]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48
49 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
51
52 /* Module parameters */
53 #define TX_TIMEO 5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65
66 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
68
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86
87 #define STMMAC_RX_COPYBREAK 256
88
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92
93 #define STMMAC_DEFAULT_LPI_TIMER 1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100 * but allow user to force to use the chain instead of the ring
101 */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115
116 /**
117 * stmmac_verify_args - verify the driver parameters.
118 * Description: it checks the driver parameters and set a default in case of
119 * errors.
120 */
121 static void stmmac_verify_args(void)
122 {
123 if (unlikely(watchdog < 0))
124 watchdog = TX_TIMEO;
125 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 buf_sz = DEFAULT_BUFSIZE;
127 if (unlikely(flow_ctrl > 1))
128 flow_ctrl = FLOW_AUTO;
129 else if (likely(flow_ctrl < 0))
130 flow_ctrl = FLOW_OFF;
131 if (unlikely((pause < 0) || (pause > 0xffff)))
132 pause = PAUSE_TIME;
133 if (eee_timer < 0)
134 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136
137 /**
138 * stmmac_disable_all_queues - Disable all queues
139 * @priv: driver private structure
140 */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146 u32 queue;
147
148 for (queue = 0; queue < maxq; queue++) {
149 struct stmmac_channel *ch = &priv->channel[queue];
150
151 if (queue < rx_queues_cnt)
152 napi_disable(&ch->rx_napi);
153 if (queue < tx_queues_cnt)
154 napi_disable(&ch->tx_napi);
155 }
156 }
157
158 /**
159 * stmmac_enable_all_queues - Enable all queues
160 * @priv: driver private structure
161 */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167 u32 queue;
168
169 for (queue = 0; queue < maxq; queue++) {
170 struct stmmac_channel *ch = &priv->channel[queue];
171
172 if (queue < rx_queues_cnt)
173 napi_enable(&ch->rx_napi);
174 if (queue < tx_queues_cnt)
175 napi_enable(&ch->tx_napi);
176 }
177 }
178
179 /**
180 * stmmac_stop_all_queues - Stop all queues
181 * @priv: driver private structure
182 */
183 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
184 {
185 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
186 u32 queue;
187
188 for (queue = 0; queue < tx_queues_cnt; queue++)
189 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
190 }
191
192 /**
193 * stmmac_start_all_queues - Start all queues
194 * @priv: driver private structure
195 */
196 static void stmmac_start_all_queues(struct stmmac_priv *priv)
197 {
198 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
199 u32 queue;
200
201 for (queue = 0; queue < tx_queues_cnt; queue++)
202 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
203 }
204
205 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
206 {
207 if (!test_bit(STMMAC_DOWN, &priv->state) &&
208 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
209 queue_work(priv->wq, &priv->service_task);
210 }
211
212 static void stmmac_global_err(struct stmmac_priv *priv)
213 {
214 netif_carrier_off(priv->dev);
215 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
216 stmmac_service_event_schedule(priv);
217 }
218
219 /**
220 * stmmac_clk_csr_set - dynamically set the MDC clock
221 * @priv: driver private structure
222 * Description: this is to dynamically set the MDC clock according to the csr
223 * clock input.
224 * Note:
225 * If a specific clk_csr value is passed from the platform
226 * this means that the CSR Clock Range selection cannot be
227 * changed at run-time and it is fixed (as reported in the driver
228 * documentation). Viceversa the driver will try to set the MDC
229 * clock dynamically according to the actual clock input.
230 */
231 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
232 {
233 u32 clk_rate;
234
235 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
236
237 /* Platform provided default clk_csr would be assumed valid
238 * for all other cases except for the below mentioned ones.
239 * For values higher than the IEEE 802.3 specified frequency
240 * we can not estimate the proper divider as it is not known
241 * the frequency of clk_csr_i. So we do not change the default
242 * divider.
243 */
244 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
245 if (clk_rate < CSR_F_35M)
246 priv->clk_csr = STMMAC_CSR_20_35M;
247 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
248 priv->clk_csr = STMMAC_CSR_35_60M;
249 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
250 priv->clk_csr = STMMAC_CSR_60_100M;
251 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
252 priv->clk_csr = STMMAC_CSR_100_150M;
253 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
254 priv->clk_csr = STMMAC_CSR_150_250M;
255 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
256 priv->clk_csr = STMMAC_CSR_250_300M;
257 }
258
259 if (priv->plat->has_sun8i) {
260 if (clk_rate > 160000000)
261 priv->clk_csr = 0x03;
262 else if (clk_rate > 80000000)
263 priv->clk_csr = 0x02;
264 else if (clk_rate > 40000000)
265 priv->clk_csr = 0x01;
266 else
267 priv->clk_csr = 0;
268 }
269
270 if (priv->plat->has_xgmac) {
271 if (clk_rate > 400000000)
272 priv->clk_csr = 0x5;
273 else if (clk_rate > 350000000)
274 priv->clk_csr = 0x4;
275 else if (clk_rate > 300000000)
276 priv->clk_csr = 0x3;
277 else if (clk_rate > 250000000)
278 priv->clk_csr = 0x2;
279 else if (clk_rate > 150000000)
280 priv->clk_csr = 0x1;
281 else
282 priv->clk_csr = 0x0;
283 }
284 }
285
286 static void print_pkt(unsigned char *buf, int len)
287 {
288 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
289 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
290 }
291
292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
293 {
294 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
295 u32 avail;
296
297 if (tx_q->dirty_tx > tx_q->cur_tx)
298 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
299 else
300 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
301
302 return avail;
303 }
304
305 /**
306 * stmmac_rx_dirty - Get RX queue dirty
307 * @priv: driver private structure
308 * @queue: RX queue index
309 */
310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
311 {
312 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
313 u32 dirty;
314
315 if (rx_q->dirty_rx <= rx_q->cur_rx)
316 dirty = rx_q->cur_rx - rx_q->dirty_rx;
317 else
318 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
319
320 return dirty;
321 }
322
323 /**
324 * stmmac_enable_eee_mode - check and enter in LPI mode
325 * @priv: driver private structure
326 * Description: this function is to verify and enter in LPI mode in case of
327 * EEE.
328 */
329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
330 {
331 u32 tx_cnt = priv->plat->tx_queues_to_use;
332 u32 queue;
333
334 /* check if all TX queues have the work finished */
335 for (queue = 0; queue < tx_cnt; queue++) {
336 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
337
338 if (tx_q->dirty_tx != tx_q->cur_tx)
339 return; /* still unfinished work */
340 }
341
342 /* Check and enter in LPI mode */
343 if (!priv->tx_path_in_lpi_mode)
344 stmmac_set_eee_mode(priv, priv->hw,
345 priv->plat->en_tx_lpi_clockgating);
346 }
347
348 /**
349 * stmmac_disable_eee_mode - disable and exit from LPI mode
350 * @priv: driver private structure
351 * Description: this function is to exit and disable EEE in case of
352 * LPI state is true. This is called by the xmit.
353 */
354 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
355 {
356 stmmac_reset_eee_mode(priv, priv->hw);
357 del_timer_sync(&priv->eee_ctrl_timer);
358 priv->tx_path_in_lpi_mode = false;
359 }
360
361 /**
362 * stmmac_eee_ctrl_timer - EEE TX SW timer.
363 * @arg : data hook
364 * Description:
365 * if there is no data transfer and if we are not in LPI state,
366 * then MAC Transmitter can be moved to LPI state.
367 */
368 static void stmmac_eee_ctrl_timer(struct timer_list *t)
369 {
370 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
371
372 stmmac_enable_eee_mode(priv);
373 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
374 }
375
376 /**
377 * stmmac_eee_init - init EEE
378 * @priv: driver private structure
379 * Description:
380 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
381 * can also manage EEE, this function enable the LPI state and start related
382 * timer.
383 */
384 bool stmmac_eee_init(struct stmmac_priv *priv)
385 {
386 int tx_lpi_timer = priv->tx_lpi_timer;
387
388 /* Using PCS we cannot dial with the phy registers at this stage
389 * so we do not support extra feature like EEE.
390 */
391 if (priv->hw->pcs == STMMAC_PCS_TBI ||
392 priv->hw->pcs == STMMAC_PCS_RTBI)
393 return false;
394
395 /* Check if MAC core supports the EEE feature. */
396 if (!priv->dma_cap.eee)
397 return false;
398
399 mutex_lock(&priv->lock);
400
401 /* Check if it needs to be deactivated */
402 if (!priv->eee_active) {
403 if (priv->eee_enabled) {
404 netdev_dbg(priv->dev, "disable EEE\n");
405 del_timer_sync(&priv->eee_ctrl_timer);
406 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407 }
408 mutex_unlock(&priv->lock);
409 return false;
410 }
411
412 if (priv->eee_active && !priv->eee_enabled) {
413 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416 tx_lpi_timer);
417 }
418
419 mutex_unlock(&priv->lock);
420 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421 return true;
422 }
423
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425 * @priv: driver private structure
426 * @p : descriptor pointer
427 * @skb : the socket buffer
428 * Description :
429 * This function will read timestamp from the descriptor & pass it to stack.
430 * and also perform some sanity checks.
431 */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433 struct dma_desc *p, struct sk_buff *skb)
434 {
435 struct skb_shared_hwtstamps shhwtstamp;
436 bool found = false;
437 u64 ns = 0;
438
439 if (!priv->hwts_tx_en)
440 return;
441
442 /* exit if skb doesn't support hw tstamp */
443 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444 return;
445
446 /* check tx tstamp status */
447 if (stmmac_get_tx_timestamp_status(priv, p)) {
448 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449 found = true;
450 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451 found = true;
452 }
453
454 if (found) {
455 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456 shhwtstamp.hwtstamp = ns_to_ktime(ns);
457
458 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459 /* pass tstamp to stack */
460 skb_tstamp_tx(skb, &shhwtstamp);
461 }
462 }
463
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465 * @priv: driver private structure
466 * @p : descriptor pointer
467 * @np : next descriptor pointer
468 * @skb : the socket buffer
469 * Description :
470 * This function will read received packet's timestamp from the descriptor
471 * and pass it to stack. It also perform some sanity checks.
472 */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474 struct dma_desc *np, struct sk_buff *skb)
475 {
476 struct skb_shared_hwtstamps *shhwtstamp = NULL;
477 struct dma_desc *desc = p;
478 u64 ns = 0;
479
480 if (!priv->hwts_rx_en)
481 return;
482 /* For GMAC4, the valid timestamp is from CTX next desc. */
483 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484 desc = np;
485
486 /* Check if timestamp is available */
487 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490 shhwtstamp = skb_hwtstamps(skb);
491 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 shhwtstamp->hwtstamp = ns_to_ktime(ns);
493 } else {
494 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495 }
496 }
497
498 /**
499 * stmmac_hwtstamp_set - control hardware timestamping.
500 * @dev: device pointer.
501 * @ifr: An IOCTL specific structure, that can contain a pointer to
502 * a proprietary structure used to pass information to the driver.
503 * Description:
504 * This function configures the MAC to enable/disable both outgoing(TX)
505 * and incoming(RX) packets time stamping based on user input.
506 * Return Value:
507 * 0 on success and an appropriate -ve integer on failure.
508 */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511 struct stmmac_priv *priv = netdev_priv(dev);
512 struct hwtstamp_config config;
513 struct timespec64 now;
514 u64 temp = 0;
515 u32 ptp_v2 = 0;
516 u32 tstamp_all = 0;
517 u32 ptp_over_ipv4_udp = 0;
518 u32 ptp_over_ipv6_udp = 0;
519 u32 ptp_over_ethernet = 0;
520 u32 snap_type_sel = 0;
521 u32 ts_master_en = 0;
522 u32 ts_event_en = 0;
523 u32 sec_inc = 0;
524 u32 value = 0;
525 bool xmac;
526
527 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528
529 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530 netdev_alert(priv->dev, "No support for HW time stamping\n");
531 priv->hwts_tx_en = 0;
532 priv->hwts_rx_en = 0;
533
534 return -EOPNOTSUPP;
535 }
536
537 if (copy_from_user(&config, ifr->ifr_data,
538 sizeof(config)))
539 return -EFAULT;
540
541 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542 __func__, config.flags, config.tx_type, config.rx_filter);
543
544 /* reserved for future extensions */
545 if (config.flags)
546 return -EINVAL;
547
548 if (config.tx_type != HWTSTAMP_TX_OFF &&
549 config.tx_type != HWTSTAMP_TX_ON)
550 return -ERANGE;
551
552 if (priv->adv_ts) {
553 switch (config.rx_filter) {
554 case HWTSTAMP_FILTER_NONE:
555 /* time stamp no incoming packet at all */
556 config.rx_filter = HWTSTAMP_FILTER_NONE;
557 break;
558
559 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560 /* PTP v1, UDP, any kind of event packet */
561 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562 /* 'xmac' hardware can support Sync, Pdelay_Req and
563 * Pdelay_resp by setting bit14 and bits17/16 to 01
564 * This leaves Delay_Req timestamps out.
565 * Enable all events *and* general purpose message
566 * timestamping
567 */
568 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571 break;
572
573 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574 /* PTP v1, UDP, Sync packet */
575 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576 /* take time stamp for SYNC messages only */
577 ts_event_en = PTP_TCR_TSEVNTENA;
578
579 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581 break;
582
583 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 /* PTP v1, UDP, Delay_req packet */
585 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586 /* take time stamp for Delay_Req messages only */
587 ts_master_en = PTP_TCR_TSMSTRENA;
588 ts_event_en = PTP_TCR_TSEVNTENA;
589
590 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592 break;
593
594 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595 /* PTP v2, UDP, any kind of event packet */
596 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597 ptp_v2 = PTP_TCR_TSVER2ENA;
598 /* take time stamp for all event messages */
599 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600
601 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603 break;
604
605 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606 /* PTP v2, UDP, Sync packet */
607 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608 ptp_v2 = PTP_TCR_TSVER2ENA;
609 /* take time stamp for SYNC messages only */
610 ts_event_en = PTP_TCR_TSEVNTENA;
611
612 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614 break;
615
616 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617 /* PTP v2, UDP, Delay_req packet */
618 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619 ptp_v2 = PTP_TCR_TSVER2ENA;
620 /* take time stamp for Delay_Req messages only */
621 ts_master_en = PTP_TCR_TSMSTRENA;
622 ts_event_en = PTP_TCR_TSEVNTENA;
623
624 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626 break;
627
628 case HWTSTAMP_FILTER_PTP_V2_EVENT:
629 /* PTP v2/802.AS1 any layer, any kind of event packet */
630 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631 ptp_v2 = PTP_TCR_TSVER2ENA;
632 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633 ts_event_en = PTP_TCR_TSEVNTENA;
634 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636 ptp_over_ethernet = PTP_TCR_TSIPENA;
637 break;
638
639 case HWTSTAMP_FILTER_PTP_V2_SYNC:
640 /* PTP v2/802.AS1, any layer, Sync packet */
641 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642 ptp_v2 = PTP_TCR_TSVER2ENA;
643 /* take time stamp for SYNC messages only */
644 ts_event_en = PTP_TCR_TSEVNTENA;
645
646 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648 ptp_over_ethernet = PTP_TCR_TSIPENA;
649 break;
650
651 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652 /* PTP v2/802.AS1, any layer, Delay_req packet */
653 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654 ptp_v2 = PTP_TCR_TSVER2ENA;
655 /* take time stamp for Delay_Req messages only */
656 ts_master_en = PTP_TCR_TSMSTRENA;
657 ts_event_en = PTP_TCR_TSEVNTENA;
658
659 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661 ptp_over_ethernet = PTP_TCR_TSIPENA;
662 break;
663
664 case HWTSTAMP_FILTER_NTP_ALL:
665 case HWTSTAMP_FILTER_ALL:
666 /* time stamp any incoming packet */
667 config.rx_filter = HWTSTAMP_FILTER_ALL;
668 tstamp_all = PTP_TCR_TSENALL;
669 break;
670
671 default:
672 return -ERANGE;
673 }
674 } else {
675 switch (config.rx_filter) {
676 case HWTSTAMP_FILTER_NONE:
677 config.rx_filter = HWTSTAMP_FILTER_NONE;
678 break;
679 default:
680 /* PTP v1, UDP, any kind of event packet */
681 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682 break;
683 }
684 }
685 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687
688 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690 else {
691 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692 tstamp_all | ptp_v2 | ptp_over_ethernet |
693 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694 ts_master_en | snap_type_sel);
695 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696
697 /* program Sub Second Increment reg */
698 stmmac_config_sub_second_increment(priv,
699 priv->ptpaddr, priv->plat->clk_ptp_rate,
700 xmac, &sec_inc);
701 temp = div_u64(1000000000ULL, sec_inc);
702
703 /* Store sub second increment and flags for later use */
704 priv->sub_second_inc = sec_inc;
705 priv->systime_flags = value;
706
707 /* calculate default added value:
708 * formula is :
709 * addend = (2^32)/freq_div_ratio;
710 * where, freq_div_ratio = 1e9ns/sec_inc
711 */
712 temp = (u64)(temp << 32);
713 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715
716 /* initialize system time */
717 ktime_get_real_ts64(&now);
718
719 /* lower 32 bits of tv_sec are safe until y2106 */
720 stmmac_init_systime(priv, priv->ptpaddr,
721 (u32)now.tv_sec, now.tv_nsec);
722 }
723
724 memcpy(&priv->tstamp_config, &config, sizeof(config));
725
726 return copy_to_user(ifr->ifr_data, &config,
727 sizeof(config)) ? -EFAULT : 0;
728 }
729
730 /**
731 * stmmac_hwtstamp_get - read hardware timestamping.
732 * @dev: device pointer.
733 * @ifr: An IOCTL specific structure, that can contain a pointer to
734 * a proprietary structure used to pass information to the driver.
735 * Description:
736 * This function obtain the current hardware timestamping settings
737 as requested.
738 */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741 struct stmmac_priv *priv = netdev_priv(dev);
742 struct hwtstamp_config *config = &priv->tstamp_config;
743
744 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745 return -EOPNOTSUPP;
746
747 return copy_to_user(ifr->ifr_data, config,
748 sizeof(*config)) ? -EFAULT : 0;
749 }
750
751 /**
752 * stmmac_init_ptp - init PTP
753 * @priv: driver private structure
754 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755 * This is done by looking at the HW cap. register.
756 * This function also registers the ptp driver.
757 */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761
762 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763 return -EOPNOTSUPP;
764
765 priv->adv_ts = 0;
766 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767 if (xmac && priv->dma_cap.atime_stamp)
768 priv->adv_ts = 1;
769 /* Dwmac 3.x core with extend_desc can support adv_ts */
770 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771 priv->adv_ts = 1;
772
773 if (priv->dma_cap.time_stamp)
774 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775
776 if (priv->adv_ts)
777 netdev_info(priv->dev,
778 "IEEE 1588-2008 Advanced Timestamp supported\n");
779
780 priv->hwts_tx_en = 0;
781 priv->hwts_rx_en = 0;
782
783 stmmac_ptp_register(priv);
784
785 return 0;
786 }
787
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790 if (priv->plat->clk_ptp_ref)
791 clk_disable_unprepare(priv->plat->clk_ptp_ref);
792 stmmac_ptp_unregister(priv);
793 }
794
795 /**
796 * stmmac_mac_flow_ctrl - Configure flow control in all queues
797 * @priv: driver private structure
798 * Description: It is used for configuring the flow control in all queues
799 */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802 u32 tx_cnt = priv->plat->tx_queues_to_use;
803
804 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805 priv->pause, tx_cnt);
806 }
807
808 static void stmmac_validate(struct phylink_config *config,
809 unsigned long *supported,
810 struct phylink_link_state *state)
811 {
812 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815 int tx_cnt = priv->plat->tx_queues_to_use;
816 int max_speed = priv->plat->max_speed;
817
818 phylink_set(mac_supported, 10baseT_Half);
819 phylink_set(mac_supported, 10baseT_Full);
820 phylink_set(mac_supported, 100baseT_Half);
821 phylink_set(mac_supported, 100baseT_Full);
822 phylink_set(mac_supported, 1000baseT_Half);
823 phylink_set(mac_supported, 1000baseT_Full);
824 phylink_set(mac_supported, 1000baseKX_Full);
825
826 phylink_set(mac_supported, Autoneg);
827 phylink_set(mac_supported, Pause);
828 phylink_set(mac_supported, Asym_Pause);
829 phylink_set_port_modes(mac_supported);
830
831 /* Cut down 1G if asked to */
832 if ((max_speed > 0) && (max_speed < 1000)) {
833 phylink_set(mask, 1000baseT_Full);
834 phylink_set(mask, 1000baseX_Full);
835 } else if (priv->plat->has_xgmac) {
836 if (!max_speed || (max_speed >= 2500)) {
837 phylink_set(mac_supported, 2500baseT_Full);
838 phylink_set(mac_supported, 2500baseX_Full);
839 }
840 if (!max_speed || (max_speed >= 5000)) {
841 phylink_set(mac_supported, 5000baseT_Full);
842 }
843 if (!max_speed || (max_speed >= 10000)) {
844 phylink_set(mac_supported, 10000baseSR_Full);
845 phylink_set(mac_supported, 10000baseLR_Full);
846 phylink_set(mac_supported, 10000baseER_Full);
847 phylink_set(mac_supported, 10000baseLRM_Full);
848 phylink_set(mac_supported, 10000baseT_Full);
849 phylink_set(mac_supported, 10000baseKX4_Full);
850 phylink_set(mac_supported, 10000baseKR_Full);
851 }
852 if (!max_speed || (max_speed >= 25000)) {
853 phylink_set(mac_supported, 25000baseCR_Full);
854 phylink_set(mac_supported, 25000baseKR_Full);
855 phylink_set(mac_supported, 25000baseSR_Full);
856 }
857 if (!max_speed || (max_speed >= 40000)) {
858 phylink_set(mac_supported, 40000baseKR4_Full);
859 phylink_set(mac_supported, 40000baseCR4_Full);
860 phylink_set(mac_supported, 40000baseSR4_Full);
861 phylink_set(mac_supported, 40000baseLR4_Full);
862 }
863 if (!max_speed || (max_speed >= 50000)) {
864 phylink_set(mac_supported, 50000baseCR2_Full);
865 phylink_set(mac_supported, 50000baseKR2_Full);
866 phylink_set(mac_supported, 50000baseSR2_Full);
867 phylink_set(mac_supported, 50000baseKR_Full);
868 phylink_set(mac_supported, 50000baseSR_Full);
869 phylink_set(mac_supported, 50000baseCR_Full);
870 phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
871 phylink_set(mac_supported, 50000baseDR_Full);
872 }
873 if (!max_speed || (max_speed >= 100000)) {
874 phylink_set(mac_supported, 100000baseKR4_Full);
875 phylink_set(mac_supported, 100000baseSR4_Full);
876 phylink_set(mac_supported, 100000baseCR4_Full);
877 phylink_set(mac_supported, 100000baseLR4_ER4_Full);
878 phylink_set(mac_supported, 100000baseKR2_Full);
879 phylink_set(mac_supported, 100000baseSR2_Full);
880 phylink_set(mac_supported, 100000baseCR2_Full);
881 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
882 phylink_set(mac_supported, 100000baseDR2_Full);
883 }
884 }
885
886 /* Half-Duplex can only work with single queue */
887 if (tx_cnt > 1) {
888 phylink_set(mask, 10baseT_Half);
889 phylink_set(mask, 100baseT_Half);
890 phylink_set(mask, 1000baseT_Half);
891 }
892
893 linkmode_and(supported, supported, mac_supported);
894 linkmode_andnot(supported, supported, mask);
895
896 linkmode_and(state->advertising, state->advertising, mac_supported);
897 linkmode_andnot(state->advertising, state->advertising, mask);
898
899 /* If PCS is supported, check which modes it supports. */
900 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
901 }
902
903 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
904 struct phylink_link_state *state)
905 {
906 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
907
908 state->link = 0;
909 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
910 }
911
912 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
913 const struct phylink_link_state *state)
914 {
915 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
916
917 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
918 }
919
920 static void stmmac_mac_an_restart(struct phylink_config *config)
921 {
922 /* Not Supported */
923 }
924
925 static void stmmac_mac_link_down(struct phylink_config *config,
926 unsigned int mode, phy_interface_t interface)
927 {
928 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
929
930 stmmac_mac_set(priv, priv->ioaddr, false);
931 priv->eee_active = false;
932 stmmac_eee_init(priv);
933 stmmac_set_eee_pls(priv, priv->hw, false);
934 }
935
936 static void stmmac_mac_link_up(struct phylink_config *config,
937 struct phy_device *phy,
938 unsigned int mode, phy_interface_t interface,
939 int speed, int duplex,
940 bool tx_pause, bool rx_pause)
941 {
942 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 u32 ctrl;
944
945 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
946
947 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
948 ctrl &= ~priv->hw->link.speed_mask;
949
950 if (interface == PHY_INTERFACE_MODE_USXGMII) {
951 switch (speed) {
952 case SPEED_10000:
953 ctrl |= priv->hw->link.xgmii.speed10000;
954 break;
955 case SPEED_5000:
956 ctrl |= priv->hw->link.xgmii.speed5000;
957 break;
958 case SPEED_2500:
959 ctrl |= priv->hw->link.xgmii.speed2500;
960 break;
961 default:
962 return;
963 }
964 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
965 switch (speed) {
966 case SPEED_100000:
967 ctrl |= priv->hw->link.xlgmii.speed100000;
968 break;
969 case SPEED_50000:
970 ctrl |= priv->hw->link.xlgmii.speed50000;
971 break;
972 case SPEED_40000:
973 ctrl |= priv->hw->link.xlgmii.speed40000;
974 break;
975 case SPEED_25000:
976 ctrl |= priv->hw->link.xlgmii.speed25000;
977 break;
978 case SPEED_10000:
979 ctrl |= priv->hw->link.xgmii.speed10000;
980 break;
981 case SPEED_2500:
982 ctrl |= priv->hw->link.speed2500;
983 break;
984 case SPEED_1000:
985 ctrl |= priv->hw->link.speed1000;
986 break;
987 default:
988 return;
989 }
990 } else {
991 switch (speed) {
992 case SPEED_2500:
993 ctrl |= priv->hw->link.speed2500;
994 break;
995 case SPEED_1000:
996 ctrl |= priv->hw->link.speed1000;
997 break;
998 case SPEED_100:
999 ctrl |= priv->hw->link.speed100;
1000 break;
1001 case SPEED_10:
1002 ctrl |= priv->hw->link.speed10;
1003 break;
1004 default:
1005 return;
1006 }
1007 }
1008
1009 priv->speed = speed;
1010
1011 if (priv->plat->fix_mac_speed)
1012 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1013
1014 if (!duplex)
1015 ctrl &= ~priv->hw->link.duplex;
1016 else
1017 ctrl |= priv->hw->link.duplex;
1018
1019 /* Flow Control operation */
1020 if (tx_pause && rx_pause)
1021 stmmac_mac_flow_ctrl(priv, duplex);
1022
1023 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1024
1025 stmmac_mac_set(priv, priv->ioaddr, true);
1026 if (phy && priv->dma_cap.eee) {
1027 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1028 priv->eee_enabled = stmmac_eee_init(priv);
1029 stmmac_set_eee_pls(priv, priv->hw, true);
1030 }
1031 }
1032
1033 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1034 .validate = stmmac_validate,
1035 .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1036 .mac_config = stmmac_mac_config,
1037 .mac_an_restart = stmmac_mac_an_restart,
1038 .mac_link_down = stmmac_mac_link_down,
1039 .mac_link_up = stmmac_mac_link_up,
1040 };
1041
1042 /**
1043 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1044 * @priv: driver private structure
1045 * Description: this is to verify if the HW supports the PCS.
1046 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1047 * configured for the TBI, RTBI, or SGMII PHY interface.
1048 */
1049 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1050 {
1051 int interface = priv->plat->interface;
1052
1053 if (priv->dma_cap.pcs) {
1054 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1055 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1056 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1057 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1058 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1059 priv->hw->pcs = STMMAC_PCS_RGMII;
1060 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1061 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1062 priv->hw->pcs = STMMAC_PCS_SGMII;
1063 }
1064 }
1065 }
1066
1067 /**
1068 * stmmac_init_phy - PHY initialization
1069 * @dev: net device structure
1070 * Description: it initializes the driver's PHY state, and attaches the PHY
1071 * to the mac driver.
1072 * Return value:
1073 * 0 on success
1074 */
1075 static int stmmac_init_phy(struct net_device *dev)
1076 {
1077 struct stmmac_priv *priv = netdev_priv(dev);
1078 struct device_node *node;
1079 int ret;
1080
1081 node = priv->plat->phylink_node;
1082
1083 if (node)
1084 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1085
1086 /* Some DT bindings do not set-up the PHY handle. Let's try to
1087 * manually parse it
1088 */
1089 if (!node || ret) {
1090 int addr = priv->plat->phy_addr;
1091 struct phy_device *phydev;
1092
1093 phydev = mdiobus_get_phy(priv->mii, addr);
1094 if (!phydev) {
1095 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1096 return -ENODEV;
1097 }
1098
1099 ret = phylink_connect_phy(priv->phylink, phydev);
1100 }
1101
1102 return ret;
1103 }
1104
1105 static int stmmac_phy_setup(struct stmmac_priv *priv)
1106 {
1107 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1108 int mode = priv->plat->phy_interface;
1109 struct phylink *phylink;
1110
1111 priv->phylink_config.dev = &priv->dev->dev;
1112 priv->phylink_config.type = PHYLINK_NETDEV;
1113 priv->phylink_config.pcs_poll = true;
1114
1115 if (!fwnode)
1116 fwnode = dev_fwnode(priv->device);
1117
1118 phylink = phylink_create(&priv->phylink_config, fwnode,
1119 mode, &stmmac_phylink_mac_ops);
1120 if (IS_ERR(phylink))
1121 return PTR_ERR(phylink);
1122
1123 priv->phylink = phylink;
1124 return 0;
1125 }
1126
1127 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1128 {
1129 u32 rx_cnt = priv->plat->rx_queues_to_use;
1130 void *head_rx;
1131 u32 queue;
1132
1133 /* Display RX rings */
1134 for (queue = 0; queue < rx_cnt; queue++) {
1135 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1136
1137 pr_info("\tRX Queue %u rings\n", queue);
1138
1139 if (priv->extend_desc)
1140 head_rx = (void *)rx_q->dma_erx;
1141 else
1142 head_rx = (void *)rx_q->dma_rx;
1143
1144 /* Display RX ring */
1145 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1146 }
1147 }
1148
1149 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1150 {
1151 u32 tx_cnt = priv->plat->tx_queues_to_use;
1152 void *head_tx;
1153 u32 queue;
1154
1155 /* Display TX rings */
1156 for (queue = 0; queue < tx_cnt; queue++) {
1157 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1158
1159 pr_info("\tTX Queue %d rings\n", queue);
1160
1161 if (priv->extend_desc)
1162 head_tx = (void *)tx_q->dma_etx;
1163 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1164 head_tx = (void *)tx_q->dma_entx;
1165 else
1166 head_tx = (void *)tx_q->dma_tx;
1167
1168 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1169 }
1170 }
1171
1172 static void stmmac_display_rings(struct stmmac_priv *priv)
1173 {
1174 /* Display RX ring */
1175 stmmac_display_rx_rings(priv);
1176
1177 /* Display TX ring */
1178 stmmac_display_tx_rings(priv);
1179 }
1180
1181 static int stmmac_set_bfsize(int mtu, int bufsize)
1182 {
1183 int ret = bufsize;
1184
1185 if (mtu >= BUF_SIZE_8KiB)
1186 ret = BUF_SIZE_16KiB;
1187 else if (mtu >= BUF_SIZE_4KiB)
1188 ret = BUF_SIZE_8KiB;
1189 else if (mtu >= BUF_SIZE_2KiB)
1190 ret = BUF_SIZE_4KiB;
1191 else if (mtu > DEFAULT_BUFSIZE)
1192 ret = BUF_SIZE_2KiB;
1193 else
1194 ret = DEFAULT_BUFSIZE;
1195
1196 return ret;
1197 }
1198
1199 /**
1200 * stmmac_clear_rx_descriptors - clear RX descriptors
1201 * @priv: driver private structure
1202 * @queue: RX queue index
1203 * Description: this function is called to clear the RX descriptors
1204 * in case of both basic and extended descriptors are used.
1205 */
1206 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1207 {
1208 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1209 int i;
1210
1211 /* Clear the RX descriptors */
1212 for (i = 0; i < DMA_RX_SIZE; i++)
1213 if (priv->extend_desc)
1214 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1215 priv->use_riwt, priv->mode,
1216 (i == DMA_RX_SIZE - 1),
1217 priv->dma_buf_sz);
1218 else
1219 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1220 priv->use_riwt, priv->mode,
1221 (i == DMA_RX_SIZE - 1),
1222 priv->dma_buf_sz);
1223 }
1224
1225 /**
1226 * stmmac_clear_tx_descriptors - clear tx descriptors
1227 * @priv: driver private structure
1228 * @queue: TX queue index.
1229 * Description: this function is called to clear the TX descriptors
1230 * in case of both basic and extended descriptors are used.
1231 */
1232 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1233 {
1234 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1235 int i;
1236
1237 /* Clear the TX descriptors */
1238 for (i = 0; i < DMA_TX_SIZE; i++) {
1239 int last = (i == (DMA_TX_SIZE - 1));
1240 struct dma_desc *p;
1241
1242 if (priv->extend_desc)
1243 p = &tx_q->dma_etx[i].basic;
1244 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1245 p = &tx_q->dma_entx[i].basic;
1246 else
1247 p = &tx_q->dma_tx[i];
1248
1249 stmmac_init_tx_desc(priv, p, priv->mode, last);
1250 }
1251 }
1252
1253 /**
1254 * stmmac_clear_descriptors - clear descriptors
1255 * @priv: driver private structure
1256 * Description: this function is called to clear the TX and RX descriptors
1257 * in case of both basic and extended descriptors are used.
1258 */
1259 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1260 {
1261 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1262 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1263 u32 queue;
1264
1265 /* Clear the RX descriptors */
1266 for (queue = 0; queue < rx_queue_cnt; queue++)
1267 stmmac_clear_rx_descriptors(priv, queue);
1268
1269 /* Clear the TX descriptors */
1270 for (queue = 0; queue < tx_queue_cnt; queue++)
1271 stmmac_clear_tx_descriptors(priv, queue);
1272 }
1273
1274 /**
1275 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1276 * @priv: driver private structure
1277 * @p: descriptor pointer
1278 * @i: descriptor index
1279 * @flags: gfp flag
1280 * @queue: RX queue index
1281 * Description: this function is called to allocate a receive buffer, perform
1282 * the DMA mapping and init the descriptor.
1283 */
1284 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1285 int i, gfp_t flags, u32 queue)
1286 {
1287 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1288 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1289
1290 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1291 if (!buf->page)
1292 return -ENOMEM;
1293
1294 if (priv->sph) {
1295 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1296 if (!buf->sec_page)
1297 return -ENOMEM;
1298
1299 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1300 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1301 } else {
1302 buf->sec_page = NULL;
1303 }
1304
1305 buf->addr = page_pool_get_dma_addr(buf->page);
1306 stmmac_set_desc_addr(priv, p, buf->addr);
1307 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1308 stmmac_init_desc3(priv, p);
1309
1310 return 0;
1311 }
1312
1313 /**
1314 * stmmac_free_rx_buffer - free RX dma buffers
1315 * @priv: private structure
1316 * @queue: RX queue index
1317 * @i: buffer index.
1318 */
1319 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1320 {
1321 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1322 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1323
1324 if (buf->page)
1325 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1326 buf->page = NULL;
1327
1328 if (buf->sec_page)
1329 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1330 buf->sec_page = NULL;
1331 }
1332
1333 /**
1334 * stmmac_free_tx_buffer - free RX dma buffers
1335 * @priv: private structure
1336 * @queue: RX queue index
1337 * @i: buffer index.
1338 */
1339 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1340 {
1341 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1342
1343 if (tx_q->tx_skbuff_dma[i].buf) {
1344 if (tx_q->tx_skbuff_dma[i].map_as_page)
1345 dma_unmap_page(priv->device,
1346 tx_q->tx_skbuff_dma[i].buf,
1347 tx_q->tx_skbuff_dma[i].len,
1348 DMA_TO_DEVICE);
1349 else
1350 dma_unmap_single(priv->device,
1351 tx_q->tx_skbuff_dma[i].buf,
1352 tx_q->tx_skbuff_dma[i].len,
1353 DMA_TO_DEVICE);
1354 }
1355
1356 if (tx_q->tx_skbuff[i]) {
1357 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1358 tx_q->tx_skbuff[i] = NULL;
1359 tx_q->tx_skbuff_dma[i].buf = 0;
1360 tx_q->tx_skbuff_dma[i].map_as_page = false;
1361 }
1362 }
1363
1364 /**
1365 * init_dma_rx_desc_rings - init the RX descriptor rings
1366 * @dev: net device structure
1367 * @flags: gfp flag.
1368 * Description: this function initializes the DMA RX descriptors
1369 * and allocates the socket buffers. It supports the chained and ring
1370 * modes.
1371 */
1372 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1373 {
1374 struct stmmac_priv *priv = netdev_priv(dev);
1375 u32 rx_count = priv->plat->rx_queues_to_use;
1376 int ret = -ENOMEM;
1377 int queue;
1378 int i;
1379
1380 /* RX INITIALIZATION */
1381 netif_dbg(priv, probe, priv->dev,
1382 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1383
1384 for (queue = 0; queue < rx_count; queue++) {
1385 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1386
1387 netif_dbg(priv, probe, priv->dev,
1388 "(%s) dma_rx_phy=0x%08x\n", __func__,
1389 (u32)rx_q->dma_rx_phy);
1390
1391 stmmac_clear_rx_descriptors(priv, queue);
1392
1393 for (i = 0; i < DMA_RX_SIZE; i++) {
1394 struct dma_desc *p;
1395
1396 if (priv->extend_desc)
1397 p = &((rx_q->dma_erx + i)->basic);
1398 else
1399 p = rx_q->dma_rx + i;
1400
1401 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1402 queue);
1403 if (ret)
1404 goto err_init_rx_buffers;
1405 }
1406
1407 rx_q->cur_rx = 0;
1408 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1409
1410 /* Setup the chained descriptor addresses */
1411 if (priv->mode == STMMAC_CHAIN_MODE) {
1412 if (priv->extend_desc)
1413 stmmac_mode_init(priv, rx_q->dma_erx,
1414 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1415 else
1416 stmmac_mode_init(priv, rx_q->dma_rx,
1417 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1418 }
1419 }
1420
1421 return 0;
1422
1423 err_init_rx_buffers:
1424 while (queue >= 0) {
1425 while (--i >= 0)
1426 stmmac_free_rx_buffer(priv, queue, i);
1427
1428 if (queue == 0)
1429 break;
1430
1431 i = DMA_RX_SIZE;
1432 queue--;
1433 }
1434
1435 return ret;
1436 }
1437
1438 /**
1439 * init_dma_tx_desc_rings - init the TX descriptor rings
1440 * @dev: net device structure.
1441 * Description: this function initializes the DMA TX descriptors
1442 * and allocates the socket buffers. It supports the chained and ring
1443 * modes.
1444 */
1445 static int init_dma_tx_desc_rings(struct net_device *dev)
1446 {
1447 struct stmmac_priv *priv = netdev_priv(dev);
1448 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1449 u32 queue;
1450 int i;
1451
1452 for (queue = 0; queue < tx_queue_cnt; queue++) {
1453 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1454
1455 netif_dbg(priv, probe, priv->dev,
1456 "(%s) dma_tx_phy=0x%08x\n", __func__,
1457 (u32)tx_q->dma_tx_phy);
1458
1459 /* Setup the chained descriptor addresses */
1460 if (priv->mode == STMMAC_CHAIN_MODE) {
1461 if (priv->extend_desc)
1462 stmmac_mode_init(priv, tx_q->dma_etx,
1463 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1464 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1465 stmmac_mode_init(priv, tx_q->dma_tx,
1466 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1467 }
1468
1469 for (i = 0; i < DMA_TX_SIZE; i++) {
1470 struct dma_desc *p;
1471 if (priv->extend_desc)
1472 p = &((tx_q->dma_etx + i)->basic);
1473 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1474 p = &((tx_q->dma_entx + i)->basic);
1475 else
1476 p = tx_q->dma_tx + i;
1477
1478 stmmac_clear_desc(priv, p);
1479
1480 tx_q->tx_skbuff_dma[i].buf = 0;
1481 tx_q->tx_skbuff_dma[i].map_as_page = false;
1482 tx_q->tx_skbuff_dma[i].len = 0;
1483 tx_q->tx_skbuff_dma[i].last_segment = false;
1484 tx_q->tx_skbuff[i] = NULL;
1485 }
1486
1487 tx_q->dirty_tx = 0;
1488 tx_q->cur_tx = 0;
1489 tx_q->mss = 0;
1490
1491 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1492 }
1493
1494 return 0;
1495 }
1496
1497 /**
1498 * init_dma_desc_rings - init the RX/TX descriptor rings
1499 * @dev: net device structure
1500 * @flags: gfp flag.
1501 * Description: this function initializes the DMA RX/TX descriptors
1502 * and allocates the socket buffers. It supports the chained and ring
1503 * modes.
1504 */
1505 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1506 {
1507 struct stmmac_priv *priv = netdev_priv(dev);
1508 int ret;
1509
1510 ret = init_dma_rx_desc_rings(dev, flags);
1511 if (ret)
1512 return ret;
1513
1514 ret = init_dma_tx_desc_rings(dev);
1515
1516 stmmac_clear_descriptors(priv);
1517
1518 if (netif_msg_hw(priv))
1519 stmmac_display_rings(priv);
1520
1521 return ret;
1522 }
1523
1524 /**
1525 * dma_free_rx_skbufs - free RX dma buffers
1526 * @priv: private structure
1527 * @queue: RX queue index
1528 */
1529 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1530 {
1531 int i;
1532
1533 for (i = 0; i < DMA_RX_SIZE; i++)
1534 stmmac_free_rx_buffer(priv, queue, i);
1535 }
1536
1537 /**
1538 * dma_free_tx_skbufs - free TX dma buffers
1539 * @priv: private structure
1540 * @queue: TX queue index
1541 */
1542 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1543 {
1544 int i;
1545
1546 for (i = 0; i < DMA_TX_SIZE; i++)
1547 stmmac_free_tx_buffer(priv, queue, i);
1548 }
1549
1550 /**
1551 * free_dma_rx_desc_resources - free RX dma desc resources
1552 * @priv: private structure
1553 */
1554 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1555 {
1556 u32 rx_count = priv->plat->rx_queues_to_use;
1557 u32 queue;
1558
1559 /* Free RX queue resources */
1560 for (queue = 0; queue < rx_count; queue++) {
1561 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1562
1563 /* Release the DMA RX socket buffers */
1564 dma_free_rx_skbufs(priv, queue);
1565
1566 /* Free DMA regions of consistent memory previously allocated */
1567 if (!priv->extend_desc)
1568 dma_free_coherent(priv->device,
1569 DMA_RX_SIZE * sizeof(struct dma_desc),
1570 rx_q->dma_rx, rx_q->dma_rx_phy);
1571 else
1572 dma_free_coherent(priv->device, DMA_RX_SIZE *
1573 sizeof(struct dma_extended_desc),
1574 rx_q->dma_erx, rx_q->dma_rx_phy);
1575
1576 kfree(rx_q->buf_pool);
1577 if (rx_q->page_pool)
1578 page_pool_destroy(rx_q->page_pool);
1579 }
1580 }
1581
1582 /**
1583 * free_dma_tx_desc_resources - free TX dma desc resources
1584 * @priv: private structure
1585 */
1586 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1587 {
1588 u32 tx_count = priv->plat->tx_queues_to_use;
1589 u32 queue;
1590
1591 /* Free TX queue resources */
1592 for (queue = 0; queue < tx_count; queue++) {
1593 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1594 size_t size;
1595 void *addr;
1596
1597 /* Release the DMA TX socket buffers */
1598 dma_free_tx_skbufs(priv, queue);
1599
1600 if (priv->extend_desc) {
1601 size = sizeof(struct dma_extended_desc);
1602 addr = tx_q->dma_etx;
1603 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1604 size = sizeof(struct dma_edesc);
1605 addr = tx_q->dma_entx;
1606 } else {
1607 size = sizeof(struct dma_desc);
1608 addr = tx_q->dma_tx;
1609 }
1610
1611 size *= DMA_TX_SIZE;
1612
1613 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1614
1615 kfree(tx_q->tx_skbuff_dma);
1616 kfree(tx_q->tx_skbuff);
1617 }
1618 }
1619
1620 /**
1621 * alloc_dma_rx_desc_resources - alloc RX resources.
1622 * @priv: private structure
1623 * Description: according to which descriptor can be used (extend or basic)
1624 * this function allocates the resources for TX and RX paths. In case of
1625 * reception, for example, it pre-allocated the RX socket buffer in order to
1626 * allow zero-copy mechanism.
1627 */
1628 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1629 {
1630 u32 rx_count = priv->plat->rx_queues_to_use;
1631 int ret = -ENOMEM;
1632 u32 queue;
1633
1634 /* RX queues buffers and DMA */
1635 for (queue = 0; queue < rx_count; queue++) {
1636 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1637 struct page_pool_params pp_params = { 0 };
1638 unsigned int num_pages;
1639
1640 rx_q->queue_index = queue;
1641 rx_q->priv_data = priv;
1642
1643 pp_params.flags = PP_FLAG_DMA_MAP;
1644 pp_params.pool_size = DMA_RX_SIZE;
1645 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1646 pp_params.order = ilog2(num_pages);
1647 pp_params.nid = dev_to_node(priv->device);
1648 pp_params.dev = priv->device;
1649 pp_params.dma_dir = DMA_FROM_DEVICE;
1650
1651 rx_q->page_pool = page_pool_create(&pp_params);
1652 if (IS_ERR(rx_q->page_pool)) {
1653 ret = PTR_ERR(rx_q->page_pool);
1654 rx_q->page_pool = NULL;
1655 goto err_dma;
1656 }
1657
1658 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1659 GFP_KERNEL);
1660 if (!rx_q->buf_pool)
1661 goto err_dma;
1662
1663 if (priv->extend_desc) {
1664 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1665 DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1666 &rx_q->dma_rx_phy,
1667 GFP_KERNEL);
1668 if (!rx_q->dma_erx)
1669 goto err_dma;
1670
1671 } else {
1672 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1673 DMA_RX_SIZE * sizeof(struct dma_desc),
1674 &rx_q->dma_rx_phy,
1675 GFP_KERNEL);
1676 if (!rx_q->dma_rx)
1677 goto err_dma;
1678 }
1679 }
1680
1681 return 0;
1682
1683 err_dma:
1684 free_dma_rx_desc_resources(priv);
1685
1686 return ret;
1687 }
1688
1689 /**
1690 * alloc_dma_tx_desc_resources - alloc TX resources.
1691 * @priv: private structure
1692 * Description: according to which descriptor can be used (extend or basic)
1693 * this function allocates the resources for TX and RX paths. In case of
1694 * reception, for example, it pre-allocated the RX socket buffer in order to
1695 * allow zero-copy mechanism.
1696 */
1697 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1698 {
1699 u32 tx_count = priv->plat->tx_queues_to_use;
1700 int ret = -ENOMEM;
1701 u32 queue;
1702
1703 /* TX queues buffers and DMA */
1704 for (queue = 0; queue < tx_count; queue++) {
1705 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1706 size_t size;
1707 void *addr;
1708
1709 tx_q->queue_index = queue;
1710 tx_q->priv_data = priv;
1711
1712 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1713 sizeof(*tx_q->tx_skbuff_dma),
1714 GFP_KERNEL);
1715 if (!tx_q->tx_skbuff_dma)
1716 goto err_dma;
1717
1718 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1719 sizeof(struct sk_buff *),
1720 GFP_KERNEL);
1721 if (!tx_q->tx_skbuff)
1722 goto err_dma;
1723
1724 if (priv->extend_desc)
1725 size = sizeof(struct dma_extended_desc);
1726 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1727 size = sizeof(struct dma_edesc);
1728 else
1729 size = sizeof(struct dma_desc);
1730
1731 size *= DMA_TX_SIZE;
1732
1733 addr = dma_alloc_coherent(priv->device, size,
1734 &tx_q->dma_tx_phy, GFP_KERNEL);
1735 if (!addr)
1736 goto err_dma;
1737
1738 if (priv->extend_desc)
1739 tx_q->dma_etx = addr;
1740 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1741 tx_q->dma_entx = addr;
1742 else
1743 tx_q->dma_tx = addr;
1744 }
1745
1746 return 0;
1747
1748 err_dma:
1749 free_dma_tx_desc_resources(priv);
1750 return ret;
1751 }
1752
1753 /**
1754 * alloc_dma_desc_resources - alloc TX/RX resources.
1755 * @priv: private structure
1756 * Description: according to which descriptor can be used (extend or basic)
1757 * this function allocates the resources for TX and RX paths. In case of
1758 * reception, for example, it pre-allocated the RX socket buffer in order to
1759 * allow zero-copy mechanism.
1760 */
1761 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1762 {
1763 /* RX Allocation */
1764 int ret = alloc_dma_rx_desc_resources(priv);
1765
1766 if (ret)
1767 return ret;
1768
1769 ret = alloc_dma_tx_desc_resources(priv);
1770
1771 return ret;
1772 }
1773
1774 /**
1775 * free_dma_desc_resources - free dma desc resources
1776 * @priv: private structure
1777 */
1778 static void free_dma_desc_resources(struct stmmac_priv *priv)
1779 {
1780 /* Release the DMA RX socket buffers */
1781 free_dma_rx_desc_resources(priv);
1782
1783 /* Release the DMA TX socket buffers */
1784 free_dma_tx_desc_resources(priv);
1785 }
1786
1787 /**
1788 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1789 * @priv: driver private structure
1790 * Description: It is used for enabling the rx queues in the MAC
1791 */
1792 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1793 {
1794 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1795 int queue;
1796 u8 mode;
1797
1798 for (queue = 0; queue < rx_queues_count; queue++) {
1799 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1800 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1801 }
1802 }
1803
1804 /**
1805 * stmmac_start_rx_dma - start RX DMA channel
1806 * @priv: driver private structure
1807 * @chan: RX channel index
1808 * Description:
1809 * This starts a RX DMA channel
1810 */
1811 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1812 {
1813 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1814 stmmac_start_rx(priv, priv->ioaddr, chan);
1815 }
1816
1817 /**
1818 * stmmac_start_tx_dma - start TX DMA channel
1819 * @priv: driver private structure
1820 * @chan: TX channel index
1821 * Description:
1822 * This starts a TX DMA channel
1823 */
1824 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1825 {
1826 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1827 stmmac_start_tx(priv, priv->ioaddr, chan);
1828 }
1829
1830 /**
1831 * stmmac_stop_rx_dma - stop RX DMA channel
1832 * @priv: driver private structure
1833 * @chan: RX channel index
1834 * Description:
1835 * This stops a RX DMA channel
1836 */
1837 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1838 {
1839 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1840 stmmac_stop_rx(priv, priv->ioaddr, chan);
1841 }
1842
1843 /**
1844 * stmmac_stop_tx_dma - stop TX DMA channel
1845 * @priv: driver private structure
1846 * @chan: TX channel index
1847 * Description:
1848 * This stops a TX DMA channel
1849 */
1850 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1851 {
1852 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1853 stmmac_stop_tx(priv, priv->ioaddr, chan);
1854 }
1855
1856 /**
1857 * stmmac_start_all_dma - start all RX and TX DMA channels
1858 * @priv: driver private structure
1859 * Description:
1860 * This starts all the RX and TX DMA channels
1861 */
1862 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1863 {
1864 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1865 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1866 u32 chan = 0;
1867
1868 for (chan = 0; chan < rx_channels_count; chan++)
1869 stmmac_start_rx_dma(priv, chan);
1870
1871 for (chan = 0; chan < tx_channels_count; chan++)
1872 stmmac_start_tx_dma(priv, chan);
1873 }
1874
1875 /**
1876 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1877 * @priv: driver private structure
1878 * Description:
1879 * This stops the RX and TX DMA channels
1880 */
1881 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1882 {
1883 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1884 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1885 u32 chan = 0;
1886
1887 for (chan = 0; chan < rx_channels_count; chan++)
1888 stmmac_stop_rx_dma(priv, chan);
1889
1890 for (chan = 0; chan < tx_channels_count; chan++)
1891 stmmac_stop_tx_dma(priv, chan);
1892 }
1893
1894 /**
1895 * stmmac_dma_operation_mode - HW DMA operation mode
1896 * @priv: driver private structure
1897 * Description: it is used for configuring the DMA operation mode register in
1898 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1899 */
1900 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1901 {
1902 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1903 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1904 int rxfifosz = priv->plat->rx_fifo_size;
1905 int txfifosz = priv->plat->tx_fifo_size;
1906 u32 txmode = 0;
1907 u32 rxmode = 0;
1908 u32 chan = 0;
1909 u8 qmode = 0;
1910
1911 if (rxfifosz == 0)
1912 rxfifosz = priv->dma_cap.rx_fifo_size;
1913 if (txfifosz == 0)
1914 txfifosz = priv->dma_cap.tx_fifo_size;
1915
1916 /* Adjust for real per queue fifo size */
1917 rxfifosz /= rx_channels_count;
1918 txfifosz /= tx_channels_count;
1919
1920 if (priv->plat->force_thresh_dma_mode) {
1921 txmode = tc;
1922 rxmode = tc;
1923 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1924 /*
1925 * In case of GMAC, SF mode can be enabled
1926 * to perform the TX COE in HW. This depends on:
1927 * 1) TX COE if actually supported
1928 * 2) There is no bugged Jumbo frame support
1929 * that needs to not insert csum in the TDES.
1930 */
1931 txmode = SF_DMA_MODE;
1932 rxmode = SF_DMA_MODE;
1933 priv->xstats.threshold = SF_DMA_MODE;
1934 } else {
1935 txmode = tc;
1936 rxmode = SF_DMA_MODE;
1937 }
1938
1939 /* configure all channels */
1940 for (chan = 0; chan < rx_channels_count; chan++) {
1941 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1942
1943 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1944 rxfifosz, qmode);
1945 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1946 chan);
1947 }
1948
1949 for (chan = 0; chan < tx_channels_count; chan++) {
1950 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1951
1952 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1953 txfifosz, qmode);
1954 }
1955 }
1956
1957 /**
1958 * stmmac_tx_clean - to manage the transmission completion
1959 * @priv: driver private structure
1960 * @queue: TX queue index
1961 * Description: it reclaims the transmit resources after transmission completes.
1962 */
1963 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1964 {
1965 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1966 unsigned int bytes_compl = 0, pkts_compl = 0;
1967 unsigned int entry, count = 0;
1968
1969 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1970
1971 priv->xstats.tx_clean++;
1972
1973 entry = tx_q->dirty_tx;
1974 while ((entry != tx_q->cur_tx) && (count < budget)) {
1975 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1976 struct dma_desc *p;
1977 int status;
1978
1979 if (priv->extend_desc)
1980 p = (struct dma_desc *)(tx_q->dma_etx + entry);
1981 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1982 p = &tx_q->dma_entx[entry].basic;
1983 else
1984 p = tx_q->dma_tx + entry;
1985
1986 status = stmmac_tx_status(priv, &priv->dev->stats,
1987 &priv->xstats, p, priv->ioaddr);
1988 /* Check if the descriptor is owned by the DMA */
1989 if (unlikely(status & tx_dma_own))
1990 break;
1991
1992 count++;
1993
1994 /* Make sure descriptor fields are read after reading
1995 * the own bit.
1996 */
1997 dma_rmb();
1998
1999 /* Just consider the last segment and ...*/
2000 if (likely(!(status & tx_not_ls))) {
2001 /* ... verify the status error condition */
2002 if (unlikely(status & tx_err)) {
2003 priv->dev->stats.tx_errors++;
2004 } else {
2005 priv->dev->stats.tx_packets++;
2006 priv->xstats.tx_pkt_n++;
2007 }
2008 stmmac_get_tx_hwtstamp(priv, p, skb);
2009 }
2010
2011 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2012 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2013 dma_unmap_page(priv->device,
2014 tx_q->tx_skbuff_dma[entry].buf,
2015 tx_q->tx_skbuff_dma[entry].len,
2016 DMA_TO_DEVICE);
2017 else
2018 dma_unmap_single(priv->device,
2019 tx_q->tx_skbuff_dma[entry].buf,
2020 tx_q->tx_skbuff_dma[entry].len,
2021 DMA_TO_DEVICE);
2022 tx_q->tx_skbuff_dma[entry].buf = 0;
2023 tx_q->tx_skbuff_dma[entry].len = 0;
2024 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2025 }
2026
2027 stmmac_clean_desc3(priv, tx_q, p);
2028
2029 tx_q->tx_skbuff_dma[entry].last_segment = false;
2030 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2031
2032 if (likely(skb != NULL)) {
2033 pkts_compl++;
2034 bytes_compl += skb->len;
2035 dev_consume_skb_any(skb);
2036 tx_q->tx_skbuff[entry] = NULL;
2037 }
2038
2039 stmmac_release_tx_desc(priv, p, priv->mode);
2040
2041 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2042 }
2043 tx_q->dirty_tx = entry;
2044
2045 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2046 pkts_compl, bytes_compl);
2047
2048 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2049 queue))) &&
2050 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
2051
2052 netif_dbg(priv, tx_done, priv->dev,
2053 "%s: restart transmit\n", __func__);
2054 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2055 }
2056
2057 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2058 stmmac_enable_eee_mode(priv);
2059 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
2060 }
2061
2062 /* We still have pending packets, let's call for a new scheduling */
2063 if (tx_q->dirty_tx != tx_q->cur_tx)
2064 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2065
2066 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2067
2068 return count;
2069 }
2070
2071 /**
2072 * stmmac_tx_err - to manage the tx error
2073 * @priv: driver private structure
2074 * @chan: channel index
2075 * Description: it cleans the descriptors and restarts the transmission
2076 * in case of transmission errors.
2077 */
2078 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2079 {
2080 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2081
2082 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2083
2084 stmmac_stop_tx_dma(priv, chan);
2085 dma_free_tx_skbufs(priv, chan);
2086 stmmac_clear_tx_descriptors(priv, chan);
2087 tx_q->dirty_tx = 0;
2088 tx_q->cur_tx = 0;
2089 tx_q->mss = 0;
2090 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2091 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2092 tx_q->dma_tx_phy, chan);
2093 stmmac_start_tx_dma(priv, chan);
2094
2095 priv->dev->stats.tx_errors++;
2096 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2097 }
2098
2099 /**
2100 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2101 * @priv: driver private structure
2102 * @txmode: TX operating mode
2103 * @rxmode: RX operating mode
2104 * @chan: channel index
2105 * Description: it is used for configuring of the DMA operation mode in
2106 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2107 * mode.
2108 */
2109 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2110 u32 rxmode, u32 chan)
2111 {
2112 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2113 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2114 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2115 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2116 int rxfifosz = priv->plat->rx_fifo_size;
2117 int txfifosz = priv->plat->tx_fifo_size;
2118
2119 if (rxfifosz == 0)
2120 rxfifosz = priv->dma_cap.rx_fifo_size;
2121 if (txfifosz == 0)
2122 txfifosz = priv->dma_cap.tx_fifo_size;
2123
2124 /* Adjust for real per queue fifo size */
2125 rxfifosz /= rx_channels_count;
2126 txfifosz /= tx_channels_count;
2127
2128 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2129 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2130 }
2131
2132 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2133 {
2134 int ret;
2135
2136 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2137 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2138 if (ret && (ret != -EINVAL)) {
2139 stmmac_global_err(priv);
2140 return true;
2141 }
2142
2143 return false;
2144 }
2145
2146 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2147 {
2148 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2149 &priv->xstats, chan);
2150 struct stmmac_channel *ch = &priv->channel[chan];
2151 unsigned long flags;
2152
2153 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2154 if (napi_schedule_prep(&ch->rx_napi)) {
2155 spin_lock_irqsave(&ch->lock, flags);
2156 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2157 spin_unlock_irqrestore(&ch->lock, flags);
2158 __napi_schedule_irqoff(&ch->rx_napi);
2159 }
2160 }
2161
2162 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2163 if (napi_schedule_prep(&ch->tx_napi)) {
2164 spin_lock_irqsave(&ch->lock, flags);
2165 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2166 spin_unlock_irqrestore(&ch->lock, flags);
2167 __napi_schedule_irqoff(&ch->tx_napi);
2168 }
2169 }
2170
2171 return status;
2172 }
2173
2174 /**
2175 * stmmac_dma_interrupt - DMA ISR
2176 * @priv: driver private structure
2177 * Description: this is the DMA ISR. It is called by the main ISR.
2178 * It calls the dwmac dma routine and schedule poll method in case of some
2179 * work can be done.
2180 */
2181 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2182 {
2183 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2184 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2185 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2186 tx_channel_count : rx_channel_count;
2187 u32 chan;
2188 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2189
2190 /* Make sure we never check beyond our status buffer. */
2191 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2192 channels_to_check = ARRAY_SIZE(status);
2193
2194 for (chan = 0; chan < channels_to_check; chan++)
2195 status[chan] = stmmac_napi_check(priv, chan);
2196
2197 for (chan = 0; chan < tx_channel_count; chan++) {
2198 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2199 /* Try to bump up the dma threshold on this failure */
2200 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2201 (tc <= 256)) {
2202 tc += 64;
2203 if (priv->plat->force_thresh_dma_mode)
2204 stmmac_set_dma_operation_mode(priv,
2205 tc,
2206 tc,
2207 chan);
2208 else
2209 stmmac_set_dma_operation_mode(priv,
2210 tc,
2211 SF_DMA_MODE,
2212 chan);
2213 priv->xstats.threshold = tc;
2214 }
2215 } else if (unlikely(status[chan] == tx_hard_error)) {
2216 stmmac_tx_err(priv, chan);
2217 }
2218 }
2219 }
2220
2221 /**
2222 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2223 * @priv: driver private structure
2224 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2225 */
2226 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2227 {
2228 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2229 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2230
2231 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2232
2233 if (priv->dma_cap.rmon) {
2234 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2235 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2236 } else
2237 netdev_info(priv->dev, "No MAC Management Counters available\n");
2238 }
2239
2240 /**
2241 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2242 * @priv: driver private structure
2243 * Description:
2244 * new GMAC chip generations have a new register to indicate the
2245 * presence of the optional feature/functions.
2246 * This can be also used to override the value passed through the
2247 * platform and necessary for old MAC10/100 and GMAC chips.
2248 */
2249 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2250 {
2251 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2252 }
2253
2254 /**
2255 * stmmac_check_ether_addr - check if the MAC addr is valid
2256 * @priv: driver private structure
2257 * Description:
2258 * it is to verify if the MAC address is valid, in case of failures it
2259 * generates a random MAC address
2260 */
2261 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2262 {
2263 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2264 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2265 if (!is_valid_ether_addr(priv->dev->dev_addr))
2266 eth_hw_addr_random(priv->dev);
2267 dev_info(priv->device, "device MAC address %pM\n",
2268 priv->dev->dev_addr);
2269 }
2270 }
2271
2272 /**
2273 * stmmac_init_dma_engine - DMA init.
2274 * @priv: driver private structure
2275 * Description:
2276 * It inits the DMA invoking the specific MAC/GMAC callback.
2277 * Some DMA parameters can be passed from the platform;
2278 * in case of these are not passed a default is kept for the MAC or GMAC.
2279 */
2280 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2281 {
2282 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2283 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2284 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2285 struct stmmac_rx_queue *rx_q;
2286 struct stmmac_tx_queue *tx_q;
2287 u32 chan = 0;
2288 int atds = 0;
2289 int ret = 0;
2290
2291 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2292 dev_err(priv->device, "Invalid DMA configuration\n");
2293 return -EINVAL;
2294 }
2295
2296 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2297 atds = 1;
2298
2299 ret = stmmac_reset(priv, priv->ioaddr);
2300 if (ret) {
2301 dev_err(priv->device, "Failed to reset the dma\n");
2302 return ret;
2303 }
2304
2305 /* DMA Configuration */
2306 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2307
2308 if (priv->plat->axi)
2309 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2310
2311 /* DMA CSR Channel configuration */
2312 for (chan = 0; chan < dma_csr_ch; chan++)
2313 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2314
2315 /* DMA RX Channel Configuration */
2316 for (chan = 0; chan < rx_channels_count; chan++) {
2317 rx_q = &priv->rx_queue[chan];
2318
2319 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2320 rx_q->dma_rx_phy, chan);
2321
2322 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2323 (DMA_RX_SIZE * sizeof(struct dma_desc));
2324 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2325 rx_q->rx_tail_addr, chan);
2326 }
2327
2328 /* DMA TX Channel Configuration */
2329 for (chan = 0; chan < tx_channels_count; chan++) {
2330 tx_q = &priv->tx_queue[chan];
2331
2332 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2333 tx_q->dma_tx_phy, chan);
2334
2335 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2336 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2337 tx_q->tx_tail_addr, chan);
2338 }
2339
2340 return ret;
2341 }
2342
2343 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2344 {
2345 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2346
2347 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2348 }
2349
2350 /**
2351 * stmmac_tx_timer - mitigation sw timer for tx.
2352 * @data: data pointer
2353 * Description:
2354 * This is the timer handler to directly invoke the stmmac_tx_clean.
2355 */
2356 static void stmmac_tx_timer(struct timer_list *t)
2357 {
2358 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2359 struct stmmac_priv *priv = tx_q->priv_data;
2360 struct stmmac_channel *ch;
2361
2362 ch = &priv->channel[tx_q->queue_index];
2363
2364 if (likely(napi_schedule_prep(&ch->tx_napi))) {
2365 unsigned long flags;
2366
2367 spin_lock_irqsave(&ch->lock, flags);
2368 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2369 spin_unlock_irqrestore(&ch->lock, flags);
2370 __napi_schedule(&ch->tx_napi);
2371 }
2372 }
2373
2374 /**
2375 * stmmac_init_coalesce - init mitigation options.
2376 * @priv: driver private structure
2377 * Description:
2378 * This inits the coalesce parameters: i.e. timer rate,
2379 * timer handler and default threshold used for enabling the
2380 * interrupt on completion bit.
2381 */
2382 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2383 {
2384 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2385 u32 chan;
2386
2387 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2388 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2389 priv->rx_coal_frames = STMMAC_RX_FRAMES;
2390
2391 for (chan = 0; chan < tx_channel_count; chan++) {
2392 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2393
2394 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2395 }
2396 }
2397
2398 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2399 {
2400 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2401 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2402 u32 chan;
2403
2404 /* set TX ring length */
2405 for (chan = 0; chan < tx_channels_count; chan++)
2406 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2407 (DMA_TX_SIZE - 1), chan);
2408
2409 /* set RX ring length */
2410 for (chan = 0; chan < rx_channels_count; chan++)
2411 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2412 (DMA_RX_SIZE - 1), chan);
2413 }
2414
2415 /**
2416 * stmmac_set_tx_queue_weight - Set TX queue weight
2417 * @priv: driver private structure
2418 * Description: It is used for setting TX queues weight
2419 */
2420 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2421 {
2422 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2423 u32 weight;
2424 u32 queue;
2425
2426 for (queue = 0; queue < tx_queues_count; queue++) {
2427 weight = priv->plat->tx_queues_cfg[queue].weight;
2428 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2429 }
2430 }
2431
2432 /**
2433 * stmmac_configure_cbs - Configure CBS in TX queue
2434 * @priv: driver private structure
2435 * Description: It is used for configuring CBS in AVB TX queues
2436 */
2437 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2438 {
2439 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2440 u32 mode_to_use;
2441 u32 queue;
2442
2443 /* queue 0 is reserved for legacy traffic */
2444 for (queue = 1; queue < tx_queues_count; queue++) {
2445 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2446 if (mode_to_use == MTL_QUEUE_DCB)
2447 continue;
2448
2449 stmmac_config_cbs(priv, priv->hw,
2450 priv->plat->tx_queues_cfg[queue].send_slope,
2451 priv->plat->tx_queues_cfg[queue].idle_slope,
2452 priv->plat->tx_queues_cfg[queue].high_credit,
2453 priv->plat->tx_queues_cfg[queue].low_credit,
2454 queue);
2455 }
2456 }
2457
2458 /**
2459 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2460 * @priv: driver private structure
2461 * Description: It is used for mapping RX queues to RX dma channels
2462 */
2463 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2464 {
2465 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2466 u32 queue;
2467 u32 chan;
2468
2469 for (queue = 0; queue < rx_queues_count; queue++) {
2470 chan = priv->plat->rx_queues_cfg[queue].chan;
2471 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2472 }
2473 }
2474
2475 /**
2476 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2477 * @priv: driver private structure
2478 * Description: It is used for configuring the RX Queue Priority
2479 */
2480 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2481 {
2482 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2483 u32 queue;
2484 u32 prio;
2485
2486 for (queue = 0; queue < rx_queues_count; queue++) {
2487 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2488 continue;
2489
2490 prio = priv->plat->rx_queues_cfg[queue].prio;
2491 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2492 }
2493 }
2494
2495 /**
2496 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2497 * @priv: driver private structure
2498 * Description: It is used for configuring the TX Queue Priority
2499 */
2500 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2501 {
2502 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2503 u32 queue;
2504 u32 prio;
2505
2506 for (queue = 0; queue < tx_queues_count; queue++) {
2507 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2508 continue;
2509
2510 prio = priv->plat->tx_queues_cfg[queue].prio;
2511 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2512 }
2513 }
2514
2515 /**
2516 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2517 * @priv: driver private structure
2518 * Description: It is used for configuring the RX queue routing
2519 */
2520 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2521 {
2522 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2523 u32 queue;
2524 u8 packet;
2525
2526 for (queue = 0; queue < rx_queues_count; queue++) {
2527 /* no specific packet type routing specified for the queue */
2528 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2529 continue;
2530
2531 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2532 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2533 }
2534 }
2535
2536 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2537 {
2538 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2539 priv->rss.enable = false;
2540 return;
2541 }
2542
2543 if (priv->dev->features & NETIF_F_RXHASH)
2544 priv->rss.enable = true;
2545 else
2546 priv->rss.enable = false;
2547
2548 stmmac_rss_configure(priv, priv->hw, &priv->rss,
2549 priv->plat->rx_queues_to_use);
2550 }
2551
2552 /**
2553 * stmmac_mtl_configuration - Configure MTL
2554 * @priv: driver private structure
2555 * Description: It is used for configurring MTL
2556 */
2557 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2558 {
2559 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2560 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2561
2562 if (tx_queues_count > 1)
2563 stmmac_set_tx_queue_weight(priv);
2564
2565 /* Configure MTL RX algorithms */
2566 if (rx_queues_count > 1)
2567 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2568 priv->plat->rx_sched_algorithm);
2569
2570 /* Configure MTL TX algorithms */
2571 if (tx_queues_count > 1)
2572 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2573 priv->plat->tx_sched_algorithm);
2574
2575 /* Configure CBS in AVB TX queues */
2576 if (tx_queues_count > 1)
2577 stmmac_configure_cbs(priv);
2578
2579 /* Map RX MTL to DMA channels */
2580 stmmac_rx_queue_dma_chan_map(priv);
2581
2582 /* Enable MAC RX Queues */
2583 stmmac_mac_enable_rx_queues(priv);
2584
2585 /* Set RX priorities */
2586 if (rx_queues_count > 1)
2587 stmmac_mac_config_rx_queues_prio(priv);
2588
2589 /* Set TX priorities */
2590 if (tx_queues_count > 1)
2591 stmmac_mac_config_tx_queues_prio(priv);
2592
2593 /* Set RX routing */
2594 if (rx_queues_count > 1)
2595 stmmac_mac_config_rx_queues_routing(priv);
2596
2597 /* Receive Side Scaling */
2598 if (rx_queues_count > 1)
2599 stmmac_mac_config_rss(priv);
2600 }
2601
2602 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2603 {
2604 if (priv->dma_cap.asp) {
2605 netdev_info(priv->dev, "Enabling Safety Features\n");
2606 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2607 } else {
2608 netdev_info(priv->dev, "No Safety Features support found\n");
2609 }
2610 }
2611
2612 /**
2613 * stmmac_hw_setup - setup mac in a usable state.
2614 * @dev : pointer to the device structure.
2615 * Description:
2616 * this is the main function to setup the HW in a usable state because the
2617 * dma engine is reset, the core registers are configured (e.g. AXI,
2618 * Checksum features, timers). The DMA is ready to start receiving and
2619 * transmitting.
2620 * Return value:
2621 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2622 * file on failure.
2623 */
2624 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2625 {
2626 struct stmmac_priv *priv = netdev_priv(dev);
2627 u32 rx_cnt = priv->plat->rx_queues_to_use;
2628 u32 tx_cnt = priv->plat->tx_queues_to_use;
2629 u32 chan;
2630 int ret;
2631
2632 /* DMA initialization and SW reset */
2633 ret = stmmac_init_dma_engine(priv);
2634 if (ret < 0) {
2635 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2636 __func__);
2637 return ret;
2638 }
2639
2640 /* Copy the MAC addr into the HW */
2641 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2642
2643 /* PS and related bits will be programmed according to the speed */
2644 if (priv->hw->pcs) {
2645 int speed = priv->plat->mac_port_sel_speed;
2646
2647 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2648 (speed == SPEED_1000)) {
2649 priv->hw->ps = speed;
2650 } else {
2651 dev_warn(priv->device, "invalid port speed\n");
2652 priv->hw->ps = 0;
2653 }
2654 }
2655
2656 /* Initialize the MAC Core */
2657 stmmac_core_init(priv, priv->hw, dev);
2658
2659 /* Initialize MTL*/
2660 stmmac_mtl_configuration(priv);
2661
2662 /* Initialize Safety Features */
2663 stmmac_safety_feat_configuration(priv);
2664
2665 ret = stmmac_rx_ipc(priv, priv->hw);
2666 if (!ret) {
2667 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2668 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2669 priv->hw->rx_csum = 0;
2670 }
2671
2672 /* Enable the MAC Rx/Tx */
2673 stmmac_mac_set(priv, priv->ioaddr, true);
2674
2675 /* Set the HW DMA mode and the COE */
2676 stmmac_dma_operation_mode(priv);
2677
2678 stmmac_mmc_setup(priv);
2679
2680 if (init_ptp) {
2681 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2682 if (ret < 0)
2683 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2684
2685 ret = stmmac_init_ptp(priv);
2686 if (ret == -EOPNOTSUPP)
2687 netdev_warn(priv->dev, "PTP not supported by HW\n");
2688 else if (ret)
2689 netdev_warn(priv->dev, "PTP init failed\n");
2690 }
2691
2692 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2693
2694 if (priv->use_riwt) {
2695 if (!priv->rx_riwt)
2696 priv->rx_riwt = DEF_DMA_RIWT;
2697
2698 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2699 }
2700
2701 if (priv->hw->pcs)
2702 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2703
2704 /* set TX and RX rings length */
2705 stmmac_set_rings_length(priv);
2706
2707 /* Enable TSO */
2708 if (priv->tso) {
2709 for (chan = 0; chan < tx_cnt; chan++)
2710 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2711 }
2712
2713 /* Enable Split Header */
2714 if (priv->sph && priv->hw->rx_csum) {
2715 for (chan = 0; chan < rx_cnt; chan++)
2716 stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2717 }
2718
2719 /* VLAN Tag Insertion */
2720 if (priv->dma_cap.vlins)
2721 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2722
2723 /* TBS */
2724 for (chan = 0; chan < tx_cnt; chan++) {
2725 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2726 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2727
2728 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2729 }
2730
2731 /* Start the ball rolling... */
2732 stmmac_start_all_dma(priv);
2733
2734 return 0;
2735 }
2736
2737 static void stmmac_hw_teardown(struct net_device *dev)
2738 {
2739 struct stmmac_priv *priv = netdev_priv(dev);
2740
2741 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2742 }
2743
2744 /**
2745 * stmmac_open - open entry point of the driver
2746 * @dev : pointer to the device structure.
2747 * Description:
2748 * This function is the open entry point of the driver.
2749 * Return value:
2750 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2751 * file on failure.
2752 */
2753 static int stmmac_open(struct net_device *dev)
2754 {
2755 struct stmmac_priv *priv = netdev_priv(dev);
2756 int bfsize = 0;
2757 u32 chan;
2758 int ret;
2759
2760 if (priv->hw->pcs != STMMAC_PCS_TBI &&
2761 priv->hw->pcs != STMMAC_PCS_RTBI &&
2762 priv->hw->xpcs == NULL) {
2763 ret = stmmac_init_phy(dev);
2764 if (ret) {
2765 netdev_err(priv->dev,
2766 "%s: Cannot attach to PHY (error: %d)\n",
2767 __func__, ret);
2768 return ret;
2769 }
2770 }
2771
2772 /* Extra statistics */
2773 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2774 priv->xstats.threshold = tc;
2775
2776 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2777 if (bfsize < 0)
2778 bfsize = 0;
2779
2780 if (bfsize < BUF_SIZE_16KiB)
2781 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2782
2783 priv->dma_buf_sz = bfsize;
2784 buf_sz = bfsize;
2785
2786 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2787
2788 /* Earlier check for TBS */
2789 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2790 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2791 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2792
2793 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2794 if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2795 tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2796 }
2797
2798 ret = alloc_dma_desc_resources(priv);
2799 if (ret < 0) {
2800 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2801 __func__);
2802 goto dma_desc_error;
2803 }
2804
2805 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2806 if (ret < 0) {
2807 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2808 __func__);
2809 goto init_error;
2810 }
2811
2812 ret = stmmac_hw_setup(dev, true);
2813 if (ret < 0) {
2814 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2815 goto init_error;
2816 }
2817
2818 stmmac_init_coalesce(priv);
2819
2820 phylink_start(priv->phylink);
2821
2822 /* Request the IRQ lines */
2823 ret = request_irq(dev->irq, stmmac_interrupt,
2824 IRQF_SHARED, dev->name, dev);
2825 if (unlikely(ret < 0)) {
2826 netdev_err(priv->dev,
2827 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2828 __func__, dev->irq, ret);
2829 goto irq_error;
2830 }
2831
2832 /* Request the Wake IRQ in case of another line is used for WoL */
2833 if (priv->wol_irq != dev->irq) {
2834 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2835 IRQF_SHARED, dev->name, dev);
2836 if (unlikely(ret < 0)) {
2837 netdev_err(priv->dev,
2838 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2839 __func__, priv->wol_irq, ret);
2840 goto wolirq_error;
2841 }
2842 }
2843
2844 /* Request the IRQ lines */
2845 if (priv->lpi_irq > 0) {
2846 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2847 dev->name, dev);
2848 if (unlikely(ret < 0)) {
2849 netdev_err(priv->dev,
2850 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2851 __func__, priv->lpi_irq, ret);
2852 goto lpiirq_error;
2853 }
2854 }
2855
2856 stmmac_enable_all_queues(priv);
2857 stmmac_start_all_queues(priv);
2858
2859 return 0;
2860
2861 lpiirq_error:
2862 if (priv->wol_irq != dev->irq)
2863 free_irq(priv->wol_irq, dev);
2864 wolirq_error:
2865 free_irq(dev->irq, dev);
2866 irq_error:
2867 phylink_stop(priv->phylink);
2868
2869 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2870 del_timer_sync(&priv->tx_queue[chan].txtimer);
2871
2872 stmmac_hw_teardown(dev);
2873 init_error:
2874 free_dma_desc_resources(priv);
2875 dma_desc_error:
2876 phylink_disconnect_phy(priv->phylink);
2877 return ret;
2878 }
2879
2880 /**
2881 * stmmac_release - close entry point of the driver
2882 * @dev : device pointer.
2883 * Description:
2884 * This is the stop entry point of the driver.
2885 */
2886 static int stmmac_release(struct net_device *dev)
2887 {
2888 struct stmmac_priv *priv = netdev_priv(dev);
2889 u32 chan;
2890
2891 if (priv->eee_enabled)
2892 del_timer_sync(&priv->eee_ctrl_timer);
2893
2894 /* Stop and disconnect the PHY */
2895 phylink_stop(priv->phylink);
2896 phylink_disconnect_phy(priv->phylink);
2897
2898 stmmac_stop_all_queues(priv);
2899
2900 stmmac_disable_all_queues(priv);
2901
2902 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2903 del_timer_sync(&priv->tx_queue[chan].txtimer);
2904
2905 /* Free the IRQ lines */
2906 free_irq(dev->irq, dev);
2907 if (priv->wol_irq != dev->irq)
2908 free_irq(priv->wol_irq, dev);
2909 if (priv->lpi_irq > 0)
2910 free_irq(priv->lpi_irq, dev);
2911
2912 /* Stop TX/RX DMA and clear the descriptors */
2913 stmmac_stop_all_dma(priv);
2914
2915 /* Release and free the Rx/Tx resources */
2916 free_dma_desc_resources(priv);
2917
2918 /* Disable the MAC Rx/Tx */
2919 stmmac_mac_set(priv, priv->ioaddr, false);
2920
2921 netif_carrier_off(dev);
2922
2923 stmmac_release_ptp(priv);
2924
2925 return 0;
2926 }
2927
2928 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2929 struct stmmac_tx_queue *tx_q)
2930 {
2931 u16 tag = 0x0, inner_tag = 0x0;
2932 u32 inner_type = 0x0;
2933 struct dma_desc *p;
2934
2935 if (!priv->dma_cap.vlins)
2936 return false;
2937 if (!skb_vlan_tag_present(skb))
2938 return false;
2939 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2940 inner_tag = skb_vlan_tag_get(skb);
2941 inner_type = STMMAC_VLAN_INSERT;
2942 }
2943
2944 tag = skb_vlan_tag_get(skb);
2945
2946 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2947 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2948 else
2949 p = &tx_q->dma_tx[tx_q->cur_tx];
2950
2951 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2952 return false;
2953
2954 stmmac_set_tx_owner(priv, p);
2955 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2956 return true;
2957 }
2958
2959 /**
2960 * stmmac_tso_allocator - close entry point of the driver
2961 * @priv: driver private structure
2962 * @des: buffer start address
2963 * @total_len: total length to fill in descriptors
2964 * @last_segmant: condition for the last descriptor
2965 * @queue: TX queue index
2966 * Description:
2967 * This function fills descriptor and request new descriptors according to
2968 * buffer length to fill
2969 */
2970 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2971 int total_len, bool last_segment, u32 queue)
2972 {
2973 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2974 struct dma_desc *desc;
2975 u32 buff_size;
2976 int tmp_len;
2977
2978 tmp_len = total_len;
2979
2980 while (tmp_len > 0) {
2981 dma_addr_t curr_addr;
2982
2983 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2984 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2985
2986 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2987 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
2988 else
2989 desc = &tx_q->dma_tx[tx_q->cur_tx];
2990
2991 curr_addr = des + (total_len - tmp_len);
2992 if (priv->dma_cap.addr64 <= 32)
2993 desc->des0 = cpu_to_le32(curr_addr);
2994 else
2995 stmmac_set_desc_addr(priv, desc, curr_addr);
2996
2997 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2998 TSO_MAX_BUFF_SIZE : tmp_len;
2999
3000 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3001 0, 1,
3002 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3003 0, 0);
3004
3005 tmp_len -= TSO_MAX_BUFF_SIZE;
3006 }
3007 }
3008
3009 /**
3010 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3011 * @skb : the socket buffer
3012 * @dev : device pointer
3013 * Description: this is the transmit function that is called on TSO frames
3014 * (support available on GMAC4 and newer chips).
3015 * Diagram below show the ring programming in case of TSO frames:
3016 *
3017 * First Descriptor
3018 * --------
3019 * | DES0 |---> buffer1 = L2/L3/L4 header
3020 * | DES1 |---> TCP Payload (can continue on next descr...)
3021 * | DES2 |---> buffer 1 and 2 len
3022 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3023 * --------
3024 * |
3025 * ...
3026 * |
3027 * --------
3028 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
3029 * | DES1 | --|
3030 * | DES2 | --> buffer 1 and 2 len
3031 * | DES3 |
3032 * --------
3033 *
3034 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3035 */
3036 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3037 {
3038 struct dma_desc *desc, *first, *mss_desc = NULL;
3039 struct stmmac_priv *priv = netdev_priv(dev);
3040 int desc_size, tmp_pay_len = 0, first_tx;
3041 int nfrags = skb_shinfo(skb)->nr_frags;
3042 u32 queue = skb_get_queue_mapping(skb);
3043 unsigned int first_entry, tx_packets;
3044 struct stmmac_tx_queue *tx_q;
3045 bool has_vlan, set_ic;
3046 u8 proto_hdr_len, hdr;
3047 u32 pay_len, mss;
3048 dma_addr_t des;
3049 int i;
3050
3051 tx_q = &priv->tx_queue[queue];
3052 first_tx = tx_q->cur_tx;
3053
3054 /* Compute header lengths */
3055 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3056 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3057 hdr = sizeof(struct udphdr);
3058 } else {
3059 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3060 hdr = tcp_hdrlen(skb);
3061 }
3062
3063 /* Desc availability based on threshold should be enough safe */
3064 if (unlikely(stmmac_tx_avail(priv, queue) <
3065 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3066 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3067 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3068 queue));
3069 /* This is a hard error, log it. */
3070 netdev_err(priv->dev,
3071 "%s: Tx Ring full when queue awake\n",
3072 __func__);
3073 }
3074 return NETDEV_TX_BUSY;
3075 }
3076
3077 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3078
3079 mss = skb_shinfo(skb)->gso_size;
3080
3081 /* set new MSS value if needed */
3082 if (mss != tx_q->mss) {
3083 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3084 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3085 else
3086 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3087
3088 stmmac_set_mss(priv, mss_desc, mss);
3089 tx_q->mss = mss;
3090 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3091 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3092 }
3093
3094 if (netif_msg_tx_queued(priv)) {
3095 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3096 __func__, hdr, proto_hdr_len, pay_len, mss);
3097 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3098 skb->data_len);
3099 }
3100
3101 /* Check if VLAN can be inserted by HW */
3102 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3103
3104 first_entry = tx_q->cur_tx;
3105 WARN_ON(tx_q->tx_skbuff[first_entry]);
3106
3107 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3108 desc = &tx_q->dma_entx[first_entry].basic;
3109 else
3110 desc = &tx_q->dma_tx[first_entry];
3111 first = desc;
3112
3113 if (has_vlan)
3114 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3115
3116 /* first descriptor: fill Headers on Buf1 */
3117 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3118 DMA_TO_DEVICE);
3119 if (dma_mapping_error(priv->device, des))
3120 goto dma_map_err;
3121
3122 tx_q->tx_skbuff_dma[first_entry].buf = des;
3123 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3124
3125 if (priv->dma_cap.addr64 <= 32) {
3126 first->des0 = cpu_to_le32(des);
3127
3128 /* Fill start of payload in buff2 of first descriptor */
3129 if (pay_len)
3130 first->des1 = cpu_to_le32(des + proto_hdr_len);
3131
3132 /* If needed take extra descriptors to fill the remaining payload */
3133 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3134 } else {
3135 stmmac_set_desc_addr(priv, first, des);
3136 tmp_pay_len = pay_len;
3137 des += proto_hdr_len;
3138 pay_len = 0;
3139 }
3140
3141 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3142
3143 /* Prepare fragments */
3144 for (i = 0; i < nfrags; i++) {
3145 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3146
3147 des = skb_frag_dma_map(priv->device, frag, 0,
3148 skb_frag_size(frag),
3149 DMA_TO_DEVICE);
3150 if (dma_mapping_error(priv->device, des))
3151 goto dma_map_err;
3152
3153 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3154 (i == nfrags - 1), queue);
3155
3156 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3157 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3158 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3159 }
3160
3161 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3162
3163 /* Only the last descriptor gets to point to the skb. */
3164 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3165
3166 /* Manage tx mitigation */
3167 tx_packets = (tx_q->cur_tx + 1) - first_tx;
3168 tx_q->tx_count_frames += tx_packets;
3169
3170 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3171 set_ic = true;
3172 else if (!priv->tx_coal_frames)
3173 set_ic = false;
3174 else if (tx_packets > priv->tx_coal_frames)
3175 set_ic = true;
3176 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3177 set_ic = true;
3178 else
3179 set_ic = false;
3180
3181 if (set_ic) {
3182 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3183 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3184 else
3185 desc = &tx_q->dma_tx[tx_q->cur_tx];
3186
3187 tx_q->tx_count_frames = 0;
3188 stmmac_set_tx_ic(priv, desc);
3189 priv->xstats.tx_set_ic_bit++;
3190 }
3191
3192 /* We've used all descriptors we need for this skb, however,
3193 * advance cur_tx so that it references a fresh descriptor.
3194 * ndo_start_xmit will fill this descriptor the next time it's
3195 * called and stmmac_tx_clean may clean up to this descriptor.
3196 */
3197 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3198
3199 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3200 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3201 __func__);
3202 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3203 }
3204
3205 dev->stats.tx_bytes += skb->len;
3206 priv->xstats.tx_tso_frames++;
3207 priv->xstats.tx_tso_nfrags += nfrags;
3208
3209 if (priv->sarc_type)
3210 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3211
3212 skb_tx_timestamp(skb);
3213
3214 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3215 priv->hwts_tx_en)) {
3216 /* declare that device is doing timestamping */
3217 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3218 stmmac_enable_tx_timestamp(priv, first);
3219 }
3220
3221 /* Complete the first descriptor before granting the DMA */
3222 stmmac_prepare_tso_tx_desc(priv, first, 1,
3223 proto_hdr_len,
3224 pay_len,
3225 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3226 hdr / 4, (skb->len - proto_hdr_len));
3227
3228 /* If context desc is used to change MSS */
3229 if (mss_desc) {
3230 /* Make sure that first descriptor has been completely
3231 * written, including its own bit. This is because MSS is
3232 * actually before first descriptor, so we need to make
3233 * sure that MSS's own bit is the last thing written.
3234 */
3235 dma_wmb();
3236 stmmac_set_tx_owner(priv, mss_desc);
3237 }
3238
3239 /* The own bit must be the latest setting done when prepare the
3240 * descriptor and then barrier is needed to make sure that
3241 * all is coherent before granting the DMA engine.
3242 */
3243 wmb();
3244
3245 if (netif_msg_pktdata(priv)) {
3246 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3247 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3248 tx_q->cur_tx, first, nfrags);
3249 pr_info(">>> frame to be transmitted: ");
3250 print_pkt(skb->data, skb_headlen(skb));
3251 }
3252
3253 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3254
3255 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3256 desc_size = sizeof(struct dma_edesc);
3257 else
3258 desc_size = sizeof(struct dma_desc);
3259
3260 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3261 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3262 stmmac_tx_timer_arm(priv, queue);
3263
3264 return NETDEV_TX_OK;
3265
3266 dma_map_err:
3267 dev_err(priv->device, "Tx dma map failed\n");
3268 dev_kfree_skb(skb);
3269 priv->dev->stats.tx_dropped++;
3270 return NETDEV_TX_OK;
3271 }
3272
3273 /**
3274 * stmmac_xmit - Tx entry point of the driver
3275 * @skb : the socket buffer
3276 * @dev : device pointer
3277 * Description : this is the tx entry point of the driver.
3278 * It programs the chain or the ring and supports oversized frames
3279 * and SG feature.
3280 */
3281 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3282 {
3283 unsigned int first_entry, tx_packets, enh_desc;
3284 struct stmmac_priv *priv = netdev_priv(dev);
3285 unsigned int nopaged_len = skb_headlen(skb);
3286 int i, csum_insertion = 0, is_jumbo = 0;
3287 u32 queue = skb_get_queue_mapping(skb);
3288 int nfrags = skb_shinfo(skb)->nr_frags;
3289 int gso = skb_shinfo(skb)->gso_type;
3290 struct dma_edesc *tbs_desc = NULL;
3291 int entry, desc_size, first_tx;
3292 struct dma_desc *desc, *first;
3293 struct stmmac_tx_queue *tx_q;
3294 bool has_vlan, set_ic;
3295 dma_addr_t des;
3296
3297 tx_q = &priv->tx_queue[queue];
3298 first_tx = tx_q->cur_tx;
3299
3300 if (priv->tx_path_in_lpi_mode)
3301 stmmac_disable_eee_mode(priv);
3302
3303 /* Manage oversized TCP frames for GMAC4 device */
3304 if (skb_is_gso(skb) && priv->tso) {
3305 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3306 return stmmac_tso_xmit(skb, dev);
3307 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3308 return stmmac_tso_xmit(skb, dev);
3309 }
3310
3311 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3312 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3313 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3314 queue));
3315 /* This is a hard error, log it. */
3316 netdev_err(priv->dev,
3317 "%s: Tx Ring full when queue awake\n",
3318 __func__);
3319 }
3320 return NETDEV_TX_BUSY;
3321 }
3322
3323 /* Check if VLAN can be inserted by HW */
3324 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3325
3326 entry = tx_q->cur_tx;
3327 first_entry = entry;
3328 WARN_ON(tx_q->tx_skbuff[first_entry]);
3329
3330 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3331
3332 if (likely(priv->extend_desc))
3333 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3334 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3335 desc = &tx_q->dma_entx[entry].basic;
3336 else
3337 desc = tx_q->dma_tx + entry;
3338
3339 first = desc;
3340
3341 if (has_vlan)
3342 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3343
3344 enh_desc = priv->plat->enh_desc;
3345 /* To program the descriptors according to the size of the frame */
3346 if (enh_desc)
3347 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3348
3349 if (unlikely(is_jumbo)) {
3350 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3351 if (unlikely(entry < 0) && (entry != -EINVAL))
3352 goto dma_map_err;
3353 }
3354
3355 for (i = 0; i < nfrags; i++) {
3356 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3357 int len = skb_frag_size(frag);
3358 bool last_segment = (i == (nfrags - 1));
3359
3360 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3361 WARN_ON(tx_q->tx_skbuff[entry]);
3362
3363 if (likely(priv->extend_desc))
3364 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3365 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3366 desc = &tx_q->dma_entx[entry].basic;
3367 else
3368 desc = tx_q->dma_tx + entry;
3369
3370 des = skb_frag_dma_map(priv->device, frag, 0, len,
3371 DMA_TO_DEVICE);
3372 if (dma_mapping_error(priv->device, des))
3373 goto dma_map_err; /* should reuse desc w/o issues */
3374
3375 tx_q->tx_skbuff_dma[entry].buf = des;
3376
3377 stmmac_set_desc_addr(priv, desc, des);
3378
3379 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3380 tx_q->tx_skbuff_dma[entry].len = len;
3381 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3382
3383 /* Prepare the descriptor and set the own bit too */
3384 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3385 priv->mode, 1, last_segment, skb->len);
3386 }
3387
3388 /* Only the last descriptor gets to point to the skb. */
3389 tx_q->tx_skbuff[entry] = skb;
3390
3391 /* According to the coalesce parameter the IC bit for the latest
3392 * segment is reset and the timer re-started to clean the tx status.
3393 * This approach takes care about the fragments: desc is the first
3394 * element in case of no SG.
3395 */
3396 tx_packets = (entry + 1) - first_tx;
3397 tx_q->tx_count_frames += tx_packets;
3398
3399 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3400 set_ic = true;
3401 else if (!priv->tx_coal_frames)
3402 set_ic = false;
3403 else if (tx_packets > priv->tx_coal_frames)
3404 set_ic = true;
3405 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3406 set_ic = true;
3407 else
3408 set_ic = false;
3409
3410 if (set_ic) {
3411 if (likely(priv->extend_desc))
3412 desc = &tx_q->dma_etx[entry].basic;
3413 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3414 desc = &tx_q->dma_entx[entry].basic;
3415 else
3416 desc = &tx_q->dma_tx[entry];
3417
3418 tx_q->tx_count_frames = 0;
3419 stmmac_set_tx_ic(priv, desc);
3420 priv->xstats.tx_set_ic_bit++;
3421 }
3422
3423 /* We've used all descriptors we need for this skb, however,
3424 * advance cur_tx so that it references a fresh descriptor.
3425 * ndo_start_xmit will fill this descriptor the next time it's
3426 * called and stmmac_tx_clean may clean up to this descriptor.
3427 */
3428 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3429 tx_q->cur_tx = entry;
3430
3431 if (netif_msg_pktdata(priv)) {
3432 netdev_dbg(priv->dev,
3433 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3434 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3435 entry, first, nfrags);
3436
3437 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3438 print_pkt(skb->data, skb->len);
3439 }
3440
3441 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3442 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3443 __func__);
3444 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3445 }
3446
3447 dev->stats.tx_bytes += skb->len;
3448
3449 if (priv->sarc_type)
3450 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3451
3452 skb_tx_timestamp(skb);
3453
3454 /* Ready to fill the first descriptor and set the OWN bit w/o any
3455 * problems because all the descriptors are actually ready to be
3456 * passed to the DMA engine.
3457 */
3458 if (likely(!is_jumbo)) {
3459 bool last_segment = (nfrags == 0);
3460
3461 des = dma_map_single(priv->device, skb->data,
3462 nopaged_len, DMA_TO_DEVICE);
3463 if (dma_mapping_error(priv->device, des))
3464 goto dma_map_err;
3465
3466 tx_q->tx_skbuff_dma[first_entry].buf = des;
3467
3468 stmmac_set_desc_addr(priv, first, des);
3469
3470 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3471 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3472
3473 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3474 priv->hwts_tx_en)) {
3475 /* declare that device is doing timestamping */
3476 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3477 stmmac_enable_tx_timestamp(priv, first);
3478 }
3479
3480 /* Prepare the first descriptor setting the OWN bit too */
3481 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3482 csum_insertion, priv->mode, 0, last_segment,
3483 skb->len);
3484 }
3485
3486 if (tx_q->tbs & STMMAC_TBS_EN) {
3487 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3488
3489 tbs_desc = &tx_q->dma_entx[first_entry];
3490 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3491 }
3492
3493 stmmac_set_tx_owner(priv, first);
3494
3495 /* The own bit must be the latest setting done when prepare the
3496 * descriptor and then barrier is needed to make sure that
3497 * all is coherent before granting the DMA engine.
3498 */
3499 wmb();
3500
3501 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3502
3503 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3504
3505 if (likely(priv->extend_desc))
3506 desc_size = sizeof(struct dma_extended_desc);
3507 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3508 desc_size = sizeof(struct dma_edesc);
3509 else
3510 desc_size = sizeof(struct dma_desc);
3511
3512 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3513 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3514 stmmac_tx_timer_arm(priv, queue);
3515
3516 return NETDEV_TX_OK;
3517
3518 dma_map_err:
3519 netdev_err(priv->dev, "Tx DMA map failed\n");
3520 dev_kfree_skb(skb);
3521 priv->dev->stats.tx_dropped++;
3522 return NETDEV_TX_OK;
3523 }
3524
3525 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3526 {
3527 struct vlan_ethhdr *veth;
3528 __be16 vlan_proto;
3529 u16 vlanid;
3530
3531 veth = (struct vlan_ethhdr *)skb->data;
3532 vlan_proto = veth->h_vlan_proto;
3533
3534 if ((vlan_proto == htons(ETH_P_8021Q) &&
3535 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3536 (vlan_proto == htons(ETH_P_8021AD) &&
3537 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3538 /* pop the vlan tag */
3539 vlanid = ntohs(veth->h_vlan_TCI);
3540 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3541 skb_pull(skb, VLAN_HLEN);
3542 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3543 }
3544 }
3545
3546
3547 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3548 {
3549 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3550 return 0;
3551
3552 return 1;
3553 }
3554
3555 /**
3556 * stmmac_rx_refill - refill used skb preallocated buffers
3557 * @priv: driver private structure
3558 * @queue: RX queue index
3559 * Description : this is to reallocate the skb for the reception process
3560 * that is based on zero-copy.
3561 */
3562 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3563 {
3564 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3565 int len, dirty = stmmac_rx_dirty(priv, queue);
3566 unsigned int entry = rx_q->dirty_rx;
3567
3568 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3569
3570 while (dirty-- > 0) {
3571 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3572 struct dma_desc *p;
3573 bool use_rx_wd;
3574
3575 if (priv->extend_desc)
3576 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3577 else
3578 p = rx_q->dma_rx + entry;
3579
3580 if (!buf->page) {
3581 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3582 if (!buf->page)
3583 break;
3584 }
3585
3586 if (priv->sph && !buf->sec_page) {
3587 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3588 if (!buf->sec_page)
3589 break;
3590
3591 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3592
3593 dma_sync_single_for_device(priv->device, buf->sec_addr,
3594 len, DMA_FROM_DEVICE);
3595 }
3596
3597 buf->addr = page_pool_get_dma_addr(buf->page);
3598
3599 /* Sync whole allocation to device. This will invalidate old
3600 * data.
3601 */
3602 dma_sync_single_for_device(priv->device, buf->addr, len,
3603 DMA_FROM_DEVICE);
3604
3605 stmmac_set_desc_addr(priv, p, buf->addr);
3606 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3607 stmmac_refill_desc3(priv, rx_q, p);
3608
3609 rx_q->rx_count_frames++;
3610 rx_q->rx_count_frames += priv->rx_coal_frames;
3611 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3612 rx_q->rx_count_frames = 0;
3613
3614 use_rx_wd = !priv->rx_coal_frames;
3615 use_rx_wd |= rx_q->rx_count_frames > 0;
3616 if (!priv->use_riwt)
3617 use_rx_wd = false;
3618
3619 dma_wmb();
3620 stmmac_set_rx_owner(priv, p, use_rx_wd);
3621
3622 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3623 }
3624 rx_q->dirty_rx = entry;
3625 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3626 (rx_q->dirty_rx * sizeof(struct dma_desc));
3627 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3628 }
3629
3630 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3631 struct dma_desc *p,
3632 int status, unsigned int len)
3633 {
3634 int ret, coe = priv->hw->rx_csum;
3635 unsigned int plen = 0, hlen = 0;
3636
3637 /* Not first descriptor, buffer is always zero */
3638 if (priv->sph && len)
3639 return 0;
3640
3641 /* First descriptor, get split header length */
3642 ret = stmmac_get_rx_header_len(priv, p, &hlen);
3643 if (priv->sph && hlen) {
3644 priv->xstats.rx_split_hdr_pkt_n++;
3645 return hlen;
3646 }
3647
3648 /* First descriptor, not last descriptor and not split header */
3649 if (status & rx_not_ls)
3650 return priv->dma_buf_sz;
3651
3652 plen = stmmac_get_rx_frame_len(priv, p, coe);
3653
3654 /* First descriptor and last descriptor and not split header */
3655 return min_t(unsigned int, priv->dma_buf_sz, plen);
3656 }
3657
3658 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3659 struct dma_desc *p,
3660 int status, unsigned int len)
3661 {
3662 int coe = priv->hw->rx_csum;
3663 unsigned int plen = 0;
3664
3665 /* Not split header, buffer is not available */
3666 if (!priv->sph)
3667 return 0;
3668
3669 /* Not last descriptor */
3670 if (status & rx_not_ls)
3671 return priv->dma_buf_sz;
3672
3673 plen = stmmac_get_rx_frame_len(priv, p, coe);
3674
3675 /* Last descriptor */
3676 return plen - len;
3677 }
3678
3679 /**
3680 * stmmac_rx - manage the receive process
3681 * @priv: driver private structure
3682 * @limit: napi bugget
3683 * @queue: RX queue index.
3684 * Description : this the function called by the napi poll method.
3685 * It gets all the frames inside the ring.
3686 */
3687 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3688 {
3689 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3690 struct stmmac_channel *ch = &priv->channel[queue];
3691 unsigned int count = 0, error = 0, len = 0;
3692 int status = 0, coe = priv->hw->rx_csum;
3693 unsigned int next_entry = rx_q->cur_rx;
3694 struct sk_buff *skb = NULL;
3695
3696 if (netif_msg_rx_status(priv)) {
3697 void *rx_head;
3698
3699 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3700 if (priv->extend_desc)
3701 rx_head = (void *)rx_q->dma_erx;
3702 else
3703 rx_head = (void *)rx_q->dma_rx;
3704
3705 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3706 }
3707 while (count < limit) {
3708 unsigned int buf1_len = 0, buf2_len = 0;
3709 enum pkt_hash_types hash_type;
3710 struct stmmac_rx_buffer *buf;
3711 struct dma_desc *np, *p;
3712 int entry;
3713 u32 hash;
3714
3715 if (!count && rx_q->state_saved) {
3716 skb = rx_q->state.skb;
3717 error = rx_q->state.error;
3718 len = rx_q->state.len;
3719 } else {
3720 rx_q->state_saved = false;
3721 skb = NULL;
3722 error = 0;
3723 len = 0;
3724 }
3725
3726 if (count >= limit)
3727 break;
3728
3729 read_again:
3730 buf1_len = 0;
3731 buf2_len = 0;
3732 entry = next_entry;
3733 buf = &rx_q->buf_pool[entry];
3734
3735 if (priv->extend_desc)
3736 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3737 else
3738 p = rx_q->dma_rx + entry;
3739
3740 /* read the status of the incoming frame */
3741 status = stmmac_rx_status(priv, &priv->dev->stats,
3742 &priv->xstats, p);
3743 /* check if managed by the DMA otherwise go ahead */
3744 if (unlikely(status & dma_own))
3745 break;
3746
3747 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3748 next_entry = rx_q->cur_rx;
3749
3750 if (priv->extend_desc)
3751 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3752 else
3753 np = rx_q->dma_rx + next_entry;
3754
3755 prefetch(np);
3756
3757 if (priv->extend_desc)
3758 stmmac_rx_extended_status(priv, &priv->dev->stats,
3759 &priv->xstats, rx_q->dma_erx + entry);
3760 if (unlikely(status == discard_frame)) {
3761 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3762 buf->page = NULL;
3763 error = 1;
3764 if (!priv->hwts_rx_en)
3765 priv->dev->stats.rx_errors++;
3766 }
3767
3768 if (unlikely(error && (status & rx_not_ls)))
3769 goto read_again;
3770 if (unlikely(error)) {
3771 dev_kfree_skb(skb);
3772 skb = NULL;
3773 count++;
3774 continue;
3775 }
3776
3777 /* Buffer is good. Go on. */
3778
3779 prefetch(page_address(buf->page));
3780 if (buf->sec_page)
3781 prefetch(page_address(buf->sec_page));
3782
3783 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3784 len += buf1_len;
3785 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3786 len += buf2_len;
3787
3788 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3789 * Type frames (LLC/LLC-SNAP)
3790 *
3791 * llc_snap is never checked in GMAC >= 4, so this ACS
3792 * feature is always disabled and packets need to be
3793 * stripped manually.
3794 */
3795 if (likely(!(status & rx_not_ls)) &&
3796 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3797 unlikely(status != llc_snap))) {
3798 if (buf2_len)
3799 buf2_len -= ETH_FCS_LEN;
3800 else
3801 buf1_len -= ETH_FCS_LEN;
3802
3803 len -= ETH_FCS_LEN;
3804 }
3805
3806 if (!skb) {
3807 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3808 if (!skb) {
3809 priv->dev->stats.rx_dropped++;
3810 count++;
3811 goto drain_data;
3812 }
3813
3814 dma_sync_single_for_cpu(priv->device, buf->addr,
3815 buf1_len, DMA_FROM_DEVICE);
3816 skb_copy_to_linear_data(skb, page_address(buf->page),
3817 buf1_len);
3818 skb_put(skb, buf1_len);
3819
3820 /* Data payload copied into SKB, page ready for recycle */
3821 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3822 buf->page = NULL;
3823 } else if (buf1_len) {
3824 dma_sync_single_for_cpu(priv->device, buf->addr,
3825 buf1_len, DMA_FROM_DEVICE);
3826 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3827 buf->page, 0, buf1_len,
3828 priv->dma_buf_sz);
3829
3830 /* Data payload appended into SKB */
3831 page_pool_release_page(rx_q->page_pool, buf->page);
3832 buf->page = NULL;
3833 }
3834
3835 if (buf2_len) {
3836 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3837 buf2_len, DMA_FROM_DEVICE);
3838 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3839 buf->sec_page, 0, buf2_len,
3840 priv->dma_buf_sz);
3841
3842 /* Data payload appended into SKB */
3843 page_pool_release_page(rx_q->page_pool, buf->sec_page);
3844 buf->sec_page = NULL;
3845 }
3846
3847 drain_data:
3848 if (likely(status & rx_not_ls))
3849 goto read_again;
3850 if (!skb)
3851 continue;
3852
3853 /* Got entire packet into SKB. Finish it. */
3854
3855 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3856 stmmac_rx_vlan(priv->dev, skb);
3857 skb->protocol = eth_type_trans(skb, priv->dev);
3858
3859 if (unlikely(!coe))
3860 skb_checksum_none_assert(skb);
3861 else
3862 skb->ip_summed = CHECKSUM_UNNECESSARY;
3863
3864 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3865 skb_set_hash(skb, hash, hash_type);
3866
3867 skb_record_rx_queue(skb, queue);
3868 napi_gro_receive(&ch->rx_napi, skb);
3869 skb = NULL;
3870
3871 priv->dev->stats.rx_packets++;
3872 priv->dev->stats.rx_bytes += len;
3873 count++;
3874 }
3875
3876 if (status & rx_not_ls || skb) {
3877 rx_q->state_saved = true;
3878 rx_q->state.skb = skb;
3879 rx_q->state.error = error;
3880 rx_q->state.len = len;
3881 }
3882
3883 stmmac_rx_refill(priv, queue);
3884
3885 priv->xstats.rx_pkt_n += count;
3886
3887 return count;
3888 }
3889
3890 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3891 {
3892 struct stmmac_channel *ch =
3893 container_of(napi, struct stmmac_channel, rx_napi);
3894 struct stmmac_priv *priv = ch->priv_data;
3895 u32 chan = ch->index;
3896 int work_done;
3897
3898 priv->xstats.napi_poll++;
3899
3900 work_done = stmmac_rx(priv, budget, chan);
3901 if (work_done < budget && napi_complete_done(napi, work_done)) {
3902 unsigned long flags;
3903
3904 spin_lock_irqsave(&ch->lock, flags);
3905 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3906 spin_unlock_irqrestore(&ch->lock, flags);
3907 }
3908
3909 return work_done;
3910 }
3911
3912 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3913 {
3914 struct stmmac_channel *ch =
3915 container_of(napi, struct stmmac_channel, tx_napi);
3916 struct stmmac_priv *priv = ch->priv_data;
3917 u32 chan = ch->index;
3918 int work_done;
3919
3920 priv->xstats.napi_poll++;
3921
3922 work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3923 work_done = min(work_done, budget);
3924
3925 if (work_done < budget && napi_complete_done(napi, work_done)) {
3926 unsigned long flags;
3927
3928 spin_lock_irqsave(&ch->lock, flags);
3929 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3930 spin_unlock_irqrestore(&ch->lock, flags);
3931 }
3932
3933 return work_done;
3934 }
3935
3936 /**
3937 * stmmac_tx_timeout
3938 * @dev : Pointer to net device structure
3939 * Description: this function is called when a packet transmission fails to
3940 * complete within a reasonable time. The driver will mark the error in the
3941 * netdev structure and arrange for the device to be reset to a sane state
3942 * in order to transmit a new packet.
3943 */
3944 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3945 {
3946 struct stmmac_priv *priv = netdev_priv(dev);
3947
3948 stmmac_global_err(priv);
3949 }
3950
3951 /**
3952 * stmmac_set_rx_mode - entry point for multicast addressing
3953 * @dev : pointer to the device structure
3954 * Description:
3955 * This function is a driver entry point which gets called by the kernel
3956 * whenever multicast addresses must be enabled/disabled.
3957 * Return value:
3958 * void.
3959 */
3960 static void stmmac_set_rx_mode(struct net_device *dev)
3961 {
3962 struct stmmac_priv *priv = netdev_priv(dev);
3963
3964 stmmac_set_filter(priv, priv->hw, dev);
3965 }
3966
3967 /**
3968 * stmmac_change_mtu - entry point to change MTU size for the device.
3969 * @dev : device pointer.
3970 * @new_mtu : the new MTU size for the device.
3971 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
3972 * to drive packet transmission. Ethernet has an MTU of 1500 octets
3973 * (ETH_DATA_LEN). This value can be changed with ifconfig.
3974 * Return value:
3975 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3976 * file on failure.
3977 */
3978 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3979 {
3980 struct stmmac_priv *priv = netdev_priv(dev);
3981 int txfifosz = priv->plat->tx_fifo_size;
3982
3983 if (txfifosz == 0)
3984 txfifosz = priv->dma_cap.tx_fifo_size;
3985
3986 txfifosz /= priv->plat->tx_queues_to_use;
3987
3988 if (netif_running(dev)) {
3989 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3990 return -EBUSY;
3991 }
3992
3993 new_mtu = STMMAC_ALIGN(new_mtu);
3994
3995 /* If condition true, FIFO is too small or MTU too large */
3996 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3997 return -EINVAL;
3998
3999 dev->mtu = new_mtu;
4000
4001 netdev_update_features(dev);
4002
4003 return 0;
4004 }
4005
4006 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4007 netdev_features_t features)
4008 {
4009 struct stmmac_priv *priv = netdev_priv(dev);
4010
4011 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4012 features &= ~NETIF_F_RXCSUM;
4013
4014 if (!priv->plat->tx_coe)
4015 features &= ~NETIF_F_CSUM_MASK;
4016
4017 /* Some GMAC devices have a bugged Jumbo frame support that
4018 * needs to have the Tx COE disabled for oversized frames
4019 * (due to limited buffer sizes). In this case we disable
4020 * the TX csum insertion in the TDES and not use SF.
4021 */
4022 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4023 features &= ~NETIF_F_CSUM_MASK;
4024
4025 /* Disable tso if asked by ethtool */
4026 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4027 if (features & NETIF_F_TSO)
4028 priv->tso = true;
4029 else
4030 priv->tso = false;
4031 }
4032
4033 return features;
4034 }
4035
4036 static int stmmac_set_features(struct net_device *netdev,
4037 netdev_features_t features)
4038 {
4039 struct stmmac_priv *priv = netdev_priv(netdev);
4040 bool sph_en;
4041 u32 chan;
4042
4043 /* Keep the COE Type in case of csum is supporting */
4044 if (features & NETIF_F_RXCSUM)
4045 priv->hw->rx_csum = priv->plat->rx_coe;
4046 else
4047 priv->hw->rx_csum = 0;
4048 /* No check needed because rx_coe has been set before and it will be
4049 * fixed in case of issue.
4050 */
4051 stmmac_rx_ipc(priv, priv->hw);
4052
4053 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4054 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4055 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4056
4057 return 0;
4058 }
4059
4060 /**
4061 * stmmac_interrupt - main ISR
4062 * @irq: interrupt number.
4063 * @dev_id: to pass the net device pointer.
4064 * Description: this is the main driver interrupt service routine.
4065 * It can call:
4066 * o DMA service routine (to manage incoming frame reception and transmission
4067 * status)
4068 * o Core interrupts to manage: remote wake-up, management counter, LPI
4069 * interrupts.
4070 */
4071 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4072 {
4073 struct net_device *dev = (struct net_device *)dev_id;
4074 struct stmmac_priv *priv = netdev_priv(dev);
4075 u32 rx_cnt = priv->plat->rx_queues_to_use;
4076 u32 tx_cnt = priv->plat->tx_queues_to_use;
4077 u32 queues_count;
4078 u32 queue;
4079 bool xmac;
4080
4081 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4082 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4083
4084 if (priv->irq_wake)
4085 pm_wakeup_event(priv->device, 0);
4086
4087 if (unlikely(!dev)) {
4088 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
4089 return IRQ_NONE;
4090 }
4091
4092 /* Check if adapter is up */
4093 if (test_bit(STMMAC_DOWN, &priv->state))
4094 return IRQ_HANDLED;
4095 /* Check if a fatal error happened */
4096 if (stmmac_safety_feat_interrupt(priv))
4097 return IRQ_HANDLED;
4098
4099 /* To handle GMAC own interrupts */
4100 if ((priv->plat->has_gmac) || xmac) {
4101 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4102 int mtl_status;
4103
4104 if (unlikely(status)) {
4105 /* For LPI we need to save the tx status */
4106 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4107 priv->tx_path_in_lpi_mode = true;
4108 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4109 priv->tx_path_in_lpi_mode = false;
4110 }
4111
4112 for (queue = 0; queue < queues_count; queue++) {
4113 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4114
4115 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4116 queue);
4117 if (mtl_status != -EINVAL)
4118 status |= mtl_status;
4119
4120 if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4121 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4122 rx_q->rx_tail_addr,
4123 queue);
4124 }
4125
4126 /* PCS link status */
4127 if (priv->hw->pcs) {
4128 if (priv->xstats.pcs_link)
4129 netif_carrier_on(dev);
4130 else
4131 netif_carrier_off(dev);
4132 }
4133 }
4134
4135 /* To handle DMA interrupts */
4136 stmmac_dma_interrupt(priv);
4137
4138 return IRQ_HANDLED;
4139 }
4140
4141 #ifdef CONFIG_NET_POLL_CONTROLLER
4142 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4143 * to allow network I/O with interrupts disabled.
4144 */
4145 static void stmmac_poll_controller(struct net_device *dev)
4146 {
4147 disable_irq(dev->irq);
4148 stmmac_interrupt(dev->irq, dev);
4149 enable_irq(dev->irq);
4150 }
4151 #endif
4152
4153 /**
4154 * stmmac_ioctl - Entry point for the Ioctl
4155 * @dev: Device pointer.
4156 * @rq: An IOCTL specefic structure, that can contain a pointer to
4157 * a proprietary structure used to pass information to the driver.
4158 * @cmd: IOCTL command
4159 * Description:
4160 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4161 */
4162 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4163 {
4164 struct stmmac_priv *priv = netdev_priv (dev);
4165 int ret = -EOPNOTSUPP;
4166
4167 if (!netif_running(dev))
4168 return -EINVAL;
4169
4170 switch (cmd) {
4171 case SIOCGMIIPHY:
4172 case SIOCGMIIREG:
4173 case SIOCSMIIREG:
4174 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4175 break;
4176 case SIOCSHWTSTAMP:
4177 ret = stmmac_hwtstamp_set(dev, rq);
4178 break;
4179 case SIOCGHWTSTAMP:
4180 ret = stmmac_hwtstamp_get(dev, rq);
4181 break;
4182 default:
4183 break;
4184 }
4185
4186 return ret;
4187 }
4188
4189 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4190 void *cb_priv)
4191 {
4192 struct stmmac_priv *priv = cb_priv;
4193 int ret = -EOPNOTSUPP;
4194
4195 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4196 return ret;
4197
4198 stmmac_disable_all_queues(priv);
4199
4200 switch (type) {
4201 case TC_SETUP_CLSU32:
4202 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4203 break;
4204 case TC_SETUP_CLSFLOWER:
4205 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4206 break;
4207 default:
4208 break;
4209 }
4210
4211 stmmac_enable_all_queues(priv);
4212 return ret;
4213 }
4214
4215 static LIST_HEAD(stmmac_block_cb_list);
4216
4217 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4218 void *type_data)
4219 {
4220 struct stmmac_priv *priv = netdev_priv(ndev);
4221
4222 switch (type) {
4223 case TC_SETUP_BLOCK:
4224 return flow_block_cb_setup_simple(type_data,
4225 &stmmac_block_cb_list,
4226 stmmac_setup_tc_block_cb,
4227 priv, priv, true);
4228 case TC_SETUP_QDISC_CBS:
4229 return stmmac_tc_setup_cbs(priv, priv, type_data);
4230 case TC_SETUP_QDISC_TAPRIO:
4231 return stmmac_tc_setup_taprio(priv, priv, type_data);
4232 case TC_SETUP_QDISC_ETF:
4233 return stmmac_tc_setup_etf(priv, priv, type_data);
4234 default:
4235 return -EOPNOTSUPP;
4236 }
4237 }
4238
4239 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4240 struct net_device *sb_dev)
4241 {
4242 int gso = skb_shinfo(skb)->gso_type;
4243
4244 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4245 /*
4246 * There is no way to determine the number of TSO/USO
4247 * capable Queues. Let's use always the Queue 0
4248 * because if TSO/USO is supported then at least this
4249 * one will be capable.
4250 */
4251 return 0;
4252 }
4253
4254 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4255 }
4256
4257 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4258 {
4259 struct stmmac_priv *priv = netdev_priv(ndev);
4260 int ret = 0;
4261
4262 ret = eth_mac_addr(ndev, addr);
4263 if (ret)
4264 return ret;
4265
4266 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4267
4268 return ret;
4269 }
4270
4271 #ifdef CONFIG_DEBUG_FS
4272 static struct dentry *stmmac_fs_dir;
4273
4274 static void sysfs_display_ring(void *head, int size, int extend_desc,
4275 struct seq_file *seq)
4276 {
4277 int i;
4278 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4279 struct dma_desc *p = (struct dma_desc *)head;
4280
4281 for (i = 0; i < size; i++) {
4282 if (extend_desc) {
4283 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4284 i, (unsigned int)virt_to_phys(ep),
4285 le32_to_cpu(ep->basic.des0),
4286 le32_to_cpu(ep->basic.des1),
4287 le32_to_cpu(ep->basic.des2),
4288 le32_to_cpu(ep->basic.des3));
4289 ep++;
4290 } else {
4291 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4292 i, (unsigned int)virt_to_phys(p),
4293 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4294 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4295 p++;
4296 }
4297 seq_printf(seq, "\n");
4298 }
4299 }
4300
4301 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4302 {
4303 struct net_device *dev = seq->private;
4304 struct stmmac_priv *priv = netdev_priv(dev);
4305 u32 rx_count = priv->plat->rx_queues_to_use;
4306 u32 tx_count = priv->plat->tx_queues_to_use;
4307 u32 queue;
4308
4309 if ((dev->flags & IFF_UP) == 0)
4310 return 0;
4311
4312 for (queue = 0; queue < rx_count; queue++) {
4313 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4314
4315 seq_printf(seq, "RX Queue %d:\n", queue);
4316
4317 if (priv->extend_desc) {
4318 seq_printf(seq, "Extended descriptor ring:\n");
4319 sysfs_display_ring((void *)rx_q->dma_erx,
4320 DMA_RX_SIZE, 1, seq);
4321 } else {
4322 seq_printf(seq, "Descriptor ring:\n");
4323 sysfs_display_ring((void *)rx_q->dma_rx,
4324 DMA_RX_SIZE, 0, seq);
4325 }
4326 }
4327
4328 for (queue = 0; queue < tx_count; queue++) {
4329 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4330
4331 seq_printf(seq, "TX Queue %d:\n", queue);
4332
4333 if (priv->extend_desc) {
4334 seq_printf(seq, "Extended descriptor ring:\n");
4335 sysfs_display_ring((void *)tx_q->dma_etx,
4336 DMA_TX_SIZE, 1, seq);
4337 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4338 seq_printf(seq, "Descriptor ring:\n");
4339 sysfs_display_ring((void *)tx_q->dma_tx,
4340 DMA_TX_SIZE, 0, seq);
4341 }
4342 }
4343
4344 return 0;
4345 }
4346 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4347
4348 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4349 {
4350 struct net_device *dev = seq->private;
4351 struct stmmac_priv *priv = netdev_priv(dev);
4352
4353 if (!priv->hw_cap_support) {
4354 seq_printf(seq, "DMA HW features not supported\n");
4355 return 0;
4356 }
4357
4358 seq_printf(seq, "==============================\n");
4359 seq_printf(seq, "\tDMA HW features\n");
4360 seq_printf(seq, "==============================\n");
4361
4362 seq_printf(seq, "\t10/100 Mbps: %s\n",
4363 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4364 seq_printf(seq, "\t1000 Mbps: %s\n",
4365 (priv->dma_cap.mbps_1000) ? "Y" : "N");
4366 seq_printf(seq, "\tHalf duplex: %s\n",
4367 (priv->dma_cap.half_duplex) ? "Y" : "N");
4368 seq_printf(seq, "\tHash Filter: %s\n",
4369 (priv->dma_cap.hash_filter) ? "Y" : "N");
4370 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4371 (priv->dma_cap.multi_addr) ? "Y" : "N");
4372 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4373 (priv->dma_cap.pcs) ? "Y" : "N");
4374 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4375 (priv->dma_cap.sma_mdio) ? "Y" : "N");
4376 seq_printf(seq, "\tPMT Remote wake up: %s\n",
4377 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4378 seq_printf(seq, "\tPMT Magic Frame: %s\n",
4379 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4380 seq_printf(seq, "\tRMON module: %s\n",
4381 (priv->dma_cap.rmon) ? "Y" : "N");
4382 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4383 (priv->dma_cap.time_stamp) ? "Y" : "N");
4384 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4385 (priv->dma_cap.atime_stamp) ? "Y" : "N");
4386 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4387 (priv->dma_cap.eee) ? "Y" : "N");
4388 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4389 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4390 (priv->dma_cap.tx_coe) ? "Y" : "N");
4391 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4392 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4393 (priv->dma_cap.rx_coe) ? "Y" : "N");
4394 } else {
4395 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4396 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4397 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4398 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4399 }
4400 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4401 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4402 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4403 priv->dma_cap.number_rx_channel);
4404 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4405 priv->dma_cap.number_tx_channel);
4406 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4407 priv->dma_cap.number_rx_queues);
4408 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4409 priv->dma_cap.number_tx_queues);
4410 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4411 (priv->dma_cap.enh_desc) ? "Y" : "N");
4412 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4413 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4414 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4415 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4416 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4417 priv->dma_cap.pps_out_num);
4418 seq_printf(seq, "\tSafety Features: %s\n",
4419 priv->dma_cap.asp ? "Y" : "N");
4420 seq_printf(seq, "\tFlexible RX Parser: %s\n",
4421 priv->dma_cap.frpsel ? "Y" : "N");
4422 seq_printf(seq, "\tEnhanced Addressing: %d\n",
4423 priv->dma_cap.addr64);
4424 seq_printf(seq, "\tReceive Side Scaling: %s\n",
4425 priv->dma_cap.rssen ? "Y" : "N");
4426 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4427 priv->dma_cap.vlhash ? "Y" : "N");
4428 seq_printf(seq, "\tSplit Header: %s\n",
4429 priv->dma_cap.sphen ? "Y" : "N");
4430 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4431 priv->dma_cap.vlins ? "Y" : "N");
4432 seq_printf(seq, "\tDouble VLAN: %s\n",
4433 priv->dma_cap.dvlan ? "Y" : "N");
4434 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4435 priv->dma_cap.l3l4fnum);
4436 seq_printf(seq, "\tARP Offloading: %s\n",
4437 priv->dma_cap.arpoffsel ? "Y" : "N");
4438 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4439 priv->dma_cap.estsel ? "Y" : "N");
4440 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4441 priv->dma_cap.fpesel ? "Y" : "N");
4442 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4443 priv->dma_cap.tbssel ? "Y" : "N");
4444 return 0;
4445 }
4446 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4447
4448 /* Use network device events to rename debugfs file entries.
4449 */
4450 static int stmmac_device_event(struct notifier_block *unused,
4451 unsigned long event, void *ptr)
4452 {
4453 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4454 struct stmmac_priv *priv = netdev_priv(dev);
4455
4456 if (dev->netdev_ops != &stmmac_netdev_ops)
4457 goto done;
4458
4459 switch (event) {
4460 case NETDEV_CHANGENAME:
4461 if (priv->dbgfs_dir)
4462 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4463 priv->dbgfs_dir,
4464 stmmac_fs_dir,
4465 dev->name);
4466 break;
4467 }
4468 done:
4469 return NOTIFY_DONE;
4470 }
4471
4472 static struct notifier_block stmmac_notifier = {
4473 .notifier_call = stmmac_device_event,
4474 };
4475
4476 static void stmmac_init_fs(struct net_device *dev)
4477 {
4478 struct stmmac_priv *priv = netdev_priv(dev);
4479
4480 rtnl_lock();
4481
4482 /* Create per netdev entries */
4483 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4484
4485 /* Entry to report DMA RX/TX rings */
4486 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4487 &stmmac_rings_status_fops);
4488
4489 /* Entry to report the DMA HW features */
4490 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4491 &stmmac_dma_cap_fops);
4492
4493 rtnl_unlock();
4494 }
4495
4496 static void stmmac_exit_fs(struct net_device *dev)
4497 {
4498 struct stmmac_priv *priv = netdev_priv(dev);
4499
4500 debugfs_remove_recursive(priv->dbgfs_dir);
4501 }
4502 #endif /* CONFIG_DEBUG_FS */
4503
4504 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4505 {
4506 unsigned char *data = (unsigned char *)&vid_le;
4507 unsigned char data_byte = 0;
4508 u32 crc = ~0x0;
4509 u32 temp = 0;
4510 int i, bits;
4511
4512 bits = get_bitmask_order(VLAN_VID_MASK);
4513 for (i = 0; i < bits; i++) {
4514 if ((i % 8) == 0)
4515 data_byte = data[i / 8];
4516
4517 temp = ((crc & 1) ^ data_byte) & 1;
4518 crc >>= 1;
4519 data_byte >>= 1;
4520
4521 if (temp)
4522 crc ^= 0xedb88320;
4523 }
4524
4525 return crc;
4526 }
4527
4528 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4529 {
4530 u32 crc, hash = 0;
4531 __le16 pmatch = 0;
4532 int count = 0;
4533 u16 vid = 0;
4534
4535 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4536 __le16 vid_le = cpu_to_le16(vid);
4537 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4538 hash |= (1 << crc);
4539 count++;
4540 }
4541
4542 if (!priv->dma_cap.vlhash) {
4543 if (count > 2) /* VID = 0 always passes filter */
4544 return -EOPNOTSUPP;
4545
4546 pmatch = cpu_to_le16(vid);
4547 hash = 0;
4548 }
4549
4550 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4551 }
4552
4553 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4554 {
4555 struct stmmac_priv *priv = netdev_priv(ndev);
4556 bool is_double = false;
4557 int ret;
4558
4559 if (be16_to_cpu(proto) == ETH_P_8021AD)
4560 is_double = true;
4561
4562 set_bit(vid, priv->active_vlans);
4563 ret = stmmac_vlan_update(priv, is_double);
4564 if (ret) {
4565 clear_bit(vid, priv->active_vlans);
4566 return ret;
4567 }
4568
4569 if (priv->hw->num_vlan) {
4570 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4571 if (ret)
4572 return ret;
4573 }
4574
4575 return 0;
4576 }
4577
4578 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4579 {
4580 struct stmmac_priv *priv = netdev_priv(ndev);
4581 bool is_double = false;
4582 int ret;
4583
4584 if (be16_to_cpu(proto) == ETH_P_8021AD)
4585 is_double = true;
4586
4587 clear_bit(vid, priv->active_vlans);
4588
4589 if (priv->hw->num_vlan) {
4590 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4591 if (ret)
4592 return ret;
4593 }
4594
4595 return stmmac_vlan_update(priv, is_double);
4596 }
4597
4598 static const struct net_device_ops stmmac_netdev_ops = {
4599 .ndo_open = stmmac_open,
4600 .ndo_start_xmit = stmmac_xmit,
4601 .ndo_stop = stmmac_release,
4602 .ndo_change_mtu = stmmac_change_mtu,
4603 .ndo_fix_features = stmmac_fix_features,
4604 .ndo_set_features = stmmac_set_features,
4605 .ndo_set_rx_mode = stmmac_set_rx_mode,
4606 .ndo_tx_timeout = stmmac_tx_timeout,
4607 .ndo_do_ioctl = stmmac_ioctl,
4608 .ndo_setup_tc = stmmac_setup_tc,
4609 .ndo_select_queue = stmmac_select_queue,
4610 #ifdef CONFIG_NET_POLL_CONTROLLER
4611 .ndo_poll_controller = stmmac_poll_controller,
4612 #endif
4613 .ndo_set_mac_address = stmmac_set_mac_address,
4614 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4615 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4616 };
4617
4618 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4619 {
4620 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4621 return;
4622 if (test_bit(STMMAC_DOWN, &priv->state))
4623 return;
4624
4625 netdev_err(priv->dev, "Reset adapter.\n");
4626
4627 rtnl_lock();
4628 netif_trans_update(priv->dev);
4629 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4630 usleep_range(1000, 2000);
4631
4632 set_bit(STMMAC_DOWN, &priv->state);
4633 dev_close(priv->dev);
4634 dev_open(priv->dev, NULL);
4635 clear_bit(STMMAC_DOWN, &priv->state);
4636 clear_bit(STMMAC_RESETING, &priv->state);
4637 rtnl_unlock();
4638 }
4639
4640 static void stmmac_service_task(struct work_struct *work)
4641 {
4642 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4643 service_task);
4644
4645 stmmac_reset_subtask(priv);
4646 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4647 }
4648
4649 /**
4650 * stmmac_hw_init - Init the MAC device
4651 * @priv: driver private structure
4652 * Description: this function is to configure the MAC device according to
4653 * some platform parameters or the HW capability register. It prepares the
4654 * driver to use either ring or chain modes and to setup either enhanced or
4655 * normal descriptors.
4656 */
4657 static int stmmac_hw_init(struct stmmac_priv *priv)
4658 {
4659 int ret;
4660
4661 /* dwmac-sun8i only work in chain mode */
4662 if (priv->plat->has_sun8i)
4663 chain_mode = 1;
4664 priv->chain_mode = chain_mode;
4665
4666 /* Initialize HW Interface */
4667 ret = stmmac_hwif_init(priv);
4668 if (ret)
4669 return ret;
4670
4671 /* Get the HW capability (new GMAC newer than 3.50a) */
4672 priv->hw_cap_support = stmmac_get_hw_features(priv);
4673 if (priv->hw_cap_support) {
4674 dev_info(priv->device, "DMA HW capability register supported\n");
4675
4676 /* We can override some gmac/dma configuration fields: e.g.
4677 * enh_desc, tx_coe (e.g. that are passed through the
4678 * platform) with the values from the HW capability
4679 * register (if supported).
4680 */
4681 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4682 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4683 priv->hw->pmt = priv->plat->pmt;
4684 if (priv->dma_cap.hash_tb_sz) {
4685 priv->hw->multicast_filter_bins =
4686 (BIT(priv->dma_cap.hash_tb_sz) << 5);
4687 priv->hw->mcast_bits_log2 =
4688 ilog2(priv->hw->multicast_filter_bins);
4689 }
4690
4691 /* TXCOE doesn't work in thresh DMA mode */
4692 if (priv->plat->force_thresh_dma_mode)
4693 priv->plat->tx_coe = 0;
4694 else
4695 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4696
4697 /* In case of GMAC4 rx_coe is from HW cap register. */
4698 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4699
4700 if (priv->dma_cap.rx_coe_type2)
4701 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4702 else if (priv->dma_cap.rx_coe_type1)
4703 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4704
4705 } else {
4706 dev_info(priv->device, "No HW DMA feature register supported\n");
4707 }
4708
4709 if (priv->plat->rx_coe) {
4710 priv->hw->rx_csum = priv->plat->rx_coe;
4711 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4712 if (priv->synopsys_id < DWMAC_CORE_4_00)
4713 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4714 }
4715 if (priv->plat->tx_coe)
4716 dev_info(priv->device, "TX Checksum insertion supported\n");
4717
4718 if (priv->plat->pmt) {
4719 dev_info(priv->device, "Wake-Up On Lan supported\n");
4720 device_set_wakeup_capable(priv->device, 1);
4721 }
4722
4723 if (priv->dma_cap.tsoen)
4724 dev_info(priv->device, "TSO supported\n");
4725
4726 /* Run HW quirks, if any */
4727 if (priv->hwif_quirks) {
4728 ret = priv->hwif_quirks(priv);
4729 if (ret)
4730 return ret;
4731 }
4732
4733 /* Rx Watchdog is available in the COREs newer than the 3.40.
4734 * In some case, for example on bugged HW this feature
4735 * has to be disable and this can be done by passing the
4736 * riwt_off field from the platform.
4737 */
4738 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4739 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4740 priv->use_riwt = 1;
4741 dev_info(priv->device,
4742 "Enable RX Mitigation via HW Watchdog Timer\n");
4743 }
4744
4745 return 0;
4746 }
4747
4748 /**
4749 * stmmac_dvr_probe
4750 * @device: device pointer
4751 * @plat_dat: platform data pointer
4752 * @res: stmmac resource pointer
4753 * Description: this is the main probe function used to
4754 * call the alloc_etherdev, allocate the priv structure.
4755 * Return:
4756 * returns 0 on success, otherwise errno.
4757 */
4758 int stmmac_dvr_probe(struct device *device,
4759 struct plat_stmmacenet_data *plat_dat,
4760 struct stmmac_resources *res)
4761 {
4762 struct net_device *ndev = NULL;
4763 struct stmmac_priv *priv;
4764 u32 queue, rxq, maxq;
4765 int i, ret = 0;
4766
4767 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4768 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4769 if (!ndev)
4770 return -ENOMEM;
4771
4772 SET_NETDEV_DEV(ndev, device);
4773
4774 priv = netdev_priv(ndev);
4775 priv->device = device;
4776 priv->dev = ndev;
4777
4778 stmmac_set_ethtool_ops(ndev);
4779 priv->pause = pause;
4780 priv->plat = plat_dat;
4781 priv->ioaddr = res->addr;
4782 priv->dev->base_addr = (unsigned long)res->addr;
4783
4784 priv->dev->irq = res->irq;
4785 priv->wol_irq = res->wol_irq;
4786 priv->lpi_irq = res->lpi_irq;
4787
4788 if (!IS_ERR_OR_NULL(res->mac))
4789 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4790
4791 dev_set_drvdata(device, priv->dev);
4792
4793 /* Verify driver arguments */
4794 stmmac_verify_args();
4795
4796 /* Allocate workqueue */
4797 priv->wq = create_singlethread_workqueue("stmmac_wq");
4798 if (!priv->wq) {
4799 dev_err(priv->device, "failed to create workqueue\n");
4800 return -ENOMEM;
4801 }
4802
4803 INIT_WORK(&priv->service_task, stmmac_service_task);
4804
4805 /* Override with kernel parameters if supplied XXX CRS XXX
4806 * this needs to have multiple instances
4807 */
4808 if ((phyaddr >= 0) && (phyaddr <= 31))
4809 priv->plat->phy_addr = phyaddr;
4810
4811 if (priv->plat->stmmac_rst) {
4812 ret = reset_control_assert(priv->plat->stmmac_rst);
4813 reset_control_deassert(priv->plat->stmmac_rst);
4814 /* Some reset controllers have only reset callback instead of
4815 * assert + deassert callbacks pair.
4816 */
4817 if (ret == -ENOTSUPP)
4818 reset_control_reset(priv->plat->stmmac_rst);
4819 }
4820
4821 /* Init MAC and get the capabilities */
4822 ret = stmmac_hw_init(priv);
4823 if (ret)
4824 goto error_hw_init;
4825
4826 stmmac_check_ether_addr(priv);
4827
4828 /* Configure real RX and TX queues */
4829 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4830 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4831
4832 ndev->netdev_ops = &stmmac_netdev_ops;
4833
4834 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4835 NETIF_F_RXCSUM;
4836
4837 ret = stmmac_tc_init(priv, priv);
4838 if (!ret) {
4839 ndev->hw_features |= NETIF_F_HW_TC;
4840 }
4841
4842 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4843 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4844 if (priv->plat->has_gmac4)
4845 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4846 priv->tso = true;
4847 dev_info(priv->device, "TSO feature enabled\n");
4848 }
4849
4850 if (priv->dma_cap.sphen) {
4851 ndev->hw_features |= NETIF_F_GRO;
4852 priv->sph = true;
4853 dev_info(priv->device, "SPH feature enabled\n");
4854 }
4855
4856 if (priv->dma_cap.addr64) {
4857 ret = dma_set_mask_and_coherent(device,
4858 DMA_BIT_MASK(priv->dma_cap.addr64));
4859 if (!ret) {
4860 dev_info(priv->device, "Using %d bits DMA width\n",
4861 priv->dma_cap.addr64);
4862
4863 /*
4864 * If more than 32 bits can be addressed, make sure to
4865 * enable enhanced addressing mode.
4866 */
4867 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4868 priv->plat->dma_cfg->eame = true;
4869 } else {
4870 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4871 if (ret) {
4872 dev_err(priv->device, "Failed to set DMA Mask\n");
4873 goto error_hw_init;
4874 }
4875
4876 priv->dma_cap.addr64 = 32;
4877 }
4878 }
4879
4880 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4881 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4882 #ifdef STMMAC_VLAN_TAG_USED
4883 /* Both mac100 and gmac support receive VLAN tag detection */
4884 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4885 if (priv->dma_cap.vlhash) {
4886 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4887 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4888 }
4889 if (priv->dma_cap.vlins) {
4890 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4891 if (priv->dma_cap.dvlan)
4892 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4893 }
4894 #endif
4895 priv->msg_enable = netif_msg_init(debug, default_msg_level);
4896
4897 /* Initialize RSS */
4898 rxq = priv->plat->rx_queues_to_use;
4899 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4900 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4901 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4902
4903 if (priv->dma_cap.rssen && priv->plat->rss_en)
4904 ndev->features |= NETIF_F_RXHASH;
4905
4906 /* MTU range: 46 - hw-specific max */
4907 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4908 if (priv->plat->has_xgmac)
4909 ndev->max_mtu = XGMAC_JUMBO_LEN;
4910 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4911 ndev->max_mtu = JUMBO_LEN;
4912 else
4913 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4914 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4915 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4916 */
4917 if ((priv->plat->maxmtu < ndev->max_mtu) &&
4918 (priv->plat->maxmtu >= ndev->min_mtu))
4919 ndev->max_mtu = priv->plat->maxmtu;
4920 else if (priv->plat->maxmtu < ndev->min_mtu)
4921 dev_warn(priv->device,
4922 "%s: warning: maxmtu having invalid value (%d)\n",
4923 __func__, priv->plat->maxmtu);
4924
4925 if (flow_ctrl)
4926 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
4927
4928 /* Setup channels NAPI */
4929 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4930
4931 for (queue = 0; queue < maxq; queue++) {
4932 struct stmmac_channel *ch = &priv->channel[queue];
4933
4934 spin_lock_init(&ch->lock);
4935 ch->priv_data = priv;
4936 ch->index = queue;
4937
4938 if (queue < priv->plat->rx_queues_to_use) {
4939 netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4940 NAPI_POLL_WEIGHT);
4941 }
4942 if (queue < priv->plat->tx_queues_to_use) {
4943 netif_tx_napi_add(ndev, &ch->tx_napi,
4944 stmmac_napi_poll_tx,
4945 NAPI_POLL_WEIGHT);
4946 }
4947 }
4948
4949 mutex_init(&priv->lock);
4950
4951 /* If a specific clk_csr value is passed from the platform
4952 * this means that the CSR Clock Range selection cannot be
4953 * changed at run-time and it is fixed. Viceversa the driver'll try to
4954 * set the MDC clock dynamically according to the csr actual
4955 * clock input.
4956 */
4957 if (priv->plat->clk_csr >= 0)
4958 priv->clk_csr = priv->plat->clk_csr;
4959 else
4960 stmmac_clk_csr_set(priv);
4961
4962 stmmac_check_pcs_mode(priv);
4963
4964 if (priv->hw->pcs != STMMAC_PCS_TBI &&
4965 priv->hw->pcs != STMMAC_PCS_RTBI) {
4966 /* MDIO bus Registration */
4967 ret = stmmac_mdio_register(ndev);
4968 if (ret < 0) {
4969 dev_err(priv->device,
4970 "%s: MDIO bus (id: %d) registration failed",
4971 __func__, priv->plat->bus_id);
4972 goto error_mdio_register;
4973 }
4974 }
4975
4976 ret = stmmac_phy_setup(priv);
4977 if (ret) {
4978 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4979 goto error_phy_setup;
4980 }
4981
4982 ret = register_netdev(ndev);
4983 if (ret) {
4984 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4985 __func__, ret);
4986 goto error_netdev_register;
4987 }
4988
4989 if (priv->plat->serdes_powerup) {
4990 ret = priv->plat->serdes_powerup(ndev,
4991 priv->plat->bsp_priv);
4992
4993 if (ret < 0)
4994 return ret;
4995 }
4996
4997 #ifdef CONFIG_DEBUG_FS
4998 stmmac_init_fs(ndev);
4999 #endif
5000
5001 return ret;
5002
5003 error_netdev_register:
5004 phylink_destroy(priv->phylink);
5005 error_phy_setup:
5006 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5007 priv->hw->pcs != STMMAC_PCS_RTBI)
5008 stmmac_mdio_unregister(ndev);
5009 error_mdio_register:
5010 for (queue = 0; queue < maxq; queue++) {
5011 struct stmmac_channel *ch = &priv->channel[queue];
5012
5013 if (queue < priv->plat->rx_queues_to_use)
5014 netif_napi_del(&ch->rx_napi);
5015 if (queue < priv->plat->tx_queues_to_use)
5016 netif_napi_del(&ch->tx_napi);
5017 }
5018 error_hw_init:
5019 destroy_workqueue(priv->wq);
5020
5021 return ret;
5022 }
5023 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5024
5025 /**
5026 * stmmac_dvr_remove
5027 * @dev: device pointer
5028 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5029 * changes the link status, releases the DMA descriptor rings.
5030 */
5031 int stmmac_dvr_remove(struct device *dev)
5032 {
5033 struct net_device *ndev = dev_get_drvdata(dev);
5034 struct stmmac_priv *priv = netdev_priv(ndev);
5035
5036 netdev_info(priv->dev, "%s: removing driver", __func__);
5037
5038 stmmac_stop_all_dma(priv);
5039
5040 if (priv->plat->serdes_powerdown)
5041 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5042
5043 stmmac_mac_set(priv, priv->ioaddr, false);
5044 netif_carrier_off(ndev);
5045 unregister_netdev(ndev);
5046 #ifdef CONFIG_DEBUG_FS
5047 stmmac_exit_fs(ndev);
5048 #endif
5049 phylink_destroy(priv->phylink);
5050 if (priv->plat->stmmac_rst)
5051 reset_control_assert(priv->plat->stmmac_rst);
5052 clk_disable_unprepare(priv->plat->pclk);
5053 clk_disable_unprepare(priv->plat->stmmac_clk);
5054 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5055 priv->hw->pcs != STMMAC_PCS_RTBI)
5056 stmmac_mdio_unregister(ndev);
5057 destroy_workqueue(priv->wq);
5058 mutex_destroy(&priv->lock);
5059
5060 return 0;
5061 }
5062 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5063
5064 /**
5065 * stmmac_suspend - suspend callback
5066 * @dev: device pointer
5067 * Description: this is the function to suspend the device and it is called
5068 * by the platform driver to stop the network queue, release the resources,
5069 * program the PMT register (for WoL), clean and release driver resources.
5070 */
5071 int stmmac_suspend(struct device *dev)
5072 {
5073 struct net_device *ndev = dev_get_drvdata(dev);
5074 struct stmmac_priv *priv = netdev_priv(ndev);
5075 u32 chan;
5076
5077 if (!ndev || !netif_running(ndev))
5078 return 0;
5079
5080 phylink_mac_change(priv->phylink, false);
5081
5082 mutex_lock(&priv->lock);
5083
5084 netif_device_detach(ndev);
5085 stmmac_stop_all_queues(priv);
5086
5087 stmmac_disable_all_queues(priv);
5088
5089 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5090 del_timer_sync(&priv->tx_queue[chan].txtimer);
5091
5092 /* Stop TX/RX DMA */
5093 stmmac_stop_all_dma(priv);
5094
5095 if (priv->plat->serdes_powerdown)
5096 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5097
5098 /* Enable Power down mode by programming the PMT regs */
5099 if (device_may_wakeup(priv->device)) {
5100 stmmac_pmt(priv, priv->hw, priv->wolopts);
5101 priv->irq_wake = 1;
5102 } else {
5103 mutex_unlock(&priv->lock);
5104 rtnl_lock();
5105 phylink_stop(priv->phylink);
5106 rtnl_unlock();
5107 mutex_lock(&priv->lock);
5108
5109 stmmac_mac_set(priv, priv->ioaddr, false);
5110 pinctrl_pm_select_sleep_state(priv->device);
5111 /* Disable clock in case of PWM is off */
5112 if (priv->plat->clk_ptp_ref)
5113 clk_disable_unprepare(priv->plat->clk_ptp_ref);
5114 clk_disable_unprepare(priv->plat->pclk);
5115 clk_disable_unprepare(priv->plat->stmmac_clk);
5116 }
5117 mutex_unlock(&priv->lock);
5118
5119 priv->speed = SPEED_UNKNOWN;
5120 return 0;
5121 }
5122 EXPORT_SYMBOL_GPL(stmmac_suspend);
5123
5124 /**
5125 * stmmac_reset_queues_param - reset queue parameters
5126 * @dev: device pointer
5127 */
5128 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5129 {
5130 u32 rx_cnt = priv->plat->rx_queues_to_use;
5131 u32 tx_cnt = priv->plat->tx_queues_to_use;
5132 u32 queue;
5133
5134 for (queue = 0; queue < rx_cnt; queue++) {
5135 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5136
5137 rx_q->cur_rx = 0;
5138 rx_q->dirty_rx = 0;
5139 }
5140
5141 for (queue = 0; queue < tx_cnt; queue++) {
5142 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5143
5144 tx_q->cur_tx = 0;
5145 tx_q->dirty_tx = 0;
5146 tx_q->mss = 0;
5147 }
5148 }
5149
5150 /**
5151 * stmmac_resume - resume callback
5152 * @dev: device pointer
5153 * Description: when resume this function is invoked to setup the DMA and CORE
5154 * in a usable state.
5155 */
5156 int stmmac_resume(struct device *dev)
5157 {
5158 struct net_device *ndev = dev_get_drvdata(dev);
5159 struct stmmac_priv *priv = netdev_priv(ndev);
5160 int ret;
5161
5162 if (!netif_running(ndev))
5163 return 0;
5164
5165 /* Power Down bit, into the PM register, is cleared
5166 * automatically as soon as a magic packet or a Wake-up frame
5167 * is received. Anyway, it's better to manually clear
5168 * this bit because it can generate problems while resuming
5169 * from another devices (e.g. serial console).
5170 */
5171 if (device_may_wakeup(priv->device)) {
5172 mutex_lock(&priv->lock);
5173 stmmac_pmt(priv, priv->hw, 0);
5174 mutex_unlock(&priv->lock);
5175 priv->irq_wake = 0;
5176 } else {
5177 pinctrl_pm_select_default_state(priv->device);
5178 /* enable the clk previously disabled */
5179 clk_prepare_enable(priv->plat->stmmac_clk);
5180 clk_prepare_enable(priv->plat->pclk);
5181 if (priv->plat->clk_ptp_ref)
5182 clk_prepare_enable(priv->plat->clk_ptp_ref);
5183 /* reset the phy so that it's ready */
5184 if (priv->mii)
5185 stmmac_mdio_reset(priv->mii);
5186 }
5187
5188 if (priv->plat->serdes_powerup) {
5189 ret = priv->plat->serdes_powerup(ndev,
5190 priv->plat->bsp_priv);
5191
5192 if (ret < 0)
5193 return ret;
5194 }
5195
5196 netif_device_attach(ndev);
5197
5198 mutex_lock(&priv->lock);
5199
5200 stmmac_reset_queues_param(priv);
5201
5202 stmmac_clear_descriptors(priv);
5203
5204 stmmac_hw_setup(ndev, false);
5205 stmmac_init_coalesce(priv);
5206 stmmac_set_rx_mode(ndev);
5207
5208 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5209
5210 stmmac_enable_all_queues(priv);
5211
5212 stmmac_start_all_queues(priv);
5213
5214 mutex_unlock(&priv->lock);
5215
5216 if (!device_may_wakeup(priv->device)) {
5217 rtnl_lock();
5218 phylink_start(priv->phylink);
5219 rtnl_unlock();
5220 }
5221
5222 phylink_mac_change(priv->phylink, true);
5223
5224 return 0;
5225 }
5226 EXPORT_SYMBOL_GPL(stmmac_resume);
5227
5228 #ifndef MODULE
5229 static int __init stmmac_cmdline_opt(char *str)
5230 {
5231 char *opt;
5232
5233 if (!str || !*str)
5234 return -EINVAL;
5235 while ((opt = strsep(&str, ",")) != NULL) {
5236 if (!strncmp(opt, "debug:", 6)) {
5237 if (kstrtoint(opt + 6, 0, &debug))
5238 goto err;
5239 } else if (!strncmp(opt, "phyaddr:", 8)) {
5240 if (kstrtoint(opt + 8, 0, &phyaddr))
5241 goto err;
5242 } else if (!strncmp(opt, "buf_sz:", 7)) {
5243 if (kstrtoint(opt + 7, 0, &buf_sz))
5244 goto err;
5245 } else if (!strncmp(opt, "tc:", 3)) {
5246 if (kstrtoint(opt + 3, 0, &tc))
5247 goto err;
5248 } else if (!strncmp(opt, "watchdog:", 9)) {
5249 if (kstrtoint(opt + 9, 0, &watchdog))
5250 goto err;
5251 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5252 if (kstrtoint(opt + 10, 0, &flow_ctrl))
5253 goto err;
5254 } else if (!strncmp(opt, "pause:", 6)) {
5255 if (kstrtoint(opt + 6, 0, &pause))
5256 goto err;
5257 } else if (!strncmp(opt, "eee_timer:", 10)) {
5258 if (kstrtoint(opt + 10, 0, &eee_timer))
5259 goto err;
5260 } else if (!strncmp(opt, "chain_mode:", 11)) {
5261 if (kstrtoint(opt + 11, 0, &chain_mode))
5262 goto err;
5263 }
5264 }
5265 return 0;
5266
5267 err:
5268 pr_err("%s: ERROR broken module parameter conversion", __func__);
5269 return -EINVAL;
5270 }
5271
5272 __setup("stmmaceth=", stmmac_cmdline_opt);
5273 #endif /* MODULE */
5274
5275 static int __init stmmac_init(void)
5276 {
5277 #ifdef CONFIG_DEBUG_FS
5278 /* Create debugfs main directory if it doesn't exist yet */
5279 if (!stmmac_fs_dir)
5280 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5281 register_netdevice_notifier(&stmmac_notifier);
5282 #endif
5283
5284 return 0;
5285 }
5286
5287 static void __exit stmmac_exit(void)
5288 {
5289 #ifdef CONFIG_DEBUG_FS
5290 unregister_netdevice_notifier(&stmmac_notifier);
5291 debugfs_remove_recursive(stmmac_fs_dir);
5292 #endif
5293 }
5294
5295 module_init(stmmac_init)
5296 module_exit(stmmac_exit)
5297
5298 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5299 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5300 MODULE_LICENSE("GPL");