]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/ti/cpsw.c
Merge remote-tracking branches 'asoc/topic/samsung', 'asoc/topic/sgtl5000', 'asoc...
[thirdparty/linux.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38
39 #include <linux/pinctrl/consumer.h>
40
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45
46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55 #define cpsw_info(priv, type, format, ...) \
56 do { \
57 if (netif_msg_##type(priv) && net_ratelimit()) \
58 dev_info(priv->dev, format, ## __VA_ARGS__); \
59 } while (0)
60
61 #define cpsw_err(priv, type, format, ...) \
62 do { \
63 if (netif_msg_##type(priv) && net_ratelimit()) \
64 dev_err(priv->dev, format, ## __VA_ARGS__); \
65 } while (0)
66
67 #define cpsw_dbg(priv, type, format, ...) \
68 do { \
69 if (netif_msg_##type(priv) && net_ratelimit()) \
70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
71 } while (0)
72
73 #define cpsw_notice(priv, type, format, ...) \
74 do { \
75 if (netif_msg_##type(priv) && net_ratelimit()) \
76 dev_notice(priv->dev, format, ## __VA_ARGS__); \
77 } while (0)
78
79 #define ALE_ALL_PORTS 0x7
80
81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
84
85 #define CPSW_VERSION_1 0x19010a
86 #define CPSW_VERSION_2 0x19010c
87 #define CPSW_VERSION_3 0x19010f
88 #define CPSW_VERSION_4 0x190112
89
90 #define HOST_PORT_NUM 0
91 #define SLIVER_SIZE 0x40
92
93 #define CPSW1_HOST_PORT_OFFSET 0x028
94 #define CPSW1_SLAVE_OFFSET 0x050
95 #define CPSW1_SLAVE_SIZE 0x040
96 #define CPSW1_CPDMA_OFFSET 0x100
97 #define CPSW1_STATERAM_OFFSET 0x200
98 #define CPSW1_HW_STATS 0x400
99 #define CPSW1_CPTS_OFFSET 0x500
100 #define CPSW1_ALE_OFFSET 0x600
101 #define CPSW1_SLIVER_OFFSET 0x700
102
103 #define CPSW2_HOST_PORT_OFFSET 0x108
104 #define CPSW2_SLAVE_OFFSET 0x200
105 #define CPSW2_SLAVE_SIZE 0x100
106 #define CPSW2_CPDMA_OFFSET 0x800
107 #define CPSW2_HW_STATS 0x900
108 #define CPSW2_STATERAM_OFFSET 0xa00
109 #define CPSW2_CPTS_OFFSET 0xc00
110 #define CPSW2_ALE_OFFSET 0xd00
111 #define CPSW2_SLIVER_OFFSET 0xd80
112 #define CPSW2_BD_OFFSET 0x2000
113
114 #define CPDMA_RXTHRESH 0x0c0
115 #define CPDMA_RXFREE 0x0e0
116 #define CPDMA_TXHDP 0x00
117 #define CPDMA_RXHDP 0x20
118 #define CPDMA_TXCP 0x40
119 #define CPDMA_RXCP 0x60
120
121 #define CPSW_POLL_WEIGHT 64
122 #define CPSW_MIN_PACKET_SIZE 60
123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
124
125 #define RX_PRIORITY_MAPPING 0x76543210
126 #define TX_PRIORITY_MAPPING 0x33221100
127 #define CPDMA_TX_PRIORITY_MAP 0x01234567
128
129 #define CPSW_VLAN_AWARE BIT(1)
130 #define CPSW_ALE_VLAN_AWARE 1
131
132 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
135
136 #define CPSW_INTPACEEN (0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT 63
139 #define CPSW_CMINTMIN_CNT 2
140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
142
143 #define cpsw_slave_index(cpsw, priv) \
144 ((cpsw->data.dual_emac) ? priv->emac_port : \
145 cpsw->data.active_slave)
146 #define IRQ_NUM 2
147 #define CPSW_MAX_QUEUES 8
148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149
150 static int debug_level;
151 module_param(debug_level, int, 0);
152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
153
154 static int ale_ageout = 10;
155 module_param(ale_ageout, int, 0);
156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
157
158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
159 module_param(rx_packet_max, int, 0);
160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
161
162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
163 module_param(descs_pool_size, int, 0444);
164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
165
166 struct cpsw_wr_regs {
167 u32 id_ver;
168 u32 soft_reset;
169 u32 control;
170 u32 int_control;
171 u32 rx_thresh_en;
172 u32 rx_en;
173 u32 tx_en;
174 u32 misc_en;
175 u32 mem_allign1[8];
176 u32 rx_thresh_stat;
177 u32 rx_stat;
178 u32 tx_stat;
179 u32 misc_stat;
180 u32 mem_allign2[8];
181 u32 rx_imax;
182 u32 tx_imax;
183
184 };
185
186 struct cpsw_ss_regs {
187 u32 id_ver;
188 u32 control;
189 u32 soft_reset;
190 u32 stat_port_en;
191 u32 ptype;
192 u32 soft_idle;
193 u32 thru_rate;
194 u32 gap_thresh;
195 u32 tx_start_wds;
196 u32 flow_control;
197 u32 vlan_ltype;
198 u32 ts_ltype;
199 u32 dlr_ltype;
200 };
201
202 /* CPSW_PORT_V1 */
203 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
204 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
205 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
206 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
207 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
208 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
209 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
210 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
211
212 /* CPSW_PORT_V2 */
213 #define CPSW2_CONTROL 0x00 /* Control Register */
214 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
215 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
216 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
217 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
218 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
219 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
220
221 /* CPSW_PORT_V1 and V2 */
222 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
223 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
224 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
225
226 /* CPSW_PORT_V2 only */
227 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
235
236 /* Bit definitions for the CPSW2_CONTROL register */
237 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
238 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
239 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
240 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
241 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
242 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
243 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
244 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
245 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
246 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
247 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
248 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
249 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
250 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
251 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
252 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
253 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
254
255 #define CTRL_V2_TS_BITS \
256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258
259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
260 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
261 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
262
263
264 #define CTRL_V3_TS_BITS \
265 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
266 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
267 TS_LTYPE1_EN)
268
269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
270 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
271 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
272
273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
274 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
275 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
276 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
277 #define TS_MSG_TYPE_EN_MASK (0xffff)
278
279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281
282 /* Bit definitions for the CPSW1_TS_CTL register */
283 #define CPSW_V1_TS_RX_EN BIT(0)
284 #define CPSW_V1_TS_TX_EN BIT(4)
285 #define CPSW_V1_MSG_TYPE_OFS 16
286
287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
288 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
289
290 struct cpsw_host_regs {
291 u32 max_blks;
292 u32 blk_cnt;
293 u32 tx_in_ctl;
294 u32 port_vlan;
295 u32 tx_pri_map;
296 u32 cpdma_tx_pri_map;
297 u32 cpdma_rx_chan_map;
298 };
299
300 struct cpsw_sliver_regs {
301 u32 id_ver;
302 u32 mac_control;
303 u32 mac_status;
304 u32 soft_reset;
305 u32 rx_maxlen;
306 u32 __reserved_0;
307 u32 rx_pause;
308 u32 tx_pause;
309 u32 __reserved_1;
310 u32 rx_pri_map;
311 };
312
313 struct cpsw_hw_stats {
314 u32 rxgoodframes;
315 u32 rxbroadcastframes;
316 u32 rxmulticastframes;
317 u32 rxpauseframes;
318 u32 rxcrcerrors;
319 u32 rxaligncodeerrors;
320 u32 rxoversizedframes;
321 u32 rxjabberframes;
322 u32 rxundersizedframes;
323 u32 rxfragments;
324 u32 __pad_0[2];
325 u32 rxoctets;
326 u32 txgoodframes;
327 u32 txbroadcastframes;
328 u32 txmulticastframes;
329 u32 txpauseframes;
330 u32 txdeferredframes;
331 u32 txcollisionframes;
332 u32 txsinglecollframes;
333 u32 txmultcollframes;
334 u32 txexcessivecollisions;
335 u32 txlatecollisions;
336 u32 txunderrun;
337 u32 txcarriersenseerrors;
338 u32 txoctets;
339 u32 octetframes64;
340 u32 octetframes65t127;
341 u32 octetframes128t255;
342 u32 octetframes256t511;
343 u32 octetframes512t1023;
344 u32 octetframes1024tup;
345 u32 netoctets;
346 u32 rxsofoverruns;
347 u32 rxmofoverruns;
348 u32 rxdmaoverruns;
349 };
350
351 struct cpsw_slave {
352 void __iomem *regs;
353 struct cpsw_sliver_regs __iomem *sliver;
354 int slave_num;
355 u32 mac_control;
356 struct cpsw_slave_data *data;
357 struct phy_device *phy;
358 struct net_device *ndev;
359 u32 port_vlan;
360 };
361
362 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
363 {
364 return __raw_readl(slave->regs + offset);
365 }
366
367 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
368 {
369 __raw_writel(val, slave->regs + offset);
370 }
371
372 struct cpsw_vector {
373 struct cpdma_chan *ch;
374 int budget;
375 };
376
377 struct cpsw_common {
378 struct device *dev;
379 struct cpsw_platform_data data;
380 struct napi_struct napi_rx;
381 struct napi_struct napi_tx;
382 struct cpsw_ss_regs __iomem *regs;
383 struct cpsw_wr_regs __iomem *wr_regs;
384 u8 __iomem *hw_stats;
385 struct cpsw_host_regs __iomem *host_port_regs;
386 u32 version;
387 u32 coal_intvl;
388 u32 bus_freq_mhz;
389 int rx_packet_max;
390 struct cpsw_slave *slaves;
391 struct cpdma_ctlr *dma;
392 struct cpsw_vector txv[CPSW_MAX_QUEUES];
393 struct cpsw_vector rxv[CPSW_MAX_QUEUES];
394 struct cpsw_ale *ale;
395 bool quirk_irq;
396 bool rx_irq_disabled;
397 bool tx_irq_disabled;
398 u32 irqs_table[IRQ_NUM];
399 struct cpts *cpts;
400 int rx_ch_num, tx_ch_num;
401 int speed;
402 int usage_count;
403 };
404
405 struct cpsw_priv {
406 struct net_device *ndev;
407 struct device *dev;
408 u32 msg_enable;
409 u8 mac_addr[ETH_ALEN];
410 bool rx_pause;
411 bool tx_pause;
412 u32 emac_port;
413 struct cpsw_common *cpsw;
414 };
415
416 struct cpsw_stats {
417 char stat_string[ETH_GSTRING_LEN];
418 int type;
419 int sizeof_stat;
420 int stat_offset;
421 };
422
423 enum {
424 CPSW_STATS,
425 CPDMA_RX_STATS,
426 CPDMA_TX_STATS,
427 };
428
429 #define CPSW_STAT(m) CPSW_STATS, \
430 sizeof(((struct cpsw_hw_stats *)0)->m), \
431 offsetof(struct cpsw_hw_stats, m)
432 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
433 sizeof(((struct cpdma_chan_stats *)0)->m), \
434 offsetof(struct cpdma_chan_stats, m)
435 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
436 sizeof(((struct cpdma_chan_stats *)0)->m), \
437 offsetof(struct cpdma_chan_stats, m)
438
439 static const struct cpsw_stats cpsw_gstrings_stats[] = {
440 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
441 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
442 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
443 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
444 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
445 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
446 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
447 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
448 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
449 { "Rx Fragments", CPSW_STAT(rxfragments) },
450 { "Rx Octets", CPSW_STAT(rxoctets) },
451 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
452 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
453 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
454 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
455 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
456 { "Collisions", CPSW_STAT(txcollisionframes) },
457 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
458 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
459 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
460 { "Late Collisions", CPSW_STAT(txlatecollisions) },
461 { "Tx Underrun", CPSW_STAT(txunderrun) },
462 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
463 { "Tx Octets", CPSW_STAT(txoctets) },
464 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
465 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
466 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
467 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
468 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
469 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
470 { "Net Octets", CPSW_STAT(netoctets) },
471 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
472 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
473 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
474 };
475
476 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
477 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
478 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
479 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
480 { "misqueued", CPDMA_RX_STAT(misqueued) },
481 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
482 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
483 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
484 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
485 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
486 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
487 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
488 { "requeue", CPDMA_RX_STAT(requeue) },
489 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
490 };
491
492 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
493 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
494
495 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
496 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
497 #define for_each_slave(priv, func, arg...) \
498 do { \
499 struct cpsw_slave *slave; \
500 struct cpsw_common *cpsw = (priv)->cpsw; \
501 int n; \
502 if (cpsw->data.dual_emac) \
503 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
504 else \
505 for (n = cpsw->data.slaves, \
506 slave = cpsw->slaves; \
507 n; n--) \
508 (func)(slave++, ##arg); \
509 } while (0)
510
511 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \
512 do { \
513 if (!cpsw->data.dual_emac) \
514 break; \
515 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
516 ndev = cpsw->slaves[0].ndev; \
517 skb->dev = ndev; \
518 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
519 ndev = cpsw->slaves[1].ndev; \
520 skb->dev = ndev; \
521 } \
522 } while (0)
523 #define cpsw_add_mcast(cpsw, priv, addr) \
524 do { \
525 if (cpsw->data.dual_emac) { \
526 struct cpsw_slave *slave = cpsw->slaves + \
527 priv->emac_port; \
528 int slave_port = cpsw_get_slave_port( \
529 slave->slave_num); \
530 cpsw_ale_add_mcast(cpsw->ale, addr, \
531 1 << slave_port | ALE_PORT_HOST, \
532 ALE_VLAN, slave->port_vlan, 0); \
533 } else { \
534 cpsw_ale_add_mcast(cpsw->ale, addr, \
535 ALE_ALL_PORTS, \
536 0, 0, 0); \
537 } \
538 } while (0)
539
540 static inline int cpsw_get_slave_port(u32 slave_num)
541 {
542 return slave_num + 1;
543 }
544
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
548 struct cpsw_ale *ale = cpsw->ale;
549 int i;
550
551 if (cpsw->data.dual_emac) {
552 bool flag = false;
553
554 /* Enabling promiscuous mode for one interface will be
555 * common for both the interface as the interface shares
556 * the same hardware resource.
557 */
558 for (i = 0; i < cpsw->data.slaves; i++)
559 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
560 flag = true;
561
562 if (!enable && flag) {
563 enable = true;
564 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565 }
566
567 if (enable) {
568 /* Enable Bypass */
569 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570
571 dev_dbg(&ndev->dev, "promiscuity enabled\n");
572 } else {
573 /* Disable Bypass */
574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575 dev_dbg(&ndev->dev, "promiscuity disabled\n");
576 }
577 } else {
578 if (enable) {
579 unsigned long timeout = jiffies + HZ;
580
581 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582 for (i = 0; i <= cpsw->data.slaves; i++) {
583 cpsw_ale_control_set(ale, i,
584 ALE_PORT_NOLEARN, 1);
585 cpsw_ale_control_set(ale, i,
586 ALE_PORT_NO_SA_UPDATE, 1);
587 }
588
589 /* Clear All Untouched entries */
590 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591 do {
592 cpu_relax();
593 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594 break;
595 } while (time_after(timeout, jiffies));
596 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597
598 /* Clear all mcast from ALE */
599 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600
601 /* Flood All Unicast Packets to Host port */
602 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
603 dev_dbg(&ndev->dev, "promiscuity enabled\n");
604 } else {
605 /* Don't Flood All Unicast Packets to Host port */
606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
607
608 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609 for (i = 0; i <= cpsw->data.slaves; i++) {
610 cpsw_ale_control_set(ale, i,
611 ALE_PORT_NOLEARN, 0);
612 cpsw_ale_control_set(ale, i,
613 ALE_PORT_NO_SA_UPDATE, 0);
614 }
615 dev_dbg(&ndev->dev, "promiscuity disabled\n");
616 }
617 }
618 }
619
620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
621 {
622 struct cpsw_priv *priv = netdev_priv(ndev);
623 struct cpsw_common *cpsw = priv->cpsw;
624 int vid;
625
626 if (cpsw->data.dual_emac)
627 vid = cpsw->slaves[priv->emac_port].port_vlan;
628 else
629 vid = cpsw->data.default_vlan;
630
631 if (ndev->flags & IFF_PROMISC) {
632 /* Enable promiscuous mode */
633 cpsw_set_promiscious(ndev, true);
634 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
635 return;
636 } else {
637 /* Disable promiscuous mode */
638 cpsw_set_promiscious(ndev, false);
639 }
640
641 /* Restore allmulti on vlans if necessary */
642 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
643
644 /* Clear all mcast from ALE */
645 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
646
647 if (!netdev_mc_empty(ndev)) {
648 struct netdev_hw_addr *ha;
649
650 /* program multicast address list into ALE register */
651 netdev_for_each_mc_addr(ha, ndev) {
652 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
653 }
654 }
655 }
656
657 static void cpsw_intr_enable(struct cpsw_common *cpsw)
658 {
659 __raw_writel(0xFF, &cpsw->wr_regs->tx_en);
660 __raw_writel(0xFF, &cpsw->wr_regs->rx_en);
661
662 cpdma_ctlr_int_ctrl(cpsw->dma, true);
663 return;
664 }
665
666 static void cpsw_intr_disable(struct cpsw_common *cpsw)
667 {
668 __raw_writel(0, &cpsw->wr_regs->tx_en);
669 __raw_writel(0, &cpsw->wr_regs->rx_en);
670
671 cpdma_ctlr_int_ctrl(cpsw->dma, false);
672 return;
673 }
674
675 static void cpsw_tx_handler(void *token, int len, int status)
676 {
677 struct netdev_queue *txq;
678 struct sk_buff *skb = token;
679 struct net_device *ndev = skb->dev;
680 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
681
682 /* Check whether the queue is stopped due to stalled tx dma, if the
683 * queue is stopped then start the queue as we have free desc for tx
684 */
685 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
686 if (unlikely(netif_tx_queue_stopped(txq)))
687 netif_tx_wake_queue(txq);
688
689 cpts_tx_timestamp(cpsw->cpts, skb);
690 ndev->stats.tx_packets++;
691 ndev->stats.tx_bytes += len;
692 dev_kfree_skb_any(skb);
693 }
694
695 static void cpsw_rx_handler(void *token, int len, int status)
696 {
697 struct cpdma_chan *ch;
698 struct sk_buff *skb = token;
699 struct sk_buff *new_skb;
700 struct net_device *ndev = skb->dev;
701 int ret = 0;
702 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
703
704 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
705
706 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
707 /* In dual emac mode check for all interfaces */
708 if (cpsw->data.dual_emac && cpsw->usage_count &&
709 (status >= 0)) {
710 /* The packet received is for the interface which
711 * is already down and the other interface is up
712 * and running, instead of freeing which results
713 * in reducing of the number of rx descriptor in
714 * DMA engine, requeue skb back to cpdma.
715 */
716 new_skb = skb;
717 goto requeue;
718 }
719
720 /* the interface is going down, skbs are purged */
721 dev_kfree_skb_any(skb);
722 return;
723 }
724
725 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
726 if (new_skb) {
727 skb_copy_queue_mapping(new_skb, skb);
728 skb_put(skb, len);
729 cpts_rx_timestamp(cpsw->cpts, skb);
730 skb->protocol = eth_type_trans(skb, ndev);
731 netif_receive_skb(skb);
732 ndev->stats.rx_bytes += len;
733 ndev->stats.rx_packets++;
734 kmemleak_not_leak(new_skb);
735 } else {
736 ndev->stats.rx_dropped++;
737 new_skb = skb;
738 }
739
740 requeue:
741 if (netif_dormant(ndev)) {
742 dev_kfree_skb_any(new_skb);
743 return;
744 }
745
746 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
747 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
748 skb_tailroom(new_skb), 0);
749 if (WARN_ON(ret < 0))
750 dev_kfree_skb_any(new_skb);
751 }
752
753 static void cpsw_split_res(struct net_device *ndev)
754 {
755 struct cpsw_priv *priv = netdev_priv(ndev);
756 u32 consumed_rate = 0, bigest_rate = 0;
757 struct cpsw_common *cpsw = priv->cpsw;
758 struct cpsw_vector *txv = cpsw->txv;
759 int i, ch_weight, rlim_ch_num = 0;
760 int budget, bigest_rate_ch = 0;
761 u32 ch_rate, max_rate;
762 int ch_budget = 0;
763
764 for (i = 0; i < cpsw->tx_ch_num; i++) {
765 ch_rate = cpdma_chan_get_rate(txv[i].ch);
766 if (!ch_rate)
767 continue;
768
769 rlim_ch_num++;
770 consumed_rate += ch_rate;
771 }
772
773 if (cpsw->tx_ch_num == rlim_ch_num) {
774 max_rate = consumed_rate;
775 } else if (!rlim_ch_num) {
776 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
777 bigest_rate = 0;
778 max_rate = consumed_rate;
779 } else {
780 max_rate = cpsw->speed * 1000;
781
782 /* if max_rate is less then expected due to reduced link speed,
783 * split proportionally according next potential max speed
784 */
785 if (max_rate < consumed_rate)
786 max_rate *= 10;
787
788 if (max_rate < consumed_rate)
789 max_rate *= 10;
790
791 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
792 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
793 (cpsw->tx_ch_num - rlim_ch_num);
794 bigest_rate = (max_rate - consumed_rate) /
795 (cpsw->tx_ch_num - rlim_ch_num);
796 }
797
798 /* split tx weight/budget */
799 budget = CPSW_POLL_WEIGHT;
800 for (i = 0; i < cpsw->tx_ch_num; i++) {
801 ch_rate = cpdma_chan_get_rate(txv[i].ch);
802 if (ch_rate) {
803 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
804 if (!txv[i].budget)
805 txv[i].budget++;
806 if (ch_rate > bigest_rate) {
807 bigest_rate_ch = i;
808 bigest_rate = ch_rate;
809 }
810
811 ch_weight = (ch_rate * 100) / max_rate;
812 if (!ch_weight)
813 ch_weight++;
814 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
815 } else {
816 txv[i].budget = ch_budget;
817 if (!bigest_rate_ch)
818 bigest_rate_ch = i;
819 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
820 }
821
822 budget -= txv[i].budget;
823 }
824
825 if (budget)
826 txv[bigest_rate_ch].budget += budget;
827
828 /* split rx budget */
829 budget = CPSW_POLL_WEIGHT;
830 ch_budget = budget / cpsw->rx_ch_num;
831 for (i = 0; i < cpsw->rx_ch_num; i++) {
832 cpsw->rxv[i].budget = ch_budget;
833 budget -= ch_budget;
834 }
835
836 if (budget)
837 cpsw->rxv[0].budget += budget;
838 }
839
840 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
841 {
842 struct cpsw_common *cpsw = dev_id;
843
844 writel(0, &cpsw->wr_regs->tx_en);
845 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
846
847 if (cpsw->quirk_irq) {
848 disable_irq_nosync(cpsw->irqs_table[1]);
849 cpsw->tx_irq_disabled = true;
850 }
851
852 napi_schedule(&cpsw->napi_tx);
853 return IRQ_HANDLED;
854 }
855
856 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
857 {
858 struct cpsw_common *cpsw = dev_id;
859
860 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
861 writel(0, &cpsw->wr_regs->rx_en);
862
863 if (cpsw->quirk_irq) {
864 disable_irq_nosync(cpsw->irqs_table[0]);
865 cpsw->rx_irq_disabled = true;
866 }
867
868 napi_schedule(&cpsw->napi_rx);
869 return IRQ_HANDLED;
870 }
871
872 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
873 {
874 u32 ch_map;
875 int num_tx, cur_budget, ch;
876 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
877 struct cpsw_vector *txv;
878
879 /* process every unprocessed channel */
880 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
881 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
882 if (!(ch_map & 0x01))
883 continue;
884
885 txv = &cpsw->txv[ch];
886 if (unlikely(txv->budget > budget - num_tx))
887 cur_budget = budget - num_tx;
888 else
889 cur_budget = txv->budget;
890
891 num_tx += cpdma_chan_process(txv->ch, cur_budget);
892 if (num_tx >= budget)
893 break;
894 }
895
896 if (num_tx < budget) {
897 napi_complete(napi_tx);
898 writel(0xff, &cpsw->wr_regs->tx_en);
899 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
900 cpsw->tx_irq_disabled = false;
901 enable_irq(cpsw->irqs_table[1]);
902 }
903 }
904
905 return num_tx;
906 }
907
908 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
909 {
910 u32 ch_map;
911 int num_rx, cur_budget, ch;
912 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
913 struct cpsw_vector *rxv;
914
915 /* process every unprocessed channel */
916 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
917 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
918 if (!(ch_map & 0x01))
919 continue;
920
921 rxv = &cpsw->rxv[ch];
922 if (unlikely(rxv->budget > budget - num_rx))
923 cur_budget = budget - num_rx;
924 else
925 cur_budget = rxv->budget;
926
927 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
928 if (num_rx >= budget)
929 break;
930 }
931
932 if (num_rx < budget) {
933 napi_complete_done(napi_rx, num_rx);
934 writel(0xff, &cpsw->wr_regs->rx_en);
935 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
936 cpsw->rx_irq_disabled = false;
937 enable_irq(cpsw->irqs_table[0]);
938 }
939 }
940
941 return num_rx;
942 }
943
944 static inline void soft_reset(const char *module, void __iomem *reg)
945 {
946 unsigned long timeout = jiffies + HZ;
947
948 __raw_writel(1, reg);
949 do {
950 cpu_relax();
951 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
952
953 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
954 }
955
956 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
957 ((mac)[2] << 16) | ((mac)[3] << 24))
958 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
959
960 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
961 struct cpsw_priv *priv)
962 {
963 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
964 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
965 }
966
967 static void _cpsw_adjust_link(struct cpsw_slave *slave,
968 struct cpsw_priv *priv, bool *link)
969 {
970 struct phy_device *phy = slave->phy;
971 u32 mac_control = 0;
972 u32 slave_port;
973 struct cpsw_common *cpsw = priv->cpsw;
974
975 if (!phy)
976 return;
977
978 slave_port = cpsw_get_slave_port(slave->slave_num);
979
980 if (phy->link) {
981 mac_control = cpsw->data.mac_control;
982
983 /* enable forwarding */
984 cpsw_ale_control_set(cpsw->ale, slave_port,
985 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
986
987 if (phy->speed == 1000)
988 mac_control |= BIT(7); /* GIGABITEN */
989 if (phy->duplex)
990 mac_control |= BIT(0); /* FULLDUPLEXEN */
991
992 /* set speed_in input in case RMII mode is used in 100Mbps */
993 if (phy->speed == 100)
994 mac_control |= BIT(15);
995 else if (phy->speed == 10)
996 mac_control |= BIT(18); /* In Band mode */
997
998 if (priv->rx_pause)
999 mac_control |= BIT(3);
1000
1001 if (priv->tx_pause)
1002 mac_control |= BIT(4);
1003
1004 *link = true;
1005 } else {
1006 mac_control = 0;
1007 /* disable forwarding */
1008 cpsw_ale_control_set(cpsw->ale, slave_port,
1009 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1010 }
1011
1012 if (mac_control != slave->mac_control) {
1013 phy_print_status(phy);
1014 __raw_writel(mac_control, &slave->sliver->mac_control);
1015 }
1016
1017 slave->mac_control = mac_control;
1018 }
1019
1020 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1021 {
1022 int i, speed;
1023
1024 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1025 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1026 speed += cpsw->slaves[i].phy->speed;
1027
1028 return speed;
1029 }
1030
1031 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1032 {
1033 int i, rlim_ch_num;
1034 int speed, ch_rate;
1035
1036 /* re-split resources only in case speed was changed */
1037 speed = cpsw_get_common_speed(cpsw);
1038 if (speed == cpsw->speed || !speed)
1039 return 0;
1040
1041 cpsw->speed = speed;
1042
1043 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1044 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1045 if (!ch_rate)
1046 break;
1047
1048 rlim_ch_num++;
1049 }
1050
1051 /* cases not dependent on speed */
1052 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1053 return 0;
1054
1055 return 1;
1056 }
1057
1058 static void cpsw_adjust_link(struct net_device *ndev)
1059 {
1060 struct cpsw_priv *priv = netdev_priv(ndev);
1061 struct cpsw_common *cpsw = priv->cpsw;
1062 bool link = false;
1063
1064 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1065
1066 if (link) {
1067 if (cpsw_need_resplit(cpsw))
1068 cpsw_split_res(ndev);
1069
1070 netif_carrier_on(ndev);
1071 if (netif_running(ndev))
1072 netif_tx_wake_all_queues(ndev);
1073 } else {
1074 netif_carrier_off(ndev);
1075 netif_tx_stop_all_queues(ndev);
1076 }
1077 }
1078
1079 static int cpsw_get_coalesce(struct net_device *ndev,
1080 struct ethtool_coalesce *coal)
1081 {
1082 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1083
1084 coal->rx_coalesce_usecs = cpsw->coal_intvl;
1085 return 0;
1086 }
1087
1088 static int cpsw_set_coalesce(struct net_device *ndev,
1089 struct ethtool_coalesce *coal)
1090 {
1091 struct cpsw_priv *priv = netdev_priv(ndev);
1092 u32 int_ctrl;
1093 u32 num_interrupts = 0;
1094 u32 prescale = 0;
1095 u32 addnl_dvdr = 1;
1096 u32 coal_intvl = 0;
1097 struct cpsw_common *cpsw = priv->cpsw;
1098
1099 coal_intvl = coal->rx_coalesce_usecs;
1100
1101 int_ctrl = readl(&cpsw->wr_regs->int_control);
1102 prescale = cpsw->bus_freq_mhz * 4;
1103
1104 if (!coal->rx_coalesce_usecs) {
1105 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1106 goto update_return;
1107 }
1108
1109 if (coal_intvl < CPSW_CMINTMIN_INTVL)
1110 coal_intvl = CPSW_CMINTMIN_INTVL;
1111
1112 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1113 /* Interrupt pacer works with 4us Pulse, we can
1114 * throttle further by dilating the 4us pulse.
1115 */
1116 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1117
1118 if (addnl_dvdr > 1) {
1119 prescale *= addnl_dvdr;
1120 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1121 coal_intvl = (CPSW_CMINTMAX_INTVL
1122 * addnl_dvdr);
1123 } else {
1124 addnl_dvdr = 1;
1125 coal_intvl = CPSW_CMINTMAX_INTVL;
1126 }
1127 }
1128
1129 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1130 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1131 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1132
1133 int_ctrl |= CPSW_INTPACEEN;
1134 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1135 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1136
1137 update_return:
1138 writel(int_ctrl, &cpsw->wr_regs->int_control);
1139
1140 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1141 cpsw->coal_intvl = coal_intvl;
1142
1143 return 0;
1144 }
1145
1146 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1147 {
1148 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1149
1150 switch (sset) {
1151 case ETH_SS_STATS:
1152 return (CPSW_STATS_COMMON_LEN +
1153 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1154 CPSW_STATS_CH_LEN);
1155 default:
1156 return -EOPNOTSUPP;
1157 }
1158 }
1159
1160 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1161 {
1162 int ch_stats_len;
1163 int line;
1164 int i;
1165
1166 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1167 for (i = 0; i < ch_stats_len; i++) {
1168 line = i % CPSW_STATS_CH_LEN;
1169 snprintf(*p, ETH_GSTRING_LEN,
1170 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1171 i / CPSW_STATS_CH_LEN,
1172 cpsw_gstrings_ch_stats[line].stat_string);
1173 *p += ETH_GSTRING_LEN;
1174 }
1175 }
1176
1177 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1178 {
1179 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1180 u8 *p = data;
1181 int i;
1182
1183 switch (stringset) {
1184 case ETH_SS_STATS:
1185 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1186 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1187 ETH_GSTRING_LEN);
1188 p += ETH_GSTRING_LEN;
1189 }
1190
1191 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1192 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1193 break;
1194 }
1195 }
1196
1197 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1198 struct ethtool_stats *stats, u64 *data)
1199 {
1200 u8 *p;
1201 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 struct cpdma_chan_stats ch_stats;
1203 int i, l, ch;
1204
1205 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1206 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1207 data[l] = readl(cpsw->hw_stats +
1208 cpsw_gstrings_stats[l].stat_offset);
1209
1210 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1211 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1212 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1213 p = (u8 *)&ch_stats +
1214 cpsw_gstrings_ch_stats[i].stat_offset;
1215 data[l] = *(u32 *)p;
1216 }
1217 }
1218
1219 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1220 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1221 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1222 p = (u8 *)&ch_stats +
1223 cpsw_gstrings_ch_stats[i].stat_offset;
1224 data[l] = *(u32 *)p;
1225 }
1226 }
1227 }
1228
1229 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1230 struct sk_buff *skb,
1231 struct cpdma_chan *txch)
1232 {
1233 struct cpsw_common *cpsw = priv->cpsw;
1234
1235 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1236 priv->emac_port + cpsw->data.dual_emac);
1237 }
1238
1239 static inline void cpsw_add_dual_emac_def_ale_entries(
1240 struct cpsw_priv *priv, struct cpsw_slave *slave,
1241 u32 slave_port)
1242 {
1243 struct cpsw_common *cpsw = priv->cpsw;
1244 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1245
1246 if (cpsw->version == CPSW_VERSION_1)
1247 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1248 else
1249 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1250 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1251 port_mask, port_mask, 0);
1252 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1253 port_mask, ALE_VLAN, slave->port_vlan, 0);
1254 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1255 HOST_PORT_NUM, ALE_VLAN |
1256 ALE_SECURE, slave->port_vlan);
1257 }
1258
1259 static void soft_reset_slave(struct cpsw_slave *slave)
1260 {
1261 char name[32];
1262
1263 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1264 soft_reset(name, &slave->sliver->soft_reset);
1265 }
1266
1267 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1268 {
1269 u32 slave_port;
1270 struct phy_device *phy;
1271 struct cpsw_common *cpsw = priv->cpsw;
1272
1273 soft_reset_slave(slave);
1274
1275 /* setup priority mapping */
1276 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1277
1278 switch (cpsw->version) {
1279 case CPSW_VERSION_1:
1280 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1281 break;
1282 case CPSW_VERSION_2:
1283 case CPSW_VERSION_3:
1284 case CPSW_VERSION_4:
1285 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1286 break;
1287 }
1288
1289 /* setup max packet size, and mac address */
1290 __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1291 cpsw_set_slave_mac(slave, priv);
1292
1293 slave->mac_control = 0; /* no link yet */
1294
1295 slave_port = cpsw_get_slave_port(slave->slave_num);
1296
1297 if (cpsw->data.dual_emac)
1298 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1299 else
1300 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1301 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1302
1303 if (slave->data->phy_node) {
1304 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1305 &cpsw_adjust_link, 0, slave->data->phy_if);
1306 if (!phy) {
1307 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1308 slave->data->phy_node->full_name,
1309 slave->slave_num);
1310 return;
1311 }
1312 } else {
1313 phy = phy_connect(priv->ndev, slave->data->phy_id,
1314 &cpsw_adjust_link, slave->data->phy_if);
1315 if (IS_ERR(phy)) {
1316 dev_err(priv->dev,
1317 "phy \"%s\" not found on slave %d, err %ld\n",
1318 slave->data->phy_id, slave->slave_num,
1319 PTR_ERR(phy));
1320 return;
1321 }
1322 }
1323
1324 slave->phy = phy;
1325
1326 phy_attached_info(slave->phy);
1327
1328 phy_start(slave->phy);
1329
1330 /* Configure GMII_SEL register */
1331 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1332 }
1333
1334 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1335 {
1336 struct cpsw_common *cpsw = priv->cpsw;
1337 const int vlan = cpsw->data.default_vlan;
1338 u32 reg;
1339 int i;
1340 int unreg_mcast_mask;
1341
1342 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1343 CPSW2_PORT_VLAN;
1344
1345 writel(vlan, &cpsw->host_port_regs->port_vlan);
1346
1347 for (i = 0; i < cpsw->data.slaves; i++)
1348 slave_write(cpsw->slaves + i, vlan, reg);
1349
1350 if (priv->ndev->flags & IFF_ALLMULTI)
1351 unreg_mcast_mask = ALE_ALL_PORTS;
1352 else
1353 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1354
1355 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1356 ALE_ALL_PORTS, ALE_ALL_PORTS,
1357 unreg_mcast_mask);
1358 }
1359
1360 static void cpsw_init_host_port(struct cpsw_priv *priv)
1361 {
1362 u32 fifo_mode;
1363 u32 control_reg;
1364 struct cpsw_common *cpsw = priv->cpsw;
1365
1366 /* soft reset the controller and initialize ale */
1367 soft_reset("cpsw", &cpsw->regs->soft_reset);
1368 cpsw_ale_start(cpsw->ale);
1369
1370 /* switch to vlan unaware mode */
1371 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1372 CPSW_ALE_VLAN_AWARE);
1373 control_reg = readl(&cpsw->regs->control);
1374 control_reg |= CPSW_VLAN_AWARE;
1375 writel(control_reg, &cpsw->regs->control);
1376 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1377 CPSW_FIFO_NORMAL_MODE;
1378 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1379
1380 /* setup host port priority mapping */
1381 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1382 &cpsw->host_port_regs->cpdma_tx_pri_map);
1383 __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1384
1385 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1386 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1387
1388 if (!cpsw->data.dual_emac) {
1389 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1390 0, 0);
1391 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1392 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1393 }
1394 }
1395
1396 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1397 {
1398 struct cpsw_common *cpsw = priv->cpsw;
1399 struct sk_buff *skb;
1400 int ch_buf_num;
1401 int ch, i, ret;
1402
1403 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1404 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1405 for (i = 0; i < ch_buf_num; i++) {
1406 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1407 cpsw->rx_packet_max,
1408 GFP_KERNEL);
1409 if (!skb) {
1410 cpsw_err(priv, ifup, "cannot allocate skb\n");
1411 return -ENOMEM;
1412 }
1413
1414 skb_set_queue_mapping(skb, ch);
1415 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1416 skb->data, skb_tailroom(skb),
1417 0);
1418 if (ret < 0) {
1419 cpsw_err(priv, ifup,
1420 "cannot submit skb to channel %d rx, error %d\n",
1421 ch, ret);
1422 kfree_skb(skb);
1423 return ret;
1424 }
1425 kmemleak_not_leak(skb);
1426 }
1427
1428 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1429 ch, ch_buf_num);
1430 }
1431
1432 return 0;
1433 }
1434
1435 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1436 {
1437 u32 slave_port;
1438
1439 slave_port = cpsw_get_slave_port(slave->slave_num);
1440
1441 if (!slave->phy)
1442 return;
1443 phy_stop(slave->phy);
1444 phy_disconnect(slave->phy);
1445 slave->phy = NULL;
1446 cpsw_ale_control_set(cpsw->ale, slave_port,
1447 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1448 soft_reset_slave(slave);
1449 }
1450
1451 static int cpsw_ndo_open(struct net_device *ndev)
1452 {
1453 struct cpsw_priv *priv = netdev_priv(ndev);
1454 struct cpsw_common *cpsw = priv->cpsw;
1455 int ret;
1456 u32 reg;
1457
1458 ret = pm_runtime_get_sync(cpsw->dev);
1459 if (ret < 0) {
1460 pm_runtime_put_noidle(cpsw->dev);
1461 return ret;
1462 }
1463
1464 netif_carrier_off(ndev);
1465
1466 /* Notify the stack of the actual queue counts. */
1467 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1468 if (ret) {
1469 dev_err(priv->dev, "cannot set real number of tx queues\n");
1470 goto err_cleanup;
1471 }
1472
1473 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1474 if (ret) {
1475 dev_err(priv->dev, "cannot set real number of rx queues\n");
1476 goto err_cleanup;
1477 }
1478
1479 reg = cpsw->version;
1480
1481 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1482 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1483 CPSW_RTL_VERSION(reg));
1484
1485 /* Initialize host and slave ports */
1486 if (!cpsw->usage_count)
1487 cpsw_init_host_port(priv);
1488 for_each_slave(priv, cpsw_slave_open, priv);
1489
1490 /* Add default VLAN */
1491 if (!cpsw->data.dual_emac)
1492 cpsw_add_default_vlan(priv);
1493 else
1494 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1495 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1496
1497 /* initialize shared resources for every ndev */
1498 if (!cpsw->usage_count) {
1499 /* disable priority elevation */
1500 __raw_writel(0, &cpsw->regs->ptype);
1501
1502 /* enable statistics collection only on all ports */
1503 __raw_writel(0x7, &cpsw->regs->stat_port_en);
1504
1505 /* Enable internal fifo flow control */
1506 writel(0x7, &cpsw->regs->flow_control);
1507
1508 napi_enable(&cpsw->napi_rx);
1509 napi_enable(&cpsw->napi_tx);
1510
1511 if (cpsw->tx_irq_disabled) {
1512 cpsw->tx_irq_disabled = false;
1513 enable_irq(cpsw->irqs_table[1]);
1514 }
1515
1516 if (cpsw->rx_irq_disabled) {
1517 cpsw->rx_irq_disabled = false;
1518 enable_irq(cpsw->irqs_table[0]);
1519 }
1520
1521 ret = cpsw_fill_rx_channels(priv);
1522 if (ret < 0)
1523 goto err_cleanup;
1524
1525 if (cpts_register(cpsw->cpts))
1526 dev_err(priv->dev, "error registering cpts device\n");
1527
1528 }
1529
1530 /* Enable Interrupt pacing if configured */
1531 if (cpsw->coal_intvl != 0) {
1532 struct ethtool_coalesce coal;
1533
1534 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1535 cpsw_set_coalesce(ndev, &coal);
1536 }
1537
1538 cpdma_ctlr_start(cpsw->dma);
1539 cpsw_intr_enable(cpsw);
1540 cpsw->usage_count++;
1541
1542 return 0;
1543
1544 err_cleanup:
1545 cpdma_ctlr_stop(cpsw->dma);
1546 for_each_slave(priv, cpsw_slave_stop, cpsw);
1547 pm_runtime_put_sync(cpsw->dev);
1548 netif_carrier_off(priv->ndev);
1549 return ret;
1550 }
1551
1552 static int cpsw_ndo_stop(struct net_device *ndev)
1553 {
1554 struct cpsw_priv *priv = netdev_priv(ndev);
1555 struct cpsw_common *cpsw = priv->cpsw;
1556
1557 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1558 netif_tx_stop_all_queues(priv->ndev);
1559 netif_carrier_off(priv->ndev);
1560
1561 if (cpsw->usage_count <= 1) {
1562 napi_disable(&cpsw->napi_rx);
1563 napi_disable(&cpsw->napi_tx);
1564 cpts_unregister(cpsw->cpts);
1565 cpsw_intr_disable(cpsw);
1566 cpdma_ctlr_stop(cpsw->dma);
1567 cpsw_ale_stop(cpsw->ale);
1568 }
1569 for_each_slave(priv, cpsw_slave_stop, cpsw);
1570
1571 if (cpsw_need_resplit(cpsw))
1572 cpsw_split_res(ndev);
1573
1574 cpsw->usage_count--;
1575 pm_runtime_put_sync(cpsw->dev);
1576 return 0;
1577 }
1578
1579 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1580 struct net_device *ndev)
1581 {
1582 struct cpsw_priv *priv = netdev_priv(ndev);
1583 struct cpsw_common *cpsw = priv->cpsw;
1584 struct netdev_queue *txq;
1585 struct cpdma_chan *txch;
1586 int ret, q_idx;
1587
1588 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1589 cpsw_err(priv, tx_err, "packet pad failed\n");
1590 ndev->stats.tx_dropped++;
1591 return NET_XMIT_DROP;
1592 }
1593
1594 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1595 cpts_is_tx_enabled(cpsw->cpts))
1596 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1597
1598 skb_tx_timestamp(skb);
1599
1600 q_idx = skb_get_queue_mapping(skb);
1601 if (q_idx >= cpsw->tx_ch_num)
1602 q_idx = q_idx % cpsw->tx_ch_num;
1603
1604 txch = cpsw->txv[q_idx].ch;
1605 ret = cpsw_tx_packet_submit(priv, skb, txch);
1606 if (unlikely(ret != 0)) {
1607 cpsw_err(priv, tx_err, "desc submit failed\n");
1608 goto fail;
1609 }
1610
1611 /* If there is no more tx desc left free then we need to
1612 * tell the kernel to stop sending us tx frames.
1613 */
1614 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1615 txq = netdev_get_tx_queue(ndev, q_idx);
1616 netif_tx_stop_queue(txq);
1617 }
1618
1619 return NETDEV_TX_OK;
1620 fail:
1621 ndev->stats.tx_dropped++;
1622 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1623 netif_tx_stop_queue(txq);
1624 return NETDEV_TX_BUSY;
1625 }
1626
1627 #if IS_ENABLED(CONFIG_TI_CPTS)
1628
1629 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1630 {
1631 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1632 u32 ts_en, seq_id;
1633
1634 if (!cpts_is_tx_enabled(cpsw->cpts) &&
1635 !cpts_is_rx_enabled(cpsw->cpts)) {
1636 slave_write(slave, 0, CPSW1_TS_CTL);
1637 return;
1638 }
1639
1640 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1641 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1642
1643 if (cpts_is_tx_enabled(cpsw->cpts))
1644 ts_en |= CPSW_V1_TS_TX_EN;
1645
1646 if (cpts_is_rx_enabled(cpsw->cpts))
1647 ts_en |= CPSW_V1_TS_RX_EN;
1648
1649 slave_write(slave, ts_en, CPSW1_TS_CTL);
1650 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1651 }
1652
1653 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1654 {
1655 struct cpsw_slave *slave;
1656 struct cpsw_common *cpsw = priv->cpsw;
1657 u32 ctrl, mtype;
1658
1659 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1660
1661 ctrl = slave_read(slave, CPSW2_CONTROL);
1662 switch (cpsw->version) {
1663 case CPSW_VERSION_2:
1664 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1665
1666 if (cpts_is_tx_enabled(cpsw->cpts))
1667 ctrl |= CTRL_V2_TX_TS_BITS;
1668
1669 if (cpts_is_rx_enabled(cpsw->cpts))
1670 ctrl |= CTRL_V2_RX_TS_BITS;
1671 break;
1672 case CPSW_VERSION_3:
1673 default:
1674 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1675
1676 if (cpts_is_tx_enabled(cpsw->cpts))
1677 ctrl |= CTRL_V3_TX_TS_BITS;
1678
1679 if (cpts_is_rx_enabled(cpsw->cpts))
1680 ctrl |= CTRL_V3_RX_TS_BITS;
1681 break;
1682 }
1683
1684 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1685
1686 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1687 slave_write(slave, ctrl, CPSW2_CONTROL);
1688 __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1689 }
1690
1691 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1692 {
1693 struct cpsw_priv *priv = netdev_priv(dev);
1694 struct hwtstamp_config cfg;
1695 struct cpsw_common *cpsw = priv->cpsw;
1696 struct cpts *cpts = cpsw->cpts;
1697
1698 if (cpsw->version != CPSW_VERSION_1 &&
1699 cpsw->version != CPSW_VERSION_2 &&
1700 cpsw->version != CPSW_VERSION_3)
1701 return -EOPNOTSUPP;
1702
1703 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1704 return -EFAULT;
1705
1706 /* reserved for future extensions */
1707 if (cfg.flags)
1708 return -EINVAL;
1709
1710 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1711 return -ERANGE;
1712
1713 switch (cfg.rx_filter) {
1714 case HWTSTAMP_FILTER_NONE:
1715 cpts_rx_enable(cpts, 0);
1716 break;
1717 case HWTSTAMP_FILTER_ALL:
1718 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1719 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1720 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1721 return -ERANGE;
1722 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1723 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1724 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1725 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1726 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1727 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1728 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1729 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1730 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1731 cpts_rx_enable(cpts, 1);
1732 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1733 break;
1734 default:
1735 return -ERANGE;
1736 }
1737
1738 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1739
1740 switch (cpsw->version) {
1741 case CPSW_VERSION_1:
1742 cpsw_hwtstamp_v1(cpsw);
1743 break;
1744 case CPSW_VERSION_2:
1745 case CPSW_VERSION_3:
1746 cpsw_hwtstamp_v2(priv);
1747 break;
1748 default:
1749 WARN_ON(1);
1750 }
1751
1752 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1753 }
1754
1755 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1756 {
1757 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1758 struct cpts *cpts = cpsw->cpts;
1759 struct hwtstamp_config cfg;
1760
1761 if (cpsw->version != CPSW_VERSION_1 &&
1762 cpsw->version != CPSW_VERSION_2 &&
1763 cpsw->version != CPSW_VERSION_3)
1764 return -EOPNOTSUPP;
1765
1766 cfg.flags = 0;
1767 cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1768 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1769 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1770 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1771
1772 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1773 }
1774 #else
1775 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1776 {
1777 return -EOPNOTSUPP;
1778 }
1779
1780 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1781 {
1782 return -EOPNOTSUPP;
1783 }
1784 #endif /*CONFIG_TI_CPTS*/
1785
1786 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1787 {
1788 struct cpsw_priv *priv = netdev_priv(dev);
1789 struct cpsw_common *cpsw = priv->cpsw;
1790 int slave_no = cpsw_slave_index(cpsw, priv);
1791
1792 if (!netif_running(dev))
1793 return -EINVAL;
1794
1795 switch (cmd) {
1796 case SIOCSHWTSTAMP:
1797 return cpsw_hwtstamp_set(dev, req);
1798 case SIOCGHWTSTAMP:
1799 return cpsw_hwtstamp_get(dev, req);
1800 }
1801
1802 if (!cpsw->slaves[slave_no].phy)
1803 return -EOPNOTSUPP;
1804 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1805 }
1806
1807 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1808 {
1809 struct cpsw_priv *priv = netdev_priv(ndev);
1810 struct cpsw_common *cpsw = priv->cpsw;
1811 int ch;
1812
1813 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1814 ndev->stats.tx_errors++;
1815 cpsw_intr_disable(cpsw);
1816 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1817 cpdma_chan_stop(cpsw->txv[ch].ch);
1818 cpdma_chan_start(cpsw->txv[ch].ch);
1819 }
1820
1821 cpsw_intr_enable(cpsw);
1822 netif_trans_update(ndev);
1823 netif_tx_wake_all_queues(ndev);
1824 }
1825
1826 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1827 {
1828 struct cpsw_priv *priv = netdev_priv(ndev);
1829 struct sockaddr *addr = (struct sockaddr *)p;
1830 struct cpsw_common *cpsw = priv->cpsw;
1831 int flags = 0;
1832 u16 vid = 0;
1833 int ret;
1834
1835 if (!is_valid_ether_addr(addr->sa_data))
1836 return -EADDRNOTAVAIL;
1837
1838 ret = pm_runtime_get_sync(cpsw->dev);
1839 if (ret < 0) {
1840 pm_runtime_put_noidle(cpsw->dev);
1841 return ret;
1842 }
1843
1844 if (cpsw->data.dual_emac) {
1845 vid = cpsw->slaves[priv->emac_port].port_vlan;
1846 flags = ALE_VLAN;
1847 }
1848
1849 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1850 flags, vid);
1851 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1852 flags, vid);
1853
1854 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1855 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1856 for_each_slave(priv, cpsw_set_slave_mac, priv);
1857
1858 pm_runtime_put(cpsw->dev);
1859
1860 return 0;
1861 }
1862
1863 #ifdef CONFIG_NET_POLL_CONTROLLER
1864 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1865 {
1866 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1867
1868 cpsw_intr_disable(cpsw);
1869 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1870 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1871 cpsw_intr_enable(cpsw);
1872 }
1873 #endif
1874
1875 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1876 unsigned short vid)
1877 {
1878 int ret;
1879 int unreg_mcast_mask = 0;
1880 u32 port_mask;
1881 struct cpsw_common *cpsw = priv->cpsw;
1882
1883 if (cpsw->data.dual_emac) {
1884 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1885
1886 if (priv->ndev->flags & IFF_ALLMULTI)
1887 unreg_mcast_mask = port_mask;
1888 } else {
1889 port_mask = ALE_ALL_PORTS;
1890
1891 if (priv->ndev->flags & IFF_ALLMULTI)
1892 unreg_mcast_mask = ALE_ALL_PORTS;
1893 else
1894 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1895 }
1896
1897 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1898 unreg_mcast_mask);
1899 if (ret != 0)
1900 return ret;
1901
1902 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1903 HOST_PORT_NUM, ALE_VLAN, vid);
1904 if (ret != 0)
1905 goto clean_vid;
1906
1907 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1908 port_mask, ALE_VLAN, vid, 0);
1909 if (ret != 0)
1910 goto clean_vlan_ucast;
1911 return 0;
1912
1913 clean_vlan_ucast:
1914 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1915 HOST_PORT_NUM, ALE_VLAN, vid);
1916 clean_vid:
1917 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1918 return ret;
1919 }
1920
1921 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1922 __be16 proto, u16 vid)
1923 {
1924 struct cpsw_priv *priv = netdev_priv(ndev);
1925 struct cpsw_common *cpsw = priv->cpsw;
1926 int ret;
1927
1928 if (vid == cpsw->data.default_vlan)
1929 return 0;
1930
1931 ret = pm_runtime_get_sync(cpsw->dev);
1932 if (ret < 0) {
1933 pm_runtime_put_noidle(cpsw->dev);
1934 return ret;
1935 }
1936
1937 if (cpsw->data.dual_emac) {
1938 /* In dual EMAC, reserved VLAN id should not be used for
1939 * creating VLAN interfaces as this can break the dual
1940 * EMAC port separation
1941 */
1942 int i;
1943
1944 for (i = 0; i < cpsw->data.slaves; i++) {
1945 if (vid == cpsw->slaves[i].port_vlan)
1946 return -EINVAL;
1947 }
1948 }
1949
1950 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1951 ret = cpsw_add_vlan_ale_entry(priv, vid);
1952
1953 pm_runtime_put(cpsw->dev);
1954 return ret;
1955 }
1956
1957 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1958 __be16 proto, u16 vid)
1959 {
1960 struct cpsw_priv *priv = netdev_priv(ndev);
1961 struct cpsw_common *cpsw = priv->cpsw;
1962 int ret;
1963
1964 if (vid == cpsw->data.default_vlan)
1965 return 0;
1966
1967 ret = pm_runtime_get_sync(cpsw->dev);
1968 if (ret < 0) {
1969 pm_runtime_put_noidle(cpsw->dev);
1970 return ret;
1971 }
1972
1973 if (cpsw->data.dual_emac) {
1974 int i;
1975
1976 for (i = 0; i < cpsw->data.slaves; i++) {
1977 if (vid == cpsw->slaves[i].port_vlan)
1978 return -EINVAL;
1979 }
1980 }
1981
1982 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1983 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1984 if (ret != 0)
1985 return ret;
1986
1987 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1988 HOST_PORT_NUM, ALE_VLAN, vid);
1989 if (ret != 0)
1990 return ret;
1991
1992 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1993 0, ALE_VLAN, vid);
1994 pm_runtime_put(cpsw->dev);
1995 return ret;
1996 }
1997
1998 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
1999 {
2000 struct cpsw_priv *priv = netdev_priv(ndev);
2001 struct cpsw_common *cpsw = priv->cpsw;
2002 struct cpsw_slave *slave;
2003 u32 min_rate;
2004 u32 ch_rate;
2005 int i, ret;
2006
2007 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2008 if (ch_rate == rate)
2009 return 0;
2010
2011 ch_rate = rate * 1000;
2012 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2013 if ((ch_rate < min_rate && ch_rate)) {
2014 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2015 min_rate);
2016 return -EINVAL;
2017 }
2018
2019 if (rate > cpsw->speed) {
2020 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2021 return -EINVAL;
2022 }
2023
2024 ret = pm_runtime_get_sync(cpsw->dev);
2025 if (ret < 0) {
2026 pm_runtime_put_noidle(cpsw->dev);
2027 return ret;
2028 }
2029
2030 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2031 pm_runtime_put(cpsw->dev);
2032
2033 if (ret)
2034 return ret;
2035
2036 /* update rates for slaves tx queues */
2037 for (i = 0; i < cpsw->data.slaves; i++) {
2038 slave = &cpsw->slaves[i];
2039 if (!slave->ndev)
2040 continue;
2041
2042 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2043 }
2044
2045 cpsw_split_res(ndev);
2046 return ret;
2047 }
2048
2049 static const struct net_device_ops cpsw_netdev_ops = {
2050 .ndo_open = cpsw_ndo_open,
2051 .ndo_stop = cpsw_ndo_stop,
2052 .ndo_start_xmit = cpsw_ndo_start_xmit,
2053 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
2054 .ndo_do_ioctl = cpsw_ndo_ioctl,
2055 .ndo_validate_addr = eth_validate_addr,
2056 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
2057 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
2058 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
2059 #ifdef CONFIG_NET_POLL_CONTROLLER
2060 .ndo_poll_controller = cpsw_ndo_poll_controller,
2061 #endif
2062 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
2063 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
2064 };
2065
2066 static int cpsw_get_regs_len(struct net_device *ndev)
2067 {
2068 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2069
2070 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2071 }
2072
2073 static void cpsw_get_regs(struct net_device *ndev,
2074 struct ethtool_regs *regs, void *p)
2075 {
2076 u32 *reg = p;
2077 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2078
2079 /* update CPSW IP version */
2080 regs->version = cpsw->version;
2081
2082 cpsw_ale_dump(cpsw->ale, reg);
2083 }
2084
2085 static void cpsw_get_drvinfo(struct net_device *ndev,
2086 struct ethtool_drvinfo *info)
2087 {
2088 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2089 struct platform_device *pdev = to_platform_device(cpsw->dev);
2090
2091 strlcpy(info->driver, "cpsw", sizeof(info->driver));
2092 strlcpy(info->version, "1.0", sizeof(info->version));
2093 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2094 }
2095
2096 static u32 cpsw_get_msglevel(struct net_device *ndev)
2097 {
2098 struct cpsw_priv *priv = netdev_priv(ndev);
2099 return priv->msg_enable;
2100 }
2101
2102 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2103 {
2104 struct cpsw_priv *priv = netdev_priv(ndev);
2105 priv->msg_enable = value;
2106 }
2107
2108 #if IS_ENABLED(CONFIG_TI_CPTS)
2109 static int cpsw_get_ts_info(struct net_device *ndev,
2110 struct ethtool_ts_info *info)
2111 {
2112 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2113
2114 info->so_timestamping =
2115 SOF_TIMESTAMPING_TX_HARDWARE |
2116 SOF_TIMESTAMPING_TX_SOFTWARE |
2117 SOF_TIMESTAMPING_RX_HARDWARE |
2118 SOF_TIMESTAMPING_RX_SOFTWARE |
2119 SOF_TIMESTAMPING_SOFTWARE |
2120 SOF_TIMESTAMPING_RAW_HARDWARE;
2121 info->phc_index = cpsw->cpts->phc_index;
2122 info->tx_types =
2123 (1 << HWTSTAMP_TX_OFF) |
2124 (1 << HWTSTAMP_TX_ON);
2125 info->rx_filters =
2126 (1 << HWTSTAMP_FILTER_NONE) |
2127 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2128 return 0;
2129 }
2130 #else
2131 static int cpsw_get_ts_info(struct net_device *ndev,
2132 struct ethtool_ts_info *info)
2133 {
2134 info->so_timestamping =
2135 SOF_TIMESTAMPING_TX_SOFTWARE |
2136 SOF_TIMESTAMPING_RX_SOFTWARE |
2137 SOF_TIMESTAMPING_SOFTWARE;
2138 info->phc_index = -1;
2139 info->tx_types = 0;
2140 info->rx_filters = 0;
2141 return 0;
2142 }
2143 #endif
2144
2145 static int cpsw_get_link_ksettings(struct net_device *ndev,
2146 struct ethtool_link_ksettings *ecmd)
2147 {
2148 struct cpsw_priv *priv = netdev_priv(ndev);
2149 struct cpsw_common *cpsw = priv->cpsw;
2150 int slave_no = cpsw_slave_index(cpsw, priv);
2151
2152 if (cpsw->slaves[slave_no].phy)
2153 return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
2154 ecmd);
2155 else
2156 return -EOPNOTSUPP;
2157 }
2158
2159 static int cpsw_set_link_ksettings(struct net_device *ndev,
2160 const struct ethtool_link_ksettings *ecmd)
2161 {
2162 struct cpsw_priv *priv = netdev_priv(ndev);
2163 struct cpsw_common *cpsw = priv->cpsw;
2164 int slave_no = cpsw_slave_index(cpsw, priv);
2165
2166 if (cpsw->slaves[slave_no].phy)
2167 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2168 ecmd);
2169 else
2170 return -EOPNOTSUPP;
2171 }
2172
2173 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2174 {
2175 struct cpsw_priv *priv = netdev_priv(ndev);
2176 struct cpsw_common *cpsw = priv->cpsw;
2177 int slave_no = cpsw_slave_index(cpsw, priv);
2178
2179 wol->supported = 0;
2180 wol->wolopts = 0;
2181
2182 if (cpsw->slaves[slave_no].phy)
2183 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2184 }
2185
2186 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2187 {
2188 struct cpsw_priv *priv = netdev_priv(ndev);
2189 struct cpsw_common *cpsw = priv->cpsw;
2190 int slave_no = cpsw_slave_index(cpsw, priv);
2191
2192 if (cpsw->slaves[slave_no].phy)
2193 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2194 else
2195 return -EOPNOTSUPP;
2196 }
2197
2198 static void cpsw_get_pauseparam(struct net_device *ndev,
2199 struct ethtool_pauseparam *pause)
2200 {
2201 struct cpsw_priv *priv = netdev_priv(ndev);
2202
2203 pause->autoneg = AUTONEG_DISABLE;
2204 pause->rx_pause = priv->rx_pause ? true : false;
2205 pause->tx_pause = priv->tx_pause ? true : false;
2206 }
2207
2208 static int cpsw_set_pauseparam(struct net_device *ndev,
2209 struct ethtool_pauseparam *pause)
2210 {
2211 struct cpsw_priv *priv = netdev_priv(ndev);
2212 bool link;
2213
2214 priv->rx_pause = pause->rx_pause ? true : false;
2215 priv->tx_pause = pause->tx_pause ? true : false;
2216
2217 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2218 return 0;
2219 }
2220
2221 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2222 {
2223 struct cpsw_priv *priv = netdev_priv(ndev);
2224 struct cpsw_common *cpsw = priv->cpsw;
2225 int ret;
2226
2227 ret = pm_runtime_get_sync(cpsw->dev);
2228 if (ret < 0) {
2229 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2230 pm_runtime_put_noidle(cpsw->dev);
2231 }
2232
2233 return ret;
2234 }
2235
2236 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2237 {
2238 struct cpsw_priv *priv = netdev_priv(ndev);
2239 int ret;
2240
2241 ret = pm_runtime_put(priv->cpsw->dev);
2242 if (ret < 0)
2243 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2244 }
2245
2246 static void cpsw_get_channels(struct net_device *ndev,
2247 struct ethtool_channels *ch)
2248 {
2249 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2250
2251 ch->max_combined = 0;
2252 ch->max_rx = CPSW_MAX_QUEUES;
2253 ch->max_tx = CPSW_MAX_QUEUES;
2254 ch->max_other = 0;
2255 ch->other_count = 0;
2256 ch->rx_count = cpsw->rx_ch_num;
2257 ch->tx_count = cpsw->tx_ch_num;
2258 ch->combined_count = 0;
2259 }
2260
2261 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2262 struct ethtool_channels *ch)
2263 {
2264 if (ch->combined_count)
2265 return -EINVAL;
2266
2267 /* verify we have at least one channel in each direction */
2268 if (!ch->rx_count || !ch->tx_count)
2269 return -EINVAL;
2270
2271 if (ch->rx_count > cpsw->data.channels ||
2272 ch->tx_count > cpsw->data.channels)
2273 return -EINVAL;
2274
2275 return 0;
2276 }
2277
2278 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2279 {
2280 int (*poll)(struct napi_struct *, int);
2281 struct cpsw_common *cpsw = priv->cpsw;
2282 void (*handler)(void *, int, int);
2283 struct netdev_queue *queue;
2284 struct cpsw_vector *vec;
2285 int ret, *ch;
2286
2287 if (rx) {
2288 ch = &cpsw->rx_ch_num;
2289 vec = cpsw->rxv;
2290 handler = cpsw_rx_handler;
2291 poll = cpsw_rx_poll;
2292 } else {
2293 ch = &cpsw->tx_ch_num;
2294 vec = cpsw->txv;
2295 handler = cpsw_tx_handler;
2296 poll = cpsw_tx_poll;
2297 }
2298
2299 while (*ch < ch_num) {
2300 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2301 queue = netdev_get_tx_queue(priv->ndev, *ch);
2302 queue->tx_maxrate = 0;
2303
2304 if (IS_ERR(vec[*ch].ch))
2305 return PTR_ERR(vec[*ch].ch);
2306
2307 if (!vec[*ch].ch)
2308 return -EINVAL;
2309
2310 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2311 (rx ? "rx" : "tx"));
2312 (*ch)++;
2313 }
2314
2315 while (*ch > ch_num) {
2316 (*ch)--;
2317
2318 ret = cpdma_chan_destroy(vec[*ch].ch);
2319 if (ret)
2320 return ret;
2321
2322 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2323 (rx ? "rx" : "tx"));
2324 }
2325
2326 return 0;
2327 }
2328
2329 static int cpsw_update_channels(struct cpsw_priv *priv,
2330 struct ethtool_channels *ch)
2331 {
2332 int ret;
2333
2334 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2335 if (ret)
2336 return ret;
2337
2338 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2339 if (ret)
2340 return ret;
2341
2342 return 0;
2343 }
2344
2345 static void cpsw_suspend_data_pass(struct net_device *ndev)
2346 {
2347 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2348 struct cpsw_slave *slave;
2349 int i;
2350
2351 /* Disable NAPI scheduling */
2352 cpsw_intr_disable(cpsw);
2353
2354 /* Stop all transmit queues for every network device.
2355 * Disable re-using rx descriptors with dormant_on.
2356 */
2357 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2358 if (!(slave->ndev && netif_running(slave->ndev)))
2359 continue;
2360
2361 netif_tx_stop_all_queues(slave->ndev);
2362 netif_dormant_on(slave->ndev);
2363 }
2364
2365 /* Handle rest of tx packets and stop cpdma channels */
2366 cpdma_ctlr_stop(cpsw->dma);
2367 }
2368
2369 static int cpsw_resume_data_pass(struct net_device *ndev)
2370 {
2371 struct cpsw_priv *priv = netdev_priv(ndev);
2372 struct cpsw_common *cpsw = priv->cpsw;
2373 struct cpsw_slave *slave;
2374 int i, ret;
2375
2376 /* Allow rx packets handling */
2377 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2378 if (slave->ndev && netif_running(slave->ndev))
2379 netif_dormant_off(slave->ndev);
2380
2381 /* After this receive is started */
2382 if (cpsw->usage_count) {
2383 ret = cpsw_fill_rx_channels(priv);
2384 if (ret)
2385 return ret;
2386
2387 cpdma_ctlr_start(cpsw->dma);
2388 cpsw_intr_enable(cpsw);
2389 }
2390
2391 /* Resume transmit for every affected interface */
2392 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2393 if (slave->ndev && netif_running(slave->ndev))
2394 netif_tx_start_all_queues(slave->ndev);
2395
2396 return 0;
2397 }
2398
2399 static int cpsw_set_channels(struct net_device *ndev,
2400 struct ethtool_channels *chs)
2401 {
2402 struct cpsw_priv *priv = netdev_priv(ndev);
2403 struct cpsw_common *cpsw = priv->cpsw;
2404 struct cpsw_slave *slave;
2405 int i, ret;
2406
2407 ret = cpsw_check_ch_settings(cpsw, chs);
2408 if (ret < 0)
2409 return ret;
2410
2411 cpsw_suspend_data_pass(ndev);
2412 ret = cpsw_update_channels(priv, chs);
2413 if (ret)
2414 goto err;
2415
2416 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2417 if (!(slave->ndev && netif_running(slave->ndev)))
2418 continue;
2419
2420 /* Inform stack about new count of queues */
2421 ret = netif_set_real_num_tx_queues(slave->ndev,
2422 cpsw->tx_ch_num);
2423 if (ret) {
2424 dev_err(priv->dev, "cannot set real number of tx queues\n");
2425 goto err;
2426 }
2427
2428 ret = netif_set_real_num_rx_queues(slave->ndev,
2429 cpsw->rx_ch_num);
2430 if (ret) {
2431 dev_err(priv->dev, "cannot set real number of rx queues\n");
2432 goto err;
2433 }
2434 }
2435
2436 if (cpsw->usage_count)
2437 cpsw_split_res(ndev);
2438
2439 ret = cpsw_resume_data_pass(ndev);
2440 if (!ret)
2441 return 0;
2442 err:
2443 dev_err(priv->dev, "cannot update channels number, closing device\n");
2444 dev_close(ndev);
2445 return ret;
2446 }
2447
2448 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2449 {
2450 struct cpsw_priv *priv = netdev_priv(ndev);
2451 struct cpsw_common *cpsw = priv->cpsw;
2452 int slave_no = cpsw_slave_index(cpsw, priv);
2453
2454 if (cpsw->slaves[slave_no].phy)
2455 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2456 else
2457 return -EOPNOTSUPP;
2458 }
2459
2460 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2461 {
2462 struct cpsw_priv *priv = netdev_priv(ndev);
2463 struct cpsw_common *cpsw = priv->cpsw;
2464 int slave_no = cpsw_slave_index(cpsw, priv);
2465
2466 if (cpsw->slaves[slave_no].phy)
2467 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2468 else
2469 return -EOPNOTSUPP;
2470 }
2471
2472 static int cpsw_nway_reset(struct net_device *ndev)
2473 {
2474 struct cpsw_priv *priv = netdev_priv(ndev);
2475 struct cpsw_common *cpsw = priv->cpsw;
2476 int slave_no = cpsw_slave_index(cpsw, priv);
2477
2478 if (cpsw->slaves[slave_no].phy)
2479 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2480 else
2481 return -EOPNOTSUPP;
2482 }
2483
2484 static void cpsw_get_ringparam(struct net_device *ndev,
2485 struct ethtool_ringparam *ering)
2486 {
2487 struct cpsw_priv *priv = netdev_priv(ndev);
2488 struct cpsw_common *cpsw = priv->cpsw;
2489
2490 /* not supported */
2491 ering->tx_max_pending = 0;
2492 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2493 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2494 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2495 }
2496
2497 static int cpsw_set_ringparam(struct net_device *ndev,
2498 struct ethtool_ringparam *ering)
2499 {
2500 struct cpsw_priv *priv = netdev_priv(ndev);
2501 struct cpsw_common *cpsw = priv->cpsw;
2502 int ret;
2503
2504 /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2505
2506 if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2507 ering->rx_pending < CPSW_MAX_QUEUES ||
2508 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2509 return -EINVAL;
2510
2511 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2512 return 0;
2513
2514 cpsw_suspend_data_pass(ndev);
2515
2516 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2517
2518 if (cpsw->usage_count)
2519 cpdma_chan_split_pool(cpsw->dma);
2520
2521 ret = cpsw_resume_data_pass(ndev);
2522 if (!ret)
2523 return 0;
2524
2525 dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2526 dev_close(ndev);
2527 return ret;
2528 }
2529
2530 static const struct ethtool_ops cpsw_ethtool_ops = {
2531 .get_drvinfo = cpsw_get_drvinfo,
2532 .get_msglevel = cpsw_get_msglevel,
2533 .set_msglevel = cpsw_set_msglevel,
2534 .get_link = ethtool_op_get_link,
2535 .get_ts_info = cpsw_get_ts_info,
2536 .get_coalesce = cpsw_get_coalesce,
2537 .set_coalesce = cpsw_set_coalesce,
2538 .get_sset_count = cpsw_get_sset_count,
2539 .get_strings = cpsw_get_strings,
2540 .get_ethtool_stats = cpsw_get_ethtool_stats,
2541 .get_pauseparam = cpsw_get_pauseparam,
2542 .set_pauseparam = cpsw_set_pauseparam,
2543 .get_wol = cpsw_get_wol,
2544 .set_wol = cpsw_set_wol,
2545 .get_regs_len = cpsw_get_regs_len,
2546 .get_regs = cpsw_get_regs,
2547 .begin = cpsw_ethtool_op_begin,
2548 .complete = cpsw_ethtool_op_complete,
2549 .get_channels = cpsw_get_channels,
2550 .set_channels = cpsw_set_channels,
2551 .get_link_ksettings = cpsw_get_link_ksettings,
2552 .set_link_ksettings = cpsw_set_link_ksettings,
2553 .get_eee = cpsw_get_eee,
2554 .set_eee = cpsw_set_eee,
2555 .nway_reset = cpsw_nway_reset,
2556 .get_ringparam = cpsw_get_ringparam,
2557 .set_ringparam = cpsw_set_ringparam,
2558 };
2559
2560 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2561 u32 slave_reg_ofs, u32 sliver_reg_ofs)
2562 {
2563 void __iomem *regs = cpsw->regs;
2564 int slave_num = slave->slave_num;
2565 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
2566
2567 slave->data = data;
2568 slave->regs = regs + slave_reg_ofs;
2569 slave->sliver = regs + sliver_reg_ofs;
2570 slave->port_vlan = data->dual_emac_res_vlan;
2571 }
2572
2573 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2574 struct platform_device *pdev)
2575 {
2576 struct device_node *node = pdev->dev.of_node;
2577 struct device_node *slave_node;
2578 int i = 0, ret;
2579 u32 prop;
2580
2581 if (!node)
2582 return -EINVAL;
2583
2584 if (of_property_read_u32(node, "slaves", &prop)) {
2585 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2586 return -EINVAL;
2587 }
2588 data->slaves = prop;
2589
2590 if (of_property_read_u32(node, "active_slave", &prop)) {
2591 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2592 return -EINVAL;
2593 }
2594 data->active_slave = prop;
2595
2596 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2597 * sizeof(struct cpsw_slave_data),
2598 GFP_KERNEL);
2599 if (!data->slave_data)
2600 return -ENOMEM;
2601
2602 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2603 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2604 return -EINVAL;
2605 }
2606 data->channels = prop;
2607
2608 if (of_property_read_u32(node, "ale_entries", &prop)) {
2609 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2610 return -EINVAL;
2611 }
2612 data->ale_entries = prop;
2613
2614 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2615 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2616 return -EINVAL;
2617 }
2618 data->bd_ram_size = prop;
2619
2620 if (of_property_read_u32(node, "mac_control", &prop)) {
2621 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2622 return -EINVAL;
2623 }
2624 data->mac_control = prop;
2625
2626 if (of_property_read_bool(node, "dual_emac"))
2627 data->dual_emac = 1;
2628
2629 /*
2630 * Populate all the child nodes here...
2631 */
2632 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2633 /* We do not want to force this, as in some cases may not have child */
2634 if (ret)
2635 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2636
2637 for_each_available_child_of_node(node, slave_node) {
2638 struct cpsw_slave_data *slave_data = data->slave_data + i;
2639 const void *mac_addr = NULL;
2640 int lenp;
2641 const __be32 *parp;
2642
2643 /* This is no slave child node, continue */
2644 if (strcmp(slave_node->name, "slave"))
2645 continue;
2646
2647 slave_data->phy_node = of_parse_phandle(slave_node,
2648 "phy-handle", 0);
2649 parp = of_get_property(slave_node, "phy_id", &lenp);
2650 if (slave_data->phy_node) {
2651 dev_dbg(&pdev->dev,
2652 "slave[%d] using phy-handle=\"%s\"\n",
2653 i, slave_data->phy_node->full_name);
2654 } else if (of_phy_is_fixed_link(slave_node)) {
2655 /* In the case of a fixed PHY, the DT node associated
2656 * to the PHY is the Ethernet MAC DT node.
2657 */
2658 ret = of_phy_register_fixed_link(slave_node);
2659 if (ret) {
2660 if (ret != -EPROBE_DEFER)
2661 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2662 return ret;
2663 }
2664 slave_data->phy_node = of_node_get(slave_node);
2665 } else if (parp) {
2666 u32 phyid;
2667 struct device_node *mdio_node;
2668 struct platform_device *mdio;
2669
2670 if (lenp != (sizeof(__be32) * 2)) {
2671 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2672 goto no_phy_slave;
2673 }
2674 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2675 phyid = be32_to_cpup(parp+1);
2676 mdio = of_find_device_by_node(mdio_node);
2677 of_node_put(mdio_node);
2678 if (!mdio) {
2679 dev_err(&pdev->dev, "Missing mdio platform device\n");
2680 return -EINVAL;
2681 }
2682 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2683 PHY_ID_FMT, mdio->name, phyid);
2684 put_device(&mdio->dev);
2685 } else {
2686 dev_err(&pdev->dev,
2687 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2688 i);
2689 goto no_phy_slave;
2690 }
2691 slave_data->phy_if = of_get_phy_mode(slave_node);
2692 if (slave_data->phy_if < 0) {
2693 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2694 i);
2695 return slave_data->phy_if;
2696 }
2697
2698 no_phy_slave:
2699 mac_addr = of_get_mac_address(slave_node);
2700 if (mac_addr) {
2701 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2702 } else {
2703 ret = ti_cm_get_macid(&pdev->dev, i,
2704 slave_data->mac_addr);
2705 if (ret)
2706 return ret;
2707 }
2708 if (data->dual_emac) {
2709 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2710 &prop)) {
2711 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2712 slave_data->dual_emac_res_vlan = i+1;
2713 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2714 slave_data->dual_emac_res_vlan, i);
2715 } else {
2716 slave_data->dual_emac_res_vlan = prop;
2717 }
2718 }
2719
2720 i++;
2721 if (i == data->slaves)
2722 break;
2723 }
2724
2725 return 0;
2726 }
2727
2728 static void cpsw_remove_dt(struct platform_device *pdev)
2729 {
2730 struct net_device *ndev = platform_get_drvdata(pdev);
2731 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2732 struct cpsw_platform_data *data = &cpsw->data;
2733 struct device_node *node = pdev->dev.of_node;
2734 struct device_node *slave_node;
2735 int i = 0;
2736
2737 for_each_available_child_of_node(node, slave_node) {
2738 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2739
2740 if (strcmp(slave_node->name, "slave"))
2741 continue;
2742
2743 if (of_phy_is_fixed_link(slave_node))
2744 of_phy_deregister_fixed_link(slave_node);
2745
2746 of_node_put(slave_data->phy_node);
2747
2748 i++;
2749 if (i == data->slaves)
2750 break;
2751 }
2752
2753 of_platform_depopulate(&pdev->dev);
2754 }
2755
2756 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2757 {
2758 struct cpsw_common *cpsw = priv->cpsw;
2759 struct cpsw_platform_data *data = &cpsw->data;
2760 struct net_device *ndev;
2761 struct cpsw_priv *priv_sl2;
2762 int ret = 0;
2763
2764 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2765 if (!ndev) {
2766 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2767 return -ENOMEM;
2768 }
2769
2770 priv_sl2 = netdev_priv(ndev);
2771 priv_sl2->cpsw = cpsw;
2772 priv_sl2->ndev = ndev;
2773 priv_sl2->dev = &ndev->dev;
2774 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2775
2776 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2777 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2778 ETH_ALEN);
2779 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2780 priv_sl2->mac_addr);
2781 } else {
2782 random_ether_addr(priv_sl2->mac_addr);
2783 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2784 priv_sl2->mac_addr);
2785 }
2786 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2787
2788 priv_sl2->emac_port = 1;
2789 cpsw->slaves[1].ndev = ndev;
2790 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2791
2792 ndev->netdev_ops = &cpsw_netdev_ops;
2793 ndev->ethtool_ops = &cpsw_ethtool_ops;
2794
2795 /* register the network device */
2796 SET_NETDEV_DEV(ndev, cpsw->dev);
2797 ret = register_netdev(ndev);
2798 if (ret) {
2799 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2800 free_netdev(ndev);
2801 ret = -ENODEV;
2802 }
2803
2804 return ret;
2805 }
2806
2807 #define CPSW_QUIRK_IRQ BIT(0)
2808
2809 static struct platform_device_id cpsw_devtype[] = {
2810 {
2811 /* keep it for existing comaptibles */
2812 .name = "cpsw",
2813 .driver_data = CPSW_QUIRK_IRQ,
2814 }, {
2815 .name = "am335x-cpsw",
2816 .driver_data = CPSW_QUIRK_IRQ,
2817 }, {
2818 .name = "am4372-cpsw",
2819 .driver_data = 0,
2820 }, {
2821 .name = "dra7-cpsw",
2822 .driver_data = 0,
2823 }, {
2824 /* sentinel */
2825 }
2826 };
2827 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2828
2829 enum ti_cpsw_type {
2830 CPSW = 0,
2831 AM335X_CPSW,
2832 AM4372_CPSW,
2833 DRA7_CPSW,
2834 };
2835
2836 static const struct of_device_id cpsw_of_mtable[] = {
2837 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2838 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2839 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2840 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2841 { /* sentinel */ },
2842 };
2843 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2844
2845 static int cpsw_probe(struct platform_device *pdev)
2846 {
2847 struct clk *clk;
2848 struct cpsw_platform_data *data;
2849 struct net_device *ndev;
2850 struct cpsw_priv *priv;
2851 struct cpdma_params dma_params;
2852 struct cpsw_ale_params ale_params;
2853 void __iomem *ss_regs;
2854 void __iomem *cpts_regs;
2855 struct resource *res, *ss_res;
2856 const struct of_device_id *of_id;
2857 struct gpio_descs *mode;
2858 u32 slave_offset, sliver_offset, slave_size;
2859 struct cpsw_common *cpsw;
2860 int ret = 0, i;
2861 int irq;
2862
2863 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2864 if (!cpsw)
2865 return -ENOMEM;
2866
2867 cpsw->dev = &pdev->dev;
2868
2869 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2870 if (!ndev) {
2871 dev_err(&pdev->dev, "error allocating net_device\n");
2872 return -ENOMEM;
2873 }
2874
2875 platform_set_drvdata(pdev, ndev);
2876 priv = netdev_priv(ndev);
2877 priv->cpsw = cpsw;
2878 priv->ndev = ndev;
2879 priv->dev = &ndev->dev;
2880 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2881 cpsw->rx_packet_max = max(rx_packet_max, 128);
2882
2883 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2884 if (IS_ERR(mode)) {
2885 ret = PTR_ERR(mode);
2886 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2887 goto clean_ndev_ret;
2888 }
2889
2890 /*
2891 * This may be required here for child devices.
2892 */
2893 pm_runtime_enable(&pdev->dev);
2894
2895 /* Select default pin state */
2896 pinctrl_pm_select_default_state(&pdev->dev);
2897
2898 /* Need to enable clocks with runtime PM api to access module
2899 * registers
2900 */
2901 ret = pm_runtime_get_sync(&pdev->dev);
2902 if (ret < 0) {
2903 pm_runtime_put_noidle(&pdev->dev);
2904 goto clean_runtime_disable_ret;
2905 }
2906
2907 ret = cpsw_probe_dt(&cpsw->data, pdev);
2908 if (ret)
2909 goto clean_dt_ret;
2910
2911 data = &cpsw->data;
2912 cpsw->rx_ch_num = 1;
2913 cpsw->tx_ch_num = 1;
2914
2915 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2916 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2917 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2918 } else {
2919 eth_random_addr(priv->mac_addr);
2920 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2921 }
2922
2923 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2924
2925 cpsw->slaves = devm_kzalloc(&pdev->dev,
2926 sizeof(struct cpsw_slave) * data->slaves,
2927 GFP_KERNEL);
2928 if (!cpsw->slaves) {
2929 ret = -ENOMEM;
2930 goto clean_dt_ret;
2931 }
2932 for (i = 0; i < data->slaves; i++)
2933 cpsw->slaves[i].slave_num = i;
2934
2935 cpsw->slaves[0].ndev = ndev;
2936 priv->emac_port = 0;
2937
2938 clk = devm_clk_get(&pdev->dev, "fck");
2939 if (IS_ERR(clk)) {
2940 dev_err(priv->dev, "fck is not found\n");
2941 ret = -ENODEV;
2942 goto clean_dt_ret;
2943 }
2944 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2945
2946 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2947 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2948 if (IS_ERR(ss_regs)) {
2949 ret = PTR_ERR(ss_regs);
2950 goto clean_dt_ret;
2951 }
2952 cpsw->regs = ss_regs;
2953
2954 cpsw->version = readl(&cpsw->regs->id_ver);
2955
2956 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2957 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2958 if (IS_ERR(cpsw->wr_regs)) {
2959 ret = PTR_ERR(cpsw->wr_regs);
2960 goto clean_dt_ret;
2961 }
2962
2963 memset(&dma_params, 0, sizeof(dma_params));
2964 memset(&ale_params, 0, sizeof(ale_params));
2965
2966 switch (cpsw->version) {
2967 case CPSW_VERSION_1:
2968 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2969 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
2970 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
2971 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2972 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2973 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2974 slave_offset = CPSW1_SLAVE_OFFSET;
2975 slave_size = CPSW1_SLAVE_SIZE;
2976 sliver_offset = CPSW1_SLIVER_OFFSET;
2977 dma_params.desc_mem_phys = 0;
2978 break;
2979 case CPSW_VERSION_2:
2980 case CPSW_VERSION_3:
2981 case CPSW_VERSION_4:
2982 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2983 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
2984 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
2985 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
2986 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
2987 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
2988 slave_offset = CPSW2_SLAVE_OFFSET;
2989 slave_size = CPSW2_SLAVE_SIZE;
2990 sliver_offset = CPSW2_SLIVER_OFFSET;
2991 dma_params.desc_mem_phys =
2992 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2993 break;
2994 default:
2995 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2996 ret = -ENODEV;
2997 goto clean_dt_ret;
2998 }
2999 for (i = 0; i < cpsw->data.slaves; i++) {
3000 struct cpsw_slave *slave = &cpsw->slaves[i];
3001
3002 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3003 slave_offset += slave_size;
3004 sliver_offset += SLIVER_SIZE;
3005 }
3006
3007 dma_params.dev = &pdev->dev;
3008 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
3009 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
3010 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
3011 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
3012 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
3013
3014 dma_params.num_chan = data->channels;
3015 dma_params.has_soft_reset = true;
3016 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
3017 dma_params.desc_mem_size = data->bd_ram_size;
3018 dma_params.desc_align = 16;
3019 dma_params.has_ext_regs = true;
3020 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
3021 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
3022 dma_params.descs_pool_size = descs_pool_size;
3023
3024 cpsw->dma = cpdma_ctlr_create(&dma_params);
3025 if (!cpsw->dma) {
3026 dev_err(priv->dev, "error initializing dma\n");
3027 ret = -ENOMEM;
3028 goto clean_dt_ret;
3029 }
3030
3031 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3032 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3033 if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3034 dev_err(priv->dev, "error initializing dma channels\n");
3035 ret = -ENOMEM;
3036 goto clean_dma_ret;
3037 }
3038
3039 ale_params.dev = &pdev->dev;
3040 ale_params.ale_ageout = ale_ageout;
3041 ale_params.ale_entries = data->ale_entries;
3042 ale_params.ale_ports = data->slaves;
3043
3044 cpsw->ale = cpsw_ale_create(&ale_params);
3045 if (!cpsw->ale) {
3046 dev_err(priv->dev, "error initializing ale engine\n");
3047 ret = -ENODEV;
3048 goto clean_dma_ret;
3049 }
3050
3051 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3052 if (IS_ERR(cpsw->cpts)) {
3053 ret = PTR_ERR(cpsw->cpts);
3054 goto clean_ale_ret;
3055 }
3056
3057 ndev->irq = platform_get_irq(pdev, 1);
3058 if (ndev->irq < 0) {
3059 dev_err(priv->dev, "error getting irq resource\n");
3060 ret = ndev->irq;
3061 goto clean_ale_ret;
3062 }
3063
3064 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3065 if (of_id) {
3066 pdev->id_entry = of_id->data;
3067 if (pdev->id_entry->driver_data)
3068 cpsw->quirk_irq = true;
3069 }
3070
3071 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3072 * MISC IRQs which are always kept disabled with this driver so
3073 * we will not request them.
3074 *
3075 * If anyone wants to implement support for those, make sure to
3076 * first request and append them to irqs_table array.
3077 */
3078
3079 /* RX IRQ */
3080 irq = platform_get_irq(pdev, 1);
3081 if (irq < 0) {
3082 ret = irq;
3083 goto clean_ale_ret;
3084 }
3085
3086 cpsw->irqs_table[0] = irq;
3087 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3088 0, dev_name(&pdev->dev), cpsw);
3089 if (ret < 0) {
3090 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3091 goto clean_ale_ret;
3092 }
3093
3094 /* TX IRQ */
3095 irq = platform_get_irq(pdev, 2);
3096 if (irq < 0) {
3097 ret = irq;
3098 goto clean_ale_ret;
3099 }
3100
3101 cpsw->irqs_table[1] = irq;
3102 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3103 0, dev_name(&pdev->dev), cpsw);
3104 if (ret < 0) {
3105 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3106 goto clean_ale_ret;
3107 }
3108
3109 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3110
3111 ndev->netdev_ops = &cpsw_netdev_ops;
3112 ndev->ethtool_ops = &cpsw_ethtool_ops;
3113 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3114 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3115 cpsw_split_res(ndev);
3116
3117 /* register the network device */
3118 SET_NETDEV_DEV(ndev, &pdev->dev);
3119 ret = register_netdev(ndev);
3120 if (ret) {
3121 dev_err(priv->dev, "error registering net device\n");
3122 ret = -ENODEV;
3123 goto clean_ale_ret;
3124 }
3125
3126 cpsw_notice(priv, probe,
3127 "initialized device (regs %pa, irq %d, pool size %d)\n",
3128 &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3129 if (cpsw->data.dual_emac) {
3130 ret = cpsw_probe_dual_emac(priv);
3131 if (ret) {
3132 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3133 goto clean_unregister_netdev_ret;
3134 }
3135 }
3136
3137 pm_runtime_put(&pdev->dev);
3138
3139 return 0;
3140
3141 clean_unregister_netdev_ret:
3142 unregister_netdev(ndev);
3143 clean_ale_ret:
3144 cpsw_ale_destroy(cpsw->ale);
3145 clean_dma_ret:
3146 cpdma_ctlr_destroy(cpsw->dma);
3147 clean_dt_ret:
3148 cpsw_remove_dt(pdev);
3149 pm_runtime_put_sync(&pdev->dev);
3150 clean_runtime_disable_ret:
3151 pm_runtime_disable(&pdev->dev);
3152 clean_ndev_ret:
3153 free_netdev(priv->ndev);
3154 return ret;
3155 }
3156
3157 static int cpsw_remove(struct platform_device *pdev)
3158 {
3159 struct net_device *ndev = platform_get_drvdata(pdev);
3160 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3161 int ret;
3162
3163 ret = pm_runtime_get_sync(&pdev->dev);
3164 if (ret < 0) {
3165 pm_runtime_put_noidle(&pdev->dev);
3166 return ret;
3167 }
3168
3169 if (cpsw->data.dual_emac)
3170 unregister_netdev(cpsw->slaves[1].ndev);
3171 unregister_netdev(ndev);
3172
3173 cpts_release(cpsw->cpts);
3174 cpsw_ale_destroy(cpsw->ale);
3175 cpdma_ctlr_destroy(cpsw->dma);
3176 cpsw_remove_dt(pdev);
3177 pm_runtime_put_sync(&pdev->dev);
3178 pm_runtime_disable(&pdev->dev);
3179 if (cpsw->data.dual_emac)
3180 free_netdev(cpsw->slaves[1].ndev);
3181 free_netdev(ndev);
3182 return 0;
3183 }
3184
3185 #ifdef CONFIG_PM_SLEEP
3186 static int cpsw_suspend(struct device *dev)
3187 {
3188 struct platform_device *pdev = to_platform_device(dev);
3189 struct net_device *ndev = platform_get_drvdata(pdev);
3190 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3191
3192 if (cpsw->data.dual_emac) {
3193 int i;
3194
3195 for (i = 0; i < cpsw->data.slaves; i++) {
3196 if (netif_running(cpsw->slaves[i].ndev))
3197 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3198 }
3199 } else {
3200 if (netif_running(ndev))
3201 cpsw_ndo_stop(ndev);
3202 }
3203
3204 /* Select sleep pin state */
3205 pinctrl_pm_select_sleep_state(dev);
3206
3207 return 0;
3208 }
3209
3210 static int cpsw_resume(struct device *dev)
3211 {
3212 struct platform_device *pdev = to_platform_device(dev);
3213 struct net_device *ndev = platform_get_drvdata(pdev);
3214 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3215
3216 /* Select default pin state */
3217 pinctrl_pm_select_default_state(dev);
3218
3219 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3220 rtnl_lock();
3221 if (cpsw->data.dual_emac) {
3222 int i;
3223
3224 for (i = 0; i < cpsw->data.slaves; i++) {
3225 if (netif_running(cpsw->slaves[i].ndev))
3226 cpsw_ndo_open(cpsw->slaves[i].ndev);
3227 }
3228 } else {
3229 if (netif_running(ndev))
3230 cpsw_ndo_open(ndev);
3231 }
3232 rtnl_unlock();
3233
3234 return 0;
3235 }
3236 #endif
3237
3238 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3239
3240 static struct platform_driver cpsw_driver = {
3241 .driver = {
3242 .name = "cpsw",
3243 .pm = &cpsw_pm_ops,
3244 .of_match_table = cpsw_of_mtable,
3245 },
3246 .probe = cpsw_probe,
3247 .remove = cpsw_remove,
3248 };
3249
3250 module_platform_driver(cpsw_driver);
3251
3252 MODULE_LICENSE("GPL");
3253 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3254 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3255 MODULE_DESCRIPTION("TI CPSW Ethernet driver");