]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/toshiba/tc35815.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / net / ethernet / toshiba / tc35815.c
1 /*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 * -----<snip>-----
9 * Copyright 2001 MontaVista Software Inc.
10 * Author: MontaVista Software, Inc.
11 * ahennessy@mvista.com
12 * Copyright (C) 2000-2001 Toshiba Corporation
13 * static const char *version =
14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 * -----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25 #define DRV_VERSION "1.39"
26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54 TC35815CF = 0,
55 TC35815_NWU,
56 TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 const char *name;
62 } chip_info[] = {
63 { "TOSHIBA TC35815CF 10/100BaseTX" },
64 { "TOSHIBA TC35815 with Wake on LAN" },
65 { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 int speed;
79 int duplex;
80 } options;
81
82 /*
83 * Registers
84 */
85 struct tc35815_regs {
86 __u32 DMA_Ctl; /* 0x00 */
87 __u32 TxFrmPtr;
88 __u32 TxThrsh;
89 __u32 TxPollCtr;
90 __u32 BLFrmPtr;
91 __u32 RxFragSize;
92 __u32 Int_En;
93 __u32 FDA_Bas;
94 __u32 FDA_Lim; /* 0x20 */
95 __u32 Int_Src;
96 __u32 unused0[2];
97 __u32 PauseCnt;
98 __u32 RemPauCnt;
99 __u32 TxCtlFrmStat;
100 __u32 unused1;
101 __u32 MAC_Ctl; /* 0x40 */
102 __u32 CAM_Ctl;
103 __u32 Tx_Ctl;
104 __u32 Tx_Stat;
105 __u32 Rx_Ctl;
106 __u32 Rx_Stat;
107 __u32 MD_Data;
108 __u32 MD_CA;
109 __u32 CAM_Adr; /* 0x60 */
110 __u32 CAM_Data;
111 __u32 CAM_Ena;
112 __u32 PROM_Ctl;
113 __u32 PROM_Data;
114 __u32 Algn_Cnt;
115 __u32 CRC_Cnt;
116 __u32 Miss_Cnt;
117 };
118
119 /*
120 * Bit assignments
121 */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
124 #define DMA_RxAlign_1 0x00400000
125 #define DMA_RxAlign_2 0x00800000
126 #define DMA_RxAlign_3 0x00c00000
127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */
134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
136
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
140
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
151 #define MAC_Reset 0x00000004 /* 1:Software Reset */
152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */
154
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
157 #define PROM_Read 0x00004000 /*10:Read operation */
158 #define PROM_Write 0x00002000 /*01:Write operation */
159 #define PROM_Erase 0x00006000 /*11:Erase operation */
160 /*00:Enable or Disable Writting, */
161 /* as specified in PROM_Addr. */
162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
163 /*00xxxx: disable */
164
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
168 /* accept other */
169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
172
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
176 #define CAM_Ena_Bit(index) (1 << (index))
177 #define CAM_ENTRY_DESTINATION 0
178 #define CAM_ENTRY_SOURCE 1
179 #define CAM_ENTRY_MACCTL 20
180
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En 0x00000001 /* 1:Transmit enable */
183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
194
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
197 #define Tx_ExColl 0x00000010 /* Excessive Collision */
198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */
199 #define Tx_Paused 0x00000040 /* Transmit Paused */
200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
201 #define Tx_Under 0x00000100 /* Underrun */
202 #define Tx_Defer 0x00000200 /* Deferral */
203 #define Tx_NCarr 0x00000400 /* No Carrier */
204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */
205 #define Tx_LateColl 0x00001000 /* Late Collision */
206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */
207 #define Tx_Comp 0x00004000 /* Completion */
208 #define Tx_Halted 0x00008000 /* Tx Halted */
209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
210
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */
213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */
222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
224
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted 0x00008000 /* Rx Halted */
227 #define Rx_Good 0x00004000 /* Rx Good */
228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */
229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
230 #define Rx_LongErr 0x00000800 /* Rx Long Error */
231 #define Rx_Over 0x00000400 /* Rx Overflow */
232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
233 #define Rx_Align 0x00000100 /* Rx Alignment Error */
234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */
236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
238
239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
240
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
254 /* Exhausted Enable */
255
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
272
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
277
278
279 /*
280 * Descriptors
281 */
282
283 /* Frame descriptor */
284 struct FDesc {
285 volatile __u32 FDNext;
286 volatile __u32 FDSystem;
287 volatile __u32 FDStat;
288 volatile __u32 FDCtl;
289 };
290
291 /* Buffer descriptor */
292 struct BDesc {
293 volatile __u32 BuffData;
294 volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN 16
298
299 /* Frame Descriptor bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
310 #define FD_BDCnt_SHIFT 16
311
312 /* Buffer Descriptor bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
317 #define BD_RxBDID_SHIFT 16
318 #define BD_RxBDSeqN_SHIFT 24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 Tx_En) /* maybe 0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD (Int_NRAbtEn | \
330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
332 Int_STargAbtEn | \
333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE 32
339 #define TX_THRESHOLD 1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM 128 /* < 256 */
348 #define RX_FD_NUM 256 /* >= 32 */
349 #define TX_FD_NUM 128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE \
354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE \
357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT 16
361
362 struct TxFD {
363 struct FDesc fd;
364 struct BDesc bd;
365 struct BDesc unused;
366 };
367
368 struct RxFD {
369 struct FDesc fd;
370 struct BDesc bd[]; /* variable length */
371 };
372
373 struct FrFD {
374 struct FDesc fd;
375 struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr) ioread32(addr)
380 #define tc_writel(d, addr) iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 struct pci_dev *pci_dev;
387
388 struct net_device *dev;
389 struct napi_struct napi;
390
391 /* statistics */
392 struct {
393 int max_tx_qlen;
394 int tx_ints;
395 int rx_ints;
396 int tx_underrun;
397 } lstats;
398
399 /* Tx control lock. This protects the transmit buffer ring
400 * state along with the "tx full" state of the driver. This
401 * means all netif_queue flow control actions are protected
402 * by this lock as well.
403 */
404 spinlock_t lock;
405 spinlock_t rx_lock;
406
407 struct mii_bus *mii_bus;
408 int duplex;
409 int speed;
410 int link;
411 struct work_struct restart_work;
412
413 /*
414 * Transmitting: Batch Mode.
415 * 1 BD in 1 TxFD.
416 * Receiving: Non-Packing Mode.
417 * 1 circular FD for Free Buffer List.
418 * RX_BUF_NUM BD in Free Buffer FD.
419 * One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 */
421 void *fd_buf; /* for TxFD, RxFD, FrFD */
422 dma_addr_t fd_buf_dma;
423 struct TxFD *tfd_base;
424 unsigned int tfd_start;
425 unsigned int tfd_end;
426 struct RxFD *rfd_base;
427 struct RxFD *rfd_limit;
428 struct RxFD *rfd_cur;
429 struct FrFD *fbl_ptr;
430 unsigned int fbl_count;
431 struct {
432 struct sk_buff *skb;
433 dma_addr_t skb_dma;
434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 u32 msg_enable;
436 enum tc35815_chiptype chiptype;
437 };
438
439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 struct pci_dev *hwdev,
451 dma_addr_t *dma_handle)
452 {
453 struct sk_buff *skb;
454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455 if (!skb)
456 return NULL;
457 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
458 PCI_DMA_FROMDEVICE);
459 if (pci_dma_mapping_error(hwdev, *dma_handle)) {
460 dev_kfree_skb_any(skb);
461 return NULL;
462 }
463 skb_reserve(skb, 2); /* make IP header 4byte aligned */
464 return skb;
465 }
466
467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
470 PCI_DMA_FROMDEVICE);
471 dev_kfree_skb_any(skb);
472 }
473
474 /* Index to functions, as function prototypes. */
475
476 static int tc35815_open(struct net_device *dev);
477 static netdev_tx_t tc35815_send_packet(struct sk_buff *skb,
478 struct net_device *dev);
479 static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
480 static int tc35815_rx(struct net_device *dev, int limit);
481 static int tc35815_poll(struct napi_struct *napi, int budget);
482 static void tc35815_txdone(struct net_device *dev);
483 static int tc35815_close(struct net_device *dev);
484 static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void tc35815_set_multicast_list(struct net_device *dev);
486 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491
492 /* Example routines you must write ;->. */
493 static void tc35815_chip_reset(struct net_device *dev);
494 static void tc35815_chip_init(struct net_device *dev);
495
496 #ifdef DEBUG
497 static void panic_queues(struct net_device *dev);
498 #endif
499
500 static void tc35815_restart_work(struct work_struct *work);
501
502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504 struct net_device *dev = bus->priv;
505 struct tc35815_regs __iomem *tr =
506 (struct tc35815_regs __iomem *)dev->base_addr;
507 unsigned long timeout = jiffies + HZ;
508
509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 udelay(12); /* it takes 32 x 400ns at least */
511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 if (time_after(jiffies, timeout))
513 return -EIO;
514 cpu_relax();
515 }
516 return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518
519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521 struct net_device *dev = bus->priv;
522 struct tc35815_regs __iomem *tr =
523 (struct tc35815_regs __iomem *)dev->base_addr;
524 unsigned long timeout = jiffies + HZ;
525
526 tc_writel(val, &tr->MD_Data);
527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 &tr->MD_CA);
529 udelay(12); /* it takes 32 x 400ns at least */
530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 if (time_after(jiffies, timeout))
532 return -EIO;
533 cpu_relax();
534 }
535 return 0;
536 }
537
538 static void tc_handle_link_change(struct net_device *dev)
539 {
540 struct tc35815_local *lp = netdev_priv(dev);
541 struct phy_device *phydev = dev->phydev;
542 unsigned long flags;
543 int status_change = 0;
544
545 spin_lock_irqsave(&lp->lock, flags);
546 if (phydev->link &&
547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 struct tc35815_regs __iomem *tr =
549 (struct tc35815_regs __iomem *)dev->base_addr;
550 u32 reg;
551
552 reg = tc_readl(&tr->MAC_Ctl);
553 reg |= MAC_HaltReq;
554 tc_writel(reg, &tr->MAC_Ctl);
555 if (phydev->duplex == DUPLEX_FULL)
556 reg |= MAC_FullDup;
557 else
558 reg &= ~MAC_FullDup;
559 tc_writel(reg, &tr->MAC_Ctl);
560 reg &= ~MAC_HaltReq;
561 tc_writel(reg, &tr->MAC_Ctl);
562
563 /*
564 * TX4939 PCFG.SPEEDn bit will be changed on
565 * NETDEV_CHANGE event.
566 */
567 /*
568 * WORKAROUND: enable LostCrS only if half duplex
569 * operation.
570 * (TX4939 does not have EnLCarr)
571 */
572 if (phydev->duplex == DUPLEX_HALF &&
573 lp->chiptype != TC35815_TX4939)
574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 &tr->Tx_Ctl);
576
577 lp->speed = phydev->speed;
578 lp->duplex = phydev->duplex;
579 status_change = 1;
580 }
581
582 if (phydev->link != lp->link) {
583 if (phydev->link) {
584 /* delayed promiscuous enabling */
585 if (dev->flags & IFF_PROMISC)
586 tc35815_set_multicast_list(dev);
587 } else {
588 lp->speed = 0;
589 lp->duplex = -1;
590 }
591 lp->link = phydev->link;
592
593 status_change = 1;
594 }
595 spin_unlock_irqrestore(&lp->lock, flags);
596
597 if (status_change && netif_msg_link(lp)) {
598 phy_print_status(phydev);
599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 dev->name,
601 phy_read(phydev, MII_BMCR),
602 phy_read(phydev, MII_BMSR),
603 phy_read(phydev, MII_LPA));
604 }
605 }
606
607 static int tc_mii_probe(struct net_device *dev)
608 {
609 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
610 struct tc35815_local *lp = netdev_priv(dev);
611 struct phy_device *phydev;
612
613 phydev = phy_find_first(lp->mii_bus);
614 if (!phydev) {
615 printk(KERN_ERR "%s: no PHY found\n", dev->name);
616 return -ENODEV;
617 }
618
619 /* attach the mac to the phy */
620 phydev = phy_connect(dev, phydev_name(phydev),
621 &tc_handle_link_change,
622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623 if (IS_ERR(phydev)) {
624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625 return PTR_ERR(phydev);
626 }
627
628 phy_attached_info(phydev);
629
630 /* mask with MAC supported features */
631 phy_set_max_speed(phydev, SPEED_100);
632 if (options.speed == 10) {
633 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
634 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
635 } else if (options.speed == 100) {
636 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
637 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
638 }
639 if (options.duplex == 1) {
640 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
641 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
642 } else if (options.duplex == 2) {
643 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
644 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
645 }
646 linkmode_and(phydev->supported, phydev->supported, mask);
647 linkmode_copy(phydev->advertising, phydev->supported);
648
649 lp->link = 0;
650 lp->speed = 0;
651 lp->duplex = -1;
652
653 return 0;
654 }
655
656 static int tc_mii_init(struct net_device *dev)
657 {
658 struct tc35815_local *lp = netdev_priv(dev);
659 int err;
660
661 lp->mii_bus = mdiobus_alloc();
662 if (lp->mii_bus == NULL) {
663 err = -ENOMEM;
664 goto err_out;
665 }
666
667 lp->mii_bus->name = "tc35815_mii_bus";
668 lp->mii_bus->read = tc_mdio_read;
669 lp->mii_bus->write = tc_mdio_write;
670 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
671 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
672 lp->mii_bus->priv = dev;
673 lp->mii_bus->parent = &lp->pci_dev->dev;
674 err = mdiobus_register(lp->mii_bus);
675 if (err)
676 goto err_out_free_mii_bus;
677 err = tc_mii_probe(dev);
678 if (err)
679 goto err_out_unregister_bus;
680 return 0;
681
682 err_out_unregister_bus:
683 mdiobus_unregister(lp->mii_bus);
684 err_out_free_mii_bus:
685 mdiobus_free(lp->mii_bus);
686 err_out:
687 return err;
688 }
689
690 #ifdef CONFIG_CPU_TX49XX
691 /*
692 * Find a platform_device providing a MAC address. The platform code
693 * should provide a "tc35815-mac" device with a MAC address in its
694 * platform_data.
695 */
696 static int tc35815_mac_match(struct device *dev, const void *data)
697 {
698 struct platform_device *plat_dev = to_platform_device(dev);
699 const struct pci_dev *pci_dev = data;
700 unsigned int id = pci_dev->irq;
701 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
702 }
703
704 static int tc35815_read_plat_dev_addr(struct net_device *dev)
705 {
706 struct tc35815_local *lp = netdev_priv(dev);
707 struct device *pd = bus_find_device(&platform_bus_type, NULL,
708 lp->pci_dev, tc35815_mac_match);
709 if (pd) {
710 if (pd->platform_data)
711 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
712 put_device(pd);
713 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
714 }
715 return -ENODEV;
716 }
717 #else
718 static int tc35815_read_plat_dev_addr(struct net_device *dev)
719 {
720 return -ENODEV;
721 }
722 #endif
723
724 static int tc35815_init_dev_addr(struct net_device *dev)
725 {
726 struct tc35815_regs __iomem *tr =
727 (struct tc35815_regs __iomem *)dev->base_addr;
728 int i;
729
730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731 ;
732 for (i = 0; i < 6; i += 2) {
733 unsigned short data;
734 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
735 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
736 ;
737 data = tc_readl(&tr->PROM_Data);
738 dev->dev_addr[i] = data & 0xff;
739 dev->dev_addr[i+1] = data >> 8;
740 }
741 if (!is_valid_ether_addr(dev->dev_addr))
742 return tc35815_read_plat_dev_addr(dev);
743 return 0;
744 }
745
746 static const struct net_device_ops tc35815_netdev_ops = {
747 .ndo_open = tc35815_open,
748 .ndo_stop = tc35815_close,
749 .ndo_start_xmit = tc35815_send_packet,
750 .ndo_get_stats = tc35815_get_stats,
751 .ndo_set_rx_mode = tc35815_set_multicast_list,
752 .ndo_tx_timeout = tc35815_tx_timeout,
753 .ndo_do_ioctl = phy_do_ioctl_running,
754 .ndo_validate_addr = eth_validate_addr,
755 .ndo_set_mac_address = eth_mac_addr,
756 #ifdef CONFIG_NET_POLL_CONTROLLER
757 .ndo_poll_controller = tc35815_poll_controller,
758 #endif
759 };
760
761 static int tc35815_init_one(struct pci_dev *pdev,
762 const struct pci_device_id *ent)
763 {
764 void __iomem *ioaddr = NULL;
765 struct net_device *dev;
766 struct tc35815_local *lp;
767 int rc;
768
769 static int printed_version;
770 if (!printed_version++) {
771 printk(version);
772 dev_printk(KERN_DEBUG, &pdev->dev,
773 "speed:%d duplex:%d\n",
774 options.speed, options.duplex);
775 }
776
777 if (!pdev->irq) {
778 dev_warn(&pdev->dev, "no IRQ assigned.\n");
779 return -ENODEV;
780 }
781
782 /* dev zeroed in alloc_etherdev */
783 dev = alloc_etherdev(sizeof(*lp));
784 if (dev == NULL)
785 return -ENOMEM;
786
787 SET_NETDEV_DEV(dev, &pdev->dev);
788 lp = netdev_priv(dev);
789 lp->dev = dev;
790
791 /* enable device (incl. PCI PM wakeup), and bus-mastering */
792 rc = pcim_enable_device(pdev);
793 if (rc)
794 goto err_out;
795 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
796 if (rc)
797 goto err_out;
798 pci_set_master(pdev);
799 ioaddr = pcim_iomap_table(pdev)[1];
800
801 /* Initialize the device structure. */
802 dev->netdev_ops = &tc35815_netdev_ops;
803 dev->ethtool_ops = &tc35815_ethtool_ops;
804 dev->watchdog_timeo = TC35815_TX_TIMEOUT;
805 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
806
807 dev->irq = pdev->irq;
808 dev->base_addr = (unsigned long)ioaddr;
809
810 INIT_WORK(&lp->restart_work, tc35815_restart_work);
811 spin_lock_init(&lp->lock);
812 spin_lock_init(&lp->rx_lock);
813 lp->pci_dev = pdev;
814 lp->chiptype = ent->driver_data;
815
816 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
817 pci_set_drvdata(pdev, dev);
818
819 /* Soft reset the chip. */
820 tc35815_chip_reset(dev);
821
822 /* Retrieve the ethernet address. */
823 if (tc35815_init_dev_addr(dev)) {
824 dev_warn(&pdev->dev, "not valid ether addr\n");
825 eth_hw_addr_random(dev);
826 }
827
828 rc = register_netdev(dev);
829 if (rc)
830 goto err_out;
831
832 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
833 dev->name,
834 chip_info[ent->driver_data].name,
835 dev->base_addr,
836 dev->dev_addr,
837 dev->irq);
838
839 rc = tc_mii_init(dev);
840 if (rc)
841 goto err_out_unregister;
842
843 return 0;
844
845 err_out_unregister:
846 unregister_netdev(dev);
847 err_out:
848 free_netdev(dev);
849 return rc;
850 }
851
852
853 static void tc35815_remove_one(struct pci_dev *pdev)
854 {
855 struct net_device *dev = pci_get_drvdata(pdev);
856 struct tc35815_local *lp = netdev_priv(dev);
857
858 phy_disconnect(dev->phydev);
859 mdiobus_unregister(lp->mii_bus);
860 mdiobus_free(lp->mii_bus);
861 unregister_netdev(dev);
862 free_netdev(dev);
863 }
864
865 static int
866 tc35815_init_queues(struct net_device *dev)
867 {
868 struct tc35815_local *lp = netdev_priv(dev);
869 int i;
870 unsigned long fd_addr;
871
872 if (!lp->fd_buf) {
873 BUG_ON(sizeof(struct FDesc) +
874 sizeof(struct BDesc) * RX_BUF_NUM +
875 sizeof(struct FDesc) * RX_FD_NUM +
876 sizeof(struct TxFD) * TX_FD_NUM >
877 PAGE_SIZE * FD_PAGE_NUM);
878
879 lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
880 PAGE_SIZE * FD_PAGE_NUM,
881 &lp->fd_buf_dma);
882 if (!lp->fd_buf)
883 return -ENOMEM;
884 for (i = 0; i < RX_BUF_NUM; i++) {
885 lp->rx_skbs[i].skb =
886 alloc_rxbuf_skb(dev, lp->pci_dev,
887 &lp->rx_skbs[i].skb_dma);
888 if (!lp->rx_skbs[i].skb) {
889 while (--i >= 0) {
890 free_rxbuf_skb(lp->pci_dev,
891 lp->rx_skbs[i].skb,
892 lp->rx_skbs[i].skb_dma);
893 lp->rx_skbs[i].skb = NULL;
894 }
895 pci_free_consistent(lp->pci_dev,
896 PAGE_SIZE * FD_PAGE_NUM,
897 lp->fd_buf,
898 lp->fd_buf_dma);
899 lp->fd_buf = NULL;
900 return -ENOMEM;
901 }
902 }
903 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
904 dev->name, lp->fd_buf);
905 printk("\n");
906 } else {
907 for (i = 0; i < FD_PAGE_NUM; i++)
908 clear_page((void *)((unsigned long)lp->fd_buf +
909 i * PAGE_SIZE));
910 }
911 fd_addr = (unsigned long)lp->fd_buf;
912
913 /* Free Descriptors (for Receive) */
914 lp->rfd_base = (struct RxFD *)fd_addr;
915 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
916 for (i = 0; i < RX_FD_NUM; i++)
917 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
918 lp->rfd_cur = lp->rfd_base;
919 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
920
921 /* Transmit Descriptors */
922 lp->tfd_base = (struct TxFD *)fd_addr;
923 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
924 for (i = 0; i < TX_FD_NUM; i++) {
925 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
926 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
927 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
928 }
929 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
930 lp->tfd_start = 0;
931 lp->tfd_end = 0;
932
933 /* Buffer List (for Receive) */
934 lp->fbl_ptr = (struct FrFD *)fd_addr;
935 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
936 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
937 /*
938 * move all allocated skbs to head of rx_skbs[] array.
939 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
940 * tc35815_rx() had failed.
941 */
942 lp->fbl_count = 0;
943 for (i = 0; i < RX_BUF_NUM; i++) {
944 if (lp->rx_skbs[i].skb) {
945 if (i != lp->fbl_count) {
946 lp->rx_skbs[lp->fbl_count].skb =
947 lp->rx_skbs[i].skb;
948 lp->rx_skbs[lp->fbl_count].skb_dma =
949 lp->rx_skbs[i].skb_dma;
950 }
951 lp->fbl_count++;
952 }
953 }
954 for (i = 0; i < RX_BUF_NUM; i++) {
955 if (i >= lp->fbl_count) {
956 lp->fbl_ptr->bd[i].BuffData = 0;
957 lp->fbl_ptr->bd[i].BDCtl = 0;
958 continue;
959 }
960 lp->fbl_ptr->bd[i].BuffData =
961 cpu_to_le32(lp->rx_skbs[i].skb_dma);
962 /* BDID is index of FrFD.bd[] */
963 lp->fbl_ptr->bd[i].BDCtl =
964 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
965 RX_BUF_SIZE);
966 }
967
968 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
969 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
970 return 0;
971 }
972
973 static void
974 tc35815_clear_queues(struct net_device *dev)
975 {
976 struct tc35815_local *lp = netdev_priv(dev);
977 int i;
978
979 for (i = 0; i < TX_FD_NUM; i++) {
980 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
981 struct sk_buff *skb =
982 fdsystem != 0xffffffff ?
983 lp->tx_skbs[fdsystem].skb : NULL;
984 #ifdef DEBUG
985 if (lp->tx_skbs[i].skb != skb) {
986 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
987 panic_queues(dev);
988 }
989 #else
990 BUG_ON(lp->tx_skbs[i].skb != skb);
991 #endif
992 if (skb) {
993 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
994 lp->tx_skbs[i].skb = NULL;
995 lp->tx_skbs[i].skb_dma = 0;
996 dev_kfree_skb_any(skb);
997 }
998 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
999 }
1000
1001 tc35815_init_queues(dev);
1002 }
1003
1004 static void
1005 tc35815_free_queues(struct net_device *dev)
1006 {
1007 struct tc35815_local *lp = netdev_priv(dev);
1008 int i;
1009
1010 if (lp->tfd_base) {
1011 for (i = 0; i < TX_FD_NUM; i++) {
1012 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1013 struct sk_buff *skb =
1014 fdsystem != 0xffffffff ?
1015 lp->tx_skbs[fdsystem].skb : NULL;
1016 #ifdef DEBUG
1017 if (lp->tx_skbs[i].skb != skb) {
1018 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1019 panic_queues(dev);
1020 }
1021 #else
1022 BUG_ON(lp->tx_skbs[i].skb != skb);
1023 #endif
1024 if (skb) {
1025 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1026 dev_kfree_skb(skb);
1027 lp->tx_skbs[i].skb = NULL;
1028 lp->tx_skbs[i].skb_dma = 0;
1029 }
1030 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1031 }
1032 }
1033
1034 lp->rfd_base = NULL;
1035 lp->rfd_limit = NULL;
1036 lp->rfd_cur = NULL;
1037 lp->fbl_ptr = NULL;
1038
1039 for (i = 0; i < RX_BUF_NUM; i++) {
1040 if (lp->rx_skbs[i].skb) {
1041 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1042 lp->rx_skbs[i].skb_dma);
1043 lp->rx_skbs[i].skb = NULL;
1044 }
1045 }
1046 if (lp->fd_buf) {
1047 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1048 lp->fd_buf, lp->fd_buf_dma);
1049 lp->fd_buf = NULL;
1050 }
1051 }
1052
1053 static void
1054 dump_txfd(struct TxFD *fd)
1055 {
1056 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1057 le32_to_cpu(fd->fd.FDNext),
1058 le32_to_cpu(fd->fd.FDSystem),
1059 le32_to_cpu(fd->fd.FDStat),
1060 le32_to_cpu(fd->fd.FDCtl));
1061 printk("BD: ");
1062 printk(" %08x %08x",
1063 le32_to_cpu(fd->bd.BuffData),
1064 le32_to_cpu(fd->bd.BDCtl));
1065 printk("\n");
1066 }
1067
1068 static int
1069 dump_rxfd(struct RxFD *fd)
1070 {
1071 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1072 if (bd_count > 8)
1073 bd_count = 8;
1074 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1075 le32_to_cpu(fd->fd.FDNext),
1076 le32_to_cpu(fd->fd.FDSystem),
1077 le32_to_cpu(fd->fd.FDStat),
1078 le32_to_cpu(fd->fd.FDCtl));
1079 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1080 return 0;
1081 printk("BD: ");
1082 for (i = 0; i < bd_count; i++)
1083 printk(" %08x %08x",
1084 le32_to_cpu(fd->bd[i].BuffData),
1085 le32_to_cpu(fd->bd[i].BDCtl));
1086 printk("\n");
1087 return bd_count;
1088 }
1089
1090 #ifdef DEBUG
1091 static void
1092 dump_frfd(struct FrFD *fd)
1093 {
1094 int i;
1095 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1096 le32_to_cpu(fd->fd.FDNext),
1097 le32_to_cpu(fd->fd.FDSystem),
1098 le32_to_cpu(fd->fd.FDStat),
1099 le32_to_cpu(fd->fd.FDCtl));
1100 printk("BD: ");
1101 for (i = 0; i < RX_BUF_NUM; i++)
1102 printk(" %08x %08x",
1103 le32_to_cpu(fd->bd[i].BuffData),
1104 le32_to_cpu(fd->bd[i].BDCtl));
1105 printk("\n");
1106 }
1107
1108 static void
1109 panic_queues(struct net_device *dev)
1110 {
1111 struct tc35815_local *lp = netdev_priv(dev);
1112 int i;
1113
1114 printk("TxFD base %p, start %u, end %u\n",
1115 lp->tfd_base, lp->tfd_start, lp->tfd_end);
1116 printk("RxFD base %p limit %p cur %p\n",
1117 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1118 printk("FrFD %p\n", lp->fbl_ptr);
1119 for (i = 0; i < TX_FD_NUM; i++)
1120 dump_txfd(&lp->tfd_base[i]);
1121 for (i = 0; i < RX_FD_NUM; i++) {
1122 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1123 i += (bd_count + 1) / 2; /* skip BDs */
1124 }
1125 dump_frfd(lp->fbl_ptr);
1126 panic("%s: Illegal queue state.", dev->name);
1127 }
1128 #endif
1129
1130 static void print_eth(const u8 *add)
1131 {
1132 printk(KERN_DEBUG "print_eth(%p)\n", add);
1133 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1134 add + 6, add, add[12], add[13]);
1135 }
1136
1137 static int tc35815_tx_full(struct net_device *dev)
1138 {
1139 struct tc35815_local *lp = netdev_priv(dev);
1140 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1141 }
1142
1143 static void tc35815_restart(struct net_device *dev)
1144 {
1145 struct tc35815_local *lp = netdev_priv(dev);
1146 int ret;
1147
1148 if (dev->phydev) {
1149 ret = phy_init_hw(dev->phydev);
1150 if (ret)
1151 printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1152 }
1153
1154 spin_lock_bh(&lp->rx_lock);
1155 spin_lock_irq(&lp->lock);
1156 tc35815_chip_reset(dev);
1157 tc35815_clear_queues(dev);
1158 tc35815_chip_init(dev);
1159 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1160 tc35815_set_multicast_list(dev);
1161 spin_unlock_irq(&lp->lock);
1162 spin_unlock_bh(&lp->rx_lock);
1163
1164 netif_wake_queue(dev);
1165 }
1166
1167 static void tc35815_restart_work(struct work_struct *work)
1168 {
1169 struct tc35815_local *lp =
1170 container_of(work, struct tc35815_local, restart_work);
1171 struct net_device *dev = lp->dev;
1172
1173 tc35815_restart(dev);
1174 }
1175
1176 static void tc35815_schedule_restart(struct net_device *dev)
1177 {
1178 struct tc35815_local *lp = netdev_priv(dev);
1179 struct tc35815_regs __iomem *tr =
1180 (struct tc35815_regs __iomem *)dev->base_addr;
1181 unsigned long flags;
1182
1183 /* disable interrupts */
1184 spin_lock_irqsave(&lp->lock, flags);
1185 tc_writel(0, &tr->Int_En);
1186 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1187 schedule_work(&lp->restart_work);
1188 spin_unlock_irqrestore(&lp->lock, flags);
1189 }
1190
1191 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1192 {
1193 struct tc35815_regs __iomem *tr =
1194 (struct tc35815_regs __iomem *)dev->base_addr;
1195
1196 printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1197 dev->name, tc_readl(&tr->Tx_Stat));
1198
1199 /* Try to restart the adaptor. */
1200 tc35815_schedule_restart(dev);
1201 dev->stats.tx_errors++;
1202 }
1203
1204 /*
1205 * Open/initialize the controller. This is called (in the current kernel)
1206 * sometime after booting when the 'ifconfig' program is run.
1207 *
1208 * This routine should set everything up anew at each open, even
1209 * registers that "should" only need to be set once at boot, so that
1210 * there is non-reboot way to recover if something goes wrong.
1211 */
1212 static int
1213 tc35815_open(struct net_device *dev)
1214 {
1215 struct tc35815_local *lp = netdev_priv(dev);
1216
1217 /*
1218 * This is used if the interrupt line can turned off (shared).
1219 * See 3c503.c for an example of selecting the IRQ at config-time.
1220 */
1221 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1222 dev->name, dev))
1223 return -EAGAIN;
1224
1225 tc35815_chip_reset(dev);
1226
1227 if (tc35815_init_queues(dev) != 0) {
1228 free_irq(dev->irq, dev);
1229 return -EAGAIN;
1230 }
1231
1232 napi_enable(&lp->napi);
1233
1234 /* Reset the hardware here. Don't forget to set the station address. */
1235 spin_lock_irq(&lp->lock);
1236 tc35815_chip_init(dev);
1237 spin_unlock_irq(&lp->lock);
1238
1239 netif_carrier_off(dev);
1240 /* schedule a link state check */
1241 phy_start(dev->phydev);
1242
1243 /* We are now ready to accept transmit requeusts from
1244 * the queueing layer of the networking.
1245 */
1246 netif_start_queue(dev);
1247
1248 return 0;
1249 }
1250
1251 /* This will only be invoked if your driver is _not_ in XOFF state.
1252 * What this means is that you need not check it, and that this
1253 * invariant will hold if you make sure that the netif_*_queue()
1254 * calls are done at the proper times.
1255 */
1256 static netdev_tx_t
1257 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1258 {
1259 struct tc35815_local *lp = netdev_priv(dev);
1260 struct TxFD *txfd;
1261 unsigned long flags;
1262
1263 /* If some error occurs while trying to transmit this
1264 * packet, you should return '1' from this function.
1265 * In such a case you _may not_ do anything to the
1266 * SKB, it is still owned by the network queueing
1267 * layer when an error is returned. This means you
1268 * may not modify any SKB fields, you may not free
1269 * the SKB, etc.
1270 */
1271
1272 /* This is the most common case for modern hardware.
1273 * The spinlock protects this code from the TX complete
1274 * hardware interrupt handler. Queue flow control is
1275 * thus managed under this lock as well.
1276 */
1277 spin_lock_irqsave(&lp->lock, flags);
1278
1279 /* failsafe... (handle txdone now if half of FDs are used) */
1280 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1281 TX_FD_NUM / 2)
1282 tc35815_txdone(dev);
1283
1284 if (netif_msg_pktdata(lp))
1285 print_eth(skb->data);
1286 #ifdef DEBUG
1287 if (lp->tx_skbs[lp->tfd_start].skb) {
1288 printk("%s: tx_skbs conflict.\n", dev->name);
1289 panic_queues(dev);
1290 }
1291 #else
1292 BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1293 #endif
1294 lp->tx_skbs[lp->tfd_start].skb = skb;
1295 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1296
1297 /*add to ring */
1298 txfd = &lp->tfd_base[lp->tfd_start];
1299 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1300 txfd->bd.BDCtl = cpu_to_le32(skb->len);
1301 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1302 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1303
1304 if (lp->tfd_start == lp->tfd_end) {
1305 struct tc35815_regs __iomem *tr =
1306 (struct tc35815_regs __iomem *)dev->base_addr;
1307 /* Start DMA Transmitter. */
1308 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1309 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1310 if (netif_msg_tx_queued(lp)) {
1311 printk("%s: starting TxFD.\n", dev->name);
1312 dump_txfd(txfd);
1313 }
1314 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1315 } else {
1316 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1317 if (netif_msg_tx_queued(lp)) {
1318 printk("%s: queueing TxFD.\n", dev->name);
1319 dump_txfd(txfd);
1320 }
1321 }
1322 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1323
1324 /* If we just used up the very last entry in the
1325 * TX ring on this device, tell the queueing
1326 * layer to send no more.
1327 */
1328 if (tc35815_tx_full(dev)) {
1329 if (netif_msg_tx_queued(lp))
1330 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1331 netif_stop_queue(dev);
1332 }
1333
1334 /* When the TX completion hw interrupt arrives, this
1335 * is when the transmit statistics are updated.
1336 */
1337
1338 spin_unlock_irqrestore(&lp->lock, flags);
1339 return NETDEV_TX_OK;
1340 }
1341
1342 #define FATAL_ERROR_INT \
1343 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1344 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1345 {
1346 static int count;
1347 printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1348 dev->name, status);
1349 if (status & Int_IntPCI)
1350 printk(" IntPCI");
1351 if (status & Int_DmParErr)
1352 printk(" DmParErr");
1353 if (status & Int_IntNRAbt)
1354 printk(" IntNRAbt");
1355 printk("\n");
1356 if (count++ > 100)
1357 panic("%s: Too many fatal errors.", dev->name);
1358 printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1359 /* Try to restart the adaptor. */
1360 tc35815_schedule_restart(dev);
1361 }
1362
1363 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1364 {
1365 struct tc35815_local *lp = netdev_priv(dev);
1366 int ret = -1;
1367
1368 /* Fatal errors... */
1369 if (status & FATAL_ERROR_INT) {
1370 tc35815_fatal_error_interrupt(dev, status);
1371 return 0;
1372 }
1373 /* recoverable errors */
1374 if (status & Int_IntFDAEx) {
1375 if (netif_msg_rx_err(lp))
1376 dev_warn(&dev->dev,
1377 "Free Descriptor Area Exhausted (%#x).\n",
1378 status);
1379 dev->stats.rx_dropped++;
1380 ret = 0;
1381 }
1382 if (status & Int_IntBLEx) {
1383 if (netif_msg_rx_err(lp))
1384 dev_warn(&dev->dev,
1385 "Buffer List Exhausted (%#x).\n",
1386 status);
1387 dev->stats.rx_dropped++;
1388 ret = 0;
1389 }
1390 if (status & Int_IntExBD) {
1391 if (netif_msg_rx_err(lp))
1392 dev_warn(&dev->dev,
1393 "Excessive Buffer Descriptors (%#x).\n",
1394 status);
1395 dev->stats.rx_length_errors++;
1396 ret = 0;
1397 }
1398
1399 /* normal notification */
1400 if (status & Int_IntMacRx) {
1401 /* Got a packet(s). */
1402 ret = tc35815_rx(dev, limit);
1403 lp->lstats.rx_ints++;
1404 }
1405 if (status & Int_IntMacTx) {
1406 /* Transmit complete. */
1407 lp->lstats.tx_ints++;
1408 spin_lock_irq(&lp->lock);
1409 tc35815_txdone(dev);
1410 spin_unlock_irq(&lp->lock);
1411 if (ret < 0)
1412 ret = 0;
1413 }
1414 return ret;
1415 }
1416
1417 /*
1418 * The typical workload of the driver:
1419 * Handle the network interface interrupts.
1420 */
1421 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1422 {
1423 struct net_device *dev = dev_id;
1424 struct tc35815_local *lp = netdev_priv(dev);
1425 struct tc35815_regs __iomem *tr =
1426 (struct tc35815_regs __iomem *)dev->base_addr;
1427 u32 dmactl = tc_readl(&tr->DMA_Ctl);
1428
1429 if (!(dmactl & DMA_IntMask)) {
1430 /* disable interrupts */
1431 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1432 if (napi_schedule_prep(&lp->napi))
1433 __napi_schedule(&lp->napi);
1434 else {
1435 printk(KERN_ERR "%s: interrupt taken in poll\n",
1436 dev->name);
1437 BUG();
1438 }
1439 (void)tc_readl(&tr->Int_Src); /* flush */
1440 return IRQ_HANDLED;
1441 }
1442 return IRQ_NONE;
1443 }
1444
1445 #ifdef CONFIG_NET_POLL_CONTROLLER
1446 static void tc35815_poll_controller(struct net_device *dev)
1447 {
1448 disable_irq(dev->irq);
1449 tc35815_interrupt(dev->irq, dev);
1450 enable_irq(dev->irq);
1451 }
1452 #endif
1453
1454 /* We have a good packet(s), get it/them out of the buffers. */
1455 static int
1456 tc35815_rx(struct net_device *dev, int limit)
1457 {
1458 struct tc35815_local *lp = netdev_priv(dev);
1459 unsigned int fdctl;
1460 int i;
1461 int received = 0;
1462
1463 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1464 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1465 int pkt_len = fdctl & FD_FDLength_MASK;
1466 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1467 #ifdef DEBUG
1468 struct RxFD *next_rfd;
1469 #endif
1470 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1471 pkt_len -= ETH_FCS_LEN;
1472 #endif
1473
1474 if (netif_msg_rx_status(lp))
1475 dump_rxfd(lp->rfd_cur);
1476 if (status & Rx_Good) {
1477 struct sk_buff *skb;
1478 unsigned char *data;
1479 int cur_bd;
1480
1481 if (--limit < 0)
1482 break;
1483 BUG_ON(bd_count > 1);
1484 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1485 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1486 #ifdef DEBUG
1487 if (cur_bd >= RX_BUF_NUM) {
1488 printk("%s: invalid BDID.\n", dev->name);
1489 panic_queues(dev);
1490 }
1491 BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1492 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1493 if (!lp->rx_skbs[cur_bd].skb) {
1494 printk("%s: NULL skb.\n", dev->name);
1495 panic_queues(dev);
1496 }
1497 #else
1498 BUG_ON(cur_bd >= RX_BUF_NUM);
1499 #endif
1500 skb = lp->rx_skbs[cur_bd].skb;
1501 prefetch(skb->data);
1502 lp->rx_skbs[cur_bd].skb = NULL;
1503 pci_unmap_single(lp->pci_dev,
1504 lp->rx_skbs[cur_bd].skb_dma,
1505 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1506 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1507 memmove(skb->data, skb->data - NET_IP_ALIGN,
1508 pkt_len);
1509 data = skb_put(skb, pkt_len);
1510 if (netif_msg_pktdata(lp))
1511 print_eth(data);
1512 skb->protocol = eth_type_trans(skb, dev);
1513 netif_receive_skb(skb);
1514 received++;
1515 dev->stats.rx_packets++;
1516 dev->stats.rx_bytes += pkt_len;
1517 } else {
1518 dev->stats.rx_errors++;
1519 if (netif_msg_rx_err(lp))
1520 dev_info(&dev->dev, "Rx error (status %x)\n",
1521 status & Rx_Stat_Mask);
1522 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1523 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1524 status &= ~(Rx_LongErr|Rx_CRCErr);
1525 status |= Rx_Over;
1526 }
1527 if (status & Rx_LongErr)
1528 dev->stats.rx_length_errors++;
1529 if (status & Rx_Over)
1530 dev->stats.rx_fifo_errors++;
1531 if (status & Rx_CRCErr)
1532 dev->stats.rx_crc_errors++;
1533 if (status & Rx_Align)
1534 dev->stats.rx_frame_errors++;
1535 }
1536
1537 if (bd_count > 0) {
1538 /* put Free Buffer back to controller */
1539 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1540 unsigned char id =
1541 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1542 #ifdef DEBUG
1543 if (id >= RX_BUF_NUM) {
1544 printk("%s: invalid BDID.\n", dev->name);
1545 panic_queues(dev);
1546 }
1547 #else
1548 BUG_ON(id >= RX_BUF_NUM);
1549 #endif
1550 /* free old buffers */
1551 lp->fbl_count--;
1552 while (lp->fbl_count < RX_BUF_NUM)
1553 {
1554 unsigned char curid =
1555 (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1556 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1557 #ifdef DEBUG
1558 bdctl = le32_to_cpu(bd->BDCtl);
1559 if (bdctl & BD_CownsBD) {
1560 printk("%s: Freeing invalid BD.\n",
1561 dev->name);
1562 panic_queues(dev);
1563 }
1564 #endif
1565 /* pass BD to controller */
1566 if (!lp->rx_skbs[curid].skb) {
1567 lp->rx_skbs[curid].skb =
1568 alloc_rxbuf_skb(dev,
1569 lp->pci_dev,
1570 &lp->rx_skbs[curid].skb_dma);
1571 if (!lp->rx_skbs[curid].skb)
1572 break; /* try on next reception */
1573 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1574 }
1575 /* Note: BDLength was modified by chip. */
1576 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1577 (curid << BD_RxBDID_SHIFT) |
1578 RX_BUF_SIZE);
1579 lp->fbl_count++;
1580 }
1581 }
1582
1583 /* put RxFD back to controller */
1584 #ifdef DEBUG
1585 next_rfd = fd_bus_to_virt(lp,
1586 le32_to_cpu(lp->rfd_cur->fd.FDNext));
1587 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1588 printk("%s: RxFD FDNext invalid.\n", dev->name);
1589 panic_queues(dev);
1590 }
1591 #endif
1592 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1593 /* pass FD to controller */
1594 #ifdef DEBUG
1595 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1596 #else
1597 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1598 #endif
1599 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1600 lp->rfd_cur++;
1601 }
1602 if (lp->rfd_cur > lp->rfd_limit)
1603 lp->rfd_cur = lp->rfd_base;
1604 #ifdef DEBUG
1605 if (lp->rfd_cur != next_rfd)
1606 printk("rfd_cur = %p, next_rfd %p\n",
1607 lp->rfd_cur, next_rfd);
1608 #endif
1609 }
1610
1611 return received;
1612 }
1613
1614 static int tc35815_poll(struct napi_struct *napi, int budget)
1615 {
1616 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1617 struct net_device *dev = lp->dev;
1618 struct tc35815_regs __iomem *tr =
1619 (struct tc35815_regs __iomem *)dev->base_addr;
1620 int received = 0, handled;
1621 u32 status;
1622
1623 if (budget <= 0)
1624 return received;
1625
1626 spin_lock(&lp->rx_lock);
1627 status = tc_readl(&tr->Int_Src);
1628 do {
1629 /* BLEx, FDAEx will be cleared later */
1630 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1631 &tr->Int_Src); /* write to clear */
1632
1633 handled = tc35815_do_interrupt(dev, status, budget - received);
1634 if (status & (Int_BLEx | Int_FDAEx))
1635 tc_writel(status & (Int_BLEx | Int_FDAEx),
1636 &tr->Int_Src);
1637 if (handled >= 0) {
1638 received += handled;
1639 if (received >= budget)
1640 break;
1641 }
1642 status = tc_readl(&tr->Int_Src);
1643 } while (status);
1644 spin_unlock(&lp->rx_lock);
1645
1646 if (received < budget) {
1647 napi_complete_done(napi, received);
1648 /* enable interrupts */
1649 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1650 }
1651 return received;
1652 }
1653
1654 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1655
1656 static void
1657 tc35815_check_tx_stat(struct net_device *dev, int status)
1658 {
1659 struct tc35815_local *lp = netdev_priv(dev);
1660 const char *msg = NULL;
1661
1662 /* count collisions */
1663 if (status & Tx_ExColl)
1664 dev->stats.collisions += 16;
1665 if (status & Tx_TxColl_MASK)
1666 dev->stats.collisions += status & Tx_TxColl_MASK;
1667
1668 /* TX4939 does not have NCarr */
1669 if (lp->chiptype == TC35815_TX4939)
1670 status &= ~Tx_NCarr;
1671 /* WORKAROUND: ignore LostCrS in full duplex operation */
1672 if (!lp->link || lp->duplex == DUPLEX_FULL)
1673 status &= ~Tx_NCarr;
1674
1675 if (!(status & TX_STA_ERR)) {
1676 /* no error. */
1677 dev->stats.tx_packets++;
1678 return;
1679 }
1680
1681 dev->stats.tx_errors++;
1682 if (status & Tx_ExColl) {
1683 dev->stats.tx_aborted_errors++;
1684 msg = "Excessive Collision.";
1685 }
1686 if (status & Tx_Under) {
1687 dev->stats.tx_fifo_errors++;
1688 msg = "Tx FIFO Underrun.";
1689 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1690 lp->lstats.tx_underrun++;
1691 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1692 struct tc35815_regs __iomem *tr =
1693 (struct tc35815_regs __iomem *)dev->base_addr;
1694 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1695 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1696 }
1697 }
1698 }
1699 if (status & Tx_Defer) {
1700 dev->stats.tx_fifo_errors++;
1701 msg = "Excessive Deferral.";
1702 }
1703 if (status & Tx_NCarr) {
1704 dev->stats.tx_carrier_errors++;
1705 msg = "Lost Carrier Sense.";
1706 }
1707 if (status & Tx_LateColl) {
1708 dev->stats.tx_aborted_errors++;
1709 msg = "Late Collision.";
1710 }
1711 if (status & Tx_TxPar) {
1712 dev->stats.tx_fifo_errors++;
1713 msg = "Transmit Parity Error.";
1714 }
1715 if (status & Tx_SQErr) {
1716 dev->stats.tx_heartbeat_errors++;
1717 msg = "Signal Quality Error.";
1718 }
1719 if (msg && netif_msg_tx_err(lp))
1720 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1721 }
1722
1723 /* This handles TX complete events posted by the device
1724 * via interrupts.
1725 */
1726 static void
1727 tc35815_txdone(struct net_device *dev)
1728 {
1729 struct tc35815_local *lp = netdev_priv(dev);
1730 struct TxFD *txfd;
1731 unsigned int fdctl;
1732
1733 txfd = &lp->tfd_base[lp->tfd_end];
1734 while (lp->tfd_start != lp->tfd_end &&
1735 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1736 int status = le32_to_cpu(txfd->fd.FDStat);
1737 struct sk_buff *skb;
1738 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1739 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1740
1741 if (netif_msg_tx_done(lp)) {
1742 printk("%s: complete TxFD.\n", dev->name);
1743 dump_txfd(txfd);
1744 }
1745 tc35815_check_tx_stat(dev, status);
1746
1747 skb = fdsystem != 0xffffffff ?
1748 lp->tx_skbs[fdsystem].skb : NULL;
1749 #ifdef DEBUG
1750 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1751 printk("%s: tx_skbs mismatch.\n", dev->name);
1752 panic_queues(dev);
1753 }
1754 #else
1755 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1756 #endif
1757 if (skb) {
1758 dev->stats.tx_bytes += skb->len;
1759 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1760 lp->tx_skbs[lp->tfd_end].skb = NULL;
1761 lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1762 dev_kfree_skb_any(skb);
1763 }
1764 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1765
1766 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1767 txfd = &lp->tfd_base[lp->tfd_end];
1768 #ifdef DEBUG
1769 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1770 printk("%s: TxFD FDNext invalid.\n", dev->name);
1771 panic_queues(dev);
1772 }
1773 #endif
1774 if (fdnext & FD_Next_EOL) {
1775 /* DMA Transmitter has been stopping... */
1776 if (lp->tfd_end != lp->tfd_start) {
1777 struct tc35815_regs __iomem *tr =
1778 (struct tc35815_regs __iomem *)dev->base_addr;
1779 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1780 struct TxFD *txhead = &lp->tfd_base[head];
1781 int qlen = (lp->tfd_start + TX_FD_NUM
1782 - lp->tfd_end) % TX_FD_NUM;
1783
1784 #ifdef DEBUG
1785 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1786 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1787 panic_queues(dev);
1788 }
1789 #endif
1790 /* log max queue length */
1791 if (lp->lstats.max_tx_qlen < qlen)
1792 lp->lstats.max_tx_qlen = qlen;
1793
1794
1795 /* start DMA Transmitter again */
1796 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1797 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1798 if (netif_msg_tx_queued(lp)) {
1799 printk("%s: start TxFD on queue.\n",
1800 dev->name);
1801 dump_txfd(txfd);
1802 }
1803 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1804 }
1805 break;
1806 }
1807 }
1808
1809 /* If we had stopped the queue due to a "tx full"
1810 * condition, and space has now been made available,
1811 * wake up the queue.
1812 */
1813 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1814 netif_wake_queue(dev);
1815 }
1816
1817 /* The inverse routine to tc35815_open(). */
1818 static int
1819 tc35815_close(struct net_device *dev)
1820 {
1821 struct tc35815_local *lp = netdev_priv(dev);
1822
1823 netif_stop_queue(dev);
1824 napi_disable(&lp->napi);
1825 if (dev->phydev)
1826 phy_stop(dev->phydev);
1827 cancel_work_sync(&lp->restart_work);
1828
1829 /* Flush the Tx and disable Rx here. */
1830 tc35815_chip_reset(dev);
1831 free_irq(dev->irq, dev);
1832
1833 tc35815_free_queues(dev);
1834
1835 return 0;
1836
1837 }
1838
1839 /*
1840 * Get the current statistics.
1841 * This may be called with the card open or closed.
1842 */
1843 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1844 {
1845 struct tc35815_regs __iomem *tr =
1846 (struct tc35815_regs __iomem *)dev->base_addr;
1847 if (netif_running(dev))
1848 /* Update the statistics from the device registers. */
1849 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1850
1851 return &dev->stats;
1852 }
1853
1854 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1855 {
1856 struct tc35815_local *lp = netdev_priv(dev);
1857 struct tc35815_regs __iomem *tr =
1858 (struct tc35815_regs __iomem *)dev->base_addr;
1859 int cam_index = index * 6;
1860 u32 cam_data;
1861 u32 saved_addr;
1862
1863 saved_addr = tc_readl(&tr->CAM_Adr);
1864
1865 if (netif_msg_hw(lp))
1866 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1867 dev->name, index, addr);
1868 if (index & 1) {
1869 /* read modify write */
1870 tc_writel(cam_index - 2, &tr->CAM_Adr);
1871 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1872 cam_data |= addr[0] << 8 | addr[1];
1873 tc_writel(cam_data, &tr->CAM_Data);
1874 /* write whole word */
1875 tc_writel(cam_index + 2, &tr->CAM_Adr);
1876 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1877 tc_writel(cam_data, &tr->CAM_Data);
1878 } else {
1879 /* write whole word */
1880 tc_writel(cam_index, &tr->CAM_Adr);
1881 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1882 tc_writel(cam_data, &tr->CAM_Data);
1883 /* read modify write */
1884 tc_writel(cam_index + 4, &tr->CAM_Adr);
1885 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1886 cam_data |= addr[4] << 24 | (addr[5] << 16);
1887 tc_writel(cam_data, &tr->CAM_Data);
1888 }
1889
1890 tc_writel(saved_addr, &tr->CAM_Adr);
1891 }
1892
1893
1894 /*
1895 * Set or clear the multicast filter for this adaptor.
1896 * num_addrs == -1 Promiscuous mode, receive all packets
1897 * num_addrs == 0 Normal mode, clear multicast list
1898 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1899 * and do best-effort filtering.
1900 */
1901 static void
1902 tc35815_set_multicast_list(struct net_device *dev)
1903 {
1904 struct tc35815_regs __iomem *tr =
1905 (struct tc35815_regs __iomem *)dev->base_addr;
1906
1907 if (dev->flags & IFF_PROMISC) {
1908 /* With some (all?) 100MHalf HUB, controller will hang
1909 * if we enabled promiscuous mode before linkup... */
1910 struct tc35815_local *lp = netdev_priv(dev);
1911
1912 if (!lp->link)
1913 return;
1914 /* Enable promiscuous mode */
1915 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1916 } else if ((dev->flags & IFF_ALLMULTI) ||
1917 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1918 /* CAM 0, 1, 20 are reserved. */
1919 /* Disable promiscuous mode, use normal mode. */
1920 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1921 } else if (!netdev_mc_empty(dev)) {
1922 struct netdev_hw_addr *ha;
1923 int i;
1924 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1925
1926 tc_writel(0, &tr->CAM_Ctl);
1927 /* Walk the address list, and load the filter */
1928 i = 0;
1929 netdev_for_each_mc_addr(ha, dev) {
1930 /* entry 0,1 is reserved. */
1931 tc35815_set_cam_entry(dev, i + 2, ha->addr);
1932 ena_bits |= CAM_Ena_Bit(i + 2);
1933 i++;
1934 }
1935 tc_writel(ena_bits, &tr->CAM_Ena);
1936 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1937 } else {
1938 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1939 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1940 }
1941 }
1942
1943 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1944 {
1945 struct tc35815_local *lp = netdev_priv(dev);
1946
1947 strlcpy(info->driver, MODNAME, sizeof(info->driver));
1948 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1949 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1950 }
1951
1952 static u32 tc35815_get_msglevel(struct net_device *dev)
1953 {
1954 struct tc35815_local *lp = netdev_priv(dev);
1955 return lp->msg_enable;
1956 }
1957
1958 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1959 {
1960 struct tc35815_local *lp = netdev_priv(dev);
1961 lp->msg_enable = datum;
1962 }
1963
1964 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1965 {
1966 struct tc35815_local *lp = netdev_priv(dev);
1967
1968 switch (sset) {
1969 case ETH_SS_STATS:
1970 return sizeof(lp->lstats) / sizeof(int);
1971 default:
1972 return -EOPNOTSUPP;
1973 }
1974 }
1975
1976 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1977 {
1978 struct tc35815_local *lp = netdev_priv(dev);
1979 data[0] = lp->lstats.max_tx_qlen;
1980 data[1] = lp->lstats.tx_ints;
1981 data[2] = lp->lstats.rx_ints;
1982 data[3] = lp->lstats.tx_underrun;
1983 }
1984
1985 static struct {
1986 const char str[ETH_GSTRING_LEN];
1987 } ethtool_stats_keys[] = {
1988 { "max_tx_qlen" },
1989 { "tx_ints" },
1990 { "rx_ints" },
1991 { "tx_underrun" },
1992 };
1993
1994 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1995 {
1996 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
1997 }
1998
1999 static const struct ethtool_ops tc35815_ethtool_ops = {
2000 .get_drvinfo = tc35815_get_drvinfo,
2001 .get_link = ethtool_op_get_link,
2002 .get_msglevel = tc35815_get_msglevel,
2003 .set_msglevel = tc35815_set_msglevel,
2004 .get_strings = tc35815_get_strings,
2005 .get_sset_count = tc35815_get_sset_count,
2006 .get_ethtool_stats = tc35815_get_ethtool_stats,
2007 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2008 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2009 };
2010
2011 static void tc35815_chip_reset(struct net_device *dev)
2012 {
2013 struct tc35815_regs __iomem *tr =
2014 (struct tc35815_regs __iomem *)dev->base_addr;
2015 int i;
2016 /* reset the controller */
2017 tc_writel(MAC_Reset, &tr->MAC_Ctl);
2018 udelay(4); /* 3200ns */
2019 i = 0;
2020 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2021 if (i++ > 100) {
2022 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2023 break;
2024 }
2025 mdelay(1);
2026 }
2027 tc_writel(0, &tr->MAC_Ctl);
2028
2029 /* initialize registers to default value */
2030 tc_writel(0, &tr->DMA_Ctl);
2031 tc_writel(0, &tr->TxThrsh);
2032 tc_writel(0, &tr->TxPollCtr);
2033 tc_writel(0, &tr->RxFragSize);
2034 tc_writel(0, &tr->Int_En);
2035 tc_writel(0, &tr->FDA_Bas);
2036 tc_writel(0, &tr->FDA_Lim);
2037 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2038 tc_writel(0, &tr->CAM_Ctl);
2039 tc_writel(0, &tr->Tx_Ctl);
2040 tc_writel(0, &tr->Rx_Ctl);
2041 tc_writel(0, &tr->CAM_Ena);
2042 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2043
2044 /* initialize internal SRAM */
2045 tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2046 for (i = 0; i < 0x1000; i += 4) {
2047 tc_writel(i, &tr->CAM_Adr);
2048 tc_writel(0, &tr->CAM_Data);
2049 }
2050 tc_writel(0, &tr->DMA_Ctl);
2051 }
2052
2053 static void tc35815_chip_init(struct net_device *dev)
2054 {
2055 struct tc35815_local *lp = netdev_priv(dev);
2056 struct tc35815_regs __iomem *tr =
2057 (struct tc35815_regs __iomem *)dev->base_addr;
2058 unsigned long txctl = TX_CTL_CMD;
2059
2060 /* load station address to CAM */
2061 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2062
2063 /* Enable CAM (broadcast and unicast) */
2064 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2065 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2066
2067 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2068 if (HAVE_DMA_RXALIGN(lp))
2069 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2070 else
2071 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2072 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2073 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2074 tc_writel(INT_EN_CMD, &tr->Int_En);
2075
2076 /* set queues */
2077 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2078 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2079 &tr->FDA_Lim);
2080 /*
2081 * Activation method:
2082 * First, enable the MAC Transmitter and the DMA Receive circuits.
2083 * Then enable the DMA Transmitter and the MAC Receive circuits.
2084 */
2085 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2086 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2087
2088 /* start MAC transmitter */
2089 /* TX4939 does not have EnLCarr */
2090 if (lp->chiptype == TC35815_TX4939)
2091 txctl &= ~Tx_EnLCarr;
2092 /* WORKAROUND: ignore LostCrS in full duplex operation */
2093 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2094 txctl &= ~Tx_EnLCarr;
2095 tc_writel(txctl, &tr->Tx_Ctl);
2096 }
2097
2098 #ifdef CONFIG_PM
2099 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2100 {
2101 struct net_device *dev = pci_get_drvdata(pdev);
2102 struct tc35815_local *lp = netdev_priv(dev);
2103 unsigned long flags;
2104
2105 pci_save_state(pdev);
2106 if (!netif_running(dev))
2107 return 0;
2108 netif_device_detach(dev);
2109 if (dev->phydev)
2110 phy_stop(dev->phydev);
2111 spin_lock_irqsave(&lp->lock, flags);
2112 tc35815_chip_reset(dev);
2113 spin_unlock_irqrestore(&lp->lock, flags);
2114 pci_set_power_state(pdev, PCI_D3hot);
2115 return 0;
2116 }
2117
2118 static int tc35815_resume(struct pci_dev *pdev)
2119 {
2120 struct net_device *dev = pci_get_drvdata(pdev);
2121
2122 pci_restore_state(pdev);
2123 if (!netif_running(dev))
2124 return 0;
2125 pci_set_power_state(pdev, PCI_D0);
2126 tc35815_restart(dev);
2127 netif_carrier_off(dev);
2128 if (dev->phydev)
2129 phy_start(dev->phydev);
2130 netif_device_attach(dev);
2131 return 0;
2132 }
2133 #endif /* CONFIG_PM */
2134
2135 static struct pci_driver tc35815_pci_driver = {
2136 .name = MODNAME,
2137 .id_table = tc35815_pci_tbl,
2138 .probe = tc35815_init_one,
2139 .remove = tc35815_remove_one,
2140 #ifdef CONFIG_PM
2141 .suspend = tc35815_suspend,
2142 .resume = tc35815_resume,
2143 #endif
2144 };
2145
2146 module_param_named(speed, options.speed, int, 0);
2147 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2148 module_param_named(duplex, options.duplex, int, 0);
2149 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2150
2151 module_pci_driver(tc35815_pci_driver);
2152 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2153 MODULE_LICENSE("GPL");