]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/fec_mxc.c
Move ALLOC_CACHE_ALIGN_BUFFER() to the new memalign.h header
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
1 /*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #include <common.h>
12 #include <malloc.h>
13 #include <memalign.h>
14 #include <net.h>
15 #include <netdev.h>
16 #include <miiphy.h>
17 #include "fec_mxc.h"
18
19 #include <asm/arch/clock.h>
20 #include <asm/arch/imx-regs.h>
21 #include <asm/imx-common/sys_proto.h>
22 #include <asm/io.h>
23 #include <asm/errno.h>
24 #include <linux/compiler.h>
25
26 DECLARE_GLOBAL_DATA_PTR;
27
28 /*
29 * Timeout the transfer after 5 mS. This is usually a bit more, since
30 * the code in the tightloops this timeout is used in adds some overhead.
31 */
32 #define FEC_XFER_TIMEOUT 5000
33
34 /*
35 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
36 * 64-byte alignment in the DMA RX FEC buffer.
37 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
38 * satisfies the alignment on other SoCs (32-bytes)
39 */
40 #define FEC_DMA_RX_MINALIGN 64
41
42 #ifndef CONFIG_MII
43 #error "CONFIG_MII has to be defined!"
44 #endif
45
46 #ifndef CONFIG_FEC_XCV_TYPE
47 #define CONFIG_FEC_XCV_TYPE MII100
48 #endif
49
50 /*
51 * The i.MX28 operates with packets in big endian. We need to swap them before
52 * sending and after receiving.
53 */
54 #ifdef CONFIG_MX28
55 #define CONFIG_FEC_MXC_SWAP_PACKET
56 #endif
57
58 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
59
60 /* Check various alignment issues at compile time */
61 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
62 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
63 #endif
64
65 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
66 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
67 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
68 #endif
69
70 #undef DEBUG
71
72 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
73 static void swap_packet(uint32_t *packet, int length)
74 {
75 int i;
76
77 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
78 packet[i] = __swab32(packet[i]);
79 }
80 #endif
81
82 /*
83 * MII-interface related functions
84 */
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
86 uint8_t regAddr)
87 {
88 uint32_t reg; /* convenient holder for the PHY register */
89 uint32_t phy; /* convenient holder for the PHY */
90 uint32_t start;
91 int val;
92
93 /*
94 * reading from any PHY's register is done by properly
95 * programming the FEC's MII data register.
96 */
97 writel(FEC_IEVENT_MII, &eth->ievent);
98 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
99 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
100
101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 phy | reg, &eth->mii_data);
103
104 /*
105 * wait for the related interrupt
106 */
107 start = get_timer(0);
108 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
109 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
110 printf("Read MDIO failed...\n");
111 return -1;
112 }
113 }
114
115 /*
116 * clear mii interrupt bit
117 */
118 writel(FEC_IEVENT_MII, &eth->ievent);
119
120 /*
121 * it's now safe to read the PHY's register
122 */
123 val = (unsigned short)readl(&eth->mii_data);
124 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
125 regAddr, val);
126 return val;
127 }
128
129 static void fec_mii_setspeed(struct ethernet_regs *eth)
130 {
131 /*
132 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
133 * and do not drop the Preamble.
134 */
135 register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000);
136 #ifdef FEC_QUIRK_ENET_MAC
137 speed--;
138 #endif
139 speed <<= 1;
140 writel(speed, &eth->mii_speed);
141 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
142 }
143
144 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
145 uint8_t regAddr, uint16_t data)
146 {
147 uint32_t reg; /* convenient holder for the PHY register */
148 uint32_t phy; /* convenient holder for the PHY */
149 uint32_t start;
150
151 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
152 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
153
154 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
155 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
156
157 /*
158 * wait for the MII interrupt
159 */
160 start = get_timer(0);
161 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
162 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
163 printf("Write MDIO failed...\n");
164 return -1;
165 }
166 }
167
168 /*
169 * clear MII interrupt bit
170 */
171 writel(FEC_IEVENT_MII, &eth->ievent);
172 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
173 regAddr, data);
174
175 return 0;
176 }
177
178 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
179 int regAddr)
180 {
181 return fec_mdio_read(bus->priv, phyAddr, regAddr);
182 }
183
184 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
185 int regAddr, u16 data)
186 {
187 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
188 }
189
190 #ifndef CONFIG_PHYLIB
191 static int miiphy_restart_aneg(struct eth_device *dev)
192 {
193 int ret = 0;
194 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
195 struct fec_priv *fec = (struct fec_priv *)dev->priv;
196 struct ethernet_regs *eth = fec->bus->priv;
197
198 /*
199 * Wake up from sleep if necessary
200 * Reset PHY, then delay 300ns
201 */
202 #ifdef CONFIG_MX27
203 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
204 #endif
205 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
206 udelay(1000);
207
208 /*
209 * Set the auto-negotiation advertisement register bits
210 */
211 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
212 LPA_100FULL | LPA_100HALF | LPA_10FULL |
213 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
214 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
215 BMCR_ANENABLE | BMCR_ANRESTART);
216
217 if (fec->mii_postcall)
218 ret = fec->mii_postcall(fec->phy_id);
219
220 #endif
221 return ret;
222 }
223
224 static int miiphy_wait_aneg(struct eth_device *dev)
225 {
226 uint32_t start;
227 int status;
228 struct fec_priv *fec = (struct fec_priv *)dev->priv;
229 struct ethernet_regs *eth = fec->bus->priv;
230
231 /*
232 * Wait for AN completion
233 */
234 start = get_timer(0);
235 do {
236 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
237 printf("%s: Autonegotiation timeout\n", dev->name);
238 return -1;
239 }
240
241 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
242 if (status < 0) {
243 printf("%s: Autonegotiation failed. status: %d\n",
244 dev->name, status);
245 return -1;
246 }
247 } while (!(status & BMSR_LSTATUS));
248
249 return 0;
250 }
251 #endif
252
253 static int fec_rx_task_enable(struct fec_priv *fec)
254 {
255 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
256 return 0;
257 }
258
259 static int fec_rx_task_disable(struct fec_priv *fec)
260 {
261 return 0;
262 }
263
264 static int fec_tx_task_enable(struct fec_priv *fec)
265 {
266 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
267 return 0;
268 }
269
270 static int fec_tx_task_disable(struct fec_priv *fec)
271 {
272 return 0;
273 }
274
275 /**
276 * Initialize receive task's buffer descriptors
277 * @param[in] fec all we know about the device yet
278 * @param[in] count receive buffer count to be allocated
279 * @param[in] dsize desired size of each receive buffer
280 * @return 0 on success
281 *
282 * Init all RX descriptors to default values.
283 */
284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
285 {
286 uint32_t size;
287 uint8_t *data;
288 int i;
289
290 /*
291 * Reload the RX descriptors with default values and wipe
292 * the RX buffers.
293 */
294 size = roundup(dsize, ARCH_DMA_MINALIGN);
295 for (i = 0; i < count; i++) {
296 data = (uint8_t *)fec->rbd_base[i].data_pointer;
297 memset(data, 0, dsize);
298 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
299
300 fec->rbd_base[i].status = FEC_RBD_EMPTY;
301 fec->rbd_base[i].data_length = 0;
302 }
303
304 /* Mark the last RBD to close the ring. */
305 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
306 fec->rbd_index = 0;
307
308 flush_dcache_range((unsigned)fec->rbd_base,
309 (unsigned)fec->rbd_base + size);
310 }
311
312 /**
313 * Initialize transmit task's buffer descriptors
314 * @param[in] fec all we know about the device yet
315 *
316 * Transmit buffers are created externally. We only have to init the BDs here.\n
317 * Note: There is a race condition in the hardware. When only one BD is in
318 * use it must be marked with the WRAP bit to use it for every transmitt.
319 * This bit in combination with the READY bit results into double transmit
320 * of each data buffer. It seems the state machine checks READY earlier then
321 * resetting it after the first transfer.
322 * Using two BDs solves this issue.
323 */
324 static void fec_tbd_init(struct fec_priv *fec)
325 {
326 unsigned addr = (unsigned)fec->tbd_base;
327 unsigned size = roundup(2 * sizeof(struct fec_bd),
328 ARCH_DMA_MINALIGN);
329
330 memset(fec->tbd_base, 0, size);
331 fec->tbd_base[0].status = 0;
332 fec->tbd_base[1].status = FEC_TBD_WRAP;
333 fec->tbd_index = 0;
334 flush_dcache_range(addr, addr + size);
335 }
336
337 /**
338 * Mark the given read buffer descriptor as free
339 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
340 * @param[in] pRbd buffer descriptor to mark free again
341 */
342 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
343 {
344 unsigned short flags = FEC_RBD_EMPTY;
345 if (last)
346 flags |= FEC_RBD_WRAP;
347 writew(flags, &pRbd->status);
348 writew(0, &pRbd->data_length);
349 }
350
351 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
352 unsigned char *mac)
353 {
354 imx_get_mac_from_fuse(dev_id, mac);
355 return !is_valid_ethaddr(mac);
356 }
357
358 static int fec_set_hwaddr(struct eth_device *dev)
359 {
360 uchar *mac = dev->enetaddr;
361 struct fec_priv *fec = (struct fec_priv *)dev->priv;
362
363 writel(0, &fec->eth->iaddr1);
364 writel(0, &fec->eth->iaddr2);
365 writel(0, &fec->eth->gaddr1);
366 writel(0, &fec->eth->gaddr2);
367
368 /*
369 * Set physical address
370 */
371 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
372 &fec->eth->paddr1);
373 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
374
375 return 0;
376 }
377
378 /*
379 * Do initial configuration of the FEC registers
380 */
381 static void fec_reg_setup(struct fec_priv *fec)
382 {
383 uint32_t rcntrl;
384
385 /*
386 * Set interrupt mask register
387 */
388 writel(0x00000000, &fec->eth->imask);
389
390 /*
391 * Clear FEC-Lite interrupt event register(IEVENT)
392 */
393 writel(0xffffffff, &fec->eth->ievent);
394
395
396 /*
397 * Set FEC-Lite receive control register(R_CNTRL):
398 */
399
400 /* Start with frame length = 1518, common for all modes. */
401 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
402 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
403 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
404 if (fec->xcv_type == RGMII)
405 rcntrl |= FEC_RCNTRL_RGMII;
406 else if (fec->xcv_type == RMII)
407 rcntrl |= FEC_RCNTRL_RMII;
408
409 writel(rcntrl, &fec->eth->r_cntrl);
410 }
411
412 /**
413 * Start the FEC engine
414 * @param[in] dev Our device to handle
415 */
416 static int fec_open(struct eth_device *edev)
417 {
418 struct fec_priv *fec = (struct fec_priv *)edev->priv;
419 int speed;
420 uint32_t addr, size;
421 int i;
422
423 debug("fec_open: fec_open(dev)\n");
424 /* full-duplex, heartbeat disabled */
425 writel(1 << 2, &fec->eth->x_cntrl);
426 fec->rbd_index = 0;
427
428 /* Invalidate all descriptors */
429 for (i = 0; i < FEC_RBD_NUM - 1; i++)
430 fec_rbd_clean(0, &fec->rbd_base[i]);
431 fec_rbd_clean(1, &fec->rbd_base[i]);
432
433 /* Flush the descriptors into RAM */
434 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
435 ARCH_DMA_MINALIGN);
436 addr = (uint32_t)fec->rbd_base;
437 flush_dcache_range(addr, addr + size);
438
439 #ifdef FEC_QUIRK_ENET_MAC
440 /* Enable ENET HW endian SWAP */
441 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
442 &fec->eth->ecntrl);
443 /* Enable ENET store and forward mode */
444 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
445 &fec->eth->x_wmrk);
446 #endif
447 /*
448 * Enable FEC-Lite controller
449 */
450 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
451 &fec->eth->ecntrl);
452 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
453 udelay(100);
454 /*
455 * setup the MII gasket for RMII mode
456 */
457
458 /* disable the gasket */
459 writew(0, &fec->eth->miigsk_enr);
460
461 /* wait for the gasket to be disabled */
462 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
463 udelay(2);
464
465 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
466 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
467
468 /* re-enable the gasket */
469 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
470
471 /* wait until MII gasket is ready */
472 int max_loops = 10;
473 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
474 if (--max_loops <= 0) {
475 printf("WAIT for MII Gasket ready timed out\n");
476 break;
477 }
478 }
479 #endif
480
481 #ifdef CONFIG_PHYLIB
482 {
483 /* Start up the PHY */
484 int ret = phy_startup(fec->phydev);
485
486 if (ret) {
487 printf("Could not initialize PHY %s\n",
488 fec->phydev->dev->name);
489 return ret;
490 }
491 speed = fec->phydev->speed;
492 }
493 #else
494 miiphy_wait_aneg(edev);
495 speed = miiphy_speed(edev->name, fec->phy_id);
496 miiphy_duplex(edev->name, fec->phy_id);
497 #endif
498
499 #ifdef FEC_QUIRK_ENET_MAC
500 {
501 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
502 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
503 if (speed == _1000BASET)
504 ecr |= FEC_ECNTRL_SPEED;
505 else if (speed != _100BASET)
506 rcr |= FEC_RCNTRL_RMII_10T;
507 writel(ecr, &fec->eth->ecntrl);
508 writel(rcr, &fec->eth->r_cntrl);
509 }
510 #endif
511 debug("%s:Speed=%i\n", __func__, speed);
512
513 /*
514 * Enable SmartDMA receive task
515 */
516 fec_rx_task_enable(fec);
517
518 udelay(100000);
519 return 0;
520 }
521
522 static int fec_init(struct eth_device *dev, bd_t* bd)
523 {
524 struct fec_priv *fec = (struct fec_priv *)dev->priv;
525 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
526 int i;
527
528 /* Initialize MAC address */
529 fec_set_hwaddr(dev);
530
531 /*
532 * Setup transmit descriptors, there are two in total.
533 */
534 fec_tbd_init(fec);
535
536 /* Setup receive descriptors. */
537 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
538
539 fec_reg_setup(fec);
540
541 if (fec->xcv_type != SEVENWIRE)
542 fec_mii_setspeed(fec->bus->priv);
543
544 /*
545 * Set Opcode/Pause Duration Register
546 */
547 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
548 writel(0x2, &fec->eth->x_wmrk);
549 /*
550 * Set multicast address filter
551 */
552 writel(0x00000000, &fec->eth->gaddr1);
553 writel(0x00000000, &fec->eth->gaddr2);
554
555
556 /* Do not access reserved register for i.MX6UL */
557 if (!is_cpu_type(MXC_CPU_MX6UL)) {
558 /* clear MIB RAM */
559 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
560 writel(0, i);
561
562 /* FIFO receive start register */
563 writel(0x520, &fec->eth->r_fstart);
564 }
565
566 /* size and address of each buffer */
567 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
568 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
569 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
570
571 #ifndef CONFIG_PHYLIB
572 if (fec->xcv_type != SEVENWIRE)
573 miiphy_restart_aneg(dev);
574 #endif
575 fec_open(dev);
576 return 0;
577 }
578
579 /**
580 * Halt the FEC engine
581 * @param[in] dev Our device to handle
582 */
583 static void fec_halt(struct eth_device *dev)
584 {
585 struct fec_priv *fec = (struct fec_priv *)dev->priv;
586 int counter = 0xffff;
587
588 /*
589 * issue graceful stop command to the FEC transmitter if necessary
590 */
591 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
592 &fec->eth->x_cntrl);
593
594 debug("eth_halt: wait for stop regs\n");
595 /*
596 * wait for graceful stop to register
597 */
598 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
599 udelay(1);
600
601 /*
602 * Disable SmartDMA tasks
603 */
604 fec_tx_task_disable(fec);
605 fec_rx_task_disable(fec);
606
607 /*
608 * Disable the Ethernet Controller
609 * Note: this will also reset the BD index counter!
610 */
611 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
612 &fec->eth->ecntrl);
613 fec->rbd_index = 0;
614 fec->tbd_index = 0;
615 debug("eth_halt: done\n");
616 }
617
618 /**
619 * Transmit one frame
620 * @param[in] dev Our ethernet device to handle
621 * @param[in] packet Pointer to the data to be transmitted
622 * @param[in] length Data count in bytes
623 * @return 0 on success
624 */
625 static int fec_send(struct eth_device *dev, void *packet, int length)
626 {
627 unsigned int status;
628 uint32_t size, end;
629 uint32_t addr;
630 int timeout = FEC_XFER_TIMEOUT;
631 int ret = 0;
632
633 /*
634 * This routine transmits one frame. This routine only accepts
635 * 6-byte Ethernet addresses.
636 */
637 struct fec_priv *fec = (struct fec_priv *)dev->priv;
638
639 /*
640 * Check for valid length of data.
641 */
642 if ((length > 1500) || (length <= 0)) {
643 printf("Payload (%d) too large\n", length);
644 return -1;
645 }
646
647 /*
648 * Setup the transmit buffer. We are always using the first buffer for
649 * transmission, the second will be empty and only used to stop the DMA
650 * engine. We also flush the packet to RAM here to avoid cache trouble.
651 */
652 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
653 swap_packet((uint32_t *)packet, length);
654 #endif
655
656 addr = (uint32_t)packet;
657 end = roundup(addr + length, ARCH_DMA_MINALIGN);
658 addr &= ~(ARCH_DMA_MINALIGN - 1);
659 flush_dcache_range(addr, end);
660
661 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
662 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
663
664 /*
665 * update BD's status now
666 * This block:
667 * - is always the last in a chain (means no chain)
668 * - should transmitt the CRC
669 * - might be the last BD in the list, so the address counter should
670 * wrap (-> keep the WRAP flag)
671 */
672 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
673 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
674 writew(status, &fec->tbd_base[fec->tbd_index].status);
675
676 /*
677 * Flush data cache. This code flushes both TX descriptors to RAM.
678 * After this code, the descriptors will be safely in RAM and we
679 * can start DMA.
680 */
681 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
682 addr = (uint32_t)fec->tbd_base;
683 flush_dcache_range(addr, addr + size);
684
685 /*
686 * Below we read the DMA descriptor's last four bytes back from the
687 * DRAM. This is important in order to make sure that all WRITE
688 * operations on the bus that were triggered by previous cache FLUSH
689 * have completed.
690 *
691 * Otherwise, on MX28, it is possible to observe a corruption of the
692 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
693 * for the bus structure of MX28. The scenario is as follows:
694 *
695 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
696 * to DRAM due to flush_dcache_range()
697 * 2) ARM core writes the FEC registers via AHB_ARB2
698 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
699 *
700 * Note that 2) does sometimes finish before 1) due to reordering of
701 * WRITE accesses on the AHB bus, therefore triggering 3) before the
702 * DMA descriptor is fully written into DRAM. This results in occasional
703 * corruption of the DMA descriptor.
704 */
705 readl(addr + size - 4);
706
707 /*
708 * Enable SmartDMA transmit task
709 */
710 fec_tx_task_enable(fec);
711
712 /*
713 * Wait until frame is sent. On each turn of the wait cycle, we must
714 * invalidate data cache to see what's really in RAM. Also, we need
715 * barrier here.
716 */
717 while (--timeout) {
718 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
719 break;
720 }
721
722 if (!timeout) {
723 ret = -EINVAL;
724 goto out;
725 }
726
727 /*
728 * The TDAR bit is cleared when the descriptors are all out from TX
729 * but on mx6solox we noticed that the READY bit is still not cleared
730 * right after TDAR.
731 * These are two distinct signals, and in IC simulation, we found that
732 * TDAR always gets cleared prior than the READY bit of last BD becomes
733 * cleared.
734 * In mx6solox, we use a later version of FEC IP. It looks like that
735 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
736 * version.
737 *
738 * Fix this by polling the READY bit of BD after the TDAR polling,
739 * which covers the mx6solox case and does not harm the other SoCs.
740 */
741 timeout = FEC_XFER_TIMEOUT;
742 while (--timeout) {
743 invalidate_dcache_range(addr, addr + size);
744 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
745 FEC_TBD_READY))
746 break;
747 }
748
749 if (!timeout)
750 ret = -EINVAL;
751
752 out:
753 debug("fec_send: status 0x%x index %d ret %i\n",
754 readw(&fec->tbd_base[fec->tbd_index].status),
755 fec->tbd_index, ret);
756 /* for next transmission use the other buffer */
757 if (fec->tbd_index)
758 fec->tbd_index = 0;
759 else
760 fec->tbd_index = 1;
761
762 return ret;
763 }
764
765 /**
766 * Pull one frame from the card
767 * @param[in] dev Our ethernet device to handle
768 * @return Length of packet read
769 */
770 static int fec_recv(struct eth_device *dev)
771 {
772 struct fec_priv *fec = (struct fec_priv *)dev->priv;
773 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
774 unsigned long ievent;
775 int frame_length, len = 0;
776 uint16_t bd_status;
777 uint32_t addr, size, end;
778 int i;
779 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
780
781 /*
782 * Check if any critical events have happened
783 */
784 ievent = readl(&fec->eth->ievent);
785 writel(ievent, &fec->eth->ievent);
786 debug("fec_recv: ievent 0x%lx\n", ievent);
787 if (ievent & FEC_IEVENT_BABR) {
788 fec_halt(dev);
789 fec_init(dev, fec->bd);
790 printf("some error: 0x%08lx\n", ievent);
791 return 0;
792 }
793 if (ievent & FEC_IEVENT_HBERR) {
794 /* Heartbeat error */
795 writel(0x00000001 | readl(&fec->eth->x_cntrl),
796 &fec->eth->x_cntrl);
797 }
798 if (ievent & FEC_IEVENT_GRA) {
799 /* Graceful stop complete */
800 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
801 fec_halt(dev);
802 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
803 &fec->eth->x_cntrl);
804 fec_init(dev, fec->bd);
805 }
806 }
807
808 /*
809 * Read the buffer status. Before the status can be read, the data cache
810 * must be invalidated, because the data in RAM might have been changed
811 * by DMA. The descriptors are properly aligned to cachelines so there's
812 * no need to worry they'd overlap.
813 *
814 * WARNING: By invalidating the descriptor here, we also invalidate
815 * the descriptors surrounding this one. Therefore we can NOT change the
816 * contents of this descriptor nor the surrounding ones. The problem is
817 * that in order to mark the descriptor as processed, we need to change
818 * the descriptor. The solution is to mark the whole cache line when all
819 * descriptors in the cache line are processed.
820 */
821 addr = (uint32_t)rbd;
822 addr &= ~(ARCH_DMA_MINALIGN - 1);
823 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
824 invalidate_dcache_range(addr, addr + size);
825
826 bd_status = readw(&rbd->status);
827 debug("fec_recv: status 0x%x\n", bd_status);
828
829 if (!(bd_status & FEC_RBD_EMPTY)) {
830 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
831 ((readw(&rbd->data_length) - 4) > 14)) {
832 /*
833 * Get buffer address and size
834 */
835 addr = readl(&rbd->data_pointer);
836 frame_length = readw(&rbd->data_length) - 4;
837 /*
838 * Invalidate data cache over the buffer
839 */
840 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
841 addr &= ~(ARCH_DMA_MINALIGN - 1);
842 invalidate_dcache_range(addr, end);
843
844 /*
845 * Fill the buffer and pass it to upper layers
846 */
847 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
848 swap_packet((uint32_t *)addr, frame_length);
849 #endif
850 memcpy(buff, (char *)addr, frame_length);
851 net_process_received_packet(buff, frame_length);
852 len = frame_length;
853 } else {
854 if (bd_status & FEC_RBD_ERR)
855 printf("error frame: 0x%08x 0x%08x\n",
856 addr, bd_status);
857 }
858
859 /*
860 * Free the current buffer, restart the engine and move forward
861 * to the next buffer. Here we check if the whole cacheline of
862 * descriptors was already processed and if so, we mark it free
863 * as whole.
864 */
865 size = RXDESC_PER_CACHELINE - 1;
866 if ((fec->rbd_index & size) == size) {
867 i = fec->rbd_index - size;
868 addr = (uint32_t)&fec->rbd_base[i];
869 for (; i <= fec->rbd_index ; i++) {
870 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
871 &fec->rbd_base[i]);
872 }
873 flush_dcache_range(addr,
874 addr + ARCH_DMA_MINALIGN);
875 }
876
877 fec_rx_task_enable(fec);
878 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
879 }
880 debug("fec_recv: stop\n");
881
882 return len;
883 }
884
885 static void fec_set_dev_name(char *dest, int dev_id)
886 {
887 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
888 }
889
890 static int fec_alloc_descs(struct fec_priv *fec)
891 {
892 unsigned int size;
893 int i;
894 uint8_t *data;
895
896 /* Allocate TX descriptors. */
897 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
898 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
899 if (!fec->tbd_base)
900 goto err_tx;
901
902 /* Allocate RX descriptors. */
903 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
904 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
905 if (!fec->rbd_base)
906 goto err_rx;
907
908 memset(fec->rbd_base, 0, size);
909
910 /* Allocate RX buffers. */
911
912 /* Maximum RX buffer size. */
913 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
914 for (i = 0; i < FEC_RBD_NUM; i++) {
915 data = memalign(FEC_DMA_RX_MINALIGN, size);
916 if (!data) {
917 printf("%s: error allocating rxbuf %d\n", __func__, i);
918 goto err_ring;
919 }
920
921 memset(data, 0, size);
922
923 fec->rbd_base[i].data_pointer = (uint32_t)data;
924 fec->rbd_base[i].status = FEC_RBD_EMPTY;
925 fec->rbd_base[i].data_length = 0;
926 /* Flush the buffer to memory. */
927 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
928 }
929
930 /* Mark the last RBD to close the ring. */
931 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
932
933 fec->rbd_index = 0;
934 fec->tbd_index = 0;
935
936 return 0;
937
938 err_ring:
939 for (; i >= 0; i--)
940 free((void *)fec->rbd_base[i].data_pointer);
941 free(fec->rbd_base);
942 err_rx:
943 free(fec->tbd_base);
944 err_tx:
945 return -ENOMEM;
946 }
947
948 static void fec_free_descs(struct fec_priv *fec)
949 {
950 int i;
951
952 for (i = 0; i < FEC_RBD_NUM; i++)
953 free((void *)fec->rbd_base[i].data_pointer);
954 free(fec->rbd_base);
955 free(fec->tbd_base);
956 }
957
958 #ifdef CONFIG_PHYLIB
959 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
960 struct mii_dev *bus, struct phy_device *phydev)
961 #else
962 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
963 struct mii_dev *bus, int phy_id)
964 #endif
965 {
966 struct eth_device *edev;
967 struct fec_priv *fec;
968 unsigned char ethaddr[6];
969 uint32_t start;
970 int ret = 0;
971
972 /* create and fill edev struct */
973 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
974 if (!edev) {
975 puts("fec_mxc: not enough malloc memory for eth_device\n");
976 ret = -ENOMEM;
977 goto err1;
978 }
979
980 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
981 if (!fec) {
982 puts("fec_mxc: not enough malloc memory for fec_priv\n");
983 ret = -ENOMEM;
984 goto err2;
985 }
986
987 memset(edev, 0, sizeof(*edev));
988 memset(fec, 0, sizeof(*fec));
989
990 ret = fec_alloc_descs(fec);
991 if (ret)
992 goto err3;
993
994 edev->priv = fec;
995 edev->init = fec_init;
996 edev->send = fec_send;
997 edev->recv = fec_recv;
998 edev->halt = fec_halt;
999 edev->write_hwaddr = fec_set_hwaddr;
1000
1001 fec->eth = (struct ethernet_regs *)base_addr;
1002 fec->bd = bd;
1003
1004 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1005
1006 /* Reset chip. */
1007 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1008 start = get_timer(0);
1009 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1010 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1011 printf("FEC MXC: Timeout reseting chip\n");
1012 goto err4;
1013 }
1014 udelay(10);
1015 }
1016
1017 fec_reg_setup(fec);
1018 fec_set_dev_name(edev->name, dev_id);
1019 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1020 fec->bus = bus;
1021 fec_mii_setspeed(bus->priv);
1022 #ifdef CONFIG_PHYLIB
1023 fec->phydev = phydev;
1024 phy_connect_dev(phydev, edev);
1025 /* Configure phy */
1026 phy_config(phydev);
1027 #else
1028 fec->phy_id = phy_id;
1029 #endif
1030 eth_register(edev);
1031
1032 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1033 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1034 memcpy(edev->enetaddr, ethaddr, 6);
1035 if (!getenv("ethaddr"))
1036 eth_setenv_enetaddr("ethaddr", ethaddr);
1037 }
1038 return ret;
1039 err4:
1040 fec_free_descs(fec);
1041 err3:
1042 free(fec);
1043 err2:
1044 free(edev);
1045 err1:
1046 return ret;
1047 }
1048
1049 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1050 {
1051 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1052 struct mii_dev *bus;
1053 int ret;
1054
1055 bus = mdio_alloc();
1056 if (!bus) {
1057 printf("mdio_alloc failed\n");
1058 return NULL;
1059 }
1060 bus->read = fec_phy_read;
1061 bus->write = fec_phy_write;
1062 bus->priv = eth;
1063 fec_set_dev_name(bus->name, dev_id);
1064
1065 ret = mdio_register(bus);
1066 if (ret) {
1067 printf("mdio_register failed\n");
1068 free(bus);
1069 return NULL;
1070 }
1071 fec_mii_setspeed(eth);
1072 return bus;
1073 }
1074
1075 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1076 {
1077 uint32_t base_mii;
1078 struct mii_dev *bus = NULL;
1079 #ifdef CONFIG_PHYLIB
1080 struct phy_device *phydev = NULL;
1081 #endif
1082 int ret;
1083
1084 #ifdef CONFIG_MX28
1085 /*
1086 * The i.MX28 has two ethernet interfaces, but they are not equal.
1087 * Only the first one can access the MDIO bus.
1088 */
1089 base_mii = MXS_ENET0_BASE;
1090 #else
1091 base_mii = addr;
1092 #endif
1093 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1094 bus = fec_get_miibus(base_mii, dev_id);
1095 if (!bus)
1096 return -ENOMEM;
1097 #ifdef CONFIG_PHYLIB
1098 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1099 if (!phydev) {
1100 free(bus);
1101 return -ENOMEM;
1102 }
1103 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1104 #else
1105 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1106 #endif
1107 if (ret) {
1108 #ifdef CONFIG_PHYLIB
1109 free(phydev);
1110 #endif
1111 free(bus);
1112 }
1113 return ret;
1114 }
1115
1116 #ifdef CONFIG_FEC_MXC_PHYADDR
1117 int fecmxc_initialize(bd_t *bd)
1118 {
1119 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1120 IMX_FEC_BASE);
1121 }
1122 #endif
1123
1124 #ifndef CONFIG_PHYLIB
1125 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1126 {
1127 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1128 fec->mii_postcall = cb;
1129 return 0;
1130 }
1131 #endif