phy_fwnode || IS_ERR(phy_fwnode)) {
1169 int addr = priv->plat->phy_addr;
1170 struct phy_device *phydev;
1171
1172 if (addr < 0) {
1173 netdev_err(priv->dev, "no phy found\n");
1174 return -ENODEV;
1175 }
1176
1177 phydev = mdiobus_get_phy(priv->mii, addr);
1178 if (!phydev) {
1179 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1180 return -ENODEV;
1181 }
1182
1183 ret = phylink_connect_phy(priv->phylink, phydev);
1184 } else {
1185 fwnode_handle_put(phy_fwnode);
1186 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1187 }
1188
1189 if (!priv->plat->pmt) {
1190 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1191
1192 phylink_ethtool_get_wol(priv->phylink, &wol);
1193 device_set_wakeup_capable(priv->device, !!wol.supported);
1194 device_set_wakeup_enable(priv->device, !!wol.wolopts);
1195 }
1196
1197 return ret;
1198 }
1199
1200 static void stmmac_set_half_duplex(struct stmmac_priv *priv)
1201 {
1202 /* Half-Duplex can only work with single tx queue */
1203 if (priv->plat->tx_queues_to_use > 1)
1204 priv->phylink_config.mac_capabilities &=
1205 ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1206 else
1207 priv->phylink_config.mac_capabilities |=
1208 (MAC_10HD | MAC_100HD | MAC_1000HD);
1209 }
1210
1211 static int stmmac_phy_setup(struct stmmac_priv *priv)
1212 {
1213 struct stmmac_mdio_bus_data *mdio_bus_data;
1214 int mode = priv->plat->phy_interface;
1215 struct fwnode_handle *fwnode;
1216 struct phylink *phylink;
1217 int max_speed;
1218
1219 priv->phylink_config.dev = &priv->dev->dev;
1220 priv->phylink_config.type = PHYLINK_NETDEV;
1221 priv->phylink_config.mac_managed_pm = true;
1222
1223 mdio_bus_data = priv->plat->mdio_bus_data;
1224 if (mdio_bus_data)
1225 priv->phylink_config.ovr_an_inband =
1226 mdio_bus_data->xpcs_an_inband;
1227
1228 /* Set the platform/firmware specified interface mode. Note, phylink
1229 * deals with the PHY interface mode, not the MAC interface mode.
1230 */
1231 __set_bit(mode, priv->phylink_config.supported_interfaces);
1232
1233 /* If we have an xpcs, it defines which PHY interfaces are supported. */
1234 if (priv->hw->xpcs)
1235 xpcs_get_interfaces(priv->hw->xpcs,
1236 priv->phylink_config.supported_interfaces);
1237
1238 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1239 MAC_10FD | MAC_100FD |
1240 MAC_1000FD;
1241
1242 stmmac_set_half_duplex(priv);
1243
1244 /* Get the MAC specific capabilities */
1245 stmmac_mac_phylink_get_caps(priv);
1246
1247 max_speed = priv->plat->max_speed;
1248 if (max_speed)
1249 phylink_limit_mac_speed(&priv->phylink_config, max_speed);
1250
1251 fwnode = priv->plat->port_node;
1252 if (!fwnode)
1253 fwnode = dev_fwnode(priv->device);
1254
1255 phylink = phylink_create(&priv->phylink_config, fwnode,
1256 mode, &stmmac_phylink_mac_ops);
1257 if (IS_ERR(phylink))
1258 return PTR_ERR(phylink);
1259
1260 priv->phylink = phylink;
1261 return 0;
1262 }
1263
1264 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1265 struct stmmac_dma_conf *dma_conf)
1266 {
1267 u32 rx_cnt = priv->plat->rx_queues_to_use;
1268 unsigned int desc_size;
1269 void *head_rx;
1270 u32 queue;
1271
1272 /* Display RX rings */
1273 for (queue = 0; queue < rx_cnt; queue++) {
1274 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1275
1276 pr_info("\tRX Queue %u rings\n", queue);
1277
1278 if (priv->extend_desc) {
1279 head_rx = (void *)rx_q->dma_erx;
1280 desc_size = sizeof(struct dma_extended_desc);
1281 } else {
1282 head_rx = (void *)rx_q->dma_rx;
1283 desc_size = sizeof(struct dma_desc);
1284 }
1285
1286 /* Display RX ring */
1287 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1288 rx_q->dma_rx_phy, desc_size);
1289 }
1290 }
1291
1292 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1293 struct stmmac_dma_conf *dma_conf)
1294 {
1295 u32 tx_cnt = priv->plat->tx_queues_to_use;
1296 unsigned int desc_size;
1297 void *head_tx;
1298 u32 queue;
1299
1300 /* Display TX rings */
1301 for (queue = 0; queue < tx_cnt; queue++) {
1302 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1303
1304 pr_info("\tTX Queue %d rings\n", queue);
1305
1306 if (priv->extend_desc) {
1307 head_tx = (void *)tx_q->dma_etx;
1308 desc_size = sizeof(struct dma_extended_desc);
1309 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1310 head_tx = (void *)tx_q->dma_entx;
1311 desc_size = sizeof(struct dma_edesc);
1312 } else {
1313 head_tx = (void *)tx_q->dma_tx;
1314 desc_size = sizeof(struct dma_desc);
1315 }
1316
1317 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1318 tx_q->dma_tx_phy, desc_size);
1319 }
1320 }
1321
1322 static void stmmac_display_rings(struct stmmac_priv *priv,
1323 struct stmmac_dma_conf *dma_conf)
1324 {
1325 /* Display RX ring */
1326 stmmac_display_rx_rings(priv, dma_conf);
1327
1328 /* Display TX ring */
1329 stmmac_display_tx_rings(priv, dma_conf);
1330 }
1331
1332 static int stmmac_set_bfsize(int mtu, int bufsize)
1333 {
1334 int ret = bufsize;
1335
1336 if (mtu >= BUF_SIZE_8KiB)
1337 ret = BUF_SIZE_16KiB;
1338 else if (mtu >= BUF_SIZE_4KiB)
1339 ret = BUF_SIZE_8KiB;
1340 else if (mtu >= BUF_SIZE_2KiB)
1341 ret = BUF_SIZE_4KiB;
1342 else if (mtu > DEFAULT_BUFSIZE)
1343 ret = BUF_SIZE_2KiB;
1344 else
1345 ret = DEFAULT_BUFSIZE;
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * stmmac_clear_rx_descriptors - clear RX descriptors
1352 * @priv: driver private structure
1353 * @dma_conf: structure to take the dma data
1354 * @queue: RX queue index
1355 * Description: this function is called to clear the RX descriptors
1356 * in case of both basic and extended descriptors are used.
1357 */
1358 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1359 struct stmmac_dma_conf *dma_conf,
1360 u32 queue)
1361 {
1362 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1363 int i;
1364
1365 /* Clear the RX descriptors */
1366 for (i = 0; i < dma_conf->dma_rx_size; i++)
1367 if (priv->extend_desc)
1368 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1369 priv->use_riwt, priv->mode,
1370 (i == dma_conf->dma_rx_size - 1),
1371 dma_conf->dma_buf_sz);
1372 else
1373 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1374 priv->use_riwt, priv->mode,
1375 (i == dma_conf->dma_rx_size - 1),
1376 dma_conf->dma_buf_sz);
1377 }
1378
1379 /**
1380 * stmmac_clear_tx_descriptors - clear tx descriptors
1381 * @priv: driver private structure
1382 * @dma_conf: structure to take the dma data
1383 * @queue: TX queue index.
1384 * Description: this function is called to clear the TX descriptors
1385 * in case of both basic and extended descriptors are used.
1386 */
1387 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1388 struct stmmac_dma_conf *dma_conf,
1389 u32 queue)
1390 {
1391 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1392 int i;
1393
1394 /* Clear the TX descriptors */
1395 for (i = 0; i < dma_conf->dma_tx_size; i++) {
1396 int last = (i == (dma_conf->dma_tx_size - 1));
1397 struct dma_desc *p;
1398
1399 if (priv->extend_desc)
1400 p = &tx_q->dma_etx[i].basic;
1401 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1402 p = &tx_q->dma_entx[i].basic;
1403 else
1404 p = &tx_q->dma_tx[i];
1405
1406 stmmac_init_tx_desc(priv, p, priv->mode, last);
1407 }
1408 }
1409
1410 /**
1411 * stmmac_clear_descriptors - clear descriptors
1412 * @priv: driver private structure
1413 * @dma_conf: structure to take the dma data
1414 * Description: this function is called to clear the TX and RX descriptors
1415 * in case of both basic and extended descriptors are used.
1416 */
1417 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1418 struct stmmac_dma_conf *dma_conf)
1419 {
1420 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1421 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1422 u32 queue;
1423
1424 /* Clear the RX descriptors */
1425 for (queue = 0; queue < rx_queue_cnt; queue++)
1426 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1427
1428 /* Clear the TX descriptors */
1429 for (queue = 0; queue < tx_queue_cnt; queue++)
1430 stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1431 }
1432
1433 /**
1434 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1435 * @priv: driver private structure
1436 * @dma_conf: structure to take the dma data
1437 * @p: descriptor pointer
1438 * @i: descriptor index
1439 * @flags: gfp flag
1440 * @queue: RX queue index
1441 * Description: this function is called to allocate a receive buffer, perform
1442 * the DMA mapping and init the descriptor.
1443 */
1444 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1445 struct stmmac_dma_conf *dma_conf,
1446 struct dma_desc *p,
1447 int i, gfp_t flags, u32 queue)
1448 {
1449 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1450 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1451 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1452
1453 if (priv->dma_cap.host_dma_width <= 32)
1454 gfp |= GFP_DMA32;
1455
1456 if (!buf->page) {
1457 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1458 if (!buf->page)
1459 return -ENOMEM;
1460 buf->page_offset = stmmac_rx_offset(priv);
1461 }
1462
1463 if (priv->sph && !buf->sec_page) {
1464 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1465 if (!buf->sec_page)
1466 return -ENOMEM;
1467
1468 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1469 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1470 } else {
1471 buf->sec_page = NULL;
1472 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1473 }
1474
1475 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1476
1477 stmmac_set_desc_addr(priv, p, buf->addr);
1478 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1479 stmmac_init_desc3(priv, p);
1480
1481 return 0;
1482 }
1483
1484 /**
1485 * stmmac_free_rx_buffer - free RX dma buffers
1486 * @priv: private structure
1487 * @rx_q: RX queue
1488 * @i: buffer index.
1489 */
1490 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1491 struct stmmac_rx_queue *rx_q,
1492 int i)
1493 {
1494 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1495
1496 if (buf->page)
1497 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1498 buf->page = NULL;
1499
1500 if (buf->sec_page)
1501 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1502 buf->sec_page = NULL;
1503 }
1504
1505 /**
1506 * stmmac_free_tx_buffer - free RX dma buffers
1507 * @priv: private structure
1508 * @dma_conf: structure to take the dma data
1509 * @queue: RX queue index
1510 * @i: buffer index.
1511 */
1512 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1513 struct stmmac_dma_conf *dma_conf,
1514 u32 queue, int i)
1515 {
1516 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1517
1518 if (tx_q->tx_skbuff_dma[i].buf &&
1519 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1520 if (tx_q->tx_skbuff_dma[i].map_as_page)
1521 dma_unmap_page(priv->device,
1522 tx_q->tx_skbuff_dma[i].buf,
1523 tx_q->tx_skbuff_dma[i].len,
1524 DMA_TO_DEVICE);
1525 else
1526 dma_unmap_single(priv->device,
1527 tx_q->tx_skbuff_dma[i].buf,
1528 tx_q->tx_skbuff_dma[i].len,
1529 DMA_TO_DEVICE);
1530 }
1531
1532 if (tx_q->xdpf[i] &&
1533 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1534 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1535 xdp_return_frame(tx_q->xdpf[i]);
1536 tx_q->xdpf[i] = NULL;
1537 }
1538
1539 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1540 tx_q->xsk_frames_done++;
1541
1542 if (tx_q->tx_skbuff[i] &&
1543 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1544 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1545 tx_q->tx_skbuff[i] = NULL;
1546 }
1547
1548 tx_q->tx_skbuff_dma[i].buf = 0;
1549 tx_q->tx_skbuff_dma[i].map_as_page = false;
1550 }
1551
1552 /**
1553 * dma_free_rx_skbufs - free RX dma buffers
1554 * @priv: private structure
1555 * @dma_conf: structure to take the dma data
1556 * @queue: RX queue index
1557 */
1558 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1559 struct stmmac_dma_conf *dma_conf,
1560 u32 queue)
1561 {
1562 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1563 int i;
1564
1565 for (i = 0; i < dma_conf->dma_rx_size; i++)
1566 stmmac_free_rx_buffer(priv, rx_q, i);
1567 }
1568
1569 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1570 struct stmmac_dma_conf *dma_conf,
1571 u32 queue, gfp_t flags)
1572 {
1573 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1574 int i;
1575
1576 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1577 struct dma_desc *p;
1578 int ret;
1579
1580 if (priv->extend_desc)
1581 p = &((rx_q->dma_erx + i)->basic);
1582 else
1583 p = rx_q->dma_rx + i;
1584
1585 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1586 queue);
1587 if (ret)
1588 return ret;
1589
1590 rx_q->buf_alloc_num++;
1591 }
1592
1593 return 0;
1594 }
1595
1596 /**
1597 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1598 * @priv: private structure
1599 * @dma_conf: structure to take the dma data
1600 * @queue: RX queue index
1601 */
1602 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1603 struct stmmac_dma_conf *dma_conf,
1604 u32 queue)
1605 {
1606 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1607 int i;
1608
1609 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1610 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1611
1612 if (!buf->xdp)
1613 continue;
1614
1615 xsk_buff_free(buf->xdp);
1616 buf->xdp = NULL;
1617 }
1618 }
1619
1620 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1621 struct stmmac_dma_conf *dma_conf,
1622 u32 queue)
1623 {
1624 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1625 int i;
1626
1627 /* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes)
1628 * in struct xdp_buff_xsk to stash driver specific information. Thus,
1629 * use this macro to make sure no size violations.
1630 */
1631 XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff);
1632
1633 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1634 struct stmmac_rx_buffer *buf;
1635 dma_addr_t dma_addr;
1636 struct dma_desc *p;
1637
1638 if (priv->extend_desc)
1639 p = (struct dma_desc *)(rx_q->dma_erx + i);
1640 else
1641 p = rx_q->dma_rx + i;
1642
1643 buf = &rx_q->buf_pool[i];
1644
1645 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1646 if (!buf->xdp)
1647 return -ENOMEM;
1648
1649 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1650 stmmac_set_desc_addr(priv, p, dma_addr);
1651 rx_q->buf_alloc_num++;
1652 }
1653
1654 return 0;
1655 }
1656
1657 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1658 {
1659 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1660 return NULL;
1661
1662 return xsk_get_pool_from_qid(priv->dev, queue);
1663 }
1664
1665 /**
1666 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1667 * @priv: driver private structure
1668 * @dma_conf: structure to take the dma data
1669 * @queue: RX queue index
1670 * @flags: gfp flag.
1671 * Description: this function initializes the DMA RX descriptors
1672 * and allocates the socket buffers. It supports the chained and ring
1673 * modes.
1674 */
1675 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1676 struct stmmac_dma_conf *dma_conf,
1677 u32 queue, gfp_t flags)
1678 {
1679 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1680 int ret;
1681
1682 netif_dbg(priv, probe, priv->dev,
1683 "(%s) dma_rx_phy=0x%08x\n", __func__,
1684 (u32)rx_q->dma_rx_phy);
1685
1686 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1687
1688 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1689
1690 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1691
1692 if (rx_q->xsk_pool) {
1693 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1694 MEM_TYPE_XSK_BUFF_POOL,
1695 NULL));
1696 netdev_info(priv->dev,
1697 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1698 rx_q->queue_index);
1699 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1700 } else {
1701 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1702 MEM_TYPE_PAGE_POOL,
1703 rx_q->page_pool));
1704 netdev_info(priv->dev,
1705 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1706 rx_q->queue_index);
1707 }
1708
1709 if (rx_q->xsk_pool) {
1710 /* RX XDP ZC buffer pool may not be populated, e.g.
1711 * xdpsock TX-only.
1712 */
1713 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1714 } else {
1715 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1716 if (ret < 0)
1717 return -ENOMEM;
1718 }
1719
1720 /* Setup the chained descriptor addresses */
1721 if (priv->mode == STMMAC_CHAIN_MODE) {
1722 if (priv->extend_desc)
1723 stmmac_mode_init(priv, rx_q->dma_erx,
1724 rx_q->dma_rx_phy,
1725 dma_conf->dma_rx_size, 1);
1726 else
1727 stmmac_mode_init(priv, rx_q->dma_rx,
1728 rx_q->dma_rx_phy,
1729 dma_conf->dma_rx_size, 0);
1730 }
1731
1732 return 0;
1733 }
1734
1735 static int init_dma_rx_desc_rings(struct net_device *dev,
1736 struct stmmac_dma_conf *dma_conf,
1737 gfp_t flags)
1738 {
1739 struct stmmac_priv *priv = netdev_priv(dev);
1740 u32 rx_count = priv->plat->rx_queues_to_use;
1741 int queue;
1742 int ret;
1743
1744 /* RX INITIALIZATION */
1745 netif_dbg(priv, probe, priv->dev,
1746 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1747
1748 for (queue = 0; queue < rx_count; queue++) {
1749 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1750 if (ret)
1751 goto err_init_rx_buffers;
1752 }
1753
1754 return 0;
1755
1756 err_init_rx_buffers:
1757 while (queue >= 0) {
1758 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1759
1760 if (rx_q->xsk_pool)
1761 dma_free_rx_xskbufs(priv, dma_conf, queue);
1762 else
1763 dma_free_rx_skbufs(priv, dma_conf, queue);
1764
1765 rx_q->buf_alloc_num = 0;
1766 rx_q->xsk_pool = NULL;
1767
1768 queue--;
1769 }
1770
1771 return ret;
1772 }
1773
1774 /**
1775 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1776 * @priv: driver private structure
1777 * @dma_conf: structure to take the dma data
1778 * @queue: TX queue index
1779 * Description: this function initializes the DMA TX descriptors
1780 * and allocates the socket buffers. It supports the chained and ring
1781 * modes.
1782 */
1783 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1784 struct stmmac_dma_conf *dma_conf,
1785 u32 queue)
1786 {
1787 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1788 int i;
1789
1790 netif_dbg(priv, probe, priv->dev,
1791 "(%s) dma_tx_phy=0x%08x\n", __func__,
1792 (u32)tx_q->dma_tx_phy);
1793
1794 /* Setup the chained descriptor addresses */
1795 if (priv->mode == STMMAC_CHAIN_MODE) {
1796 if (priv->extend_desc)
1797 stmmac_mode_init(priv, tx_q->dma_etx,
1798 tx_q->dma_tx_phy,
1799 dma_conf->dma_tx_size, 1);
1800 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1801 stmmac_mode_init(priv, tx_q->dma_tx,
1802 tx_q->dma_tx_phy,
1803 dma_conf->dma_tx_size, 0);
1804 }
1805
1806 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1807
1808 for (i = 0; i < dma_conf->dma_tx_size; i++) {
1809 struct dma_desc *p;
1810
1811 if (priv->extend_desc)
1812 p = &((tx_q->dma_etx + i)->basic);
1813 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1814 p = &((tx_q->dma_entx + i)->basic);
1815 else
1816 p = tx_q->dma_tx + i;
1817
1818 stmmac_clear_desc(priv, p);
1819
1820 tx_q->tx_skbuff_dma[i].buf = 0;
1821 tx_q->tx_skbuff_dma[i].map_as_page = false;
1822 tx_q->tx_skbuff_dma[i].len = 0;
1823 tx_q->tx_skbuff_dma[i].last_segment = false;
1824 tx_q->tx_skbuff[i] = NULL;
1825 }
1826
1827 return 0;
1828 }
1829
1830 static int init_dma_tx_desc_rings(struct net_device *dev,
1831 struct stmmac_dma_conf *dma_conf)
1832 {
1833 struct stmmac_priv *priv = netdev_priv(dev);
1834 u32 tx_queue_cnt;
1835 u32 queue;
1836
1837 tx_queue_cnt = priv->plat->tx_queues_to_use;
1838
1839 for (queue = 0; queue < tx_queue_cnt; queue++)
1840 __init_dma_tx_desc_rings(priv, dma_conf, queue);
1841
1842 return 0;
1843 }
1844
1845 /**
1846 * init_dma_desc_rings - init the RX/TX descriptor rings
1847 * @dev: net device structure
1848 * @dma_conf: structure to take the dma data
1849 * @flags: gfp flag.
1850 * Description: this function initializes the DMA RX/TX descriptors
1851 * and allocates the socket buffers. It supports the chained and ring
1852 * modes.
1853 */
1854 static int init_dma_desc_rings(struct net_device *dev,
1855 struct stmmac_dma_conf *dma_conf,
1856 gfp_t flags)
1857 {
1858 struct stmmac_priv *priv = netdev_priv(dev);
1859 int ret;
1860
1861 ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1862 if (ret)
1863 return ret;
1864
1865 ret = init_dma_tx_desc_rings(dev, dma_conf);
1866
1867 stmmac_clear_descriptors(priv, dma_conf);
1868
1869 if (netif_msg_hw(priv))
1870 stmmac_display_rings(priv, dma_conf);
1871
1872 return ret;
1873 }
1874
1875 /**
1876 * dma_free_tx_skbufs - free TX dma buffers
1877 * @priv: private structure
1878 * @dma_conf: structure to take the dma data
1879 * @queue: TX queue index
1880 */
1881 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1882 struct stmmac_dma_conf *dma_conf,
1883 u32 queue)
1884 {
1885 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1886 int i;
1887
1888 tx_q->xsk_frames_done = 0;
1889
1890 for (i = 0; i < dma_conf->dma_tx_size; i++)
1891 stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1892
1893 if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1894 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1895 tx_q->xsk_frames_done = 0;
1896 tx_q->xsk_pool = NULL;
1897 }
1898 }
1899
1900 /**
1901 * stmmac_free_tx_skbufs - free TX skb buffers
1902 * @priv: private structure
1903 */
1904 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1905 {
1906 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1907 u32 queue;
1908
1909 for (queue = 0; queue < tx_queue_cnt; queue++)
1910 dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1911 }
1912
1913 /**
1914 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1915 * @priv: private structure
1916 * @dma_conf: structure to take the dma data
1917 * @queue: RX queue index
1918 */
1919 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1920 struct stmmac_dma_conf *dma_conf,
1921 u32 queue)
1922 {
1923 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1924
1925 /* Release the DMA RX socket buffers */
1926 if (rx_q->xsk_pool)
1927 dma_free_rx_xskbufs(priv, dma_conf, queue);
1928 else
1929 dma_free_rx_skbufs(priv, dma_conf, queue);
1930
1931 rx_q->buf_alloc_num = 0;
1932 rx_q->xsk_pool = NULL;
1933
1934 /* Free DMA regions of consistent memory previously allocated */
1935 if (!priv->extend_desc)
1936 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1937 sizeof(struct dma_desc),
1938 rx_q->dma_rx, rx_q->dma_rx_phy);
1939 else
1940 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1941 sizeof(struct dma_extended_desc),
1942 rx_q->dma_erx, rx_q->dma_rx_phy);
1943
1944 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1945 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1946
1947 kfree(rx_q->buf_pool);
1948 if (rx_q->page_pool)
1949 page_pool_destroy(rx_q->page_pool);
1950 }
1951
1952 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1953 struct stmmac_dma_conf *dma_conf)
1954 {
1955 u32 rx_count = priv->plat->rx_queues_to_use;
1956 u32 queue;
1957
1958 /* Free RX queue resources */
1959 for (queue = 0; queue < rx_count; queue++)
1960 __free_dma_rx_desc_resources(priv, dma_conf, queue);
1961 }
1962
1963 /**
1964 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1965 * @priv: private structure
1966 * @dma_conf: structure to take the dma data
1967 * @queue: TX queue index
1968 */
1969 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1970 struct stmmac_dma_conf *dma_conf,
1971 u32 queue)
1972 {
1973 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1974 size_t size;
1975 void *addr;
1976
1977 /* Release the DMA TX socket buffers */
1978 dma_free_tx_skbufs(priv, dma_conf, queue);
1979
1980 if (priv->extend_desc) {
1981 size = sizeof(struct dma_extended_desc);
1982 addr = tx_q->dma_etx;
1983 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1984 size = sizeof(struct dma_edesc);
1985 addr = tx_q->dma_entx;
1986 } else {
1987 size = sizeof(struct dma_desc);
1988 addr = tx_q->dma_tx;
1989 }
1990
1991 size *= dma_conf->dma_tx_size;
1992
1993 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1994
1995 kfree(tx_q->tx_skbuff_dma);
1996 kfree(tx_q->tx_skbuff);
1997 }
1998
1999 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
2000 struct stmmac_dma_conf *dma_conf)
2001 {
2002 u32 tx_count = priv->plat->tx_queues_to_use;
2003 u32 queue;
2004
2005 /* Free TX queue resources */
2006 for (queue = 0; queue < tx_count; queue++)
2007 __free_dma_tx_desc_resources(priv, dma_conf, queue);
2008 }
2009
2010 /**
2011 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
2012 * @priv: private structure
2013 * @dma_conf: structure to take the dma data
2014 * @queue: RX queue index
2015 * Description: according to which descriptor can be used (extend or basic)
2016 * this function allocates the resources for TX and RX paths. In case of
2017 * reception, for example, it pre-allocated the RX socket buffer in order to
2018 * allow zero-copy mechanism.
2019 */
2020 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2021 struct stmmac_dma_conf *dma_conf,
2022 u32 queue)
2023 {
2024 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2025 struct stmmac_channel *ch = &priv->channel[queue];
2026 bool xdp_prog = stmmac_xdp_is_enabled(priv);
2027 struct page_pool_params pp_params = { 0 };
2028 unsigned int num_pages;
2029 unsigned int napi_id;
2030 int ret;
2031
2032 rx_q->queue_index = queue;
2033 rx_q->priv_data = priv;
2034
2035 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2036 pp_params.pool_size = dma_conf->dma_rx_size;
2037 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2038 pp_params.order = ilog2(num_pages);
2039 pp_params.nid = dev_to_node(priv->device);
2040 pp_params.dev = priv->device;
2041 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2042 pp_params.offset = stmmac_rx_offset(priv);
2043 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2044
2045 rx_q->page_pool = page_pool_create(&pp_params);
2046 if (IS_ERR(rx_q->page_pool)) {
2047 ret = PTR_ERR(rx_q->page_pool);
2048 rx_q->page_pool = NULL;
2049 return ret;
2050 }
2051
2052 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2053 sizeof(*rx_q->buf_pool),
2054 GFP_KERNEL);
2055 if (!rx_q->buf_pool)
2056 return -ENOMEM;
2057
2058 if (priv->extend_desc) {
2059 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2060 dma_conf->dma_rx_size *
2061 sizeof(struct dma_extended_desc),
2062 &rx_q->dma_rx_phy,
2063 GFP_KERNEL);
2064 if (!rx_q->dma_erx)
2065 return -ENOMEM;
2066
2067 } else {
2068 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2069 dma_conf->dma_rx_size *
2070 sizeof(struct dma_desc),
2071 &rx_q->dma_rx_phy,
2072 GFP_KERNEL);
2073 if (!rx_q->dma_rx)
2074 return -ENOMEM;
2075 }
2076
2077 if (stmmac_xdp_is_enabled(priv) &&
2078 test_bit(queue, priv->af_xdp_zc_qps))
2079 napi_id = ch->rxtx_napi.napi_id;
2080 else
2081 napi_id = ch->rx_napi.napi_id;
2082
2083 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2084 rx_q->queue_index,
2085 napi_id);
2086 if (ret) {
2087 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2088 return -EINVAL;
2089 }
2090
2091 return 0;
2092 }
2093
2094 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2095 struct stmmac_dma_conf *dma_conf)
2096 {
2097 u32 rx_count = priv->plat->rx_queues_to_use;
2098 u32 queue;
2099 int ret;
2100
2101 /* RX queues buffers and DMA */
2102 for (queue = 0; queue < rx_count; queue++) {
2103 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2104 if (ret)
2105 goto err_dma;
2106 }
2107
2108 return 0;
2109
2110 err_dma:
2111 free_dma_rx_desc_resources(priv, dma_conf);
2112
2113 return ret;
2114 }
2115
2116 /**
2117 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2118 * @priv: private structure
2119 * @dma_conf: structure to take the dma data
2120 * @queue: TX queue index
2121 * Description: according to which descriptor can be used (extend or basic)
2122 * this function allocates the resources for TX and RX paths. In case of
2123 * reception, for example, it pre-allocated the RX socket buffer in order to
2124 * allow zero-copy mechanism.
2125 */
2126 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2127 struct stmmac_dma_conf *dma_conf,
2128 u32 queue)
2129 {
2130 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2131 size_t size;
2132 void *addr;
2133
2134 tx_q->queue_index = queue;
2135 tx_q->priv_data = priv;
2136
2137 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2138 sizeof(*tx_q->tx_skbuff_dma),
2139 GFP_KERNEL);
2140 if (!tx_q->tx_skbuff_dma)
2141 return -ENOMEM;
2142
2143 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2144 sizeof(struct sk_buff *),
2145 GFP_KERNEL);
2146 if (!tx_q->tx_skbuff)
2147 return -ENOMEM;
2148
2149 if (priv->extend_desc)
2150 size = sizeof(struct dma_extended_desc);
2151 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2152 size = sizeof(struct dma_edesc);
2153 else
2154 size = sizeof(struct dma_desc);
2155
2156 size *= dma_conf->dma_tx_size;
2157
2158 addr = dma_alloc_coherent(priv->device, size,
2159 &tx_q->dma_tx_phy, GFP_KERNEL);
2160 if (!addr)
2161 return -ENOMEM;
2162
2163 if (priv->extend_desc)
2164 tx_q->dma_etx = addr;
2165 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2166 tx_q->dma_entx = addr;
2167 else
2168 tx_q->dma_tx = addr;
2169
2170 return 0;
2171 }
2172
2173 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2174 struct stmmac_dma_conf *dma_conf)
2175 {
2176 u32 tx_count = priv->plat->tx_queues_to_use;
2177 u32 queue;
2178 int ret;
2179
2180 /* TX queues buffers and DMA */
2181 for (queue = 0; queue < tx_count; queue++) {
2182 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2183 if (ret)
2184 goto err_dma;
2185 }
2186
2187 return 0;
2188
2189 err_dma:
2190 free_dma_tx_desc_resources(priv, dma_conf);
2191 return ret;
2192 }
2193
2194 /**
2195 * alloc_dma_desc_resources - alloc TX/RX resources.
2196 * @priv: private structure
2197 * @dma_conf: structure to take the dma data
2198 * Description: according to which descriptor can be used (extend or basic)
2199 * this function allocates the resources for TX and RX paths. In case of
2200 * reception, for example, it pre-allocated the RX socket buffer in order to
2201 * allow zero-copy mechanism.
2202 */
2203 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2204 struct stmmac_dma_conf *dma_conf)
2205 {
2206 /* RX Allocation */
2207 int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2208
2209 if (ret)
2210 return ret;
2211
2212 ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2213
2214 return ret;
2215 }
2216
2217 /**
2218 * free_dma_desc_resources - free dma desc resources
2219 * @priv: private structure
2220 * @dma_conf: structure to take the dma data
2221 */
2222 static void free_dma_desc_resources(struct stmmac_priv *priv,
2223 struct stmmac_dma_conf *dma_conf)
2224 {
2225 /* Release the DMA TX socket buffers */
2226 free_dma_tx_desc_resources(priv, dma_conf);
2227
2228 /* Release the DMA RX socket buffers later
2229 * to ensure all pending XDP_TX buffers are returned.
2230 */
2231 free_dma_rx_desc_resources(priv, dma_conf);
2232 }
2233
2234 /**
2235 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
2236 * @priv: driver private structure
2237 * Description: It is used for enabling the rx queues in the MAC
2238 */
2239 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2240 {
2241 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2242 int queue;
2243 u8 mode;
2244
2245 for (queue = 0; queue < rx_queues_count; queue++) {
2246 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2247 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2248 }
2249 }
2250
2251 /**
2252 * stmmac_start_rx_dma - start RX DMA channel
2253 * @priv: driver private structure
2254 * @chan: RX channel index
2255 * Description:
2256 * This starts a RX DMA channel
2257 */
2258 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2259 {
2260 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2261 stmmac_start_rx(priv, priv->ioaddr, chan);
2262 }
2263
2264 /**
2265 * stmmac_start_tx_dma - start TX DMA channel
2266 * @priv: driver private structure
2267 * @chan: TX channel index
2268 * Description:
2269 * This starts a TX DMA channel
2270 */
2271 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2272 {
2273 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2274 stmmac_start_tx(priv, priv->ioaddr, chan);
2275 }
2276
2277 /**
2278 * stmmac_stop_rx_dma - stop RX DMA channel
2279 * @priv: driver private structure
2280 * @chan: RX channel index
2281 * Description:
2282 * This stops a RX DMA channel
2283 */
2284 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2285 {
2286 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2287 stmmac_stop_rx(priv, priv->ioaddr, chan);
2288 }
2289
2290 /**
2291 * stmmac_stop_tx_dma - stop TX DMA channel
2292 * @priv: driver private structure
2293 * @chan: TX channel index
2294 * Description:
2295 * This stops a TX DMA channel
2296 */
2297 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2298 {
2299 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2300 stmmac_stop_tx(priv, priv->ioaddr, chan);
2301 }
2302
2303 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2304 {
2305 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2306 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2307 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2308 u32 chan;
2309
2310 for (chan = 0; chan < dma_csr_ch; chan++) {
2311 struct stmmac_channel *ch = &priv->channel[chan];
2312 unsigned long flags;
2313
2314 spin_lock_irqsave(&ch->lock, flags);
2315 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2316 spin_unlock_irqrestore(&ch->lock, flags);
2317 }
2318 }
2319
2320 /**
2321 * stmmac_start_all_dma - start all RX and TX DMA channels
2322 * @priv: driver private structure
2323 * Description:
2324 * This starts all the RX and TX DMA channels
2325 */
2326 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2327 {
2328 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2329 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2330 u32 chan = 0;
2331
2332 for (chan = 0; chan < rx_channels_count; chan++)
2333 stmmac_start_rx_dma(priv, chan);
2334
2335 for (chan = 0; chan < tx_channels_count; chan++)
2336 stmmac_start_tx_dma(priv, chan);
2337 }
2338
2339 /**
2340 * stmmac_stop_all_dma - stop all RX and TX DMA channels
2341 * @priv: driver private structure
2342 * Description:
2343 * This stops the RX and TX DMA channels
2344 */
2345 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2346 {
2347 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2348 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2349 u32 chan = 0;
2350
2351 for (chan = 0; chan < rx_channels_count; chan++)
2352 stmmac_stop_rx_dma(priv, chan);
2353
2354 for (chan = 0; chan < tx_channels_count; chan++)
2355 stmmac_stop_tx_dma(priv, chan);
2356 }
2357
2358 /**
2359 * stmmac_dma_operation_mode - HW DMA operation mode
2360 * @priv: driver private structure
2361 * Description: it is used for configuring the DMA operation mode register in
2362 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2363 */
2364 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2365 {
2366 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2367 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2368 int rxfifosz = priv->plat->rx_fifo_size;
2369 int txfifosz = priv->plat->tx_fifo_size;
2370 u32 txmode = 0;
2371 u32 rxmode = 0;
2372 u32 chan = 0;
2373 u8 qmode = 0;
2374
2375 if (rxfifosz == 0)
2376 rxfifosz = priv->dma_cap.rx_fifo_size;
2377 if (txfifosz == 0)
2378 txfifosz = priv->dma_cap.tx_fifo_size;
2379
2380 /* Adjust for real per queue fifo size */
2381 rxfifosz /= rx_channels_count;
2382 txfifosz /= tx_channels_count;
2383
2384 if (priv->plat->force_thresh_dma_mode) {
2385 txmode = tc;
2386 rxmode = tc;
2387 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2388 /*
2389 * In case of GMAC, SF mode can be enabled
2390 * to perform the TX COE in HW. This depends on:
2391 * 1) TX COE if actually supported
2392 * 2) There is no bugged Jumbo frame support
2393 * that needs to not insert csum in the TDES.
2394 */
2395 txmode = SF_DMA_MODE;
2396 rxmode = SF_DMA_MODE;
2397 priv->xstats.threshold = SF_DMA_MODE;
2398 } else {
2399 txmode = tc;
2400 rxmode = SF_DMA_MODE;
2401 }
2402
2403 /* configure all channels */
2404 for (chan = 0; chan < rx_channels_count; chan++) {
2405 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2406 u32 buf_size;
2407
2408 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2409
2410 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2411 rxfifosz, qmode);
2412
2413 if (rx_q->xsk_pool) {
2414 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2415 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2416 buf_size,
2417 chan);
2418 } else {
2419 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2420 priv->dma_conf.dma_buf_sz,
2421 chan);
2422 }
2423 }
2424
2425 for (chan = 0; chan < tx_channels_count; chan++) {
2426 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2427
2428 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2429 txfifosz, qmode);
2430 }
2431 }
2432
2433 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2434 {
2435 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2436 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2437 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2438 struct xsk_buff_pool *pool = tx_q->xsk_pool;
2439 unsigned int entry = tx_q->cur_tx;
2440 struct dma_desc *tx_desc = NULL;
2441 struct xdp_desc xdp_desc;
2442 bool work_done = true;
2443 u32 tx_set_ic_bit = 0;
2444 unsigned long flags;
2445
2446 /* Avoids TX time-out as we are sharing with slow path */
2447 txq_trans_cond_update(nq);
2448
2449 budget = min(budget, stmmac_tx_avail(priv, queue));
2450
2451 while (budget-- > 0) {
2452 dma_addr_t dma_addr;
2453 bool set_ic;
2454
2455 /* We are sharing with slow path and stop XSK TX desc submission when
2456 * available TX ring is less than threshold.
2457 */
2458 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2459 !netif_carrier_ok(priv->dev)) {
2460 work_done = false;
2461 break;
2462 }
2463
2464 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2465 break;
2466
2467 if (likely(priv->extend_desc))
2468 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2469 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2470 tx_desc = &tx_q->dma_entx[entry].basic;
2471 else
2472 tx_desc = tx_q->dma_tx + entry;
2473
2474 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2475 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2476
2477 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2478
2479 /* To return XDP buffer to XSK pool, we simple call
2480 * xsk_tx_completed(), so we don't need to fill up
2481 * 'buf' and 'xdpf'.
2482 */
2483 tx_q->tx_skbuff_dma[entry].buf = 0;
2484 tx_q->xdpf[entry] = NULL;
2485
2486 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2487 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2488 tx_q->tx_skbuff_dma[entry].last_segment = true;
2489 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2490
2491 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2492
2493 tx_q->tx_count_frames++;
2494
2495 if (!priv->tx_coal_frames[queue])
2496 set_ic = false;
2497 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2498 set_ic = true;
2499 else
2500 set_ic = false;
2501
2502 if (set_ic) {
2503 tx_q->tx_count_frames = 0;
2504 stmmac_set_tx_ic(priv, tx_desc);
2505 tx_set_ic_bit++;
2506 }
2507
2508 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2509 true, priv->mode, true, true,
2510 xdp_desc.len);
2511
2512 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2513
2514 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2515 entry = tx_q->cur_tx;
2516 }
2517 flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
2518 txq_stats->tx_set_ic_bit += tx_set_ic_bit;
2519 u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
2520
2521 if (tx_desc) {
2522 stmmac_flush_tx_descriptors(priv, queue);
2523 xsk_tx_release(pool);
2524 }
2525
2526 /* Return true if all of the 3 conditions are met
2527 * a) TX Budget is still available
2528 * b) work_done = true when XSK TX desc peek is empty (no more
2529 * pending XSK TX for transmission)
2530 */
2531 return !!budget && work_done;
2532 }
2533
2534 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2535 {
2536 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2537 tc += 64;
2538
2539 if (priv->plat->force_thresh_dma_mode)
2540 stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2541 else
2542 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2543 chan);
2544
2545 priv->xstats.threshold = tc;
2546 }
2547 }
2548
2549 /**
2550 * stmmac_tx_clean - to manage the transmission completion
2551 * @priv: driver private structure
2552 * @budget: napi budget limiting this functions packet handling
2553 * @queue: TX queue index
2554 * @pending_packets: signal to arm the TX coal timer
2555 * Description: it reclaims the transmit resources after transmission completes.
2556 * If some packets still needs to be handled, due to TX coalesce, set
2557 * pending_packets to true to make NAPI arm the TX coal timer.
2558 */
2559 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue,
2560 bool *pending_packets)
2561 {
2562 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2563 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2564 unsigned int bytes_compl = 0, pkts_compl = 0;
2565 unsigned int entry, xmits = 0, count = 0;
2566 u32 tx_packets = 0, tx_errors = 0;
2567 unsigned long flags;
2568
2569 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2570
2571 tx_q->xsk_frames_done = 0;
2572
2573 entry = tx_q->dirty_tx;
2574
2575 /* Try to clean all TX complete frame in 1 shot */
2576 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2577 struct xdp_frame *xdpf;
2578 struct sk_buff *skb;
2579 struct dma_desc *p;
2580 int status;
2581
2582 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2583 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2584 xdpf = tx_q->xdpf[entry];
2585 skb = NULL;
2586 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2587 xdpf = NULL;
2588 skb = tx_q->tx_skbuff[entry];
2589 } else {
2590 xdpf = NULL;
2591 skb = NULL;
2592 }
2593
2594 if (priv->extend_desc)
2595 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2596 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2597 p = &tx_q->dma_entx[entry].basic;
2598 else
2599 p = tx_q->dma_tx + entry;
2600
2601 status = stmmac_tx_status(priv, &priv->xstats, p, priv->ioaddr);
2602 /* Check if the descriptor is owned by the DMA */
2603 if (unlikely(status & tx_dma_own))
2604 break;
2605
2606 count++;
2607
2608 /* Make sure descriptor fields are read after reading
2609 * the own bit.
2610 */
2611 dma_rmb();
2612
2613 /* Just consider the last segment and ...*/
2614 if (likely(!(status & tx_not_ls))) {
2615 /* ... verify the status error condition */
2616 if (unlikely(status & tx_err)) {
2617 tx_errors++;
2618 if (unlikely(status & tx_err_bump_tc))
2619 stmmac_bump_dma_threshold(priv, queue);
2620 } else {
2621 tx_packets++;
2622 }
2623 if (skb)
2624 stmmac_get_tx_hwtstamp(priv, p, skb);
2625 }
2626
2627 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2628 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2629 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2630 dma_unmap_page(priv->device,
2631 tx_q->tx_skbuff_dma[entry].buf,
2632 tx_q->tx_skbuff_dma[entry].len,
2633 DMA_TO_DEVICE);
2634 else
2635 dma_unmap_single(priv->device,
2636 tx_q->tx_skbuff_dma[entry].buf,
2637 tx_q->tx_skbuff_dma[entry].len,
2638 DMA_TO_DEVICE);
2639 tx_q->tx_skbuff_dma[entry].buf = 0;
2640 tx_q->tx_skbuff_dma[entry].len = 0;
2641 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2642 }
2643
2644 stmmac_clean_desc3(priv, tx_q, p);
2645
2646 tx_q->tx_skbuff_dma[entry].last_segment = false;
2647 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2648
2649 if (xdpf &&
2650 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2651 xdp_return_frame_rx_napi(xdpf);
2652 tx_q->xdpf[entry] = NULL;
2653 }
2654
2655 if (xdpf &&
2656 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2657 xdp_return_frame(xdpf);
2658 tx_q->xdpf[entry] = NULL;
2659 }
2660
2661 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2662 tx_q->xsk_frames_done++;
2663
2664 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2665 if (likely(skb)) {
2666 pkts_compl++;
2667 bytes_compl += skb->len;
2668 dev_consume_skb_any(skb);
2669 tx_q->tx_skbuff[entry] = NULL;
2670 }
2671 }
2672
2673 stmmac_release_tx_desc(priv, p, priv->mode);
2674
2675 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2676 }
2677 tx_q->dirty_tx = entry;
2678
2679 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2680 pkts_compl, bytes_compl);
2681
2682 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2683 queue))) &&
2684 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2685
2686 netif_dbg(priv, tx_done, priv->dev,
2687 "%s: restart transmit\n", __func__);
2688 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2689 }
2690
2691 if (tx_q->xsk_pool) {
2692 bool work_done;
2693
2694 if (tx_q->xsk_frames_done)
2695 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2696
2697 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2698 xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2699
2700 /* For XSK TX, we try to send as many as possible.
2701 * If XSK work done (XSK TX desc empty and budget still
2702 * available), return "budget - 1" to reenable TX IRQ.
2703 * Else, return "budget" to make NAPI continue polling.
2704 */
2705 work_done = stmmac_xdp_xmit_zc(priv, queue,
2706 STMMAC_XSK_TX_BUDGET_MAX);
2707 if (work_done)
2708 xmits = budget - 1;
2709 else
2710 xmits = budget;
2711 }
2712
2713 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2714 priv->eee_sw_timer_en) {
2715 if (stmmac_enable_eee_mode(priv))
2716 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2717 }
2718
2719 /* We still have pending packets, let's call for a new scheduling */
2720 if (tx_q->dirty_tx != tx_q->cur_tx)
2721 *pending_packets = true;
2722
2723 flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
2724 txq_stats->tx_packets += tx_packets;
2725 txq_stats->tx_pkt_n += tx_packets;
2726 txq_stats->tx_clean++;
2727 u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
2728
2729 priv->xstats.tx_errors += tx_errors;
2730
2731 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2732
2733 /* Combine decisions from TX clean and XSK TX */
2734 return max(count, xmits);
2735 }
2736
2737 /**
2738 * stmmac_tx_err - to manage the tx error
2739 * @priv: driver private structure
2740 * @chan: channel index
2741 * Description: it cleans the descriptors and restarts the transmission
2742 * in case of transmission errors.
2743 */
2744 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2745 {
2746 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2747
2748 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2749
2750 stmmac_stop_tx_dma(priv, chan);
2751 dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2752 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2753 stmmac_reset_tx_queue(priv, chan);
2754 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2755 tx_q->dma_tx_phy, chan);
2756 stmmac_start_tx_dma(priv, chan);
2757
2758 priv->xstats.tx_errors++;
2759 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2760 }
2761
2762 /**
2763 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2764 * @priv: driver private structure
2765 * @txmode: TX operating mode
2766 * @rxmode: RX operating mode
2767 * @chan: channel index
2768 * Description: it is used for configuring of the DMA operation mode in
2769 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2770 * mode.
2771 */
2772 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2773 u32 rxmode, u32 chan)
2774 {
2775 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2776 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2777 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2778 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2779 int rxfifosz = priv->plat->rx_fifo_size;
2780 int txfifosz = priv->plat->tx_fifo_size;
2781
2782 if (rxfifosz == 0)
2783 rxfifosz = priv->dma_cap.rx_fifo_size;
2784 if (txfifosz == 0)
2785 txfifosz = priv->dma_cap.tx_fifo_size;
2786
2787 /* Adjust for real per queue fifo size */
2788 rxfifosz /= rx_channels_count;
2789 txfifosz /= tx_channels_count;
2790
2791 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2792 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2793 }
2794
2795 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2796 {
2797 int ret;
2798
2799 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2800 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2801 if (ret && (ret != -EINVAL)) {
2802 stmmac_global_err(priv);
2803 return true;
2804 }
2805
2806 return false;
2807 }
2808
2809 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2810 {
2811 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2812 &priv->xstats, chan, dir);
2813 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2814 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2815 struct stmmac_channel *ch = &priv->channel[chan];
2816 struct napi_struct *rx_napi;
2817 struct napi_struct *tx_napi;
2818 unsigned long flags;
2819
2820 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2821 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2822
2823 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2824 if (napi_schedule_prep(rx_napi)) {
2825 spin_lock_irqsave(&ch->lock, flags);
2826 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2827 spin_unlock_irqrestore(&ch->lock, flags);
2828 __napi_schedule(rx_napi);
2829 }
2830 }
2831
2832 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2833 if (napi_schedule_prep(tx_napi)) {
2834 spin_lock_irqsave(&ch->lock, flags);
2835 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2836 spin_unlock_irqrestore(&ch->lock, flags);
2837 __napi_schedule(tx_napi);
2838 }
2839 }
2840
2841 return status;
2842 }
2843
2844 /**
2845 * stmmac_dma_interrupt - DMA ISR
2846 * @priv: driver private structure
2847 * Description: this is the DMA ISR. It is called by the main ISR.
2848 * It calls the dwmac dma routine and schedule poll method in case of some
2849 * work can be done.
2850 */
2851 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2852 {
2853 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2854 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2855 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2856 tx_channel_count : rx_channel_count;
2857 u32 chan;
2858 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2859
2860 /* Make sure we never check beyond our status buffer. */
2861 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2862 channels_to_check = ARRAY_SIZE(status);
2863
2864 for (chan = 0; chan < channels_to_check; chan++)
2865 status[chan] = stmmac_napi_check(priv, chan,
2866 DMA_DIR_RXTX);
2867
2868 for (chan = 0; chan < tx_channel_count; chan++) {
2869 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2870 /* Try to bump up the dma threshold on this failure */
2871 stmmac_bump_dma_threshold(priv, chan);
2872 } else if (unlikely(status[chan] == tx_hard_error)) {
2873 stmmac_tx_err(priv, chan);
2874 }
2875 }
2876 }
2877
2878 /**
2879 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2880 * @priv: driver private structure
2881 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2882 */
2883 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2884 {
2885 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2886 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2887
2888 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2889
2890 if (priv->dma_cap.rmon) {
2891 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2892 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2893 } else
2894 netdev_info(priv->dev, "No MAC Management Counters available\n");
2895 }
2896
2897 /**
2898 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2899 * @priv: driver private structure
2900 * Description:
2901 * new GMAC chip generations have a new register to indicate the
2902 * presence of the optional feature/functions.
2903 * This can be also used to override the value passed through the
2904 * platform and necessary for old MAC10/100 and GMAC chips.
2905 */
2906 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2907 {
2908 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2909 }
2910
2911 /**
2912 * stmmac_check_ether_addr - check if the MAC addr is valid
2913 * @priv: driver private structure
2914 * Description:
2915 * it is to verify if the MAC address is valid, in case of failures it
2916 * generates a random MAC address
2917 */
2918 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2919 {
2920 u8 addr[ETH_ALEN];
2921
2922 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2923 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2924 if (is_valid_ether_addr(addr))
2925 eth_hw_addr_set(priv->dev, addr);
2926 else
2927 eth_hw_addr_random(priv->dev);
2928 dev_info(priv->device, "device MAC address %pM\n",
2929 priv->dev->dev_addr);
2930 }
2931 }
2932
2933 /**
2934 * stmmac_init_dma_engine - DMA init.
2935 * @priv: driver private structure
2936 * Description:
2937 * It inits the DMA invoking the specific MAC/GMAC callback.
2938 * Some DMA parameters can be passed from the platform;
2939 * in case of these are not passed a default is kept for the MAC or GMAC.
2940 */
2941 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2942 {
2943 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2944 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2945 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2946 struct stmmac_rx_queue *rx_q;
2947 struct stmmac_tx_queue *tx_q;
2948 u32 chan = 0;
2949 int atds = 0;
2950 int ret = 0;
2951
2952 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2953 dev_err(priv->device, "Invalid DMA configuration\n");
2954 return -EINVAL;
2955 }
2956
2957 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2958 atds = 1;
2959
2960 ret = stmmac_reset(priv, priv->ioaddr);
2961 if (ret) {
2962 dev_err(priv->device, "Failed to reset the dma\n");
2963 return ret;
2964 }
2965
2966 /* DMA Configuration */
2967 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2968
2969 if (priv->plat->axi)
2970 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2971
2972 /* DMA CSR Channel configuration */
2973 for (chan = 0; chan < dma_csr_ch; chan++) {
2974 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2975 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2976 }
2977
2978 /* DMA RX Channel Configuration */
2979 for (chan = 0; chan < rx_channels_count; chan++) {
2980 rx_q = &priv->dma_conf.rx_queue[chan];
2981
2982 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2983 rx_q->dma_rx_phy, chan);
2984
2985 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2986 (rx_q->buf_alloc_num *
2987 sizeof(struct dma_desc));
2988 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2989 rx_q->rx_tail_addr, chan);
2990 }
2991
2992 /* DMA TX Channel Configuration */
2993 for (chan = 0; chan < tx_channels_count; chan++) {
2994 tx_q = &priv->dma_conf.tx_queue[chan];
2995
2996 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2997 tx_q->dma_tx_phy, chan);
2998
2999 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
3000 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
3001 tx_q->tx_tail_addr, chan);
3002 }
3003
3004 return ret;
3005 }
3006
3007 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
3008 {
3009 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3010 u32 tx_coal_timer = priv->tx_coal_timer[queue];
3011 struct stmmac_channel *ch;
3012 struct napi_struct *napi;
3013
3014 if (!tx_coal_timer)
3015 return;
3016
3017 ch = &priv->channel[tx_q->queue_index];
3018 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3019
3020 /* Arm timer only if napi is not already scheduled.
3021 * Try to cancel any timer if napi is scheduled, timer will be armed
3022 * again in the next scheduled napi.
3023 */
3024 if (unlikely(!napi_is_scheduled(napi)))
3025 hrtimer_start(&tx_q->txtimer,
3026 STMMAC_COAL_TIMER(tx_coal_timer),
3027 HRTIMER_MODE_REL);
3028 else
3029 hrtimer_try_to_cancel(&tx_q->txtimer);
3030 }
3031
3032 /**
3033 * stmmac_tx_timer - mitigation sw timer for tx.
3034 * @t: data pointer
3035 * Description:
3036 * This is the timer handler to directly invoke the stmmac_tx_clean.
3037 */
3038 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
3039 {
3040 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
3041 struct stmmac_priv *priv = tx_q->priv_data;
3042 struct stmmac_channel *ch;
3043 struct napi_struct *napi;
3044
3045 ch = &priv->channel[tx_q->queue_index];
3046 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3047
3048 if (likely(napi_schedule_prep(napi))) {
3049 unsigned long flags;
3050
3051 spin_lock_irqsave(&ch->lock, flags);
3052 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
3053 spin_unlock_irqrestore(&ch->lock, flags);
3054 __napi_schedule(napi);
3055 }
3056
3057 return HRTIMER_NORESTART;
3058 }
3059
3060 /**
3061 * stmmac_init_coalesce - init mitigation options.
3062 * @priv: driver private structure
3063 * Description:
3064 * This inits the coalesce parameters: i.e. timer rate,
3065 * timer handler and default threshold used for enabling the
3066 * interrupt on completion bit.
3067 */
3068 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3069 {
3070 u32 tx_channel_count = priv->plat->tx_queues_to_use;
3071 u32 rx_channel_count = priv->plat->rx_queues_to_use;
3072 u32 chan;
3073
3074 for (chan = 0; chan < tx_channel_count; chan++) {
3075 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3076
3077 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3078 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3079
3080 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3081 tx_q->txtimer.function = stmmac_tx_timer;
3082 }
3083
3084 for (chan = 0; chan < rx_channel_count; chan++)
3085 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3086 }
3087
3088 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3089 {
3090 u32 rx_channels_count = priv->plat->rx_queues_to_use;
3091 u32 tx_channels_count = priv->plat->tx_queues_to_use;
3092 u32 chan;
3093
3094 /* set TX ring length */
3095 for (chan = 0; chan < tx_channels_count; chan++)
3096 stmmac_set_tx_ring_len(priv, priv->ioaddr,
3097 (priv->dma_conf.dma_tx_size - 1), chan);
3098
3099 /* set RX ring length */
3100 for (chan = 0; chan < rx_channels_count; chan++)
3101 stmmac_set_rx_ring_len(priv, priv->ioaddr,
3102 (priv->dma_conf.dma_rx_size - 1), chan);
3103 }
3104
3105 /**
3106 * stmmac_set_tx_queue_weight - Set TX queue weight
3107 * @priv: driver private structure
3108 * Description: It is used for setting TX queues weight
3109 */
3110 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3111 {
3112 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3113 u32 weight;
3114 u32 queue;
3115
3116 for (queue = 0; queue < tx_queues_count; queue++) {
3117 weight = priv->plat->tx_queues_cfg[queue].weight;
3118 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3119 }
3120 }
3121
3122 /**
3123 * stmmac_configure_cbs - Configure CBS in TX queue
3124 * @priv: driver private structure
3125 * Description: It is used for configuring CBS in AVB TX queues
3126 */
3127 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3128 {
3129 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3130 u32 mode_to_use;
3131 u32 queue;
3132
3133 /* queue 0 is reserved for legacy traffic */
3134 for (queue = 1; queue < tx_queues_count; queue++) {
3135 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3136 if (mode_to_use == MTL_QUEUE_DCB)
3137 continue;
3138
3139 stmmac_config_cbs(priv, priv->hw,
3140 priv->plat->tx_queues_cfg[queue].send_slope,
3141 priv->plat->tx_queues_cfg[queue].idle_slope,
3142 priv->plat->tx_queues_cfg[queue].high_credit,
3143 priv->plat->tx_queues_cfg[queue].low_credit,
3144 queue);
3145 }
3146 }
3147
3148 /**
3149 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3150 * @priv: driver private structure
3151 * Description: It is used for mapping RX queues to RX dma channels
3152 */
3153 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3154 {
3155 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3156 u32 queue;
3157 u32 chan;
3158
3159 for (queue = 0; queue < rx_queues_count; queue++) {
3160 chan = priv->plat->rx_queues_cfg[queue].chan;
3161 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3162 }
3163 }
3164
3165 /**
3166 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3167 * @priv: driver private structure
3168 * Description: It is used for configuring the RX Queue Priority
3169 */
3170 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3171 {
3172 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3173 u32 queue;
3174 u32 prio;
3175
3176 for (queue = 0; queue < rx_queues_count; queue++) {
3177 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3178 continue;
3179
3180 prio = priv->plat->rx_queues_cfg[queue].prio;
3181 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3182 }
3183 }
3184
3185 /**
3186 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3187 * @priv: driver private structure
3188 * Description: It is used for configuring the TX Queue Priority
3189 */
3190 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3191 {
3192 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3193 u32 queue;
3194 u32 prio;
3195
3196 for (queue = 0; queue < tx_queues_count; queue++) {
3197 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3198 continue;
3199
3200 prio = priv->plat->tx_queues_cfg[queue].prio;
3201 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3202 }
3203 }
3204
3205 /**
3206 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3207 * @priv: driver private structure
3208 * Description: It is used for configuring the RX queue routing
3209 */
3210 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3211 {
3212 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3213 u32 queue;
3214 u8 packet;
3215
3216 for (queue = 0; queue < rx_queues_count; queue++) {
3217 /* no specific packet type routing specified for the queue */
3218 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3219 continue;
3220
3221 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3222 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3223 }
3224 }
3225
3226 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3227 {
3228 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3229 priv->rss.enable = false;
3230 return;
3231 }
3232
3233 if (priv->dev->features & NETIF_F_RXHASH)
3234 priv->rss.enable = true;
3235 else
3236 priv->rss.enable = false;
3237
3238 stmmac_rss_configure(priv, priv->hw, &priv->rss,
3239 priv->plat->rx_queues_to_use);
3240 }
3241
3242 /**
3243 * stmmac_mtl_configuration - Configure MTL
3244 * @priv: driver private structure
3245 * Description: It is used for configurring MTL
3246 */
3247 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3248 {
3249 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3250 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3251
3252 if (tx_queues_count > 1)
3253 stmmac_set_tx_queue_weight(priv);
3254
3255 /* Configure MTL RX algorithms */
3256 if (rx_queues_count > 1)
3257 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3258 priv->plat->rx_sched_algorithm);
3259
3260 /* Configure MTL TX algorithms */
3261 if (tx_queues_count > 1)
3262 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3263 priv->plat->tx_sched_algorithm);
3264
3265 /* Configure CBS in AVB TX queues */
3266 if (tx_queues_count > 1)
3267 stmmac_configure_cbs(priv);
3268
3269 /* Map RX MTL to DMA channels */
3270 stmmac_rx_queue_dma_chan_map(priv);
3271
3272 /* Enable MAC RX Queues */
3273 stmmac_mac_enable_rx_queues(priv);
3274
3275 /* Set RX priorities */
3276 if (rx_queues_count > 1)
3277 stmmac_mac_config_rx_queues_prio(priv);
3278
3279 /* Set TX priorities */
3280 if (tx_queues_count > 1)
3281 stmmac_mac_config_tx_queues_prio(priv);
3282
3283 /* Set RX routing */
3284 if (rx_queues_count > 1)
3285 stmmac_mac_config_rx_queues_routing(priv);
3286
3287 /* Receive Side Scaling */
3288 if (rx_queues_count > 1)
3289 stmmac_mac_config_rss(priv);
3290 }
3291
3292 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3293 {
3294 if (priv->dma_cap.asp) {
3295 netdev_info(priv->dev, "Enabling Safety Features\n");
3296 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3297 priv->plat->safety_feat_cfg);
3298 } else {
3299 netdev_info(priv->dev, "No Safety Features support found\n");
3300 }
3301 }
3302
3303 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3304 {
3305 char *name;
3306
3307 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3308 clear_bit(__FPE_REMOVING, &priv->fpe_task_state);
3309
3310 name = priv->wq_name;
3311 sprintf(name, "%s-fpe", priv->dev->name);
3312
3313 priv->fpe_wq = create_singlethread_workqueue(name);
3314 if (!priv->fpe_wq) {
3315 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3316
3317 return -ENOMEM;
3318 }
3319 netdev_info(priv->dev, "FPE workqueue start");
3320
3321 return 0;
3322 }
3323
3324 /**
3325 * stmmac_hw_setup - setup mac in a usable state.
3326 * @dev : pointer to the device structure.
3327 * @ptp_register: register PTP if set
3328 * Description:
3329 * this is the main function to setup the HW in a usable state because the
3330 * dma engine is reset, the core registers are configured (e.g. AXI,
3331 * Checksum features, timers). The DMA is ready to start receiving and
3332 * transmitting.
3333 * Return value:
3334 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3335 * file on failure.
3336 */
3337 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3338 {
3339 struct stmmac_priv *priv = netdev_priv(dev);
3340 u32 rx_cnt = priv->plat->rx_queues_to_use;
3341 u32 tx_cnt = priv->plat->tx_queues_to_use;
3342 bool sph_en;
3343 u32 chan;
3344 int ret;
3345
3346 /* DMA initialization and SW reset */
3347 ret = stmmac_init_dma_engine(priv);
3348 if (ret < 0) {
3349 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3350 __func__);
3351 return ret;
3352 }
3353
3354 /* Copy the MAC addr into the HW */
3355 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3356
3357 /* PS and related bits will be programmed according to the speed */
3358 if (priv->hw->pcs) {
3359 int speed = priv->plat->mac_port_sel_speed;
3360
3361 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3362 (speed == SPEED_1000)) {
3363 priv->hw->ps = speed;
3364 } else {
3365 dev_warn(priv->device, "invalid port speed\n");
3366 priv->hw->ps = 0;
3367 }
3368 }
3369
3370 /* Initialize the MAC Core */
3371 stmmac_core_init(priv, priv->hw, dev);
3372
3373 /* Initialize MTL*/
3374 stmmac_mtl_configuration(priv);
3375
3376 /* Initialize Safety Features */
3377 stmmac_safety_feat_configuration(priv);
3378
3379 ret = stmmac_rx_ipc(priv, priv->hw);
3380 if (!ret) {
3381 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3382 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3383 priv->hw->rx_csum = 0;
3384 }
3385
3386 /* Enable the MAC Rx/Tx */
3387 stmmac_mac_set(priv, priv->ioaddr, true);
3388
3389 /* Set the HW DMA mode and the COE */
3390 stmmac_dma_operation_mode(priv);
3391
3392 stmmac_mmc_setup(priv);
3393
3394 if (ptp_register) {
3395 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3396 if (ret < 0)
3397 netdev_warn(priv->dev,
3398 "failed to enable PTP reference clock: %pe\n",
3399 ERR_PTR(ret));
3400 }
3401
3402 ret = stmmac_init_ptp(priv);
3403 if (ret == -EOPNOTSUPP)
3404 netdev_info(priv->dev, "PTP not supported by HW\n");
3405 else if (ret)
3406 netdev_warn(priv->dev, "PTP init failed\n");
3407 else if (ptp_register)
3408 stmmac_ptp_register(priv);
3409
3410 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3411
3412 /* Convert the timer from msec to usec */
3413 if (!priv->tx_lpi_timer)
3414 priv->tx_lpi_timer = eee_timer * 1000;
3415
3416 if (priv->use_riwt) {
3417 u32 queue;
3418
3419 for (queue = 0; queue < rx_cnt; queue++) {
3420 if (!priv->rx_riwt[queue])
3421 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3422
3423 stmmac_rx_watchdog(priv, priv->ioaddr,
3424 priv->rx_riwt[queue], queue);
3425 }
3426 }
3427
3428 if (priv->hw->pcs)
3429 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3430
3431 /* set TX and RX rings length */
3432 stmmac_set_rings_length(priv);
3433
3434 /* Enable TSO */
3435 if (priv->tso) {
3436 for (chan = 0; chan < tx_cnt; chan++) {
3437 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3438
3439 /* TSO and TBS cannot co-exist */
3440 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3441 continue;
3442
3443 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3444 }
3445 }
3446
3447 /* Enable Split Header */
3448 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3449 for (chan = 0; chan < rx_cnt; chan++)
3450 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3451
3452
3453 /* VLAN Tag Insertion */
3454 if (priv->dma_cap.vlins)
3455 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3456
3457 /* TBS */
3458 for (chan = 0; chan < tx_cnt; chan++) {
3459 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3460 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3461
3462 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3463 }
3464
3465 /* Configure real RX and TX queues */
3466 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3467 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3468
3469 /* Start the ball rolling... */
3470 stmmac_start_all_dma(priv);
3471
3472 if (priv->dma_cap.fpesel) {
3473 stmmac_fpe_start_wq(priv);
3474
3475 if (priv->plat->fpe_cfg->enable)
3476 stmmac_fpe_handshake(priv, true);
3477 }
3478
3479 return 0;
3480 }
3481
3482 static void stmmac_hw_teardown(struct net_device *dev)
3483 {
3484 struct stmmac_priv *priv = netdev_priv(dev);
3485
3486 clk_disable_unprepare(priv->plat->clk_ptp_ref);
3487 }
3488
3489 static void stmmac_free_irq(struct net_device *dev,
3490 enum request_irq_err irq_err, int irq_idx)
3491 {
3492 struct stmmac_priv *priv = netdev_priv(dev);
3493 int j;
3494
3495 switch (irq_err) {
3496 case REQ_IRQ_ERR_ALL:
3497 irq_idx = priv->plat->tx_queues_to_use;
3498 fallthrough;
3499 case REQ_IRQ_ERR_TX:
3500 for (j = irq_idx - 1; j >= 0; j--) {
3501 if (priv->tx_irq[j] > 0) {
3502 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3503 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3504 }
3505 }
3506 irq_idx = priv->plat->rx_queues_to_use;
3507 fallthrough;
3508 case REQ_IRQ_ERR_RX:
3509 for (j = irq_idx - 1; j >= 0; j--) {
3510 if (priv->rx_irq[j] > 0) {
3511 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3512 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3513 }
3514 }
3515
3516 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3517 free_irq(priv->sfty_ue_irq, dev);
3518 fallthrough;
3519 case REQ_IRQ_ERR_SFTY_UE:
3520 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3521 free_irq(priv->sfty_ce_irq, dev);
3522 fallthrough;
3523 case REQ_IRQ_ERR_SFTY_CE:
3524 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3525 free_irq(priv->lpi_irq, dev);
3526 fallthrough;
3527 case REQ_IRQ_ERR_LPI:
3528 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3529 free_irq(priv->wol_irq, dev);
3530 fallthrough;
3531 case REQ_IRQ_ERR_WOL:
3532 free_irq(dev->irq, dev);
3533 fallthrough;
3534 case REQ_IRQ_ERR_MAC:
3535 case REQ_IRQ_ERR_NO:
3536 /* If MAC IRQ request error, no more IRQ to free */
3537 break;
3538 }
3539 }
3540
3541 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3542 {
3543 struct stmmac_priv *priv = netdev_priv(dev);
3544 enum request_irq_err irq_err;
3545 cpumask_t cpu_mask;
3546 int irq_idx = 0;
3547 char *int_name;
3548 int ret;
3549 int i;
3550
3551 /* For common interrupt */
3552 int_name = priv->int_name_mac;
3553 sprintf(int_name, "%s:%s", dev->name, "mac");
3554 ret = request_irq(dev->irq, stmmac_mac_interrupt,
3555 0, int_name, dev);
3556 if (unlikely(ret < 0)) {
3557 netdev_err(priv->dev,
3558 "%s: alloc mac MSI %d (error: %d)\n",
3559 __func__, dev->irq, ret);
3560 irq_err = REQ_IRQ_ERR_MAC;
3561 goto irq_error;
3562 }
3563
3564 /* Request the Wake IRQ in case of another line
3565 * is used for WoL
3566 */
3567 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3568 int_name = priv->int_name_wol;
3569 sprintf(int_name, "%s:%s", dev->name, "wol");
3570 ret = request_irq(priv->wol_irq,
3571 stmmac_mac_interrupt,
3572 0, int_name, dev);
3573 if (unlikely(ret < 0)) {
3574 netdev_err(priv->dev,
3575 "%s: alloc wol MSI %d (error: %d)\n",
3576 __func__, priv->wol_irq, ret);
3577 irq_err = REQ_IRQ_ERR_WOL;
3578 goto irq_error;
3579 }
3580 }
3581
3582 /* Request the LPI IRQ in case of another line
3583 * is used for LPI
3584 */
3585 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3586 int_name = priv->int_name_lpi;
3587 sprintf(int_name, "%s:%s", dev->name, "lpi");
3588 ret = request_irq(priv->lpi_irq,
3589 stmmac_mac_interrupt,
3590 0, int_name, dev);
3591 if (unlikely(ret < 0)) {
3592 netdev_err(priv->dev,
3593 "%s: alloc lpi MSI %d (error: %d)\n",
3594 __func__, priv->lpi_irq, ret);
3595 irq_err = REQ_IRQ_ERR_LPI;
3596 goto irq_error;
3597 }
3598 }
3599
3600 /* Request the Safety Feature Correctible Error line in
3601 * case of another line is used
3602 */
3603 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3604 int_name = priv->int_name_sfty_ce;
3605 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3606 ret = request_irq(priv->sfty_ce_irq,
3607 stmmac_safety_interrupt,
3608 0, int_name, dev);
3609 if (unlikely(ret < 0)) {
3610 netdev_err(priv->dev,
3611 "%s: alloc sfty ce MSI %d (error: %d)\n",
3612 __func__, priv->sfty_ce_irq, ret);
3613 irq_err = REQ_IRQ_ERR_SFTY_CE;
3614 goto irq_error;
3615 }
3616 }
3617
3618 /* Request the Safety Feature Uncorrectible Error line in
3619 * case of another line is used
3620 */
3621 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3622 int_name = priv->int_name_sfty_ue;
3623 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3624 ret = request_irq(priv->sfty_ue_irq,
3625 stmmac_safety_interrupt,
3626 0, int_name, dev);
3627 if (unlikely(ret < 0)) {
3628 netdev_err(priv->dev,
3629 "%s: alloc sfty ue MSI %d (error: %d)\n",
3630 __func__, priv->sfty_ue_irq, ret);
3631 irq_err = REQ_IRQ_ERR_SFTY_UE;
3632 goto irq_error;
3633 }
3634 }
3635
3636 /* Request Rx MSI irq */
3637 for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3638 if (i >= MTL_MAX_RX_QUEUES)
3639 break;
3640 if (priv->rx_irq[i] == 0)
3641 continue;
3642
3643 int_name = priv->int_name_rx_irq[i];
3644 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3645 ret = request_irq(priv->rx_irq[i],
3646 stmmac_msi_intr_rx,
3647 0, int_name, &priv->dma_conf.rx_queue[i]);
3648 if (unlikely(ret < 0)) {
3649 netdev_err(priv->dev,
3650 "%s: alloc rx-%d MSI %d (error: %d)\n",
3651 __func__, i, priv->rx_irq[i], ret);
3652 irq_err = REQ_IRQ_ERR_RX;
3653 irq_idx = i;
3654 goto irq_error;
3655 }
3656 cpumask_clear(&cpu_mask);
3657 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3658 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3659 }
3660
3661 /* Request Tx MSI irq */
3662 for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3663 if (i >= MTL_MAX_TX_QUEUES)
3664 break;
3665 if (priv->tx_irq[i] == 0)
3666 continue;
3667
3668 int_name = priv->int_name_tx_irq[i];
3669 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3670 ret = request_irq(priv->tx_irq[i],
3671 stmmac_msi_intr_tx,
3672 0, int_name, &priv->dma_conf.tx_queue[i]);
3673 if (unlikely(ret < 0)) {
3674 netdev_err(priv->dev,
3675 "%s: alloc tx-%d MSI %d (error: %d)\n",
3676 __func__, i, priv->tx_irq[i], ret);
3677 irq_err = REQ_IRQ_ERR_TX;
3678 irq_idx = i;
3679 goto irq_error;
3680 }
3681 cpumask_clear(&cpu_mask);
3682 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3683 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3684 }
3685
3686 return 0;
3687
3688 irq_error:
3689 stmmac_free_irq(dev, irq_err, irq_idx);
3690 return ret;
3691 }
3692
3693 static int stmmac_request_irq_single(struct net_device *dev)
3694 {
3695 struct stmmac_priv *priv = netdev_priv(dev);
3696 enum request_irq_err irq_err;
3697 int ret;
3698
3699 ret = request_irq(dev->irq, stmmac_interrupt,
3700 IRQF_SHARED, dev->name, dev);
3701 if (unlikely(ret < 0)) {
3702 netdev_err(priv->dev,
3703 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3704 __func__, dev->irq, ret);
3705 irq_err = REQ_IRQ_ERR_MAC;
3706 goto irq_error;
3707 }
3708
3709 /* Request the Wake IRQ in case of another line
3710 * is used for WoL
3711 */
3712 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3713 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3714 IRQF_SHARED, dev->name, dev);
3715 if (unlikely(ret < 0)) {
3716 netdev_err(priv->dev,
3717 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3718 __func__, priv->wol_irq, ret);
3719 irq_err = REQ_IRQ_ERR_WOL;
3720 goto irq_error;
3721 }
3722 }
3723
3724 /* Request the IRQ lines */
3725 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3726 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3727 IRQF_SHARED, dev->name, dev);
3728 if (unlikely(ret < 0)) {
3729 netdev_err(priv->dev,
3730 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3731 __func__, priv->lpi_irq, ret);
3732 irq_err = REQ_IRQ_ERR_LPI;
3733 goto irq_error;
3734 }
3735 }
3736
3737 return 0;
3738
3739 irq_error:
3740 stmmac_free_irq(dev, irq_err, 0);
3741 return ret;
3742 }
3743
3744 static int stmmac_request_irq(struct net_device *dev)
3745 {
3746 struct stmmac_priv *priv = netdev_priv(dev);
3747 int ret;
3748
3749 /* Request the IRQ lines */
3750 if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN)
3751 ret = stmmac_request_irq_multi_msi(dev);
3752 else
3753 ret = stmmac_request_irq_single(dev);
3754
3755 return ret;
3756 }
3757
3758 /**
3759 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3760 * @priv: driver private structure
3761 * @mtu: MTU to setup the dma queue and buf with
3762 * Description: Allocate and generate a dma_conf based on the provided MTU.
3763 * Allocate the Tx/Rx DMA queue and init them.
3764 * Return value:
3765 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3766 */
3767 static struct stmmac_dma_conf *
3768 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3769 {
3770 struct stmmac_dma_conf *dma_conf;
3771 int chan, bfsize, ret;
3772
3773 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3774 if (!dma_conf) {
3775 netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3776 __func__);
3777 return ERR_PTR(-ENOMEM);
3778 }
3779
3780 bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3781 if (bfsize < 0)
3782 bfsize = 0;
3783
3784 if (bfsize < BUF_SIZE_16KiB)
3785 bfsize = stmmac_set_bfsize(mtu, 0);
3786
3787 dma_conf->dma_buf_sz = bfsize;
3788 /* Chose the tx/rx size from the already defined one in the
3789 * priv struct. (if defined)
3790 */
3791 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3792 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3793
3794 if (!dma_conf->dma_tx_size)
3795 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3796 if (!dma_conf->dma_rx_size)
3797 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3798
3799 /* Earlier check for TBS */
3800 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3801 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3802 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3803
3804 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3805 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3806 }
3807
3808 ret = alloc_dma_desc_resources(priv, dma_conf);
3809 if (ret < 0) {
3810 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3811 __func__);
3812 goto alloc_error;
3813 }
3814
3815 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3816 if (ret < 0) {
3817 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3818 __func__);
3819 goto init_error;
3820 }
3821
3822 return dma_conf;
3823
3824 init_error:
3825 free_dma_desc_resources(priv, dma_conf);
3826 alloc_error:
3827 kfree(dma_conf);
3828 return ERR_PTR(ret);
3829 }
3830
3831 /**
3832 * __stmmac_open - open entry point of the driver
3833 * @dev : pointer to the device structure.
3834 * @dma_conf : structure to take the dma data
3835 * Description:
3836 * This function is the open entry point of the driver.
3837 * Return value:
3838 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3839 * file on failure.
3840 */
3841 static int __stmmac_open(struct net_device *dev,
3842 struct stmmac_dma_conf *dma_conf)
3843 {
3844 struct stmmac_priv *priv = netdev_priv(dev);
3845 int mode = priv->plat->phy_interface;
3846 u32 chan;
3847 int ret;
3848
3849 ret = pm_runtime_resume_and_get(priv->device);
3850 if (ret < 0)
3851 return ret;
3852
3853 if (priv->hw->pcs != STMMAC_PCS_TBI &&
3854 priv->hw->pcs != STMMAC_PCS_RTBI &&
3855 (!priv->hw->xpcs ||
3856 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) &&
3857 !priv->hw->lynx_pcs) {
3858 ret = stmmac_init_phy(dev);
3859 if (ret) {
3860 netdev_err(priv->dev,
3861 "%s: Cannot attach to PHY (error: %d)\n",
3862 __func__, ret);
3863 goto init_phy_error;
3864 }
3865 }
3866
3867 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3868
3869 buf_sz = dma_conf->dma_buf_sz;
3870 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3871
3872 stmmac_reset_queues_param(priv);
3873
3874 if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
3875 priv->plat->serdes_powerup) {
3876 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3877 if (ret < 0) {
3878 netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3879 __func__);
3880 goto init_error;
3881 }
3882 }
3883
3884 ret = stmmac_hw_setup(dev, true);
3885 if (ret < 0) {
3886 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3887 goto init_error;
3888 }
3889
3890 stmmac_init_coalesce(priv);
3891
3892 phylink_start(priv->phylink);
3893 /* We may have called phylink_speed_down before */
3894 phylink_speed_up(priv->phylink);
3895
3896 ret = stmmac_request_irq(dev);
3897 if (ret)
3898 goto irq_error;
3899
3900 stmmac_enable_all_queues(priv);
3901 netif_tx_start_all_queues(priv->dev);
3902 stmmac_enable_all_dma_irq(priv);
3903
3904 return 0;
3905
3906 irq_error:
3907 phylink_stop(priv->phylink);
3908
3909 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3910 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3911
3912 stmmac_hw_teardown(dev);
3913 init_error:
3914 phylink_disconnect_phy(priv->phylink);
3915 init_phy_error:
3916 pm_runtime_put(priv->device);
3917 return ret;
3918 }
3919
3920 static int stmmac_open(struct net_device *dev)
3921 {
3922 struct stmmac_priv *priv = netdev_priv(dev);
3923 struct stmmac_dma_conf *dma_conf;
3924 int ret;
3925
3926 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3927 if (IS_ERR(dma_conf))
3928 return PTR_ERR(dma_conf);
3929
3930 ret = __stmmac_open(dev, dma_conf);
3931 if (ret)
3932 free_dma_desc_resources(priv, dma_conf);
3933
3934 kfree(dma_conf);
3935 return ret;
3936 }
3937
3938 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3939 {
3940 set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3941
3942 if (priv->fpe_wq)
3943 destroy_workqueue(priv->fpe_wq);
3944
3945 netdev_info(priv->dev, "FPE workqueue stop");
3946 }
3947
3948 /**
3949 * stmmac_release - close entry point of the driver
3950 * @dev : device pointer.
3951 * Description:
3952 * This is the stop entry point of the driver.
3953 */
3954 static int stmmac_release(struct net_device *dev)
3955 {
3956 struct stmmac_priv *priv = netdev_priv(dev);
3957 u32 chan;
3958
3959 if (device_may_wakeup(priv->device))
3960 phylink_speed_down(priv->phylink, false);
3961 /* Stop and disconnect the PHY */
3962 phylink_stop(priv->phylink);
3963 phylink_disconnect_phy(priv->phylink);
3964
3965 stmmac_disable_all_queues(priv);
3966
3967 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3968 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3969
3970 netif_tx_disable(dev);
3971
3972 /* Free the IRQ lines */
3973 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3974
3975 if (priv->eee_enabled) {
3976 priv->tx_path_in_lpi_mode = false;
3977 del_timer_sync(&priv->eee_ctrl_timer);
3978 }
3979
3980 /* Stop TX/RX DMA and clear the descriptors */
3981 stmmac_stop_all_dma(priv);
3982
3983 /* Release and free the Rx/Tx resources */
3984 free_dma_desc_resources(priv, &priv->dma_conf);
3985
3986 /* Disable the MAC Rx/Tx */
3987 stmmac_mac_set(priv, priv->ioaddr, false);
3988
3989 /* Powerdown Serdes if there is */
3990 if (priv->plat->serdes_powerdown)
3991 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3992
3993 netif_carrier_off(dev);
3994
3995 stmmac_release_ptp(priv);
3996
3997 pm_runtime_put(priv->device);
3998
3999 if (priv->dma_cap.fpesel)
4000 stmmac_fpe_stop_wq(priv);
4001
4002 return 0;
4003 }
4004
4005 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
4006 struct stmmac_tx_queue *tx_q)
4007 {
4008 u16 tag = 0x0, inner_tag = 0x0;
4009 u32 inner_type = 0x0;
4010 struct dma_desc *p;
4011
4012 if (!priv->dma_cap.vlins)
4013 return false;
4014 if (!skb_vlan_tag_present(skb))
4015 return false;
4016 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
4017 inner_tag = skb_vlan_tag_get(skb);
4018 inner_type = STMMAC_VLAN_INSERT;
4019 }
4020
4021 tag = skb_vlan_tag_get(skb);
4022
4023 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4024 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
4025 else
4026 p = &tx_q->dma_tx[tx_q->cur_tx];
4027
4028 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
4029 return false;
4030
4031 stmmac_set_tx_owner(priv, p);
4032 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4033 return true;
4034 }
4035
4036 /**
4037 * stmmac_tso_allocator - close entry point of the driver
4038 * @priv: driver private structure
4039 * @des: buffer start address
4040 * @total_len: total length to fill in descriptors
4041 * @last_segment: condition for the last descriptor
4042 * @queue: TX queue index
4043 * Description:
4044 * This function fills descriptor and request new descriptors according to
4045 * buffer length to fill
4046 */
4047 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
4048 int total_len, bool last_segment, u32 queue)
4049 {
4050 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4051 struct dma_desc *desc;
4052 u32 buff_size;
4053 int tmp_len;
4054
4055 tmp_len = total_len;
4056
4057 while (tmp_len > 0) {
4058 dma_addr_t curr_addr;
4059
4060 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4061 priv->dma_conf.dma_tx_size);
4062 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4063
4064 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4065 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4066 else
4067 desc = &tx_q->dma_tx[tx_q->cur_tx];
4068
4069 curr_addr = des + (total_len - tmp_len);
4070 if (priv->dma_cap.addr64 <= 32)
4071 desc->des0 = cpu_to_le32(curr_addr);
4072 else
4073 stmmac_set_desc_addr(priv, desc, curr_addr);
4074
4075 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4076 TSO_MAX_BUFF_SIZE : tmp_len;
4077
4078 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4079 0, 1,
4080 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4081 0, 0);
4082
4083 tmp_len -= TSO_MAX_BUFF_SIZE;
4084 }
4085 }
4086
4087 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4088 {
4089 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4090 int desc_size;
4091
4092 if (likely(priv->extend_desc))
4093 desc_size = sizeof(struct dma_extended_desc);
4094 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4095 desc_size = sizeof(struct dma_edesc);
4096 else
4097 desc_size = sizeof(struct dma_desc);
4098
4099 /* The own bit must be the latest setting done when prepare the
4100 * descriptor and then barrier is needed to make sure that
4101 * all is coherent before granting the DMA engine.
4102 */
4103 wmb();
4104
4105 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4106 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4107 }
4108
4109 /**
4110 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4111 * @skb : the socket buffer
4112 * @dev : device pointer
4113 * Description: this is the transmit function that is called on TSO frames
4114 * (support available on GMAC4 and newer chips).
4115 * Diagram below show the ring programming in case of TSO frames:
4116 *
4117 * First Descriptor
4118 * --------
4119 * | DES0 |---> buffer1 = L2/L3/L4 header
4120 * | DES1 |---> TCP Payload (can continue on next descr...)
4121 * | DES2 |---> buffer 1 and 2 len
4122 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4123 * --------
4124 * |
4125 * ...
4126 * |
4127 * --------
4128 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
4129 * | DES1 | --|
4130 * | DES2 | --> buffer 1 and 2 len
4131 * | DES3 |
4132 * --------
4133 *
4134 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4135 */
4136 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4137 {
4138 struct dma_desc *desc, *first, *mss_desc = NULL;
4139 struct stmmac_priv *priv = netdev_priv(dev);
4140 int nfrags = skb_shinfo(skb)->nr_frags;
4141 u32 queue = skb_get_queue_mapping(skb);
4142 unsigned int first_entry, tx_packets;
4143 struct stmmac_txq_stats *txq_stats;
4144 int tmp_pay_len = 0, first_tx;
4145 struct stmmac_tx_queue *tx_q;
4146 bool has_vlan, set_ic;
4147 u8 proto_hdr_len, hdr;
4148 unsigned long flags;
4149 u32 pay_len, mss;
4150 dma_addr_t des;
4151 int i;
4152
4153 tx_q = &priv->dma_conf.tx_queue[queue];
4154 txq_stats = &priv->xstats.txq_stats[queue];
4155 first_tx = tx_q->cur_tx;
4156
4157 /* Compute header lengths */
4158 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4159 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4160 hdr = sizeof(struct udphdr);
4161 } else {
4162 proto_hdr_len = skb_tcp_all_headers(skb);
4163 hdr = tcp_hdrlen(skb);
4164 }
4165
4166 /* Desc availability based on threshold should be enough safe */
4167 if (unlikely(stmmac_tx_avail(priv, queue) <
4168 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4169 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4170 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4171 queue));
4172 /* This is a hard error, log it. */
4173 netdev_err(priv->dev,
4174 "%s: Tx Ring full when queue awake\n",
4175 __func__);
4176 }
4177 return NETDEV_TX_BUSY;
4178 }
4179
4180 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4181
4182 mss = skb_shinfo(skb)->gso_size;
4183
4184 /* set new MSS value if needed */
4185 if (mss != tx_q->mss) {
4186 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4187 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4188 else
4189 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4190
4191 stmmac_set_mss(priv, mss_desc, mss);
4192 tx_q->mss = mss;
4193 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4194 priv->dma_conf.dma_tx_size);
4195 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4196 }
4197
4198 if (netif_msg_tx_queued(priv)) {
4199 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4200 __func__, hdr, proto_hdr_len, pay_len, mss);
4201 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4202 skb->data_len);
4203 }
4204
4205 /* Check if VLAN can be inserted by HW */
4206 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4207
4208 first_entry = tx_q->cur_tx;
4209 WARN_ON(tx_q->tx_skbuff[first_entry]);
4210
4211 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4212 desc = &tx_q->dma_entx[first_entry].basic;
4213 else
4214 desc = &tx_q->dma_tx[first_entry];
4215 first = desc;
4216
4217 if (has_vlan)
4218 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4219
4220 /* first descriptor: fill Headers on Buf1 */
4221 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4222 DMA_TO_DEVICE);
4223 if (dma_mapping_error(priv->device, des))
4224 goto dma_map_err;
4225
4226 tx_q->tx_skbuff_dma[first_entry].buf = des;
4227 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4228 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4229 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4230
4231 if (priv->dma_cap.addr64 <= 32) {
4232 first->des0 = cpu_to_le32(des);
4233
4234 /* Fill start of payload in buff2 of first descriptor */
4235 if (pay_len)
4236 first->des1 = cpu_to_le32(des + proto_hdr_len);
4237
4238 /* If needed take extra descriptors to fill the remaining payload */
4239 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4240 } else {
4241 stmmac_set_desc_addr(priv, first, des);
4242 tmp_pay_len = pay_len;
4243 des += proto_hdr_len;
4244 pay_len = 0;
4245 }
4246
4247 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4248
4249 /* Prepare fragments */
4250 for (i = 0; i < nfrags; i++) {
4251 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4252
4253 des = skb_frag_dma_map(priv->device, frag, 0,
4254 skb_frag_size(frag),
4255 DMA_TO_DEVICE);
4256 if (dma_mapping_error(priv->device, des))
4257 goto dma_map_err;
4258
4259 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4260 (i == nfrags - 1), queue);
4261
4262 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4263 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4264 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4265 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4266 }
4267
4268 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4269
4270 /* Only the last descriptor gets to point to the skb. */
4271 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4272 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4273
4274 /* Manage tx mitigation */
4275 tx_packets = (tx_q->cur_tx + 1) - first_tx;
4276 tx_q->tx_count_frames += tx_packets;
4277
4278 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4279 set_ic = true;
4280 else if (!priv->tx_coal_frames[queue])
4281 set_ic = false;
4282 else if (tx_packets > priv->tx_coal_frames[queue])
4283 set_ic = true;
4284 else if ((tx_q->tx_count_frames %
4285 priv->tx_coal_frames[queue]) < tx_packets)
4286 set_ic = true;
4287 else
4288 set_ic = false;
4289
4290 if (set_ic) {
4291 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4292 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4293 else
4294 desc = &tx_q->dma_tx[tx_q->cur_tx];
4295
4296 tx_q->tx_count_frames = 0;
4297 stmmac_set_tx_ic(priv, desc);
4298 }
4299
4300 /* We've used all descriptors we need for this skb, however,
4301 * advance cur_tx so that it references a fresh descriptor.
4302 * ndo_start_xmit will fill this descriptor the next time it's
4303 * called and stmmac_tx_clean may clean up to this descriptor.
4304 */
4305 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4306
4307 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4308 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4309 __func__);
4310 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4311 }
4312
4313 flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4314 txq_stats->tx_bytes += skb->len;
4315 txq_stats->tx_tso_frames++;
4316 txq_stats->tx_tso_nfrags += nfrags;
4317 if (set_ic)
4318 txq_stats->tx_set_ic_bit++;
4319 u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4320
4321 if (priv->sarc_type)
4322 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4323
4324 skb_tx_timestamp(skb);
4325
4326 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4327 priv->hwts_tx_en)) {
4328 /* declare that device is doing timestamping */
4329 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4330 stmmac_enable_tx_timestamp(priv, first);
4331 }
4332
4333 /* Complete the first descriptor before granting the DMA */
4334 stmmac_prepare_tso_tx_desc(priv, first, 1,
4335 proto_hdr_len,
4336 pay_len,
4337 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4338 hdr / 4, (skb->len - proto_hdr_len));
4339
4340 /* If context desc is used to change MSS */
4341 if (mss_desc) {
4342 /* Make sure that first descriptor has been completely
4343 * written, including its own bit. This is because MSS is
4344 * actually before first descriptor, so we need to make
4345 * sure that MSS's own bit is the last thing written.
4346 */
4347 dma_wmb();
4348 stmmac_set_tx_owner(priv, mss_desc);
4349 }
4350
4351 if (netif_msg_pktdata(priv)) {
4352 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4353 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4354 tx_q->cur_tx, first, nfrags);
4355 pr_info(">>> frame to be transmitted: ");
4356 print_pkt(skb->data, skb_headlen(skb));
4357 }
4358
4359 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4360
4361 stmmac_flush_tx_descriptors(priv, queue);
4362 stmmac_tx_timer_arm(priv, queue);
4363
4364 return NETDEV_TX_OK;
4365
4366 dma_map_err:
4367 dev_err(priv->device, "Tx dma map failed\n");
4368 dev_kfree_skb(skb);
4369 priv->xstats.tx_dropped++;
4370 return NETDEV_TX_OK;
4371 }
4372
4373 /**
4374 * stmmac_xmit - Tx entry point of the driver
4375 * @skb : the socket buffer
4376 * @dev : device pointer
4377 * Description : this is the tx entry point of the driver.
4378 * It programs the chain or the ring and supports oversized frames
4379 * and SG feature.
4380 */
4381 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4382 {
4383 unsigned int first_entry, tx_packets, enh_desc;
4384 struct stmmac_priv *priv = netdev_priv(dev);
4385 unsigned int nopaged_len = skb_headlen(skb);
4386 int i, csum_insertion = 0, is_jumbo = 0;
4387 u32 queue = skb_get_queue_mapping(skb);
4388 int nfrags = skb_shinfo(skb)->nr_frags;
4389 int gso = skb_shinfo(skb)->gso_type;
4390 struct stmmac_txq_stats *txq_stats;
4391 struct dma_edesc *tbs_desc = NULL;
4392 struct dma_desc *desc, *first;
4393 struct stmmac_tx_queue *tx_q;
4394 bool has_vlan, set_ic;
4395 int entry, first_tx;
4396 unsigned long flags;
4397 dma_addr_t des;
4398
4399 tx_q = &priv->dma_conf.tx_queue[queue];
4400 txq_stats = &priv->xstats.txq_stats[queue];
4401 first_tx = tx_q->cur_tx;
4402
4403 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4404 stmmac_disable_eee_mode(priv);
4405
4406 /* Manage oversized TCP frames for GMAC4 device */
4407 if (skb_is_gso(skb) && priv->tso) {
4408 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4409 return stmmac_tso_xmit(skb, dev);
4410 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4411 return stmmac_tso_xmit(skb, dev);
4412 }
4413
4414 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4415 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4416 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4417 queue));
4418 /* This is a hard error, log it. */
4419 netdev_err(priv->dev,
4420 "%s: Tx Ring full when queue awake\n",
4421 __func__);
4422 }
4423 return NETDEV_TX_BUSY;
4424 }
4425
4426 /* Check if VLAN can be inserted by HW */
4427 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4428
4429 entry = tx_q->cur_tx;
4430 first_entry = entry;
4431 WARN_ON(tx_q->tx_skbuff[first_entry]);
4432
4433 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4434 /* DWMAC IPs can be synthesized to support tx coe only for a few tx
4435 * queues. In that case, checksum offloading for those queues that don't
4436 * support tx coe needs to fallback to software checksum calculation.
4437 */
4438 if (csum_insertion &&
4439 priv->plat->tx_queues_cfg[queue].coe_unsupported) {
4440 if (unlikely(skb_checksum_help(skb)))
4441 goto dma_map_err;
4442 csum_insertion = !csum_insertion;
4443 }
4444
4445 if (likely(priv->extend_desc))
4446 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4447 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4448 desc = &tx_q->dma_entx[entry].basic;
4449 else
4450 desc = tx_q->dma_tx + entry;
4451
4452 first = desc;
4453
4454 if (has_vlan)
4455 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4456
4457 enh_desc = priv->plat->enh_desc;
4458 /* To program the descriptors according to the size of the frame */
4459 if (enh_desc)
4460 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4461
4462 if (unlikely(is_jumbo)) {
4463 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4464 if (unlikely(entry < 0) && (entry != -EINVAL))
4465 goto dma_map_err;
4466 }
4467
4468 for (i = 0; i < nfrags; i++) {
4469 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4470 int len = skb_frag_size(frag);
4471 bool last_segment = (i == (nfrags - 1));
4472
4473 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4474 WARN_ON(tx_q->tx_skbuff[entry]);
4475
4476 if (likely(priv->extend_desc))
4477 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4478 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4479 desc = &tx_q->dma_entx[entry].basic;
4480 else
4481 desc = tx_q->dma_tx + entry;
4482
4483 des = skb_frag_dma_map(priv->device, frag, 0, len,
4484 DMA_TO_DEVICE);
4485 if (dma_mapping_error(priv->device, des))
4486 goto dma_map_err; /* should reuse desc w/o issues */
4487
4488 tx_q->tx_skbuff_dma[entry].buf = des;
4489
4490 stmmac_set_desc_addr(priv, desc, des);
4491
4492 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4493 tx_q->tx_skbuff_dma[entry].len = len;
4494 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4495 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4496
4497 /* Prepare the descriptor and set the own bit too */
4498 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4499 priv->mode, 1, last_segment, skb->len);
4500 }
4501
4502 /* Only the last descriptor gets to point to the skb. */
4503 tx_q->tx_skbuff[entry] = skb;
4504 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4505
4506 /* According to the coalesce parameter the IC bit for the latest
4507 * segment is reset and the timer re-started to clean the tx status.
4508 * This approach takes care about the fragments: desc is the first
4509 * element in case of no SG.
4510 */
4511 tx_packets = (entry + 1) - first_tx;
4512 tx_q->tx_count_frames += tx_packets;
4513
4514 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4515 set_ic = true;
4516 else if (!priv->tx_coal_frames[queue])
4517 set_ic = false;
4518 else if (tx_packets > priv->tx_coal_frames[queue])
4519 set_ic = true;
4520 else if ((tx_q->tx_count_frames %
4521 priv->tx_coal_frames[queue]) < tx_packets)
4522 set_ic = true;
4523 else
4524 set_ic = false;
4525
4526 if (set_ic) {
4527 if (likely(priv->extend_desc))
4528 desc = &tx_q->dma_etx[entry].basic;
4529 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4530 desc = &tx_q->dma_entx[entry].basic;
4531 else
4532 desc = &tx_q->dma_tx[entry];
4533
4534 tx_q->tx_count_frames = 0;
4535 stmmac_set_tx_ic(priv, desc);
4536 }
4537
4538 /* We've used all descriptors we need for this skb, however,
4539 * advance cur_tx so that it references a fresh descriptor.
4540 * ndo_start_xmit will fill this descriptor the next time it's
4541 * called and stmmac_tx_clean may clean up to this descriptor.
4542 */
4543 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4544 tx_q->cur_tx = entry;
4545
4546 if (netif_msg_pktdata(priv)) {
4547 netdev_dbg(priv->dev,
4548 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4549 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4550 entry, first, nfrags);
4551
4552 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4553 print_pkt(skb->data, skb->len);
4554 }
4555
4556 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4557 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4558 __func__);
4559 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4560 }
4561
4562 flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4563 txq_stats->tx_bytes += skb->len;
4564 if (set_ic)
4565 txq_stats->tx_set_ic_bit++;
4566 u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4567
4568 if (priv->sarc_type)
4569 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4570
4571 skb_tx_timestamp(skb);
4572
4573 /* Ready to fill the first descriptor and set the OWN bit w/o any
4574 * problems because all the descriptors are actually ready to be
4575 * passed to the DMA engine.
4576 */
4577 if (likely(!is_jumbo)) {
4578 bool last_segment = (nfrags == 0);
4579
4580 des = dma_map_single(priv->device, skb->data,
4581 nopaged_len, DMA_TO_DEVICE);
4582 if (dma_mapping_error(priv->device, des))
4583 goto dma_map_err;
4584
4585 tx_q->tx_skbuff_dma[first_entry].buf = des;
4586 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4587 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4588
4589 stmmac_set_desc_addr(priv, first, des);
4590
4591 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4592 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4593
4594 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4595 priv->hwts_tx_en)) {
4596 /* declare that device is doing timestamping */
4597 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4598 stmmac_enable_tx_timestamp(priv, first);
4599 }
4600
4601 /* Prepare the first descriptor setting the OWN bit too */
4602 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4603 csum_insertion, priv->mode, 0, last_segment,
4604 skb->len);
4605 }
4606
4607 if (tx_q->tbs & STMMAC_TBS_EN) {
4608 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4609
4610 tbs_desc = &tx_q->dma_entx[first_entry];
4611 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4612 }
4613
4614 stmmac_set_tx_owner(priv, first);
4615
4616 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4617
4618 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4619
4620 stmmac_flush_tx_descriptors(priv, queue);
4621 stmmac_tx_timer_arm(priv, queue);
4622
4623 return NETDEV_TX_OK;
4624
4625 dma_map_err:
4626 netdev_err(priv->dev, "Tx DMA map failed\n");
4627 dev_kfree_skb(skb);
4628 priv->xstats.tx_dropped++;
4629 return NETDEV_TX_OK;
4630 }
4631
4632 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4633 {
4634 struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
4635 __be16 vlan_proto = veth->h_vlan_proto;
4636 u16 vlanid;
4637
4638 if ((vlan_proto == htons(ETH_P_8021Q) &&
4639 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4640 (vlan_proto == htons(ETH_P_8021AD) &&
4641 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4642 /* pop the vlan tag */
4643 vlanid = ntohs(veth->h_vlan_TCI);
4644 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4645 skb_pull(skb, VLAN_HLEN);
4646 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4647 }
4648 }
4649
4650 /**
4651 * stmmac_rx_refill - refill used skb preallocated buffers
4652 * @priv: driver private structure
4653 * @queue: RX queue index
4654 * Description : this is to reallocate the skb for the reception process
4655 * that is based on zero-copy.
4656 */
4657 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4658 {
4659 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4660 int dirty = stmmac_rx_dirty(priv, queue);
4661 unsigned int entry = rx_q->dirty_rx;
4662 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4663
4664 if (priv->dma_cap.host_dma_width <= 32)
4665 gfp |= GFP_DMA32;
4666
4667 while (dirty-- > 0) {
4668 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4669 struct dma_desc *p;
4670 bool use_rx_wd;
4671
4672 if (priv->extend_desc)
4673 p = (struct dma_desc *)(rx_q->dma_erx + entry);
4674 else
4675 p = rx_q->dma_rx + entry;
4676
4677 if (!buf->page) {
4678 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4679 if (!buf->page)
4680 break;
4681 }
4682
4683 if (priv->sph && !buf->sec_page) {
4684 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4685 if (!buf->sec_page)
4686 break;
4687
4688 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4689 }
4690
4691 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4692
4693 stmmac_set_desc_addr(priv, p, buf->addr);
4694 if (priv->sph)
4695 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4696 else
4697 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4698 stmmac_refill_desc3(priv, rx_q, p);
4699
4700 rx_q->rx_count_frames++;
4701 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4702 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4703 rx_q->rx_count_frames = 0;
4704
4705 use_rx_wd = !priv->rx_coal_frames[queue];
4706 use_rx_wd |= rx_q->rx_count_frames > 0;
4707 if (!priv->use_riwt)
4708 use_rx_wd = false;
4709
4710 dma_wmb();
4711 stmmac_set_rx_owner(priv, p, use_rx_wd);
4712
4713 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4714 }
4715 rx_q->dirty_rx = entry;
4716 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4717 (rx_q->dirty_rx * sizeof(struct dma_desc));
4718 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4719 }
4720
4721 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4722 struct dma_desc *p,
4723 int status, unsigned int len)
4724 {
4725 unsigned int plen = 0, hlen = 0;
4726 int coe = priv->hw->rx_csum;
4727
4728 /* Not first descriptor, buffer is always zero */
4729 if (priv->sph && len)
4730 return 0;
4731
4732 /* First descriptor, get split header length */
4733 stmmac_get_rx_header_len(priv, p, &hlen);
4734 if (priv->sph && hlen) {
4735 priv->xstats.rx_split_hdr_pkt_n++;
4736 return hlen;
4737 }
4738
4739 /* First descriptor, not last descriptor and not split header */
4740 if (status & rx_not_ls)
4741 return priv->dma_conf.dma_buf_sz;
4742
4743 plen = stmmac_get_rx_frame_len(priv, p, coe);
4744
4745 /* First descriptor and last descriptor and not split header */
4746 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4747 }
4748
4749 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4750 struct dma_desc *p,
4751 int status, unsigned int len)
4752 {
4753 int coe = priv->hw->rx_csum;
4754 unsigned int plen = 0;
4755
4756 /* Not split header, buffer is not available */
4757 if (!priv->sph)
4758 return 0;
4759
4760 /* Not last descriptor */
4761 if (status & rx_not_ls)
4762 return priv->dma_conf.dma_buf_sz;
4763
4764 plen = stmmac_get_rx_frame_len(priv, p, coe);
4765
4766 /* Last descriptor */
4767 return plen - len;
4768 }
4769
4770 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4771 struct xdp_frame *xdpf, bool dma_map)
4772 {
4773 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
4774 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4775 unsigned int entry = tx_q->cur_tx;
4776 struct dma_desc *tx_desc;
4777 dma_addr_t dma_addr;
4778 bool set_ic;
4779
4780 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4781 return STMMAC_XDP_CONSUMED;
4782
4783 if (likely(priv->extend_desc))
4784 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4785 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4786 tx_desc = &tx_q->dma_entx[entry].basic;
4787 else
4788 tx_desc = tx_q->dma_tx + entry;
4789
4790 if (dma_map) {
4791 dma_addr = dma_map_single(priv->device, xdpf->data,
4792 xdpf->len, DMA_TO_DEVICE);
4793 if (dma_mapping_error(priv->device, dma_addr))
4794 return STMMAC_XDP_CONSUMED;
4795
4796 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4797 } else {
4798 struct page *page = virt_to_page(xdpf->data);
4799
4800 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4801 xdpf->headroom;
4802 dma_sync_single_for_device(priv->device, dma_addr,
4803 xdpf->len, DMA_BIDIRECTIONAL);
4804
4805 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4806 }
4807
4808 tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4809 tx_q->tx_skbuff_dma[entry].map_as_page = false;
4810 tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4811 tx_q->tx_skbuff_dma[entry].last_segment = true;
4812 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4813
4814 tx_q->xdpf[entry] = xdpf;
4815
4816 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4817
4818 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4819 true, priv->mode, true, true,
4820 xdpf->len);
4821
4822 tx_q->tx_count_frames++;
4823
4824 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4825 set_ic = true;
4826 else
4827 set_ic = false;
4828
4829 if (set_ic) {
4830 unsigned long flags;
4831 tx_q->tx_count_frames = 0;
4832 stmmac_set_tx_ic(priv, tx_desc);
4833 flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4834 txq_stats->tx_set_ic_bit++;
4835 u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4836 }
4837
4838 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4839
4840 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4841 tx_q->cur_tx = entry;
4842
4843 return STMMAC_XDP_TX;
4844 }
4845
4846 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4847 int cpu)
4848 {
4849 int index = cpu;
4850
4851 if (unlikely(index < 0))
4852 index = 0;
4853
4854 while (index >= priv->plat->tx_queues_to_use)
4855 index -= priv->plat->tx_queues_to_use;
4856
4857 return index;
4858 }
4859
4860 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4861 struct xdp_buff *xdp)
4862 {
4863 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4864 int cpu = smp_processor_id();
4865 struct netdev_queue *nq;
4866 int queue;
4867 int res;
4868
4869 if (unlikely(!xdpf))
4870 return STMMAC_XDP_CONSUMED;
4871
4872 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4873 nq = netdev_get_tx_queue(priv->dev, queue);
4874
4875 __netif_tx_lock(nq, cpu);
4876 /* Avoids TX time-out as we are sharing with slow path */
4877 txq_trans_cond_update(nq);
4878
4879 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4880 if (res == STMMAC_XDP_TX)
4881 stmmac_flush_tx_descriptors(priv, queue);
4882
4883 __netif_tx_unlock(nq);
4884
4885 return res;
4886 }
4887
4888 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4889 struct bpf_prog *prog,
4890 struct xdp_buff *xdp)
4891 {
4892 u32 act;
4893 int res;
4894
4895 act = bpf_prog_run_xdp(prog, xdp);
4896 switch (act) {
4897 case XDP_PASS:
4898 res = STMMAC_XDP_PASS;
4899 break;
4900 case XDP_TX:
4901 res = stmmac_xdp_xmit_back(priv, xdp);
4902 break;
4903 case XDP_REDIRECT:
4904 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4905 res = STMMAC_XDP_CONSUMED;
4906 else
4907 res = STMMAC_XDP_REDIRECT;
4908 break;
4909 default:
4910 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4911 fallthrough;
4912 case XDP_ABORTED:
4913 trace_xdp_exception(priv->dev, prog, act);
4914 fallthrough;
4915 case XDP_DROP:
4916 res = STMMAC_XDP_CONSUMED;
4917 break;
4918 }
4919
4920 return res;
4921 }
4922
4923 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4924 struct xdp_buff *xdp)
4925 {
4926 struct bpf_prog *prog;
4927 int res;
4928
4929 prog = READ_ONCE(priv->xdp_prog);
4930 if (!prog) {
4931 res = STMMAC_XDP_PASS;
4932 goto out;
4933 }
4934
4935 res = __stmmac_xdp_run_prog(priv, prog, xdp);
4936 out:
4937 return ERR_PTR(-res);
4938 }
4939
4940 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4941 int xdp_status)
4942 {
4943 int cpu = smp_processor_id();
4944 int queue;
4945
4946 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4947
4948 if (xdp_status & STMMAC_XDP_TX)
4949 stmmac_tx_timer_arm(priv, queue);
4950
4951 if (xdp_status & STMMAC_XDP_REDIRECT)
4952 xdp_do_flush();
4953 }
4954
4955 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4956 struct xdp_buff *xdp)
4957 {
4958 unsigned int metasize = xdp->data - xdp->data_meta;
4959 unsigned int datasize = xdp->data_end - xdp->data;
4960 struct sk_buff *skb;
4961
4962 skb = __napi_alloc_skb(&ch->rxtx_napi,
4963 xdp->data_end - xdp->data_hard_start,
4964 GFP_ATOMIC | __GFP_NOWARN);
4965 if (unlikely(!skb))
4966 return NULL;
4967
4968 skb_reserve(skb, xdp->data - xdp->data_hard_start);
4969 memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4970 if (metasize)
4971 skb_metadata_set(skb, metasize);
4972
4973 return skb;
4974 }
4975
4976 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4977 struct dma_desc *p, struct dma_desc *np,
4978 struct xdp_buff *xdp)
4979 {
4980 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
4981 struct stmmac_channel *ch = &priv->channel[queue];
4982 unsigned int len = xdp->data_end - xdp->data;
4983 enum pkt_hash_types hash_type;
4984 int coe = priv->hw->rx_csum;
4985 unsigned long flags;
4986 struct sk_buff *skb;
4987 u32 hash;
4988
4989 skb = stmmac_construct_skb_zc(ch, xdp);
4990 if (!skb) {
4991 priv->xstats.rx_dropped++;
4992 return;
4993 }
4994
4995 stmmac_get_rx_hwtstamp(priv, p, np, skb);
4996 stmmac_rx_vlan(priv->dev, skb);
4997 skb->protocol = eth_type_trans(skb, priv->dev);
4998
4999 if (unlikely(!coe))
5000 skb_checksum_none_assert(skb);
5001 else
5002 skb->ip_summed = CHECKSUM_UNNECESSARY;
5003
5004 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5005 skb_set_hash(skb, hash, hash_type);
5006
5007 skb_record_rx_queue(skb, queue);
5008 napi_gro_receive(&ch->rxtx_napi, skb);
5009
5010 flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5011 rxq_stats->rx_pkt_n++;
5012 rxq_stats->rx_bytes += len;
5013 u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5014 }
5015
5016 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
5017 {
5018 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5019 unsigned int entry = rx_q->dirty_rx;
5020 struct dma_desc *rx_desc = NULL;
5021 bool ret = true;
5022
5023 budget = min(budget, stmmac_rx_dirty(priv, queue));
5024
5025 while (budget-- > 0 && entry != rx_q->cur_rx) {
5026 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
5027 dma_addr_t dma_addr;
5028 bool use_rx_wd;
5029
5030 if (!buf->xdp) {
5031 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
5032 if (!buf->xdp) {
5033 ret = false;
5034 break;
5035 }
5036 }
5037
5038 if (priv->extend_desc)
5039 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
5040 else
5041 rx_desc = rx_q->dma_rx + entry;
5042
5043 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
5044 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
5045 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
5046 stmmac_refill_desc3(priv, rx_q, rx_desc);
5047
5048 rx_q->rx_count_frames++;
5049 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
5050 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
5051 rx_q->rx_count_frames = 0;
5052
5053 use_rx_wd = !priv->rx_coal_frames[queue];
5054 use_rx_wd |= rx_q->rx_count_frames > 0;
5055 if (!priv->use_riwt)
5056 use_rx_wd = false;
5057
5058 dma_wmb();
5059 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
5060
5061 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
5062 }
5063
5064 if (rx_desc) {
5065 rx_q->dirty_rx = entry;
5066 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
5067 (rx_q->dirty_rx * sizeof(struct dma_desc));
5068 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
5069 }
5070
5071 return ret;
5072 }
5073
5074 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp)
5075 {
5076 /* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used
5077 * to represent incoming packet, whereas cb field in the same structure
5078 * is used to store driver specific info. Thus, struct stmmac_xdp_buff
5079 * is laid on top of xdp and cb fields of struct xdp_buff_xsk.
5080 */
5081 return (struct stmmac_xdp_buff *)xdp;
5082 }
5083
5084 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
5085 {
5086 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5087 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5088 unsigned int count = 0, error = 0, len = 0;
5089 int dirty = stmmac_rx_dirty(priv, queue);
5090 unsigned int next_entry = rx_q->cur_rx;
5091 u32 rx_errors = 0, rx_dropped = 0;
5092 unsigned int desc_size;
5093 struct bpf_prog *prog;
5094 bool failure = false;
5095 unsigned long flags;
5096 int xdp_status = 0;
5097 int status = 0;
5098
5099 if (netif_msg_rx_status(priv)) {
5100 void *rx_head;
5101
5102 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5103 if (priv->extend_desc) {
5104 rx_head = (void *)rx_q->dma_erx;
5105 desc_size = sizeof(struct dma_extended_desc);
5106 } else {
5107 rx_head = (void *)rx_q->dma_rx;
5108 desc_size = sizeof(struct dma_desc);
5109 }
5110
5111 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5112 rx_q->dma_rx_phy, desc_size);
5113 }
5114 while (count < limit) {
5115 struct stmmac_rx_buffer *buf;
5116 struct stmmac_xdp_buff *ctx;
5117 unsigned int buf1_len = 0;
5118 struct dma_desc *np, *p;
5119 int entry;
5120 int res;
5121
5122 if (!count && rx_q->state_saved) {
5123 error = rx_q->state.error;
5124 len = rx_q->state.len;
5125 } else {
5126 rx_q->state_saved = false;
5127 error = 0;
5128 len = 0;
5129 }
5130
5131 if (count >= limit)
5132 break;
5133
5134 read_again:
5135 buf1_len = 0;
5136 entry = next_entry;
5137 buf = &rx_q->buf_pool[entry];
5138
5139 if (dirty >= STMMAC_RX_FILL_BATCH) {
5140 failure = failure ||
5141 !stmmac_rx_refill_zc(priv, queue, dirty);
5142 dirty = 0;
5143 }
5144
5145 if (priv->extend_desc)
5146 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5147 else
5148 p = rx_q->dma_rx + entry;
5149
5150 /* read the status of the incoming frame */
5151 status = stmmac_rx_status(priv, &priv->xstats, p);
5152 /* check if managed by the DMA otherwise go ahead */
5153 if (unlikely(status & dma_own))
5154 break;
5155
5156 /* Prefetch the next RX descriptor */
5157 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5158 priv->dma_conf.dma_rx_size);
5159 next_entry = rx_q->cur_rx;
5160
5161 if (priv->extend_desc)
5162 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5163 else
5164 np = rx_q->dma_rx + next_entry;
5165
5166 prefetch(np);
5167
5168 /* Ensure a valid XSK buffer before proceed */
5169 if (!buf->xdp)
5170 break;
5171
5172 if (priv->extend_desc)
5173 stmmac_rx_extended_status(priv, &priv->xstats,
5174 rx_q->dma_erx + entry);
5175 if (unlikely(status == discard_frame)) {
5176 xsk_buff_free(buf->xdp);
5177 buf->xdp = NULL;
5178 dirty++;
5179 error = 1;
5180 if (!priv->hwts_rx_en)
5181 rx_errors++;
5182 }
5183
5184 if (unlikely(error && (status & rx_not_ls)))
5185 goto read_again;
5186 if (unlikely(error)) {
5187 count++;
5188 continue;
5189 }
5190
5191 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5192 if (likely(status & rx_not_ls)) {
5193 xsk_buff_free(buf->xdp);
5194 buf->xdp = NULL;
5195 dirty++;
5196 count++;
5197 goto read_again;
5198 }
5199
5200 ctx = xsk_buff_to_stmmac_ctx(buf->xdp);
5201 ctx->priv = priv;
5202 ctx->desc = p;
5203 ctx->ndesc = np;
5204
5205 /* XDP ZC Frame only support primary buffers for now */
5206 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5207 len += buf1_len;
5208
5209 /* ACS is disabled; strip manually. */
5210 if (likely(!(status & rx_not_ls))) {
5211 buf1_len -= ETH_FCS_LEN;
5212 len -= ETH_FCS_LEN;
5213 }
5214
5215 /* RX buffer is good and fit into a XSK pool buffer */
5216 buf->xdp->data_end = buf->xdp->data + buf1_len;
5217 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5218
5219 prog = READ_ONCE(priv->xdp_prog);
5220 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5221
5222 switch (res) {
5223 case STMMAC_XDP_PASS:
5224 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5225 xsk_buff_free(buf->xdp);
5226 break;
5227 case STMMAC_XDP_CONSUMED:
5228 xsk_buff_free(buf->xdp);
5229 rx_dropped++;
5230 break;
5231 case STMMAC_XDP_TX:
5232 case STMMAC_XDP_REDIRECT:
5233 xdp_status |= res;
5234 break;
5235 }
5236
5237 buf->xdp = NULL;
5238 dirty++;
5239 count++;
5240 }
5241
5242 if (status & rx_not_ls) {
5243 rx_q->state_saved = true;
5244 rx_q->state.error = error;
5245 rx_q->state.len = len;
5246 }
5247
5248 stmmac_finalize_xdp_rx(priv, xdp_status);
5249
5250 flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5251 rxq_stats->rx_pkt_n += count;
5252 u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5253
5254 priv->xstats.rx_dropped += rx_dropped;
5255 priv->xstats.rx_errors += rx_errors;
5256
5257 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5258 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5259 xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5260 else
5261 xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5262
5263 return (int)count;
5264 }
5265
5266 return failure ? limit : (int)count;
5267 }
5268
5269 /**
5270 * stmmac_rx - manage the receive process
5271 * @priv: driver private structure
5272 * @limit: napi bugget
5273 * @queue: RX queue index.
5274 * Description : this the function called by the napi poll method.
5275 * It gets all the frames inside the ring.
5276 */
5277 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5278 {
5279 u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0;
5280 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5281 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5282 struct stmmac_channel *ch = &priv->channel[queue];
5283 unsigned int count = 0, error = 0, len = 0;
5284 int status = 0, coe = priv->hw->rx_csum;
5285 unsigned int next_entry = rx_q->cur_rx;
5286 enum dma_data_direction dma_dir;
5287 unsigned int desc_size;
5288 struct sk_buff *skb = NULL;
5289 struct stmmac_xdp_buff ctx;
5290 unsigned long flags;
5291 int xdp_status = 0;
5292 int buf_sz;
5293
5294 dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5295 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5296
5297 if (netif_msg_rx_status(priv)) {
5298 void *rx_head;
5299
5300 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5301 if (priv->extend_desc) {
5302 rx_head = (void *)rx_q->dma_erx;
5303 desc_size = sizeof(struct dma_extended_desc);
5304 } else {
5305 rx_head = (void *)rx_q->dma_rx;
5306 desc_size = sizeof(struct dma_desc);
5307 }
5308
5309 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5310 rx_q->dma_rx_phy, desc_size);
5311 }
5312 while (count < limit) {
5313 unsigned int buf1_len = 0, buf2_len = 0;
5314 enum pkt_hash_types hash_type;
5315 struct stmmac_rx_buffer *buf;
5316 struct dma_desc *np, *p;
5317 int entry;
5318 u32 hash;
5319
5320 if (!count && rx_q->state_saved) {
5321 skb = rx_q->state.skb;
5322 error = rx_q->state.error;
5323 len = rx_q->state.len;
5324 } else {
5325 rx_q->state_saved = false;
5326 skb = NULL;
5327 error = 0;
5328 len = 0;
5329 }
5330
5331 if (count >= limit)
5332 break;
5333
5334 read_again:
5335 buf1_len = 0;
5336 buf2_len = 0;
5337 entry = next_entry;
5338 buf = &rx_q->buf_pool[entry];
5339
5340 if (priv->extend_desc)
5341 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5342 else
5343 p = rx_q->dma_rx + entry;
5344
5345 /* read the status of the incoming frame */
5346 status = stmmac_rx_status(priv, &priv->xstats, p);
5347 /* check if managed by the DMA otherwise go ahead */
5348 if (unlikely(status & dma_own))
5349 break;
5350
5351 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5352 priv->dma_conf.dma_rx_size);
5353 next_entry = rx_q->cur_rx;
5354
5355 if (priv->extend_desc)
5356 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5357 else
5358 np = rx_q->dma_rx + next_entry;
5359
5360 prefetch(np);
5361
5362 if (priv->extend_desc)
5363 stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry);
5364 if (unlikely(status == discard_frame)) {
5365 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5366 buf->page = NULL;
5367 error = 1;
5368 if (!priv->hwts_rx_en)
5369 rx_errors++;
5370 }
5371
5372 if (unlikely(error && (status & rx_not_ls)))
5373 goto read_again;
5374 if (unlikely(error)) {
5375 dev_kfree_skb(skb);
5376 skb = NULL;
5377 count++;
5378 continue;
5379 }
5380
5381 /* Buffer is good. Go on. */
5382
5383 prefetch(page_address(buf->page) + buf->page_offset);
5384 if (buf->sec_page)
5385 prefetch(page_address(buf->sec_page));
5386
5387 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5388 len += buf1_len;
5389 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5390 len += buf2_len;
5391
5392 /* ACS is disabled; strip manually. */
5393 if (likely(!(status & rx_not_ls))) {
5394 if (buf2_len) {
5395 buf2_len -= ETH_FCS_LEN;
5396 len -= ETH_FCS_LEN;
5397 } else if (buf1_len) {
5398 buf1_len -= ETH_FCS_LEN;
5399 len -= ETH_FCS_LEN;
5400 }
5401 }
5402
5403 if (!skb) {
5404 unsigned int pre_len, sync_len;
5405
5406 dma_sync_single_for_cpu(priv->device, buf->addr,
5407 buf1_len, dma_dir);
5408
5409 xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq);
5410 xdp_prepare_buff(&ctx.xdp, page_address(buf->page),
5411 buf->page_offset, buf1_len, true);
5412
5413 pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5414 buf->page_offset;
5415
5416 ctx.priv = priv;
5417 ctx.desc = p;
5418 ctx.ndesc = np;
5419
5420 skb = stmmac_xdp_run_prog(priv, &ctx.xdp);
5421 /* Due xdp_adjust_tail: DMA sync for_device
5422 * cover max len CPU touch
5423 */
5424 sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5425 buf->page_offset;
5426 sync_len = max(sync_len, pre_len);
5427
5428 /* For Not XDP_PASS verdict */
5429 if (IS_ERR(skb)) {
5430 unsigned int xdp_res = -PTR_ERR(skb);
5431
5432 if (xdp_res & STMMAC_XDP_CONSUMED) {
5433 page_pool_put_page(rx_q->page_pool,
5434 virt_to_head_page(ctx.xdp.data),
5435 sync_len, true);
5436 buf->page = NULL;
5437 rx_dropped++;
5438
5439 /* Clear skb as it was set as
5440 * status by XDP program.
5441 */
5442 skb = NULL;
5443
5444 if (unlikely((status & rx_not_ls)))
5445 goto read_again;
5446
5447 count++;
5448 continue;
5449 } else if (xdp_res & (STMMAC_XDP_TX |
5450 STMMAC_XDP_REDIRECT)) {
5451 xdp_status |= xdp_res;
5452 buf->page = NULL;
5453 skb = NULL;
5454 count++;
5455 continue;
5456 }
5457 }
5458 }
5459
5460 if (!skb) {
5461 /* XDP program may expand or reduce tail */
5462 buf1_len = ctx.xdp.data_end - ctx.xdp.data;
5463
5464 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5465 if (!skb) {
5466 rx_dropped++;
5467 count++;
5468 goto drain_data;
5469 }
5470
5471 /* XDP program may adjust header */
5472 skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len);
5473 skb_put(skb, buf1_len);
5474
5475 /* Data payload copied into SKB, page ready for recycle */
5476 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5477 buf->page = NULL;
5478 } else if (buf1_len) {
5479 dma_sync_single_for_cpu(priv->device, buf->addr,
5480 buf1_len, dma_dir);
5481 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5482 buf->page, buf->page_offset, buf1_len,
5483 priv->dma_conf.dma_buf_sz);
5484
5485 /* Data payload appended into SKB */
5486 skb_mark_for_recycle(skb);
5487 buf->page = NULL;
5488 }
5489
5490 if (buf2_len) {
5491 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5492 buf2_len, dma_dir);
5493 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5494 buf->sec_page, 0, buf2_len,
5495 priv->dma_conf.dma_buf_sz);
5496
5497 /* Data payload appended into SKB */
5498 skb_mark_for_recycle(skb);
5499 buf->sec_page = NULL;
5500 }
5501
5502 drain_data:
5503 if (likely(status & rx_not_ls))
5504 goto read_again;
5505 if (!skb)
5506 continue;
5507
5508 /* Got entire packet into SKB. Finish it. */
5509
5510 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5511 stmmac_rx_vlan(priv->dev, skb);
5512 skb->protocol = eth_type_trans(skb, priv->dev);
5513
5514 if (unlikely(!coe))
5515 skb_checksum_none_assert(skb);
5516 else
5517 skb->ip_summed = CHECKSUM_UNNECESSARY;
5518
5519 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5520 skb_set_hash(skb, hash, hash_type);
5521
5522 skb_record_rx_queue(skb, queue);
5523 napi_gro_receive(&ch->rx_napi, skb);
5524 skb = NULL;
5525
5526 rx_packets++;
5527 rx_bytes += len;
5528 count++;
5529 }
5530
5531 if (status & rx_not_ls || skb) {
5532 rx_q->state_saved = true;
5533 rx_q->state.skb = skb;
5534 rx_q->state.error = error;
5535 rx_q->state.len = len;
5536 }
5537
5538 stmmac_finalize_xdp_rx(priv, xdp_status);
5539
5540 stmmac_rx_refill(priv, queue);
5541
5542 flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5543 rxq_stats->rx_packets += rx_packets;
5544 rxq_stats->rx_bytes += rx_bytes;
5545 rxq_stats->rx_pkt_n += count;
5546 u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5547
5548 priv->xstats.rx_dropped += rx_dropped;
5549 priv->xstats.rx_errors += rx_errors;
5550
5551 return count;
5552 }
5553
5554 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5555 {
5556 struct stmmac_channel *ch =
5557 container_of(napi, struct stmmac_channel, rx_napi);
5558 struct stmmac_priv *priv = ch->priv_data;
5559 struct stmmac_rxq_stats *rxq_stats;
5560 u32 chan = ch->index;
5561 unsigned long flags;
5562 int work_done;
5563
5564 rxq_stats = &priv->xstats.rxq_stats[chan];
5565 flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5566 rxq_stats->napi_poll++;
5567 u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5568
5569 work_done = stmmac_rx(priv, budget, chan);
5570 if (work_done < budget && napi_complete_done(napi, work_done)) {
5571 unsigned long flags;
5572
5573 spin_lock_irqsave(&ch->lock, flags);
5574 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5575 spin_unlock_irqrestore(&ch->lock, flags);
5576 }
5577
5578 return work_done;
5579 }
5580
5581 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5582 {
5583 struct stmmac_channel *ch =
5584 container_of(napi, struct stmmac_channel, tx_napi);
5585 struct stmmac_priv *priv = ch->priv_data;
5586 struct stmmac_txq_stats *txq_stats;
5587 bool pending_packets = false;
5588 u32 chan = ch->index;
5589 unsigned long flags;
5590 int work_done;
5591
5592 txq_stats = &priv->xstats.txq_stats[chan];
5593 flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
5594 txq_stats->napi_poll++;
5595 u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
5596
5597 work_done = stmmac_tx_clean(priv, budget, chan, &pending_packets);
5598 work_done = min(work_done, budget);
5599
5600 if (work_done < budget && napi_complete_done(napi, work_done)) {
5601 unsigned long flags;
5602
5603 spin_lock_irqsave(&ch->lock, flags);
5604 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5605 spin_unlock_irqrestore(&ch->lock, flags);
5606 }
5607
5608 /* TX still have packet to handle, check if we need to arm tx timer */
5609 if (pending_packets)
5610 stmmac_tx_timer_arm(priv, chan);
5611
5612 return work_done;
5613 }
5614
5615 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5616 {
5617 struct stmmac_channel *ch =
5618 container_of(napi, struct stmmac_channel, rxtx_napi);
5619 struct stmmac_priv *priv = ch->priv_data;
5620 bool tx_pending_packets = false;
5621 int rx_done, tx_done, rxtx_done;
5622 struct stmmac_rxq_stats *rxq_stats;
5623 struct stmmac_txq_stats *txq_stats;
5624 u32 chan = ch->index;
5625 unsigned long flags;
5626
5627 rxq_stats = &priv->xstats.rxq_stats[chan];
5628 flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5629 rxq_stats->napi_poll++;
5630 u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5631
5632 txq_stats = &priv->xstats.txq_stats[chan];
5633 flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
5634 txq_stats->napi_poll++;
5635 u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
5636
5637 tx_done = stmmac_tx_clean(priv, budget, chan, &tx_pending_packets);
5638 tx_done = min(tx_done, budget);
5639
5640 rx_done = stmmac_rx_zc(priv, budget, chan);
5641
5642 rxtx_done = max(tx_done, rx_done);
5643
5644 /* If either TX or RX work is not complete, return budget
5645 * and keep pooling
5646 */
5647 if (rxtx_done >= budget)
5648 return budget;
5649
5650 /* all work done, exit the polling mode */
5651 if (napi_complete_done(napi, rxtx_done)) {
5652 unsigned long flags;
5653
5654 spin_lock_irqsave(&ch->lock, flags);
5655 /* Both RX and TX work done are compelte,
5656 * so enable both RX & TX IRQs.
5657 */
5658 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5659 spin_unlock_irqrestore(&ch->lock, flags);
5660 }
5661
5662 /* TX still have packet to handle, check if we need to arm tx timer */
5663 if (tx_pending_packets)
5664 stmmac_tx_timer_arm(priv, chan);
5665
5666 return min(rxtx_done, budget - 1);
5667 }
5668
5669 /**
5670 * stmmac_tx_timeout
5671 * @dev : Pointer to net device structure
5672 * @txqueue: the index of the hanging transmit queue
5673 * Description: this function is called when a packet transmission fails to
5674 * complete within a reasonable time. The driver will mark the error in the
5675 * netdev structure and arrange for the device to be reset to a sane state
5676 * in order to transmit a new packet.
5677 */
5678 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5679 {
5680 struct stmmac_priv *priv = netdev_priv(dev);
5681
5682 stmmac_global_err(priv);
5683 }
5684
5685 /**
5686 * stmmac_set_rx_mode - entry point for multicast addressing
5687 * @dev : pointer to the device structure
5688 * Description:
5689 * This function is a driver entry point which gets called by the kernel
5690 * whenever multicast addresses must be enabled/disabled.
5691 * Return value:
5692 * void.
5693 */
5694 static void stmmac_set_rx_mode(struct net_device *dev)
5695 {
5696 struct stmmac_priv *priv = netdev_priv(dev);
5697
5698 stmmac_set_filter(priv, priv->hw, dev);
5699 }
5700
5701 /**
5702 * stmmac_change_mtu - entry point to change MTU size for the device.
5703 * @dev : device pointer.
5704 * @new_mtu : the new MTU size for the device.
5705 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
5706 * to drive packet transmission. Ethernet has an MTU of 1500 octets
5707 * (ETH_DATA_LEN). This value can be changed with ifconfig.
5708 * Return value:
5709 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5710 * file on failure.
5711 */
5712 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5713 {
5714 struct stmmac_priv *priv = netdev_priv(dev);
5715 int txfifosz = priv->plat->tx_fifo_size;
5716 struct stmmac_dma_conf *dma_conf;
5717 const int mtu = new_mtu;
5718 int ret;
5719
5720 if (txfifosz == 0)
5721 txfifosz = priv->dma_cap.tx_fifo_size;
5722
5723 txfifosz /= priv->plat->tx_queues_to_use;
5724
5725 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5726 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5727 return -EINVAL;
5728 }
5729
5730 new_mtu = STMMAC_ALIGN(new_mtu);
5731
5732 /* If condition true, FIFO is too small or MTU too large */
5733 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5734 return -EINVAL;
5735
5736 if (netif_running(dev)) {
5737 netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5738 /* Try to allocate the new DMA conf with the new mtu */
5739 dma_conf = stmmac_setup_dma_desc(priv, mtu);
5740 if (IS_ERR(dma_conf)) {
5741 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5742 mtu);
5743 return PTR_ERR(dma_conf);
5744 }
5745
5746 stmmac_release(dev);
5747
5748 ret = __stmmac_open(dev, dma_conf);
5749 if (ret) {
5750 free_dma_desc_resources(priv, dma_conf);
5751 kfree(dma_conf);
5752 netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5753 return ret;
5754 }
5755
5756 kfree(dma_conf);
5757
5758 stmmac_set_rx_mode(dev);
5759 }
5760
5761 dev->mtu = mtu;
5762 netdev_update_features(dev);
5763
5764 return 0;
5765 }
5766
5767 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5768 netdev_features_t features)
5769 {
5770 struct stmmac_priv *priv = netdev_priv(dev);
5771
5772 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5773 features &= ~NETIF_F_RXCSUM;
5774
5775 if (!priv->plat->tx_coe)
5776 features &= ~NETIF_F_CSUM_MASK;
5777
5778 /* Some GMAC devices have a bugged Jumbo frame support that
5779 * needs to have the Tx COE disabled for oversized frames
5780 * (due to limited buffer sizes). In this case we disable
5781 * the TX csum insertion in the TDES and not use SF.
5782 */
5783 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5784 features &= ~NETIF_F_CSUM_MASK;
5785
5786 /* Disable tso if asked by ethtool */
5787 if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
5788 if (features & NETIF_F_TSO)
5789 priv->tso = true;
5790 else
5791 priv->tso = false;
5792 }
5793
5794 return features;
5795 }
5796
5797 static int stmmac_set_features(struct net_device *netdev,
5798 netdev_features_t features)
5799 {
5800 struct stmmac_priv *priv = netdev_priv(netdev);
5801
5802 /* Keep the COE Type in case of csum is supporting */
5803 if (features & NETIF_F_RXCSUM)
5804 priv->hw->rx_csum = priv->plat->rx_coe;
5805 else
5806 priv->hw->rx_csum = 0;
5807 /* No check needed because rx_coe has been set before and it will be
5808 * fixed in case of issue.
5809 */
5810 stmmac_rx_ipc(priv, priv->hw);
5811
5812 if (priv->sph_cap) {
5813 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5814 u32 chan;
5815
5816 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5817 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5818 }
5819
5820 return 0;
5821 }
5822
5823 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5824 {
5825 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5826 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5827 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5828 bool *hs_enable = &fpe_cfg->hs_enable;
5829
5830 if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5831 return;
5832
5833 /* If LP has sent verify mPacket, LP is FPE capable */
5834 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5835 if (*lp_state < FPE_STATE_CAPABLE)
5836 *lp_state = FPE_STATE_CAPABLE;
5837
5838 /* If user has requested FPE enable, quickly response */
5839 if (*hs_enable)
5840 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5841 MPACKET_RESPONSE);
5842 }
5843
5844 /* If Local has sent verify mPacket, Local is FPE capable */
5845 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5846 if (*lo_state < FPE_STATE_CAPABLE)
5847 *lo_state = FPE_STATE_CAPABLE;
5848 }
5849
5850 /* If LP has sent response mPacket, LP is entering FPE ON */
5851 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5852 *lp_state = FPE_STATE_ENTERING_ON;
5853
5854 /* If Local has sent response mPacket, Local is entering FPE ON */
5855 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5856 *lo_state = FPE_STATE_ENTERING_ON;
5857
5858 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5859 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5860 priv->fpe_wq) {
5861 queue_work(priv->fpe_wq, &priv->fpe_task);
5862 }
5863 }
5864
5865 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5866 {
5867 u32 rx_cnt = priv->plat->rx_queues_to_use;
5868 u32 tx_cnt = priv->plat->tx_queues_to_use;
5869 u32 queues_count;
5870 u32 queue;
5871 bool xmac;
5872
5873 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5874 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5875
5876 if (priv->irq_wake)
5877 pm_wakeup_event(priv->device, 0);
5878
5879 if (priv->dma_cap.estsel)
5880 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5881 &priv->xstats, tx_cnt);
5882
5883 if (priv->dma_cap.fpesel) {
5884 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5885 priv->dev);
5886
5887 stmmac_fpe_event_status(priv, status);
5888 }
5889
5890 /* To handle GMAC own interrupts */
5891 if ((priv->plat->has_gmac) || xmac) {
5892 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5893
5894 if (unlikely(status)) {
5895 /* For LPI we need to save the tx status */
5896 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5897 priv->tx_path_in_lpi_mode = true;
5898 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5899 priv->tx_path_in_lpi_mode = false;
5900 }
5901
5902 for (queue = 0; queue < queues_count; queue++) {
5903 status = stmmac_host_mtl_irq_status(priv, priv->hw,
5904 queue);
5905 }
5906
5907 /* PCS link status */
5908 if (priv->hw->pcs &&
5909 !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) {
5910 if (priv->xstats.pcs_link)
5911 netif_carrier_on(priv->dev);
5912 else
5913 netif_carrier_off(priv->dev);
5914 }
5915
5916 stmmac_timestamp_interrupt(priv, priv);
5917 }
5918 }
5919
5920 /**
5921 * stmmac_interrupt - main ISR
5922 * @irq: interrupt number.
5923 * @dev_id: to pass the net device pointer.
5924 * Description: this is the main driver interrupt service routine.
5925 * It can call:
5926 * o DMA service routine (to manage incoming frame reception and transmission
5927 * status)
5928 * o Core interrupts to manage: remote wake-up, management counter, LPI
5929 * interrupts.
5930 */
5931 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5932 {
5933 struct net_device *dev = (struct net_device *)dev_id;
5934 struct stmmac_priv *priv = netdev_priv(dev);
5935
5936 /* Check if adapter is up */
5937 if (test_bit(STMMAC_DOWN, &priv->state))
5938 return IRQ_HANDLED;
5939
5940 /* Check if a fatal error happened */
5941 if (stmmac_safety_feat_interrupt(priv))
5942 return IRQ_HANDLED;
5943
5944 /* To handle Common interrupts */
5945 stmmac_common_interrupt(priv);
5946
5947 /* To handle DMA interrupts */
5948 stmmac_dma_interrupt(priv);
5949
5950 return IRQ_HANDLED;
5951 }
5952
5953 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5954 {
5955 struct net_device *dev = (struct net_device *)dev_id;
5956 struct stmmac_priv *priv = netdev_priv(dev);
5957
5958 if (unlikely(!dev)) {
5959 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5960 return IRQ_NONE;
5961 }
5962
5963 /* Check if adapter is up */
5964 if (test_bit(STMMAC_DOWN, &priv->state))
5965 return IRQ_HANDLED;
5966
5967 /* To handle Common interrupts */
5968 stmmac_common_interrupt(priv);
5969
5970 return IRQ_HANDLED;
5971 }
5972
5973 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5974 {
5975 struct net_device *dev = (struct net_device *)dev_id;
5976 struct stmmac_priv *priv = netdev_priv(dev);
5977
5978 if (unlikely(!dev)) {
5979 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5980 return IRQ_NONE;
5981 }
5982
5983 /* Check if adapter is up */
5984 if (test_bit(STMMAC_DOWN, &priv->state))
5985 return IRQ_HANDLED;
5986
5987 /* Check if a fatal error happened */
5988 stmmac_safety_feat_interrupt(priv);
5989
5990 return IRQ_HANDLED;
5991 }
5992
5993 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5994 {
5995 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5996 struct stmmac_dma_conf *dma_conf;
5997 int chan = tx_q->queue_index;
5998 struct stmmac_priv *priv;
5999 int status;
6000
6001 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
6002 priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
6003
6004 if (unlikely(!data)) {
6005 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
6006 return IRQ_NONE;
6007 }
6008
6009 /* Check if adapter is up */
6010 if (test_bit(STMMAC_DOWN, &priv->state))
6011 return IRQ_HANDLED;
6012
6013 status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
6014
6015 if (unlikely(status & tx_hard_error_bump_tc)) {
6016 /* Try to bump up the dma threshold on this failure */
6017 stmmac_bump_dma_threshold(priv, chan);
6018 } else if (unlikely(status == tx_hard_error)) {
6019 stmmac_tx_err(priv, chan);
6020 }
6021
6022 return IRQ_HANDLED;
6023 }
6024
6025 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
6026 {
6027 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
6028 struct stmmac_dma_conf *dma_conf;
6029 int chan = rx_q->queue_index;
6030 struct stmmac_priv *priv;
6031
6032 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
6033 priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
6034
6035 if (unlikely(!data)) {
6036 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
6037 return IRQ_NONE;
6038 }
6039
6040 /* Check if adapter is up */
6041 if (test_bit(STMMAC_DOWN, &priv->state))
6042 return IRQ_HANDLED;
6043
6044 stmmac_napi_check(priv, chan, DMA_DIR_RX);
6045
6046 return IRQ_HANDLED;
6047 }
6048
6049 /**
6050 * stmmac_ioctl - Entry point for the Ioctl
6051 * @dev: Device pointer.
6052 * @rq: An IOCTL specefic structure, that can contain a pointer to
6053 * a proprietary structure used to pass information to the driver.
6054 * @cmd: IOCTL command
6055 * Description:
6056 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
6057 */
6058 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6059 {
6060 struct stmmac_priv *priv = netdev_priv (dev);
6061 int ret = -EOPNOTSUPP;
6062
6063 if (!netif_running(dev))
6064 return -EINVAL;
6065
6066 switch (cmd) {
6067 case SIOCGMIIPHY:
6068 case SIOCGMIIREG:
6069 case SIOCSMIIREG:
6070 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
6071 break;
6072 case SIOCSHWTSTAMP:
6073 ret = stmmac_hwtstamp_set(dev, rq);
6074 break;
6075 case SIOCGHWTSTAMP:
6076 ret = stmmac_hwtstamp_get(dev, rq);
6077 break;
6078 default:
6079 break;
6080 }
6081
6082 return ret;
6083 }
6084
6085 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
6086 void *cb_priv)
6087 {
6088 struct stmmac_priv *priv = cb_priv;
6089 int ret = -EOPNOTSUPP;
6090
6091 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
6092 return ret;
6093
6094 __stmmac_disable_all_queues(priv);
6095
6096 switch (type) {
6097 case TC_SETUP_CLSU32:
6098 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
6099 break;
6100 case TC_SETUP_CLSFLOWER:
6101 ret = stmmac_tc_setup_cls(priv, priv, type_data);
6102 break;
6103 default:
6104 break;
6105 }
6106
6107 stmmac_enable_all_queues(priv);
6108 return ret;
6109 }
6110
6111 static LIST_HEAD(stmmac_block_cb_list);
6112
6113 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
6114 void *type_data)
6115 {
6116 struct stmmac_priv *priv = netdev_priv(ndev);
6117
6118 switch (type) {
6119 case TC_QUERY_CAPS:
6120 return stmmac_tc_query_caps(priv, priv, type_data);
6121 case TC_SETUP_BLOCK:
6122 return flow_block_cb_setup_simple(type_data,
6123 &stmmac_block_cb_list,
6124 stmmac_setup_tc_block_cb,
6125 priv, priv, true);
6126 case TC_SETUP_QDISC_CBS:
6127 return stmmac_tc_setup_cbs(priv, priv, type_data);
6128 case TC_SETUP_QDISC_TAPRIO:
6129 return stmmac_tc_setup_taprio(priv, priv, type_data);
6130 case TC_SETUP_QDISC_ETF:
6131 return stmmac_tc_setup_etf(priv, priv, type_data);
6132 default:
6133 return -EOPNOTSUPP;
6134 }
6135 }
6136
6137 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6138 struct net_device *sb_dev)
6139 {
6140 int gso = skb_shinfo(skb)->gso_type;
6141
6142 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6143 /*
6144 * There is no way to determine the number of TSO/USO
6145 * capable Queues. Let's use always the Queue 0
6146 * because if TSO/USO is supported then at least this
6147 * one will be capable.
6148 */
6149 return 0;
6150 }
6151
6152 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6153 }
6154
6155 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6156 {
6157 struct stmmac_priv *priv = netdev_priv(ndev);
6158 int ret = 0;
6159
6160 ret = pm_runtime_resume_and_get(priv->device);
6161 if (ret < 0)
6162 return ret;
6163
6164 ret = eth_mac_addr(ndev, addr);
6165 if (ret)
6166 goto set_mac_error;
6167
6168 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6169
6170 set_mac_error:
6171 pm_runtime_put(priv->device);
6172
6173 return ret;
6174 }
6175
6176 #ifdef CONFIG_DEBUG_FS
6177 static struct dentry *stmmac_fs_dir;
6178
6179 static void sysfs_display_ring(void *head, int size, int extend_desc,
6180 struct seq_file *seq, dma_addr_t dma_phy_addr)
6181 {
6182 int i;
6183 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6184 struct dma_desc *p = (struct dma_desc *)head;
6185 dma_addr_t dma_addr;
6186
6187 for (i = 0; i < size; i++) {
6188 if (extend_desc) {
6189 dma_addr = dma_phy_addr + i * sizeof(*ep);
6190 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6191 i, &dma_addr,
6192 le32_to_cpu(ep->basic.des0),
6193 le32_to_cpu(ep->basic.des1),
6194 le32_to_cpu(ep->basic.des2),
6195 le32_to_cpu(ep->basic.des3));
6196 ep++;
6197 } else {
6198 dma_addr = dma_phy_addr + i * sizeof(*p);
6199 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6200 i, &dma_addr,
6201 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6202 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6203 p++;
6204 }
6205 seq_printf(seq, "\n");
6206 }
6207 }
6208
6209 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6210 {
6211 struct net_device *dev = seq->private;
6212 struct stmmac_priv *priv = netdev_priv(dev);
6213 u32 rx_count = priv->plat->rx_queues_to_use;
6214 u32 tx_count = priv->plat->tx_queues_to_use;
6215 u32 queue;
6216
6217 if ((dev->flags & IFF_UP) == 0)
6218 return 0;
6219
6220 for (queue = 0; queue < rx_count; queue++) {
6221 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6222
6223 seq_printf(seq, "RX Queue %d:\n", queue);
6224
6225 if (priv->extend_desc) {
6226 seq_printf(seq, "Extended descriptor ring:\n");
6227 sysfs_display_ring((void *)rx_q->dma_erx,
6228 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6229 } else {
6230 seq_printf(seq, "Descriptor ring:\n");
6231 sysfs_display_ring((void *)rx_q->dma_rx,
6232 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6233 }
6234 }
6235
6236 for (queue = 0; queue < tx_count; queue++) {
6237 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6238
6239 seq_printf(seq, "TX Queue %d:\n", queue);
6240
6241 if (priv->extend_desc) {
6242 seq_printf(seq, "Extended descriptor ring:\n");
6243 sysfs_display_ring((void *)tx_q->dma_etx,
6244 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6245 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6246 seq_printf(seq, "Descriptor ring:\n");
6247 sysfs_display_ring((void *)tx_q->dma_tx,
6248 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6249 }
6250 }
6251
6252 return 0;
6253 }
6254 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6255
6256 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6257 {
6258 static const char * const dwxgmac_timestamp_source[] = {
6259 "None",
6260 "Internal",
6261 "External",
6262 "Both",
6263 };
6264 static const char * const dwxgmac_safety_feature_desc[] = {
6265 "No",
6266 "All Safety Features with ECC and Parity",
6267 "All Safety Features without ECC or Parity",
6268 "All Safety Features with Parity Only",
6269 "ECC Only",
6270 "UNDEFINED",
6271 "UNDEFINED",
6272 "UNDEFINED",
6273 };
6274 struct net_device *dev = seq->private;
6275 struct stmmac_priv *priv = netdev_priv(dev);
6276
6277 if (!priv->hw_cap_support) {
6278 seq_printf(seq, "DMA HW features not supported\n");
6279 return 0;
6280 }
6281
6282 seq_printf(seq, "==============================\n");
6283 seq_printf(seq, "\tDMA HW features\n");
6284 seq_printf(seq, "==============================\n");
6285
6286 seq_printf(seq, "\t10/100 Mbps: %s\n",
6287 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6288 seq_printf(seq, "\t1000 Mbps: %s\n",
6289 (priv->dma_cap.mbps_1000) ? "Y" : "N");
6290 seq_printf(seq, "\tHalf duplex: %s\n",
6291 (priv->dma_cap.half_duplex) ? "Y" : "N");
6292 if (priv->plat->has_xgmac) {
6293 seq_printf(seq,
6294 "\tNumber of Additional MAC address registers: %d\n",
6295 priv->dma_cap.multi_addr);
6296 } else {
6297 seq_printf(seq, "\tHash Filter: %s\n",
6298 (priv->dma_cap.hash_filter) ? "Y" : "N");
6299 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6300 (priv->dma_cap.multi_addr) ? "Y" : "N");
6301 }
6302 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6303 (priv->dma_cap.pcs) ? "Y" : "N");
6304 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6305 (priv->dma_cap.sma_mdio) ? "Y" : "N");
6306 seq_printf(seq, "\tPMT Remote wake up: %s\n",
6307 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6308 seq_printf(seq, "\tPMT Magic Frame: %s\n",
6309 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6310 seq_printf(seq, "\tRMON module: %s\n",
6311 (priv->dma_cap.rmon) ? "Y" : "N");
6312 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6313 (priv->dma_cap.time_stamp) ? "Y" : "N");
6314 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6315 (priv->dma_cap.atime_stamp) ? "Y" : "N");
6316 if (priv->plat->has_xgmac)
6317 seq_printf(seq, "\tTimestamp System Time Source: %s\n",
6318 dwxgmac_timestamp_source[priv->dma_cap.tssrc]);
6319 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6320 (priv->dma_cap.eee) ? "Y" : "N");
6321 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6322 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6323 (priv->dma_cap.tx_coe) ? "Y" : "N");
6324 if (priv->synopsys_id >= DWMAC_CORE_4_00 ||
6325 priv->plat->has_xgmac) {
6326 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6327 (priv->dma_cap.rx_coe) ? "Y" : "N");
6328 } else {
6329 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6330 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6331 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6332 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6333 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6334 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6335 }
6336 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6337 priv->dma_cap.number_rx_channel);
6338 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6339 priv->dma_cap.number_tx_channel);
6340 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6341 priv->dma_cap.number_rx_queues);
6342 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6343 priv->dma_cap.number_tx_queues);
6344 seq_printf(seq, "\tEnhanced descriptors: %s\n",
6345 (priv->dma_cap.enh_desc) ? "Y" : "N");
6346 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6347 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6348 seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ?
6349 (BIT(priv->dma_cap.hash_tb_sz) << 5) : 0);
6350 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6351 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6352 priv->dma_cap.pps_out_num);
6353 seq_printf(seq, "\tSafety Features: %s\n",
6354 dwxgmac_safety_feature_desc[priv->dma_cap.asp]);
6355 seq_printf(seq, "\tFlexible RX Parser: %s\n",
6356 priv->dma_cap.frpsel ? "Y" : "N");
6357 seq_printf(seq, "\tEnhanced Addressing: %d\n",
6358 priv->dma_cap.host_dma_width);
6359 seq_printf(seq, "\tReceive Side Scaling: %s\n",
6360 priv->dma_cap.rssen ? "Y" : "N");
6361 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6362 priv->dma_cap.vlhash ? "Y" : "N");
6363 seq_printf(seq, "\tSplit Header: %s\n",
6364 priv->dma_cap.sphen ? "Y" : "N");
6365 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6366 priv->dma_cap.vlins ? "Y" : "N");
6367 seq_printf(seq, "\tDouble VLAN: %s\n",
6368 priv->dma_cap.dvlan ? "Y" : "N");
6369 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6370 priv->dma_cap.l3l4fnum);
6371 seq_printf(seq, "\tARP Offloading: %s\n",
6372 priv->dma_cap.arpoffsel ? "Y" : "N");
6373 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6374 priv->dma_cap.estsel ? "Y" : "N");
6375 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6376 priv->dma_cap.fpesel ? "Y" : "N");
6377 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6378 priv->dma_cap.tbssel ? "Y" : "N");
6379 seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n",
6380 priv->dma_cap.tbs_ch_num);
6381 seq_printf(seq, "\tPer-Stream Filtering: %s\n",
6382 priv->dma_cap.sgfsel ? "Y" : "N");
6383 seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n",
6384 BIT(priv->dma_cap.ttsfd) >> 1);
6385 seq_printf(seq, "\tNumber of Traffic Classes: %d\n",
6386 priv->dma_cap.numtc);
6387 seq_printf(seq, "\tDCB Feature: %s\n",
6388 priv->dma_cap.dcben ? "Y" : "N");
6389 seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n",
6390 priv->dma_cap.advthword ? "Y" : "N");
6391 seq_printf(seq, "\tPTP Offload: %s\n",
6392 priv->dma_cap.ptoen ? "Y" : "N");
6393 seq_printf(seq, "\tOne-Step Timestamping: %s\n",
6394 priv->dma_cap.osten ? "Y" : "N");
6395 seq_printf(seq, "\tPriority-Based Flow Control: %s\n",
6396 priv->dma_cap.pfcen ? "Y" : "N");
6397 seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n",
6398 BIT(priv->dma_cap.frpes) << 6);
6399 seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n",
6400 BIT(priv->dma_cap.frpbs) << 6);
6401 seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n",
6402 priv->dma_cap.frppipe_num);
6403 seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n",
6404 priv->dma_cap.nrvf_num ?
6405 (BIT(priv->dma_cap.nrvf_num) << 1) : 0);
6406 seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n",
6407 priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0);
6408 seq_printf(seq, "\tDepth of GCL: %lu\n",
6409 priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0);
6410 seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n",
6411 priv->dma_cap.cbtisel ? "Y" : "N");
6412 seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n",
6413 priv->dma_cap.aux_snapshot_n);
6414 seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n",
6415 priv->dma_cap.pou_ost_en ? "Y" : "N");
6416 seq_printf(seq, "\tEnhanced DMA: %s\n",
6417 priv->dma_cap.edma ? "Y" : "N");
6418 seq_printf(seq, "\tDifferent Descriptor Cache: %s\n",
6419 priv->dma_cap.ediffc ? "Y" : "N");
6420 seq_printf(seq, "\tVxLAN/NVGRE: %s\n",
6421 priv->dma_cap.vxn ? "Y" : "N");
6422 seq_printf(seq, "\tDebug Memory Interface: %s\n",
6423 priv->dma_cap.dbgmem ? "Y" : "N");
6424 seq_printf(seq, "\tNumber of Policing Counters: %lu\n",
6425 priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0);
6426 return 0;
6427 }
6428 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6429
6430 /* Use network device events to rename debugfs file entries.
6431 */
6432 static int stmmac_device_event(struct notifier_block *unused,
6433 unsigned long event, void *ptr)
6434 {
6435 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6436 struct stmmac_priv *priv = netdev_priv(dev);
6437
6438 if (dev->netdev_ops != &stmmac_netdev_ops)
6439 goto done;
6440
6441 switch (event) {
6442 case NETDEV_CHANGENAME:
6443 if (priv->dbgfs_dir)
6444 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6445 priv->dbgfs_dir,
6446 stmmac_fs_dir,
6447 dev->name);
6448 break;
6449 }
6450 done:
6451 return NOTIFY_DONE;
6452 }
6453
6454 static struct notifier_block stmmac_notifier = {
6455 .notifier_call = stmmac_device_event,
6456 };
6457
6458 static void stmmac_init_fs(struct net_device *dev)
6459 {
6460 struct stmmac_priv *priv = netdev_priv(dev);
6461
6462 rtnl_lock();
6463
6464 /* Create per netdev entries */
6465 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6466
6467 /* Entry to report DMA RX/TX rings */
6468 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6469 &stmmac_rings_status_fops);
6470
6471 /* Entry to report the DMA HW features */
6472 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6473 &stmmac_dma_cap_fops);
6474
6475 rtnl_unlock();
6476 }
6477
6478 static void stmmac_exit_fs(struct net_device *dev)
6479 {
6480 struct stmmac_priv *priv = netdev_priv(dev);
6481
6482 debugfs_remove_recursive(priv->dbgfs_dir);
6483 }
6484 #endif /* CONFIG_DEBUG_FS */
6485
6486 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6487 {
6488 unsigned char *data = (unsigned char *)&vid_le;
6489 unsigned char data_byte = 0;
6490 u32 crc = ~0x0;
6491 u32 temp = 0;
6492 int i, bits;
6493
6494 bits = get_bitmask_order(VLAN_VID_MASK);
6495 for (i = 0; i < bits; i++) {
6496 if ((i % 8) == 0)
6497 data_byte = data[i / 8];
6498
6499 temp = ((crc & 1) ^ data_byte) & 1;
6500 crc >>= 1;
6501 data_byte >>= 1;
6502
6503 if (temp)
6504 crc ^= 0xedb88320;
6505 }
6506
6507 return crc;
6508 }
6509
6510 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6511 {
6512 u32 crc, hash = 0;
6513 __le16 pmatch = 0;
6514 int count = 0;
6515 u16 vid = 0;
6516
6517 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6518 __le16 vid_le = cpu_to_le16(vid);
6519 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6520 hash |= (1 << crc);
6521 count++;
6522 }
6523
6524 if (!priv->dma_cap.vlhash) {
6525 if (count > 2) /* VID = 0 always passes filter */
6526 return -EOPNOTSUPP;
6527
6528 pmatch = cpu_to_le16(vid);
6529 hash = 0;
6530 }
6531
6532 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6533 }
6534
6535 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6536 {
6537 struct stmmac_priv *priv = netdev_priv(ndev);
6538 bool is_double = false;
6539 int ret;
6540
6541 ret = pm_runtime_resume_and_get(priv->device);
6542 if (ret < 0)
6543 return ret;
6544
6545 if (be16_to_cpu(proto) == ETH_P_8021AD)
6546 is_double = true;
6547
6548 set_bit(vid, priv->active_vlans);
6549 ret = stmmac_vlan_update(priv, is_double);
6550 if (ret) {
6551 clear_bit(vid, priv->active_vlans);
6552 goto err_pm_put;
6553 }
6554
6555 if (priv->hw->num_vlan) {
6556 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6557 if (ret)
6558 goto err_pm_put;
6559 }
6560 err_pm_put:
6561 pm_runtime_put(priv->device);
6562
6563 return ret;
6564 }
6565
6566 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6567 {
6568 struct stmmac_priv *priv = netdev_priv(ndev);
6569 bool is_double = false;
6570 int ret;
6571
6572 ret = pm_runtime_resume_and_get(priv->device);
6573 if (ret < 0)
6574 return ret;
6575
6576 if (be16_to_cpu(proto) == ETH_P_8021AD)
6577 is_double = true;
6578
6579 clear_bit(vid, priv->active_vlans);
6580
6581 if (priv->hw->num_vlan) {
6582 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6583 if (ret)
6584 goto del_vlan_error;
6585 }
6586
6587 ret = stmmac_vlan_update(priv, is_double);
6588
6589 del_vlan_error:
6590 pm_runtime_put(priv->device);
6591
6592 return ret;
6593 }
6594
6595 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6596 {
6597 struct stmmac_priv *priv = netdev_priv(dev);
6598
6599 switch (bpf->command) {
6600 case XDP_SETUP_PROG:
6601 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6602 case XDP_SETUP_XSK_POOL:
6603 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6604 bpf->xsk.queue_id);
6605 default:
6606 return -EOPNOTSUPP;
6607 }
6608 }
6609
6610 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6611 struct xdp_frame **frames, u32 flags)
6612 {
6613 struct stmmac_priv *priv = netdev_priv(dev);
6614 int cpu = smp_processor_id();
6615 struct netdev_queue *nq;
6616 int i, nxmit = 0;
6617 int queue;
6618
6619 if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6620 return -ENETDOWN;
6621
6622 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6623 return -EINVAL;
6624
6625 queue = stmmac_xdp_get_tx_queue(priv, cpu);
6626 nq = netdev_get_tx_queue(priv->dev, queue);
6627
6628 __netif_tx_lock(nq, cpu);
6629 /* Avoids TX time-out as we are sharing with slow path */
6630 txq_trans_cond_update(nq);
6631
6632 for (i = 0; i < num_frames; i++) {
6633 int res;
6634
6635 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6636 if (res == STMMAC_XDP_CONSUMED)
6637 break;
6638
6639 nxmit++;
6640 }
6641
6642 if (flags & XDP_XMIT_FLUSH) {
6643 stmmac_flush_tx_descriptors(priv, queue);
6644 stmmac_tx_timer_arm(priv, queue);
6645 }
6646
6647 __netif_tx_unlock(nq);
6648
6649 return nxmit;
6650 }
6651
6652 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6653 {
6654 struct stmmac_channel *ch = &priv->channel[queue];
6655 unsigned long flags;
6656
6657 spin_lock_irqsave(&ch->lock, flags);
6658 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6659 spin_unlock_irqrestore(&ch->lock, flags);
6660
6661 stmmac_stop_rx_dma(priv, queue);
6662 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6663 }
6664
6665 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6666 {
6667 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6668 struct stmmac_channel *ch = &priv->channel[queue];
6669 unsigned long flags;
6670 u32 buf_size;
6671 int ret;
6672
6673 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6674 if (ret) {
6675 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6676 return;
6677 }
6678
6679 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6680 if (ret) {
6681 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6682 netdev_err(priv->dev, "Failed to init RX desc.\n");
6683 return;
6684 }
6685
6686 stmmac_reset_rx_queue(priv, queue);
6687 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6688
6689 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6690 rx_q->dma_rx_phy, rx_q->queue_index);
6691
6692 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6693 sizeof(struct dma_desc));
6694 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6695 rx_q->rx_tail_addr, rx_q->queue_index);
6696
6697 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6698 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6699 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6700 buf_size,
6701 rx_q->queue_index);
6702 } else {
6703 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6704 priv->dma_conf.dma_buf_sz,
6705 rx_q->queue_index);
6706 }
6707
6708 stmmac_start_rx_dma(priv, queue);
6709
6710 spin_lock_irqsave(&ch->lock, flags);
6711 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6712 spin_unlock_irqrestore(&ch->lock, flags);
6713 }
6714
6715 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6716 {
6717 struct stmmac_channel *ch = &priv->channel[queue];
6718 unsigned long flags;
6719
6720 spin_lock_irqsave(&ch->lock, flags);
6721 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6722 spin_unlock_irqrestore(&ch->lock, flags);
6723
6724 stmmac_stop_tx_dma(priv, queue);
6725 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6726 }
6727
6728 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6729 {
6730 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6731 struct stmmac_channel *ch = &priv->channel[queue];
6732 unsigned long flags;
6733 int ret;
6734
6735 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6736 if (ret) {
6737 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6738 return;
6739 }
6740
6741 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue);
6742 if (ret) {
6743 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6744 netdev_err(priv->dev, "Failed to init TX desc.\n");
6745 return;
6746 }
6747
6748 stmmac_reset_tx_queue(priv, queue);
6749 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6750
6751 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6752 tx_q->dma_tx_phy, tx_q->queue_index);
6753
6754 if (tx_q->tbs & STMMAC_TBS_AVAIL)
6755 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6756
6757 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6758 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6759 tx_q->tx_tail_addr, tx_q->queue_index);
6760
6761 stmmac_start_tx_dma(priv, queue);
6762
6763 spin_lock_irqsave(&ch->lock, flags);
6764 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6765 spin_unlock_irqrestore(&ch->lock, flags);
6766 }
6767
6768 void stmmac_xdp_release(struct net_device *dev)
6769 {
6770 struct stmmac_priv *priv = netdev_priv(dev);
6771 u32 chan;
6772
6773 /* Ensure tx function is not running */
6774 netif_tx_disable(dev);
6775
6776 /* Disable NAPI process */
6777 stmmac_disable_all_queues(priv);
6778
6779 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6780 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6781
6782 /* Free the IRQ lines */
6783 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6784
6785 /* Stop TX/RX DMA channels */
6786 stmmac_stop_all_dma(priv);
6787
6788 /* Release and free the Rx/Tx resources */
6789 free_dma_desc_resources(priv, &priv->dma_conf);
6790
6791 /* Disable the MAC Rx/Tx */
6792 stmmac_mac_set(priv, priv->ioaddr, false);
6793
6794 /* set trans_start so we don't get spurious
6795 * watchdogs during reset
6796 */
6797 netif_trans_update(dev);
6798 netif_carrier_off(dev);
6799 }
6800
6801 int stmmac_xdp_open(struct net_device *dev)
6802 {
6803 struct stmmac_priv *priv = netdev_priv(dev);
6804 u32 rx_cnt = priv->plat->rx_queues_to_use;
6805 u32 tx_cnt = priv->plat->tx_queues_to_use;
6806 u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6807 struct stmmac_rx_queue *rx_q;
6808 struct stmmac_tx_queue *tx_q;
6809 u32 buf_size;
6810 bool sph_en;
6811 u32 chan;
6812 int ret;
6813
6814 ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6815 if (ret < 0) {
6816 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6817 __func__);
6818 goto dma_desc_error;
6819 }
6820
6821 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6822 if (ret < 0) {
6823 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6824 __func__);
6825 goto init_error;
6826 }
6827
6828 stmmac_reset_queues_param(priv);
6829
6830 /* DMA CSR Channel configuration */
6831 for (chan = 0; chan < dma_csr_ch; chan++) {
6832 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6833 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6834 }
6835
6836 /* Adjust Split header */
6837 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6838
6839 /* DMA RX Channel Configuration */
6840 for (chan = 0; chan < rx_cnt; chan++) {
6841 rx_q = &priv->dma_conf.rx_queue[chan];
6842
6843 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6844 rx_q->dma_rx_phy, chan);
6845
6846 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6847 (rx_q->buf_alloc_num *
6848 sizeof(struct dma_desc));
6849 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6850 rx_q->rx_tail_addr, chan);
6851
6852 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6853 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6854 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6855 buf_size,
6856 rx_q->queue_index);
6857 } else {
6858 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6859 priv->dma_conf.dma_buf_sz,
6860 rx_q->queue_index);
6861 }
6862
6863 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6864 }
6865
6866 /* DMA TX Channel Configuration */
6867 for (chan = 0; chan < tx_cnt; chan++) {
6868 tx_q = &priv->dma_conf.tx_queue[chan];
6869
6870 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6871 tx_q->dma_tx_phy, chan);
6872
6873 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6874 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6875 tx_q->tx_tail_addr, chan);
6876
6877 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6878 tx_q->txtimer.function = stmmac_tx_timer;
6879 }
6880
6881 /* Enable the MAC Rx/Tx */
6882 stmmac_mac_set(priv, priv->ioaddr, true);
6883
6884 /* Start Rx & Tx DMA Channels */
6885 stmmac_start_all_dma(priv);
6886
6887 ret = stmmac_request_irq(dev);
6888 if (ret)
6889 goto irq_error;
6890
6891 /* Enable NAPI process*/
6892 stmmac_enable_all_queues(priv);
6893 netif_carrier_on(dev);
6894 netif_tx_start_all_queues(dev);
6895 stmmac_enable_all_dma_irq(priv);
6896
6897 return 0;
6898
6899 irq_error:
6900 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6901 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6902
6903 stmmac_hw_teardown(dev);
6904 init_error:
6905 free_dma_desc_resources(priv, &priv->dma_conf);
6906 dma_desc_error:
6907 return ret;
6908 }
6909
6910 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6911 {
6912 struct stmmac_priv *priv = netdev_priv(dev);
6913 struct stmmac_rx_queue *rx_q;
6914 struct stmmac_tx_queue *tx_q;
6915 struct stmmac_channel *ch;
6916
6917 if (test_bit(STMMAC_DOWN, &priv->state) ||
6918 !netif_carrier_ok(priv->dev))
6919 return -ENETDOWN;
6920
6921 if (!stmmac_xdp_is_enabled(priv))
6922 return -EINVAL;
6923
6924 if (queue >= priv->plat->rx_queues_to_use ||
6925 queue >= priv->plat->tx_queues_to_use)
6926 return -EINVAL;
6927
6928 rx_q = &priv->dma_conf.rx_queue[queue];
6929 tx_q = &priv->dma_conf.tx_queue[queue];
6930 ch = &priv->channel[queue];
6931
6932 if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6933 return -EINVAL;
6934
6935 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6936 /* EQoS does not have per-DMA channel SW interrupt,
6937 * so we schedule RX Napi straight-away.
6938 */
6939 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6940 __napi_schedule(&ch->rxtx_napi);
6941 }
6942
6943 return 0;
6944 }
6945
6946 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6947 {
6948 struct stmmac_priv *priv = netdev_priv(dev);
6949 u32 tx_cnt = priv->plat->tx_queues_to_use;
6950 u32 rx_cnt = priv->plat->rx_queues_to_use;
6951 unsigned int start;
6952 int q;
6953
6954 for (q = 0; q < tx_cnt; q++) {
6955 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q];
6956 u64 tx_packets;
6957 u64 tx_bytes;
6958
6959 do {
6960 start = u64_stats_fetch_begin(&txq_stats->syncp);
6961 tx_packets = txq_stats->tx_packets;
6962 tx_bytes = txq_stats->tx_bytes;
6963 } while (u64_stats_fetch_retry(&txq_stats->syncp, start));
6964
6965 stats->tx_packets += tx_packets;
6966 stats->tx_bytes += tx_bytes;
6967 }
6968
6969 for (q = 0; q < rx_cnt; q++) {
6970 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q];
6971 u64 rx_packets;
6972 u64 rx_bytes;
6973
6974 do {
6975 start = u64_stats_fetch_begin(&rxq_stats->syncp);
6976 rx_packets = rxq_stats->rx_packets;
6977 rx_bytes = rxq_stats->rx_bytes;
6978 } while (u64_stats_fetch_retry(&rxq_stats->syncp, start));
6979
6980 stats->rx_packets += rx_packets;
6981 stats->rx_bytes += rx_bytes;
6982 }
6983
6984 stats->rx_dropped = priv->xstats.rx_dropped;
6985 stats->rx_errors = priv->xstats.rx_errors;
6986 stats->tx_dropped = priv->xstats.tx_dropped;
6987 stats->tx_errors = priv->xstats.tx_errors;
6988 stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier;
6989 stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision;
6990 stats->rx_length_errors = priv->xstats.rx_length;
6991 stats->rx_crc_errors = priv->xstats.rx_crc_errors;
6992 stats->rx_over_errors = priv->xstats.rx_overflow_cntr;
6993 stats->rx_missed_errors = priv->xstats.rx_missed_cntr;
6994 }
6995
6996 static const struct net_device_ops stmmac_netdev_ops = {
6997 .ndo_open = stmmac_open,
6998 .ndo_start_xmit = stmmac_xmit,
6999 .ndo_stop = stmmac_release,
7000 .ndo_change_mtu = stmmac_change_mtu,
7001 .ndo_fix_features = stmmac_fix_features,
7002 .ndo_set_features = stmmac_set_features,
7003 .ndo_set_rx_mode = stmmac_set_rx_mode,
7004 .ndo_tx_timeout = stmmac_tx_timeout,
7005 .ndo_eth_ioctl = stmmac_ioctl,
7006 .ndo_get_stats64 = stmmac_get_stats64,
7007 .ndo_setup_tc = stmmac_setup_tc,
7008 .ndo_select_queue = stmmac_select_queue,
7009 .ndo_set_mac_address = stmmac_set_mac_address,
7010 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
7011 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
7012 .ndo_bpf = stmmac_bpf,
7013 .ndo_xdp_xmit = stmmac_xdp_xmit,
7014 .ndo_xsk_wakeup = stmmac_xsk_wakeup,
7015 };
7016
7017 static void stmmac_reset_subtask(struct stmmac_priv *priv)
7018 {
7019 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
7020 return;
7021 if (test_bit(STMMAC_DOWN, &priv->state))
7022 return;
7023
7024 netdev_err(priv->dev, "Reset adapter.\n");
7025
7026 rtnl_lock();
7027 netif_trans_update(priv->dev);
7028 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
7029 usleep_range(1000, 2000);
7030
7031 set_bit(STMMAC_DOWN, &priv->state);
7032 dev_close(priv->dev);
7033 dev_open(priv->dev, NULL);
7034 clear_bit(STMMAC_DOWN, &priv->state);
7035 clear_bit(STMMAC_RESETING, &priv->state);
7036 rtnl_unlock();
7037 }
7038
7039 static void stmmac_service_task(struct work_struct *work)
7040 {
7041 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7042 service_task);
7043
7044 stmmac_reset_subtask(priv);
7045 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
7046 }
7047
7048 /**
7049 * stmmac_hw_init - Init the MAC device
7050 * @priv: driver private structure
7051 * Description: this function is to configure the MAC device according to
7052 * some platform parameters or the HW capability register. It prepares the
7053 * driver to use either ring or chain modes and to setup either enhanced or
7054 * normal descriptors.
7055 */
7056 static int stmmac_hw_init(struct stmmac_priv *priv)
7057 {
7058 int ret;
7059
7060 /* dwmac-sun8i only work in chain mode */
7061 if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I)
7062 chain_mode = 1;
7063 priv->chain_mode = chain_mode;
7064
7065 /* Initialize HW Interface */
7066 ret = stmmac_hwif_init(priv);
7067 if (ret)
7068 return ret;
7069
7070 /* Get the HW capability (new GMAC newer than 3.50a) */
7071 priv->hw_cap_support = stmmac_get_hw_features(priv);
7072 if (priv->hw_cap_support) {
7073 dev_info(priv->device, "DMA HW capability register supported\n");
7074
7075 /* We can override some gmac/dma configuration fields: e.g.
7076 * enh_desc, tx_coe (e.g. that are passed through the
7077 * platform) with the values from the HW capability
7078 * register (if supported).
7079 */
7080 priv->plat->enh_desc = priv->dma_cap.enh_desc;
7081 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
7082 !(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL);
7083 priv->hw->pmt = priv->plat->pmt;
7084 if (priv->dma_cap.hash_tb_sz) {
7085 priv->hw->multicast_filter_bins =
7086 (BIT(priv->dma_cap.hash_tb_sz) << 5);
7087 priv->hw->mcast_bits_log2 =
7088 ilog2(priv->hw->multicast_filter_bins);
7089 }
7090
7091 /* TXCOE doesn't work in thresh DMA mode */
7092 if (priv->plat->force_thresh_dma_mode)
7093 priv->plat->tx_coe = 0;
7094 else
7095 priv->plat->tx_coe = priv->dma_cap.tx_coe;
7096
7097 /* In case of GMAC4 rx_coe is from HW cap register. */
7098 priv->plat->rx_coe = priv->dma_cap.rx_coe;
7099
7100 if (priv->dma_cap.rx_coe_type2)
7101 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
7102 else if (priv->dma_cap.rx_coe_type1)
7103 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
7104
7105 } else {
7106 dev_info(priv->device, "No HW DMA feature register supported\n");
7107 }
7108
7109 if (priv->plat->rx_coe) {
7110 priv->hw->rx_csum = priv->plat->rx_coe;
7111 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
7112 if (priv->synopsys_id < DWMAC_CORE_4_00)
7113 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
7114 }
7115 if (priv->plat->tx_coe)
7116 dev_info(priv->device, "TX Checksum insertion supported\n");
7117
7118 if (priv->plat->pmt) {
7119 dev_info(priv->device, "Wake-Up On Lan supported\n");
7120 device_set_wakeup_capable(priv->device, 1);
7121 }
7122
7123 if (priv->dma_cap.tsoen)
7124 dev_info(priv->device, "TSO supported\n");
7125
7126 priv->hw->vlan_fail_q_en =
7127 (priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN);
7128 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
7129
7130 /* Run HW quirks, if any */
7131 if (priv->hwif_quirks) {
7132 ret = priv->hwif_quirks(priv);
7133 if (ret)
7134 return ret;
7135 }
7136
7137 /* Rx Watchdog is available in the COREs newer than the 3.40.
7138 * In some case, for example on bugged HW this feature
7139 * has to be disable and this can be done by passing the
7140 * riwt_off field from the platform.
7141 */
7142 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
7143 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
7144 priv->use_riwt = 1;
7145 dev_info(priv->device,
7146 "Enable RX Mitigation via HW Watchdog Timer\n");
7147 }
7148
7149 return 0;
7150 }
7151
7152 static void stmmac_napi_add(struct net_device *dev)
7153 {
7154 struct stmmac_priv *priv = netdev_priv(dev);
7155 u32 queue, maxq;
7156
7157 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7158
7159 for (queue = 0; queue < maxq; queue++) {
7160 struct stmmac_channel *ch = &priv->channel[queue];
7161
7162 ch->priv_data = priv;
7163 ch->index = queue;
7164 spin_lock_init(&ch->lock);
7165
7166 if (queue < priv->plat->rx_queues_to_use) {
7167 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
7168 }
7169 if (queue < priv->plat->tx_queues_to_use) {
7170 netif_napi_add_tx(dev, &ch->tx_napi,
7171 stmmac_napi_poll_tx);
7172 }
7173 if (queue < priv->plat->rx_queues_to_use &&
7174 queue < priv->plat->tx_queues_to_use) {
7175 netif_napi_add(dev, &ch->rxtx_napi,
7176 stmmac_napi_poll_rxtx);
7177 }
7178 }
7179 }
7180
7181 static void stmmac_napi_del(struct net_device *dev)
7182 {
7183 struct stmmac_priv *priv = netdev_priv(dev);
7184 u32 queue, maxq;
7185
7186 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7187
7188 for (queue = 0; queue < maxq; queue++) {
7189 struct stmmac_channel *ch = &priv->channel[queue];
7190
7191 if (queue < priv->plat->rx_queues_to_use)
7192 netif_napi_del(&ch->rx_napi);
7193 if (queue < priv->plat->tx_queues_to_use)
7194 netif_napi_del(&ch->tx_napi);
7195 if (queue < priv->plat->rx_queues_to_use &&
7196 queue < priv->plat->tx_queues_to_use) {
7197 netif_napi_del(&ch->rxtx_napi);
7198 }
7199 }
7200 }
7201
7202 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
7203 {
7204 struct stmmac_priv *priv = netdev_priv(dev);
7205 int ret = 0, i;
7206
7207 if (netif_running(dev))
7208 stmmac_release(dev);
7209
7210 stmmac_napi_del(dev);
7211
7212 priv->plat->rx_queues_to_use = rx_cnt;
7213 priv->plat->tx_queues_to_use = tx_cnt;
7214 if (!netif_is_rxfh_configured(dev))
7215 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7216 priv->rss.table[i] = ethtool_rxfh_indir_default(i,
7217 rx_cnt);
7218
7219 stmmac_set_half_duplex(priv);
7220 stmmac_napi_add(dev);
7221
7222 if (netif_running(dev))
7223 ret = stmmac_open(dev);
7224
7225 return ret;
7226 }
7227
7228 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
7229 {
7230 struct stmmac_priv *priv = netdev_priv(dev);
7231 int ret = 0;
7232
7233 if (netif_running(dev))
7234 stmmac_release(dev);
7235
7236 priv->dma_conf.dma_rx_size = rx_size;
7237 priv->dma_conf.dma_tx_size = tx_size;
7238
7239 if (netif_running(dev))
7240 ret = stmmac_open(dev);
7241
7242 return ret;
7243 }
7244
7245 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
7246 static void stmmac_fpe_lp_task(struct work_struct *work)
7247 {
7248 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7249 fpe_task);
7250 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
7251 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
7252 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
7253 bool *hs_enable = &fpe_cfg->hs_enable;
7254 bool *enable = &fpe_cfg->enable;
7255 int retries = 20;
7256
7257 while (retries-- > 0) {
7258 /* Bail out immediately if FPE handshake is OFF */
7259 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7260 break;
7261
7262 if (*lo_state == FPE_STATE_ENTERING_ON &&
7263 *lp_state == FPE_STATE_ENTERING_ON) {
7264 stmmac_fpe_configure(priv, priv->ioaddr,
7265 priv->plat->tx_queues_to_use,
7266 priv->plat->rx_queues_to_use,
7267 *enable);
7268
7269 netdev_info(priv->dev, "configured FPE\n");
7270
7271 *lo_state = FPE_STATE_ON;
7272 *lp_state = FPE_STATE_ON;
7273 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7274 break;
7275 }
7276
7277 if ((*lo_state == FPE_STATE_CAPABLE ||
7278 *lo_state == FPE_STATE_ENTERING_ON) &&
7279 *lp_state != FPE_STATE_ON) {
7280 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7281 *lo_state, *lp_state);
7282 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7283 MPACKET_VERIFY);
7284 }
7285 /* Sleep then retry */
7286 msleep(500);
7287 }
7288
7289 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7290 }
7291
7292 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7293 {
7294 if (priv->plat->fpe_cfg->hs_enable != enable) {
7295 if (enable) {
7296 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7297 MPACKET_VERIFY);
7298 } else {
7299 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7300 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7301 }
7302
7303 priv->plat->fpe_cfg->hs_enable = enable;
7304 }
7305 }
7306
7307 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7308 {
7309 const struct stmmac_xdp_buff *ctx = (void *)_ctx;
7310 struct dma_desc *desc_contains_ts = ctx->desc;
7311 struct stmmac_priv *priv = ctx->priv;
7312 struct dma_desc *ndesc = ctx->ndesc;
7313 struct dma_desc *desc = ctx->desc;
7314 u64 ns = 0;
7315
7316 if (!priv->hwts_rx_en)
7317 return -ENODATA;
7318
7319 /* For GMAC4, the valid timestamp is from CTX next desc. */
7320 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
7321 desc_contains_ts = ndesc;
7322
7323 /* Check if timestamp is available */
7324 if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) {
7325 stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns);
7326 ns -= priv->plat->cdc_error_adj;
7327 *timestamp = ns_to_ktime(ns);
7328 return 0;
7329 }
7330
7331 return -ENODATA;
7332 }
7333
7334 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = {
7335 .xmo_rx_timestamp = stmmac_xdp_rx_timestamp,
7336 };
7337
7338 /**
7339 * stmmac_dvr_probe
7340 * @device: device pointer
7341 * @plat_dat: platform data pointer
7342 * @res: stmmac resource pointer
7343 * Description: this is the main probe function used to
7344 * call the alloc_etherdev, allocate the priv structure.
7345 * Return:
7346 * returns 0 on success, otherwise errno.
7347 */
7348 int stmmac_dvr_probe(struct device *device,
7349 struct plat_stmmacenet_data *plat_dat,
7350 struct stmmac_resources *res)
7351 {
7352 struct net_device *ndev = NULL;
7353 struct stmmac_priv *priv;
7354 u32 rxq;
7355 int i, ret = 0;
7356
7357 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7358 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7359 if (!ndev)
7360 return -ENOMEM;
7361
7362 SET_NETDEV_DEV(ndev, device);
7363
7364 priv = netdev_priv(ndev);
7365 priv->device = device;
7366 priv->dev = ndev;
7367
7368 for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7369 u64_stats_init(&priv->xstats.rxq_stats[i].syncp);
7370 for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7371 u64_stats_init(&priv->xstats.txq_stats[i].syncp);
7372
7373 stmmac_set_ethtool_ops(ndev);
7374 priv->pause = pause;
7375 priv->plat = plat_dat;
7376 priv->ioaddr = res->addr;
7377 priv->dev->base_addr = (unsigned long)res->addr;
7378 priv->plat->dma_cfg->multi_msi_en =
7379 (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN);
7380
7381 priv->dev->irq = res->irq;
7382 priv->wol_irq = res->wol_irq;
7383 priv->lpi_irq = res->lpi_irq;
7384 priv->sfty_ce_irq = res->sfty_ce_irq;
7385 priv->sfty_ue_irq = res->sfty_ue_irq;
7386 for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7387 priv->rx_irq[i] = res->rx_irq[i];
7388 for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7389 priv->tx_irq[i] = res->tx_irq[i];
7390
7391 if (!is_zero_ether_addr(res->mac))
7392 eth_hw_addr_set(priv->dev, res->mac);
7393
7394 dev_set_drvdata(device, priv->dev);
7395
7396 /* Verify driver arguments */
7397 stmmac_verify_args();
7398
7399 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7400 if (!priv->af_xdp_zc_qps)
7401 return -ENOMEM;
7402
7403 /* Allocate workqueue */
7404 priv->wq = create_singlethread_workqueue("stmmac_wq");
7405 if (!priv->wq) {
7406 dev_err(priv->device, "failed to create workqueue\n");
7407 ret = -ENOMEM;
7408 goto error_wq_init;
7409 }
7410
7411 INIT_WORK(&priv->service_task, stmmac_service_task);
7412
7413 /* Initialize Link Partner FPE workqueue */
7414 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7415
7416 /* Override with kernel parameters if supplied XXX CRS XXX
7417 * this needs to have multiple instances
7418 */
7419 if ((phyaddr >= 0) && (phyaddr <= 31))
7420 priv->plat->phy_addr = phyaddr;
7421
7422 if (priv->plat->stmmac_rst) {
7423 ret = reset_control_assert(priv->plat->stmmac_rst);
7424 reset_control_deassert(priv->plat->stmmac_rst);
7425 /* Some reset controllers have only reset callback instead of
7426 * assert + deassert callbacks pair.
7427 */
7428 if (ret == -ENOTSUPP)
7429 reset_control_reset(priv->plat->stmmac_rst);
7430 }
7431
7432 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7433 if (ret == -ENOTSUPP)
7434 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7435 ERR_PTR(ret));
7436
7437 /* Init MAC and get the capabilities */
7438 ret = stmmac_hw_init(priv);
7439 if (ret)
7440 goto error_hw_init;
7441
7442 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7443 */
7444 if (priv->synopsys_id < DWMAC_CORE_5_20)
7445 priv->plat->dma_cfg->dche = false;
7446
7447 stmmac_check_ether_addr(priv);
7448
7449 ndev->netdev_ops = &stmmac_netdev_ops;
7450
7451 ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops;
7452
7453 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7454 NETIF_F_RXCSUM;
7455 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7456 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7457
7458 ret = stmmac_tc_init(priv, priv);
7459 if (!ret) {
7460 ndev->hw_features |= NETIF_F_HW_TC;
7461 }
7462
7463 if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
7464 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7465 if (priv->plat->has_gmac4)
7466 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7467 priv->tso = true;
7468 dev_info(priv->device, "TSO feature enabled\n");
7469 }
7470
7471 if (priv->dma_cap.sphen &&
7472 !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) {
7473 ndev->hw_features |= NETIF_F_GRO;
7474 priv->sph_cap = true;
7475 priv->sph = priv->sph_cap;
7476 dev_info(priv->device, "SPH feature enabled\n");
7477 }
7478
7479 /* Ideally our host DMA address width is the same as for the
7480 * device. However, it may differ and then we have to use our
7481 * host DMA width for allocation and the device DMA width for
7482 * register handling.
7483 */
7484 if (priv->plat->host_dma_width)
7485 priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7486 else
7487 priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7488
7489 if (priv->dma_cap.host_dma_width) {
7490 ret = dma_set_mask_and_coherent(device,
7491 DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7492 if (!ret) {
7493 dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7494 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7495
7496 /*
7497 * If more than 32 bits can be addressed, make sure to
7498 * enable enhanced addressing mode.
7499 */
7500 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7501 priv->plat->dma_cfg->eame = true;
7502 } else {
7503 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7504 if (ret) {
7505 dev_err(priv->device, "Failed to set DMA Mask\n");
7506 goto error_hw_init;
7507 }
7508
7509 priv->dma_cap.host_dma_width = 32;
7510 }
7511 }
7512
7513 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7514 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7515 #ifdef STMMAC_VLAN_TAG_USED
7516 /* Both mac100 and gmac support receive VLAN tag detection */
7517 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7518 if (priv->dma_cap.vlhash) {
7519 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7520 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7521 }
7522 if (priv->dma_cap.vlins) {
7523 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7524 if (priv->dma_cap.dvlan)
7525 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7526 }
7527 #endif
7528 priv->msg_enable = netif_msg_init(debug, default_msg_level);
7529
7530 priv->xstats.threshold = tc;
7531
7532 /* Initialize RSS */
7533 rxq = priv->plat->rx_queues_to_use;
7534 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7535 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7536 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7537
7538 if (priv->dma_cap.rssen && priv->plat->rss_en)
7539 ndev->features |= NETIF_F_RXHASH;
7540
7541 ndev->vlan_features |= ndev->features;
7542 /* TSO doesn't work on VLANs yet */
7543 ndev->vlan_features &= ~NETIF_F_TSO;
7544
7545 /* MTU range: 46 - hw-specific max */
7546 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7547 if (priv->plat->has_xgmac)
7548 ndev->max_mtu = XGMAC_JUMBO_LEN;
7549 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7550 ndev->max_mtu = JUMBO_LEN;
7551 else
7552 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7553 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7554 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7555 */
7556 if ((priv->plat->maxmtu < ndev->max_mtu) &&
7557 (priv->plat->maxmtu >= ndev->min_mtu))
7558 ndev->max_mtu = priv->plat->maxmtu;
7559 else if (priv->plat->maxmtu < ndev->min_mtu)
7560 dev_warn(priv->device,
7561 "%s: warning: maxmtu having invalid value (%d)\n",
7562 __func__, priv->plat->maxmtu);
7563
7564 if (flow_ctrl)
7565 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
7566
7567 ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
7568
7569 /* Setup channels NAPI */
7570 stmmac_napi_add(ndev);
7571
7572 mutex_init(&priv->lock);
7573
7574 /* If a specific clk_csr value is passed from the platform
7575 * this means that the CSR Clock Range selection cannot be
7576 * changed at run-time and it is fixed. Viceversa the driver'll try to
7577 * set the MDC clock dynamically according to the csr actual
7578 * clock input.
7579 */
7580 if (priv->plat->clk_csr >= 0)
7581 priv->clk_csr = priv->plat->clk_csr;
7582 else
7583 stmmac_clk_csr_set(priv);
7584
7585 stmmac_check_pcs_mode(priv);
7586
7587 pm_runtime_get_noresume(device);
7588 pm_runtime_set_active(device);
7589 if (!pm_runtime_enabled(device))
7590 pm_runtime_enable(device);
7591
7592 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7593 priv->hw->pcs != STMMAC_PCS_RTBI) {
7594 /* MDIO bus Registration */
7595 ret = stmmac_mdio_register(ndev);
7596 if (ret < 0) {
7597 dev_err_probe(priv->device, ret,
7598 "%s: MDIO bus (id: %d) registration failed\n",
7599 __func__, priv->plat->bus_id);
7600 goto error_mdio_register;
7601 }
7602 }
7603
7604 if (priv->plat->speed_mode_2500)
7605 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7606
7607 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7608 ret = stmmac_xpcs_setup(priv->mii);
7609 if (ret)
7610 goto error_xpcs_setup;
7611 }
7612
7613 ret = stmmac_phy_setup(priv);
7614 if (ret) {
7615 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7616 goto error_phy_setup;
7617 }
7618
7619 ret = register_netdev(ndev);
7620 if (ret) {
7621 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7622 __func__, ret);
7623 goto error_netdev_register;
7624 }
7625
7626 #ifdef CONFIG_DEBUG_FS
7627 stmmac_init_fs(ndev);
7628 #endif
7629
7630 if (priv->plat->dump_debug_regs)
7631 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7632
7633 /* Let pm_runtime_put() disable the clocks.
7634 * If CONFIG_PM is not enabled, the clocks will stay powered.
7635 */
7636 pm_runtime_put(device);
7637
7638 return ret;
7639
7640 error_netdev_register:
7641 phylink_destroy(priv->phylink);
7642 error_xpcs_setup:
7643 error_phy_setup:
7644 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7645 priv->hw->pcs != STMMAC_PCS_RTBI)
7646 stmmac_mdio_unregister(ndev);
7647 error_mdio_register:
7648 stmmac_napi_del(ndev);
7649 error_hw_init:
7650 destroy_workqueue(priv->wq);
7651 error_wq_init:
7652 bitmap_free(priv->af_xdp_zc_qps);
7653
7654 return ret;
7655 }
7656 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7657
7658 /**
7659 * stmmac_dvr_remove
7660 * @dev: device pointer
7661 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7662 * changes the link status, releases the DMA descriptor rings.
7663 */
7664 void stmmac_dvr_remove(struct device *dev)
7665 {
7666 struct net_device *ndev = dev_get_drvdata(dev);
7667 struct stmmac_priv *priv = netdev_priv(ndev);
7668
7669 netdev_info(priv->dev, "%s: removing driver", __func__);
7670
7671 pm_runtime_get_sync(dev);
7672
7673 stmmac_stop_all_dma(priv);
7674 stmmac_mac_set(priv, priv->ioaddr, false);
7675 netif_carrier_off(ndev);
7676 unregister_netdev(ndev);
7677
7678 #ifdef CONFIG_DEBUG_FS
7679 stmmac_exit_fs(ndev);
7680 #endif
7681 phylink_destroy(priv->phylink);
7682 if (priv->plat->stmmac_rst)
7683 reset_control_assert(priv->plat->stmmac_rst);
7684 reset_control_assert(priv->plat->stmmac_ahb_rst);
7685 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7686 priv->hw->pcs != STMMAC_PCS_RTBI)
7687 stmmac_mdio_unregister(ndev);
7688 destroy_workqueue(priv->wq);
7689 mutex_destroy(&priv->lock);
7690 bitmap_free(priv->af_xdp_zc_qps);
7691
7692 pm_runtime_disable(dev);
7693 pm_runtime_put_noidle(dev);
7694 }
7695 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7696
7697 /**
7698 * stmmac_suspend - suspend callback
7699 * @dev: device pointer
7700 * Description: this is the function to suspend the device and it is called
7701 * by the platform driver to stop the network queue, release the resources,
7702 * program the PMT register (for WoL), clean and release driver resources.
7703 */
7704 int stmmac_suspend(struct device *dev)
7705 {
7706 struct net_device *ndev = dev_get_drvdata(dev);
7707 struct stmmac_priv *priv = netdev_priv(ndev);
7708 u32 chan;
7709
7710 if (!ndev || !netif_running(ndev))
7711 return 0;
7712
7713 mutex_lock(&priv->lock);
7714
7715 netif_device_detach(ndev);
7716
7717 stmmac_disable_all_queues(priv);
7718
7719 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7720 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7721
7722 if (priv->eee_enabled) {
7723 priv->tx_path_in_lpi_mode = false;
7724 del_timer_sync(&priv->eee_ctrl_timer);
7725 }
7726
7727 /* Stop TX/RX DMA */
7728 stmmac_stop_all_dma(priv);
7729
7730 if (priv->plat->serdes_powerdown)
7731 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7732
7733 /* Enable Power down mode by programming the PMT regs */
7734 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7735 stmmac_pmt(priv, priv->hw, priv->wolopts);
7736 priv->irq_wake = 1;
7737 } else {
7738 stmmac_mac_set(priv, priv->ioaddr, false);
7739 pinctrl_pm_select_sleep_state(priv->device);
7740 }
7741
7742 mutex_unlock(&priv->lock);
7743
7744 rtnl_lock();
7745 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7746 phylink_suspend(priv->phylink, true);
7747 } else {
7748 if (device_may_wakeup(priv->device))
7749 phylink_speed_down(priv->phylink, false);
7750 phylink_suspend(priv->phylink, false);
7751 }
7752 rtnl_unlock();
7753
7754 if (priv->dma_cap.fpesel) {
7755 /* Disable FPE */
7756 stmmac_fpe_configure(priv, priv->ioaddr,
7757 priv->plat->tx_queues_to_use,
7758 priv->plat->rx_queues_to_use, false);
7759
7760 stmmac_fpe_handshake(priv, false);
7761 stmmac_fpe_stop_wq(priv);
7762 }
7763
7764 priv->speed = SPEED_UNKNOWN;
7765 return 0;
7766 }
7767 EXPORT_SYMBOL_GPL(stmmac_suspend);
7768
7769 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7770 {
7771 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7772
7773 rx_q->cur_rx = 0;
7774 rx_q->dirty_rx = 0;
7775 }
7776
7777 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7778 {
7779 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7780
7781 tx_q->cur_tx = 0;
7782 tx_q->dirty_tx = 0;
7783 tx_q->mss = 0;
7784
7785 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7786 }
7787
7788 /**
7789 * stmmac_reset_queues_param - reset queue parameters
7790 * @priv: device pointer
7791 */
7792 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7793 {
7794 u32 rx_cnt = priv->plat->rx_queues_to_use;
7795 u32 tx_cnt = priv->plat->tx_queues_to_use;
7796 u32 queue;
7797
7798 for (queue = 0; queue < rx_cnt; queue++)
7799 stmmac_reset_rx_queue(priv, queue);
7800
7801 for (queue = 0; queue < tx_cnt; queue++)
7802 stmmac_reset_tx_queue(priv, queue);
7803 }
7804
7805 /**
7806 * stmmac_resume - resume callback
7807 * @dev: device pointer
7808 * Description: when resume this function is invoked to setup the DMA and CORE
7809 * in a usable state.
7810 */
7811 int stmmac_resume(struct device *dev)
7812 {
7813 struct net_device *ndev = dev_get_drvdata(dev);
7814 struct stmmac_priv *priv = netdev_priv(ndev);
7815 int ret;
7816
7817 if (!netif_running(ndev))
7818 return 0;
7819
7820 /* Power Down bit, into the PM register, is cleared
7821 * automatically as soon as a magic packet or a Wake-up frame
7822 * is received. Anyway, it's better to manually clear
7823 * this bit because it can generate problems while resuming
7824 * from another devices (e.g. serial console).
7825 */
7826 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7827 mutex_lock(&priv->lock);
7828 stmmac_pmt(priv, priv->hw, 0);
7829 mutex_unlock(&priv->lock);
7830 priv->irq_wake = 0;
7831 } else {
7832 pinctrl_pm_select_default_state(priv->device);
7833 /* reset the phy so that it's ready */
7834 if (priv->mii)
7835 stmmac_mdio_reset(priv->mii);
7836 }
7837
7838 if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
7839 priv->plat->serdes_powerup) {
7840 ret = priv->plat->serdes_powerup(ndev,
7841 priv->plat->bsp_priv);
7842
7843 if (ret < 0)
7844 return ret;
7845 }
7846
7847 rtnl_lock();
7848 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7849 phylink_resume(priv->phylink);
7850 } else {
7851 phylink_resume(priv->phylink);
7852 if (device_may_wakeup(priv->device))
7853 phylink_speed_up(priv->phylink);
7854 }
7855 rtnl_unlock();
7856
7857 rtnl_lock();
7858 mutex_lock(&priv->lock);
7859
7860 stmmac_reset_queues_param(priv);
7861
7862 stmmac_free_tx_skbufs(priv);
7863 stmmac_clear_descriptors(priv, &priv->dma_conf);
7864
7865 stmmac_hw_setup(ndev, false);
7866 stmmac_init_coalesce(priv);
7867 stmmac_set_rx_mode(ndev);
7868
7869 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7870
7871 stmmac_enable_all_queues(priv);
7872 stmmac_enable_all_dma_irq(priv);
7873
7874 mutex_unlock(&priv->lock);
7875 rtnl_unlock();
7876
7877 netif_device_attach(ndev);
7878
7879 return 0;
7880 }
7881 EXPORT_SYMBOL_GPL(stmmac_resume);
7882
7883 #ifndef MODULE
7884 static int __init stmmac_cmdline_opt(char *str)
7885 {
7886 char *opt;
7887
7888 if (!str || !*str)
7889 return 1;
7890 while ((opt = strsep(&str, ",")) != NULL) {
7891 if (!strncmp(opt, "debug:", 6)) {
7892 if (kstrtoint(opt + 6, 0, &debug))
7893 goto err;
7894 } else if (!strncmp(opt, "phyaddr:", 8)) {
7895 if (kstrtoint(opt + 8, 0, &phyaddr))
7896 goto err;
7897 } else if (!strncmp(opt, "buf_sz:", 7)) {
7898 if (kstrtoint(opt + 7, 0, &buf_sz))
7899 goto err;
7900 } else if (!strncmp(opt, "tc:", 3)) {
7901 if (kstrtoint(opt + 3, 0, &tc))
7902 goto err;
7903 } else if (!strncmp(opt, "watchdog:", 9)) {
7904 if (kstrtoint(opt + 9, 0, &watchdog))
7905 goto err;
7906 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7907 if (kstrtoint(opt + 10, 0, &flow_ctrl))
7908 goto err;
7909 } else if (!strncmp(opt, "pause:", 6)) {
7910 if (kstrtoint(opt + 6, 0, &pause))
7911 goto err;
7912 } else if (!strncmp(opt, "eee_timer:", 10)) {
7913 if (kstrtoint(opt + 10, 0, &eee_timer))
7914 goto err;
7915 } else if (!strncmp(opt, "chain_mode:", 11)) {
7916 if (kstrtoint(opt + 11, 0, &chain_mode))
7917 goto err;
7918 }
7919 }
7920 return 1;
7921
7922 err:
7923 pr_err("%s: ERROR broken module parameter conversion", __func__);
7924 return 1;
7925 }
7926
7927 __setup("stmmaceth=", stmmac_cmdline_opt);
7928 #endif /* MODULE */
7929
7930 static int __init stmmac_init(void)
7931 {
7932 #ifdef CONFIG_DEBUG_FS
7933 /* Create debugfs main directory if it doesn't exist yet */
7934 if (!stmmac_fs_dir)
7935 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7936 register_netdevice_notifier(&stmmac_notifier);
7937 #endif
7938
7939 return 0;
7940 }
7941
7942 static void __exit stmmac_exit(void)
7943 {
7944 #ifdef CONFIG_DEBUG_FS
7945 unregister_netdevice_notifier(&stmmac_notifier);
7946 debugfs_remove_recursive(stmmac_fs_dir);
7947 #endif
7948 }
7949
7950 module_init(stmmac_init)
7951 module_exit(stmmac_exit)
7952
7953 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7954 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7955 MODULE_LICENSE("GPL");