]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/hyperv/netvsc_drv.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28 #include <linux/bpf.h>
29
30 #include <net/arp.h>
31 #include <net/route.h>
32 #include <net/sock.h>
33 #include <net/pkt_sched.h>
34 #include <net/checksum.h>
35 #include <net/ip6_checksum.h>
36
37 #include "hyperv_net.h"
38
39 #define RING_SIZE_MIN 64
40 #define RETRY_US_LO 5000
41 #define RETRY_US_HI 10000
42 #define RETRY_MAX 2000 /* >10 sec */
43
44 #define LINKCHANGE_INT (2 * HZ)
45 #define VF_TAKEOVER_INT (HZ / 10)
46
47 static unsigned int ring_size __ro_after_init = 128;
48 module_param(ring_size, uint, 0444);
49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
50 unsigned int netvsc_ring_bytes __ro_after_init;
51
52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 NETIF_MSG_TX_ERR;
56
57 static int debug = -1;
58 module_param(debug, int, 0444);
59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61 static LIST_HEAD(netvsc_dev_list);
62
63 static void netvsc_change_rx_flags(struct net_device *net, int change)
64 {
65 struct net_device_context *ndev_ctx = netdev_priv(net);
66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
67 int inc;
68
69 if (!vf_netdev)
70 return;
71
72 if (change & IFF_PROMISC) {
73 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
74 dev_set_promiscuity(vf_netdev, inc);
75 }
76
77 if (change & IFF_ALLMULTI) {
78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
79 dev_set_allmulti(vf_netdev, inc);
80 }
81 }
82
83 static void netvsc_set_rx_mode(struct net_device *net)
84 {
85 struct net_device_context *ndev_ctx = netdev_priv(net);
86 struct net_device *vf_netdev;
87 struct netvsc_device *nvdev;
88
89 rcu_read_lock();
90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
91 if (vf_netdev) {
92 dev_uc_sync(vf_netdev, net);
93 dev_mc_sync(vf_netdev, net);
94 }
95
96 nvdev = rcu_dereference(ndev_ctx->nvdev);
97 if (nvdev)
98 rndis_filter_update(nvdev);
99 rcu_read_unlock();
100 }
101
102 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
103 struct net_device *ndev)
104 {
105 nvscdev->tx_disable = false;
106 virt_wmb(); /* ensure queue wake up mechanism is on */
107
108 netif_tx_wake_all_queues(ndev);
109 }
110
111 static int netvsc_open(struct net_device *net)
112 {
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state) {
130 netif_carrier_on(net);
131 netvsc_tx_enable(nvdev, net);
132 }
133
134 if (vf_netdev) {
135 /* Setting synthetic device up transparently sets
136 * slave as up. If open fails, then slave will be
137 * still be offline (and not used).
138 */
139 ret = dev_open(vf_netdev, NULL);
140 if (ret)
141 netdev_warn(net,
142 "unable to open slave: %s: %d\n",
143 vf_netdev->name, ret);
144 }
145 return 0;
146 }
147
148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149 {
150 unsigned int retry = 0;
151 int i;
152
153 /* Ensure pending bytes in ring are read */
154 for (;;) {
155 u32 aread = 0;
156
157 for (i = 0; i < nvdev->num_chn; i++) {
158 struct vmbus_channel *chn
159 = nvdev->chan_table[i].channel;
160
161 if (!chn)
162 continue;
163
164 /* make sure receive not running now */
165 napi_synchronize(&nvdev->chan_table[i].napi);
166
167 aread = hv_get_bytes_to_read(&chn->inbound);
168 if (aread)
169 break;
170
171 aread = hv_get_bytes_to_read(&chn->outbound);
172 if (aread)
173 break;
174 }
175
176 if (aread == 0)
177 return 0;
178
179 if (++retry > RETRY_MAX)
180 return -ETIMEDOUT;
181
182 usleep_range(RETRY_US_LO, RETRY_US_HI);
183 }
184 }
185
186 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
187 struct net_device *ndev)
188 {
189 if (nvscdev) {
190 nvscdev->tx_disable = true;
191 virt_wmb(); /* ensure txq will not wake up after stop */
192 }
193
194 netif_tx_disable(ndev);
195 }
196
197 static int netvsc_close(struct net_device *net)
198 {
199 struct net_device_context *net_device_ctx = netdev_priv(net);
200 struct net_device *vf_netdev
201 = rtnl_dereference(net_device_ctx->vf_netdev);
202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
203 int ret;
204
205 netvsc_tx_disable(nvdev, net);
206
207 /* No need to close rndis filter if it is removed already */
208 if (!nvdev)
209 return 0;
210
211 ret = rndis_filter_close(nvdev);
212 if (ret != 0) {
213 netdev_err(net, "unable to close device (ret %d).\n", ret);
214 return ret;
215 }
216
217 ret = netvsc_wait_until_empty(nvdev);
218 if (ret)
219 netdev_err(net, "Ring buffer not empty after closing rndis\n");
220
221 if (vf_netdev)
222 dev_close(vf_netdev);
223
224 return ret;
225 }
226
227 static inline void *init_ppi_data(struct rndis_message *msg,
228 u32 ppi_size, u32 pkt_type)
229 {
230 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
231 struct rndis_per_packet_info *ppi;
232
233 rndis_pkt->data_offset += ppi_size;
234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
235 + rndis_pkt->per_pkt_info_len;
236
237 ppi->size = ppi_size;
238 ppi->type = pkt_type;
239 ppi->internal = 0;
240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
241
242 rndis_pkt->per_pkt_info_len += ppi_size;
243
244 return ppi + 1;
245 }
246
247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
248 * packets. We can use ethtool to change UDP hash level when necessary.
249 */
250 static inline u32 netvsc_get_hash(
251 struct sk_buff *skb,
252 const struct net_device_context *ndc)
253 {
254 struct flow_keys flow;
255 u32 hash, pkt_proto = 0;
256 static u32 hashrnd __read_mostly;
257
258 net_get_random_once(&hashrnd, sizeof(hashrnd));
259
260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
261 return 0;
262
263 switch (flow.basic.ip_proto) {
264 case IPPROTO_TCP:
265 if (flow.basic.n_proto == htons(ETH_P_IP))
266 pkt_proto = HV_TCP4_L4HASH;
267 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
268 pkt_proto = HV_TCP6_L4HASH;
269
270 break;
271
272 case IPPROTO_UDP:
273 if (flow.basic.n_proto == htons(ETH_P_IP))
274 pkt_proto = HV_UDP4_L4HASH;
275 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276 pkt_proto = HV_UDP6_L4HASH;
277
278 break;
279 }
280
281 if (pkt_proto & ndc->l4_hash) {
282 return skb_get_hash(skb);
283 } else {
284 if (flow.basic.n_proto == htons(ETH_P_IP))
285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
286 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
288 else
289 return 0;
290
291 __skb_set_sw_hash(skb, hash, false);
292 }
293
294 return hash;
295 }
296
297 static inline int netvsc_get_tx_queue(struct net_device *ndev,
298 struct sk_buff *skb, int old_idx)
299 {
300 const struct net_device_context *ndc = netdev_priv(ndev);
301 struct sock *sk = skb->sk;
302 int q_idx;
303
304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
305 (VRSS_SEND_TAB_SIZE - 1)];
306
307 /* If queue index changed record the new value */
308 if (q_idx != old_idx &&
309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
310 sk_tx_queue_set(sk, q_idx);
311
312 return q_idx;
313 }
314
315 /*
316 * Select queue for transmit.
317 *
318 * If a valid queue has already been assigned, then use that.
319 * Otherwise compute tx queue based on hash and the send table.
320 *
321 * This is basically similar to default (netdev_pick_tx) with the added step
322 * of using the host send_table when no other queue has been assigned.
323 *
324 * TODO support XPS - but get_xps_queue not exported
325 */
326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
327 {
328 int q_idx = sk_tx_queue_get(skb->sk);
329
330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
331 /* If forwarding a packet, we use the recorded queue when
332 * available for better cache locality.
333 */
334 if (skb_rx_queue_recorded(skb))
335 q_idx = skb_get_rx_queue(skb);
336 else
337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
338 }
339
340 return q_idx;
341 }
342
343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
344 struct net_device *sb_dev)
345 {
346 struct net_device_context *ndc = netdev_priv(ndev);
347 struct net_device *vf_netdev;
348 u16 txq;
349
350 rcu_read_lock();
351 vf_netdev = rcu_dereference(ndc->vf_netdev);
352 if (vf_netdev) {
353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
354
355 if (vf_ops->ndo_select_queue)
356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
357 else
358 txq = netdev_pick_tx(vf_netdev, skb, NULL);
359
360 /* Record the queue selected by VF so that it can be
361 * used for common case where VF has more queues than
362 * the synthetic device.
363 */
364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
365 } else {
366 txq = netvsc_pick_tx(ndev, skb);
367 }
368 rcu_read_unlock();
369
370 while (unlikely(txq >= ndev->real_num_tx_queues))
371 txq -= ndev->real_num_tx_queues;
372
373 return txq;
374 }
375
376 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
377 struct hv_page_buffer *pb)
378 {
379 int j = 0;
380
381 /* Deal with compound pages by ignoring unused part
382 * of the page.
383 */
384 page += (offset >> PAGE_SHIFT);
385 offset &= ~PAGE_MASK;
386
387 while (len > 0) {
388 unsigned long bytes;
389
390 bytes = PAGE_SIZE - offset;
391 if (bytes > len)
392 bytes = len;
393 pb[j].pfn = page_to_pfn(page);
394 pb[j].offset = offset;
395 pb[j].len = bytes;
396
397 offset += bytes;
398 len -= bytes;
399
400 if (offset == PAGE_SIZE && len) {
401 page++;
402 offset = 0;
403 j++;
404 }
405 }
406
407 return j + 1;
408 }
409
410 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
411 struct hv_netvsc_packet *packet,
412 struct hv_page_buffer *pb)
413 {
414 u32 slots_used = 0;
415 char *data = skb->data;
416 int frags = skb_shinfo(skb)->nr_frags;
417 int i;
418
419 /* The packet is laid out thus:
420 * 1. hdr: RNDIS header and PPI
421 * 2. skb linear data
422 * 3. skb fragment data
423 */
424 slots_used += fill_pg_buf(virt_to_page(hdr),
425 offset_in_page(hdr),
426 len, &pb[slots_used]);
427
428 packet->rmsg_size = len;
429 packet->rmsg_pgcnt = slots_used;
430
431 slots_used += fill_pg_buf(virt_to_page(data),
432 offset_in_page(data),
433 skb_headlen(skb), &pb[slots_used]);
434
435 for (i = 0; i < frags; i++) {
436 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437
438 slots_used += fill_pg_buf(skb_frag_page(frag),
439 skb_frag_off(frag),
440 skb_frag_size(frag), &pb[slots_used]);
441 }
442 return slots_used;
443 }
444
445 static int count_skb_frag_slots(struct sk_buff *skb)
446 {
447 int i, frags = skb_shinfo(skb)->nr_frags;
448 int pages = 0;
449
450 for (i = 0; i < frags; i++) {
451 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
452 unsigned long size = skb_frag_size(frag);
453 unsigned long offset = skb_frag_off(frag);
454
455 /* Skip unused frames from start of page */
456 offset &= ~PAGE_MASK;
457 pages += PFN_UP(offset + size);
458 }
459 return pages;
460 }
461
462 static int netvsc_get_slots(struct sk_buff *skb)
463 {
464 char *data = skb->data;
465 unsigned int offset = offset_in_page(data);
466 unsigned int len = skb_headlen(skb);
467 int slots;
468 int frag_slots;
469
470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
471 frag_slots = count_skb_frag_slots(skb);
472 return slots + frag_slots;
473 }
474
475 static u32 net_checksum_info(struct sk_buff *skb)
476 {
477 if (skb->protocol == htons(ETH_P_IP)) {
478 struct iphdr *ip = ip_hdr(skb);
479
480 if (ip->protocol == IPPROTO_TCP)
481 return TRANSPORT_INFO_IPV4_TCP;
482 else if (ip->protocol == IPPROTO_UDP)
483 return TRANSPORT_INFO_IPV4_UDP;
484 } else {
485 struct ipv6hdr *ip6 = ipv6_hdr(skb);
486
487 if (ip6->nexthdr == IPPROTO_TCP)
488 return TRANSPORT_INFO_IPV6_TCP;
489 else if (ip6->nexthdr == IPPROTO_UDP)
490 return TRANSPORT_INFO_IPV6_UDP;
491 }
492
493 return TRANSPORT_INFO_NOT_IP;
494 }
495
496 /* Send skb on the slave VF device. */
497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
498 struct sk_buff *skb)
499 {
500 struct net_device_context *ndev_ctx = netdev_priv(net);
501 unsigned int len = skb->len;
502 int rc;
503
504 skb->dev = vf_netdev;
505 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
506
507 rc = dev_queue_xmit(skb);
508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
509 struct netvsc_vf_pcpu_stats *pcpu_stats
510 = this_cpu_ptr(ndev_ctx->vf_stats);
511
512 u64_stats_update_begin(&pcpu_stats->syncp);
513 pcpu_stats->tx_packets++;
514 pcpu_stats->tx_bytes += len;
515 u64_stats_update_end(&pcpu_stats->syncp);
516 } else {
517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
518 }
519
520 return rc;
521 }
522
523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
524 {
525 struct net_device_context *net_device_ctx = netdev_priv(net);
526 struct hv_netvsc_packet *packet = NULL;
527 int ret;
528 unsigned int num_data_pgs;
529 struct rndis_message *rndis_msg;
530 struct net_device *vf_netdev;
531 u32 rndis_msg_size;
532 u32 hash;
533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534
535 /* if VF is present and up then redirect packets
536 * already called with rcu_read_lock_bh
537 */
538 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
539 if (vf_netdev && netif_running(vf_netdev) &&
540 !netpoll_tx_running(net))
541 return netvsc_vf_xmit(net, vf_netdev, skb);
542
543 /* We will atmost need two pages to describe the rndis
544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545 * of pages in a single packet. If skb is scattered around
546 * more pages we try linearizing it.
547 */
548
549 num_data_pgs = netvsc_get_slots(skb) + 2;
550
551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552 ++net_device_ctx->eth_stats.tx_scattered;
553
554 if (skb_linearize(skb))
555 goto no_memory;
556
557 num_data_pgs = netvsc_get_slots(skb) + 2;
558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559 ++net_device_ctx->eth_stats.tx_too_big;
560 goto drop;
561 }
562 }
563
564 /*
565 * Place the rndis header in the skb head room and
566 * the skb->cb will be used for hv_netvsc_packet
567 * structure.
568 */
569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
570 if (ret)
571 goto no_memory;
572
573 /* Use the skb control buffer for building up the packet */
574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575 sizeof_field(struct sk_buff, cb));
576 packet = (struct hv_netvsc_packet *)skb->cb;
577
578 packet->q_idx = skb_get_queue_mapping(skb);
579
580 packet->total_data_buflen = skb->len;
581 packet->total_bytes = skb->len;
582 packet->total_packets = 1;
583
584 rndis_msg = (struct rndis_message *)skb->head;
585
586 /* Add the rndis header */
587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
588 rndis_msg->msg_len = packet->total_data_buflen;
589
590 rndis_msg->msg.pkt = (struct rndis_packet) {
591 .data_offset = sizeof(struct rndis_packet),
592 .data_len = packet->total_data_buflen,
593 .per_pkt_info_offset = sizeof(struct rndis_packet),
594 };
595
596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597
598 hash = skb_get_hash_raw(skb);
599 if (hash != 0 && net->real_num_tx_queues > 1) {
600 u32 *hash_info;
601
602 rndis_msg_size += NDIS_HASH_PPI_SIZE;
603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
604 NBL_HASH_VALUE);
605 *hash_info = hash;
606 }
607
608 if (skb_vlan_tag_present(skb)) {
609 struct ndis_pkt_8021q_info *vlan;
610
611 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
612 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
613 IEEE_8021Q_INFO);
614
615 vlan->value = 0;
616 vlan->vlanid = skb_vlan_tag_get_id(skb);
617 vlan->cfi = skb_vlan_tag_get_cfi(skb);
618 vlan->pri = skb_vlan_tag_get_prio(skb);
619 }
620
621 if (skb_is_gso(skb)) {
622 struct ndis_tcp_lso_info *lso_info;
623
624 rndis_msg_size += NDIS_LSO_PPI_SIZE;
625 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
626 TCP_LARGESEND_PKTINFO);
627
628 lso_info->value = 0;
629 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
630 if (skb->protocol == htons(ETH_P_IP)) {
631 lso_info->lso_v2_transmit.ip_version =
632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
633 ip_hdr(skb)->tot_len = 0;
634 ip_hdr(skb)->check = 0;
635 tcp_hdr(skb)->check =
636 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
637 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
638 } else {
639 lso_info->lso_v2_transmit.ip_version =
640 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
641 tcp_v6_gso_csum_prep(skb);
642 }
643 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
644 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
645 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
646 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
647 struct ndis_tcp_ip_checksum_info *csum_info;
648
649 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
650 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
651 TCPIP_CHKSUM_PKTINFO);
652
653 csum_info->value = 0;
654 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
655
656 if (skb->protocol == htons(ETH_P_IP)) {
657 csum_info->transmit.is_ipv4 = 1;
658
659 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
660 csum_info->transmit.tcp_checksum = 1;
661 else
662 csum_info->transmit.udp_checksum = 1;
663 } else {
664 csum_info->transmit.is_ipv6 = 1;
665
666 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
667 csum_info->transmit.tcp_checksum = 1;
668 else
669 csum_info->transmit.udp_checksum = 1;
670 }
671 } else {
672 /* Can't do offload of this type of checksum */
673 if (skb_checksum_help(skb))
674 goto drop;
675 }
676 }
677
678 /* Start filling in the page buffers with the rndis hdr */
679 rndis_msg->msg_len += rndis_msg_size;
680 packet->total_data_buflen = rndis_msg->msg_len;
681 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
682 skb, packet, pb);
683
684 /* timestamp packet in software */
685 skb_tx_timestamp(skb);
686
687 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
688 if (likely(ret == 0))
689 return NETDEV_TX_OK;
690
691 if (ret == -EAGAIN) {
692 ++net_device_ctx->eth_stats.tx_busy;
693 return NETDEV_TX_BUSY;
694 }
695
696 if (ret == -ENOSPC)
697 ++net_device_ctx->eth_stats.tx_no_space;
698
699 drop:
700 dev_kfree_skb_any(skb);
701 net->stats.tx_dropped++;
702
703 return NETDEV_TX_OK;
704
705 no_memory:
706 ++net_device_ctx->eth_stats.tx_no_memory;
707 goto drop;
708 }
709
710 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *ndev)
711 {
712 return netvsc_xmit(skb, ndev, false);
713 }
714
715 /*
716 * netvsc_linkstatus_callback - Link up/down notification
717 */
718 void netvsc_linkstatus_callback(struct net_device *net,
719 struct rndis_message *resp)
720 {
721 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
722 struct net_device_context *ndev_ctx = netdev_priv(net);
723 struct netvsc_reconfig *event;
724 unsigned long flags;
725
726 /* Update the physical link speed when changing to another vSwitch */
727 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
728 u32 speed;
729
730 speed = *(u32 *)((void *)indicate
731 + indicate->status_buf_offset) / 10000;
732 ndev_ctx->speed = speed;
733 return;
734 }
735
736 /* Handle these link change statuses below */
737 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
738 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
739 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
740 return;
741
742 if (net->reg_state != NETREG_REGISTERED)
743 return;
744
745 event = kzalloc(sizeof(*event), GFP_ATOMIC);
746 if (!event)
747 return;
748 event->event = indicate->status;
749
750 spin_lock_irqsave(&ndev_ctx->lock, flags);
751 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
752 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
753
754 schedule_delayed_work(&ndev_ctx->dwork, 0);
755 }
756
757 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
758 {
759 int rc;
760
761 skb->queue_mapping = skb_get_rx_queue(skb);
762 __skb_push(skb, ETH_HLEN);
763
764 rc = netvsc_xmit(skb, ndev, true);
765
766 if (dev_xmit_complete(rc))
767 return;
768
769 dev_kfree_skb_any(skb);
770 ndev->stats.tx_dropped++;
771 }
772
773 static void netvsc_comp_ipcsum(struct sk_buff *skb)
774 {
775 struct iphdr *iph = (struct iphdr *)skb->data;
776
777 iph->check = 0;
778 iph->check = ip_fast_csum(iph, iph->ihl);
779 }
780
781 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
782 struct netvsc_channel *nvchan,
783 struct xdp_buff *xdp)
784 {
785 struct napi_struct *napi = &nvchan->napi;
786 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
787 const struct ndis_tcp_ip_checksum_info *csum_info =
788 nvchan->rsc.csum_info;
789 const u32 *hash_info = nvchan->rsc.hash_info;
790 struct sk_buff *skb;
791 void *xbuf = xdp->data_hard_start;
792 int i;
793
794 if (xbuf) {
795 unsigned int hdroom = xdp->data - xdp->data_hard_start;
796 unsigned int xlen = xdp->data_end - xdp->data;
797 unsigned int frag_size = netvsc_xdp_fraglen(hdroom + xlen);
798
799 skb = build_skb(xbuf, frag_size);
800
801 if (!skb) {
802 __free_page(virt_to_page(xbuf));
803 return NULL;
804 }
805
806 skb_reserve(skb, hdroom);
807 skb_put(skb, xlen);
808 skb->dev = napi->dev;
809 } else {
810 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
811
812 if (!skb)
813 return NULL;
814
815 /* Copy to skb. This copy is needed here since the memory
816 * pointed by hv_netvsc_packet cannot be deallocated.
817 */
818 for (i = 0; i < nvchan->rsc.cnt; i++)
819 skb_put_data(skb, nvchan->rsc.data[i],
820 nvchan->rsc.len[i]);
821 }
822
823 skb->protocol = eth_type_trans(skb, net);
824
825 /* skb is already created with CHECKSUM_NONE */
826 skb_checksum_none_assert(skb);
827
828 /* Incoming packets may have IP header checksum verified by the host.
829 * They may not have IP header checksum computed after coalescing.
830 * We compute it here if the flags are set, because on Linux, the IP
831 * checksum is always checked.
832 */
833 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
834 csum_info->receive.ip_checksum_succeeded &&
835 skb->protocol == htons(ETH_P_IP))
836 netvsc_comp_ipcsum(skb);
837
838 /* Do L4 checksum offload if enabled and present. */
839 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
840 if (csum_info->receive.tcp_checksum_succeeded ||
841 csum_info->receive.udp_checksum_succeeded)
842 skb->ip_summed = CHECKSUM_UNNECESSARY;
843 }
844
845 if (hash_info && (net->features & NETIF_F_RXHASH))
846 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
847
848 if (vlan) {
849 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
850 (vlan->cfi ? VLAN_CFI_MASK : 0);
851
852 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
853 vlan_tci);
854 }
855
856 return skb;
857 }
858
859 /*
860 * netvsc_recv_callback - Callback when we receive a packet from the
861 * "wire" on the specified device.
862 */
863 int netvsc_recv_callback(struct net_device *net,
864 struct netvsc_device *net_device,
865 struct netvsc_channel *nvchan)
866 {
867 struct net_device_context *net_device_ctx = netdev_priv(net);
868 struct vmbus_channel *channel = nvchan->channel;
869 u16 q_idx = channel->offermsg.offer.sub_channel_index;
870 struct sk_buff *skb;
871 struct netvsc_stats *rx_stats = &nvchan->rx_stats;
872 struct xdp_buff xdp;
873 u32 act;
874
875 if (net->reg_state != NETREG_REGISTERED)
876 return NVSP_STAT_FAIL;
877
878 act = netvsc_run_xdp(net, nvchan, &xdp);
879
880 if (act != XDP_PASS && act != XDP_TX) {
881 u64_stats_update_begin(&rx_stats->syncp);
882 rx_stats->xdp_drop++;
883 u64_stats_update_end(&rx_stats->syncp);
884
885 return NVSP_STAT_SUCCESS; /* consumed by XDP */
886 }
887
888 /* Allocate a skb - TODO direct I/O to pages? */
889 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
890
891 if (unlikely(!skb)) {
892 ++net_device_ctx->eth_stats.rx_no_memory;
893 return NVSP_STAT_FAIL;
894 }
895
896 skb_record_rx_queue(skb, q_idx);
897
898 /*
899 * Even if injecting the packet, record the statistics
900 * on the synthetic device because modifying the VF device
901 * statistics will not work correctly.
902 */
903 u64_stats_update_begin(&rx_stats->syncp);
904 rx_stats->packets++;
905 rx_stats->bytes += nvchan->rsc.pktlen;
906
907 if (skb->pkt_type == PACKET_BROADCAST)
908 ++rx_stats->broadcast;
909 else if (skb->pkt_type == PACKET_MULTICAST)
910 ++rx_stats->multicast;
911 u64_stats_update_end(&rx_stats->syncp);
912
913 if (act == XDP_TX) {
914 netvsc_xdp_xmit(skb, net);
915 return NVSP_STAT_SUCCESS;
916 }
917
918 napi_gro_receive(&nvchan->napi, skb);
919 return NVSP_STAT_SUCCESS;
920 }
921
922 static void netvsc_get_drvinfo(struct net_device *net,
923 struct ethtool_drvinfo *info)
924 {
925 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
926 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
927 }
928
929 static void netvsc_get_channels(struct net_device *net,
930 struct ethtool_channels *channel)
931 {
932 struct net_device_context *net_device_ctx = netdev_priv(net);
933 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
934
935 if (nvdev) {
936 channel->max_combined = nvdev->max_chn;
937 channel->combined_count = nvdev->num_chn;
938 }
939 }
940
941 /* Alloc struct netvsc_device_info, and initialize it from either existing
942 * struct netvsc_device, or from default values.
943 */
944 static
945 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
946 {
947 struct netvsc_device_info *dev_info;
948 struct bpf_prog *prog;
949
950 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
951
952 if (!dev_info)
953 return NULL;
954
955 if (nvdev) {
956 ASSERT_RTNL();
957
958 dev_info->num_chn = nvdev->num_chn;
959 dev_info->send_sections = nvdev->send_section_cnt;
960 dev_info->send_section_size = nvdev->send_section_size;
961 dev_info->recv_sections = nvdev->recv_section_cnt;
962 dev_info->recv_section_size = nvdev->recv_section_size;
963
964 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
965 NETVSC_HASH_KEYLEN);
966
967 prog = netvsc_xdp_get(nvdev);
968 if (prog) {
969 bpf_prog_inc(prog);
970 dev_info->bprog = prog;
971 }
972 } else {
973 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
974 dev_info->send_sections = NETVSC_DEFAULT_TX;
975 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
976 dev_info->recv_sections = NETVSC_DEFAULT_RX;
977 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
978 }
979
980 return dev_info;
981 }
982
983 /* Free struct netvsc_device_info */
984 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
985 {
986 if (dev_info->bprog) {
987 ASSERT_RTNL();
988 bpf_prog_put(dev_info->bprog);
989 }
990
991 kfree(dev_info);
992 }
993
994 static int netvsc_detach(struct net_device *ndev,
995 struct netvsc_device *nvdev)
996 {
997 struct net_device_context *ndev_ctx = netdev_priv(ndev);
998 struct hv_device *hdev = ndev_ctx->device_ctx;
999 int ret;
1000
1001 /* Don't try continuing to try and setup sub channels */
1002 if (cancel_work_sync(&nvdev->subchan_work))
1003 nvdev->num_chn = 1;
1004
1005 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1006
1007 /* If device was up (receiving) then shutdown */
1008 if (netif_running(ndev)) {
1009 netvsc_tx_disable(nvdev, ndev);
1010
1011 ret = rndis_filter_close(nvdev);
1012 if (ret) {
1013 netdev_err(ndev,
1014 "unable to close device (ret %d).\n", ret);
1015 return ret;
1016 }
1017
1018 ret = netvsc_wait_until_empty(nvdev);
1019 if (ret) {
1020 netdev_err(ndev,
1021 "Ring buffer not empty after closing rndis\n");
1022 return ret;
1023 }
1024 }
1025
1026 netif_device_detach(ndev);
1027
1028 rndis_filter_device_remove(hdev, nvdev);
1029
1030 return 0;
1031 }
1032
1033 static int netvsc_attach(struct net_device *ndev,
1034 struct netvsc_device_info *dev_info)
1035 {
1036 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1037 struct hv_device *hdev = ndev_ctx->device_ctx;
1038 struct netvsc_device *nvdev;
1039 struct rndis_device *rdev;
1040 struct bpf_prog *prog;
1041 int ret = 0;
1042
1043 nvdev = rndis_filter_device_add(hdev, dev_info);
1044 if (IS_ERR(nvdev))
1045 return PTR_ERR(nvdev);
1046
1047 if (nvdev->num_chn > 1) {
1048 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1049
1050 /* if unavailable, just proceed with one queue */
1051 if (ret) {
1052 nvdev->max_chn = 1;
1053 nvdev->num_chn = 1;
1054 }
1055 }
1056
1057 prog = dev_info->bprog;
1058 if (prog) {
1059 bpf_prog_inc(prog);
1060 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1061 if (ret) {
1062 bpf_prog_put(prog);
1063 goto err1;
1064 }
1065 }
1066
1067 /* In any case device is now ready */
1068 nvdev->tx_disable = false;
1069 netif_device_attach(ndev);
1070
1071 /* Note: enable and attach happen when sub-channels setup */
1072 netif_carrier_off(ndev);
1073
1074 if (netif_running(ndev)) {
1075 ret = rndis_filter_open(nvdev);
1076 if (ret)
1077 goto err2;
1078
1079 rdev = nvdev->extension;
1080 if (!rdev->link_state)
1081 netif_carrier_on(ndev);
1082 }
1083
1084 return 0;
1085
1086 err2:
1087 netif_device_detach(ndev);
1088
1089 err1:
1090 rndis_filter_device_remove(hdev, nvdev);
1091
1092 return ret;
1093 }
1094
1095 static int netvsc_set_channels(struct net_device *net,
1096 struct ethtool_channels *channels)
1097 {
1098 struct net_device_context *net_device_ctx = netdev_priv(net);
1099 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1100 unsigned int orig, count = channels->combined_count;
1101 struct netvsc_device_info *device_info;
1102 int ret;
1103
1104 /* We do not support separate count for rx, tx, or other */
1105 if (count == 0 ||
1106 channels->rx_count || channels->tx_count || channels->other_count)
1107 return -EINVAL;
1108
1109 if (!nvdev || nvdev->destroy)
1110 return -ENODEV;
1111
1112 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1113 return -EINVAL;
1114
1115 if (count > nvdev->max_chn)
1116 return -EINVAL;
1117
1118 orig = nvdev->num_chn;
1119
1120 device_info = netvsc_devinfo_get(nvdev);
1121
1122 if (!device_info)
1123 return -ENOMEM;
1124
1125 device_info->num_chn = count;
1126
1127 ret = netvsc_detach(net, nvdev);
1128 if (ret)
1129 goto out;
1130
1131 ret = netvsc_attach(net, device_info);
1132 if (ret) {
1133 device_info->num_chn = orig;
1134 if (netvsc_attach(net, device_info))
1135 netdev_err(net, "restoring channel setting failed\n");
1136 }
1137
1138 out:
1139 netvsc_devinfo_put(device_info);
1140 return ret;
1141 }
1142
1143 static void netvsc_init_settings(struct net_device *dev)
1144 {
1145 struct net_device_context *ndc = netdev_priv(dev);
1146
1147 ndc->l4_hash = HV_DEFAULT_L4HASH;
1148
1149 ndc->speed = SPEED_UNKNOWN;
1150 ndc->duplex = DUPLEX_FULL;
1151
1152 dev->features = NETIF_F_LRO;
1153 }
1154
1155 static int netvsc_get_link_ksettings(struct net_device *dev,
1156 struct ethtool_link_ksettings *cmd)
1157 {
1158 struct net_device_context *ndc = netdev_priv(dev);
1159 struct net_device *vf_netdev;
1160
1161 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1162
1163 if (vf_netdev)
1164 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1165
1166 cmd->base.speed = ndc->speed;
1167 cmd->base.duplex = ndc->duplex;
1168 cmd->base.port = PORT_OTHER;
1169
1170 return 0;
1171 }
1172
1173 static int netvsc_set_link_ksettings(struct net_device *dev,
1174 const struct ethtool_link_ksettings *cmd)
1175 {
1176 struct net_device_context *ndc = netdev_priv(dev);
1177 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1178
1179 if (vf_netdev) {
1180 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1181 return -EOPNOTSUPP;
1182
1183 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1184 cmd);
1185 }
1186
1187 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1188 &ndc->speed, &ndc->duplex);
1189 }
1190
1191 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1192 {
1193 struct net_device_context *ndevctx = netdev_priv(ndev);
1194 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1195 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1196 int orig_mtu = ndev->mtu;
1197 struct netvsc_device_info *device_info;
1198 int ret = 0;
1199
1200 if (!nvdev || nvdev->destroy)
1201 return -ENODEV;
1202
1203 device_info = netvsc_devinfo_get(nvdev);
1204
1205 if (!device_info)
1206 return -ENOMEM;
1207
1208 /* Change MTU of underlying VF netdev first. */
1209 if (vf_netdev) {
1210 ret = dev_set_mtu(vf_netdev, mtu);
1211 if (ret)
1212 goto out;
1213 }
1214
1215 ret = netvsc_detach(ndev, nvdev);
1216 if (ret)
1217 goto rollback_vf;
1218
1219 ndev->mtu = mtu;
1220
1221 ret = netvsc_attach(ndev, device_info);
1222 if (!ret)
1223 goto out;
1224
1225 /* Attempt rollback to original MTU */
1226 ndev->mtu = orig_mtu;
1227
1228 if (netvsc_attach(ndev, device_info))
1229 netdev_err(ndev, "restoring mtu failed\n");
1230 rollback_vf:
1231 if (vf_netdev)
1232 dev_set_mtu(vf_netdev, orig_mtu);
1233
1234 out:
1235 netvsc_devinfo_put(device_info);
1236 return ret;
1237 }
1238
1239 static void netvsc_get_vf_stats(struct net_device *net,
1240 struct netvsc_vf_pcpu_stats *tot)
1241 {
1242 struct net_device_context *ndev_ctx = netdev_priv(net);
1243 int i;
1244
1245 memset(tot, 0, sizeof(*tot));
1246
1247 for_each_possible_cpu(i) {
1248 const struct netvsc_vf_pcpu_stats *stats
1249 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1250 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1251 unsigned int start;
1252
1253 do {
1254 start = u64_stats_fetch_begin_irq(&stats->syncp);
1255 rx_packets = stats->rx_packets;
1256 tx_packets = stats->tx_packets;
1257 rx_bytes = stats->rx_bytes;
1258 tx_bytes = stats->tx_bytes;
1259 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1260
1261 tot->rx_packets += rx_packets;
1262 tot->tx_packets += tx_packets;
1263 tot->rx_bytes += rx_bytes;
1264 tot->tx_bytes += tx_bytes;
1265 tot->tx_dropped += stats->tx_dropped;
1266 }
1267 }
1268
1269 static void netvsc_get_pcpu_stats(struct net_device *net,
1270 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1271 {
1272 struct net_device_context *ndev_ctx = netdev_priv(net);
1273 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1274 int i;
1275
1276 /* fetch percpu stats of vf */
1277 for_each_possible_cpu(i) {
1278 const struct netvsc_vf_pcpu_stats *stats =
1279 per_cpu_ptr(ndev_ctx->vf_stats, i);
1280 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1281 unsigned int start;
1282
1283 do {
1284 start = u64_stats_fetch_begin_irq(&stats->syncp);
1285 this_tot->vf_rx_packets = stats->rx_packets;
1286 this_tot->vf_tx_packets = stats->tx_packets;
1287 this_tot->vf_rx_bytes = stats->rx_bytes;
1288 this_tot->vf_tx_bytes = stats->tx_bytes;
1289 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1290 this_tot->rx_packets = this_tot->vf_rx_packets;
1291 this_tot->tx_packets = this_tot->vf_tx_packets;
1292 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1293 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1294 }
1295
1296 /* fetch percpu stats of netvsc */
1297 for (i = 0; i < nvdev->num_chn; i++) {
1298 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1299 const struct netvsc_stats *stats;
1300 struct netvsc_ethtool_pcpu_stats *this_tot =
1301 &pcpu_tot[nvchan->channel->target_cpu];
1302 u64 packets, bytes;
1303 unsigned int start;
1304
1305 stats = &nvchan->tx_stats;
1306 do {
1307 start = u64_stats_fetch_begin_irq(&stats->syncp);
1308 packets = stats->packets;
1309 bytes = stats->bytes;
1310 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1311
1312 this_tot->tx_bytes += bytes;
1313 this_tot->tx_packets += packets;
1314
1315 stats = &nvchan->rx_stats;
1316 do {
1317 start = u64_stats_fetch_begin_irq(&stats->syncp);
1318 packets = stats->packets;
1319 bytes = stats->bytes;
1320 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1321
1322 this_tot->rx_bytes += bytes;
1323 this_tot->rx_packets += packets;
1324 }
1325 }
1326
1327 static void netvsc_get_stats64(struct net_device *net,
1328 struct rtnl_link_stats64 *t)
1329 {
1330 struct net_device_context *ndev_ctx = netdev_priv(net);
1331 struct netvsc_device *nvdev;
1332 struct netvsc_vf_pcpu_stats vf_tot;
1333 int i;
1334
1335 rcu_read_lock();
1336
1337 nvdev = rcu_dereference(ndev_ctx->nvdev);
1338 if (!nvdev)
1339 goto out;
1340
1341 netdev_stats_to_stats64(t, &net->stats);
1342
1343 netvsc_get_vf_stats(net, &vf_tot);
1344 t->rx_packets += vf_tot.rx_packets;
1345 t->tx_packets += vf_tot.tx_packets;
1346 t->rx_bytes += vf_tot.rx_bytes;
1347 t->tx_bytes += vf_tot.tx_bytes;
1348 t->tx_dropped += vf_tot.tx_dropped;
1349
1350 for (i = 0; i < nvdev->num_chn; i++) {
1351 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1352 const struct netvsc_stats *stats;
1353 u64 packets, bytes, multicast;
1354 unsigned int start;
1355
1356 stats = &nvchan->tx_stats;
1357 do {
1358 start = u64_stats_fetch_begin_irq(&stats->syncp);
1359 packets = stats->packets;
1360 bytes = stats->bytes;
1361 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1362
1363 t->tx_bytes += bytes;
1364 t->tx_packets += packets;
1365
1366 stats = &nvchan->rx_stats;
1367 do {
1368 start = u64_stats_fetch_begin_irq(&stats->syncp);
1369 packets = stats->packets;
1370 bytes = stats->bytes;
1371 multicast = stats->multicast + stats->broadcast;
1372 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1373
1374 t->rx_bytes += bytes;
1375 t->rx_packets += packets;
1376 t->multicast += multicast;
1377 }
1378 out:
1379 rcu_read_unlock();
1380 }
1381
1382 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1383 {
1384 struct net_device_context *ndc = netdev_priv(ndev);
1385 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1386 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1387 struct sockaddr *addr = p;
1388 int err;
1389
1390 err = eth_prepare_mac_addr_change(ndev, p);
1391 if (err)
1392 return err;
1393
1394 if (!nvdev)
1395 return -ENODEV;
1396
1397 if (vf_netdev) {
1398 err = dev_set_mac_address(vf_netdev, addr, NULL);
1399 if (err)
1400 return err;
1401 }
1402
1403 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1404 if (!err) {
1405 eth_commit_mac_addr_change(ndev, p);
1406 } else if (vf_netdev) {
1407 /* rollback change on VF */
1408 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1409 dev_set_mac_address(vf_netdev, addr, NULL);
1410 }
1411
1412 return err;
1413 }
1414
1415 static const struct {
1416 char name[ETH_GSTRING_LEN];
1417 u16 offset;
1418 } netvsc_stats[] = {
1419 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1420 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1421 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1422 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1423 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1424 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1425 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1426 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1427 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1428 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1429 }, pcpu_stats[] = {
1430 { "cpu%u_rx_packets",
1431 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1432 { "cpu%u_rx_bytes",
1433 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1434 { "cpu%u_tx_packets",
1435 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1436 { "cpu%u_tx_bytes",
1437 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1438 { "cpu%u_vf_rx_packets",
1439 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1440 { "cpu%u_vf_rx_bytes",
1441 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1442 { "cpu%u_vf_tx_packets",
1443 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1444 { "cpu%u_vf_tx_bytes",
1445 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1446 }, vf_stats[] = {
1447 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1448 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1449 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1450 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1451 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1452 };
1453
1454 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1455 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1456
1457 /* statistics per queue (rx/tx packets/bytes) */
1458 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1459
1460 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1461 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1462
1463 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1464 {
1465 struct net_device_context *ndc = netdev_priv(dev);
1466 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1467
1468 if (!nvdev)
1469 return -ENODEV;
1470
1471 switch (string_set) {
1472 case ETH_SS_STATS:
1473 return NETVSC_GLOBAL_STATS_LEN
1474 + NETVSC_VF_STATS_LEN
1475 + NETVSC_QUEUE_STATS_LEN(nvdev)
1476 + NETVSC_PCPU_STATS_LEN;
1477 default:
1478 return -EINVAL;
1479 }
1480 }
1481
1482 static void netvsc_get_ethtool_stats(struct net_device *dev,
1483 struct ethtool_stats *stats, u64 *data)
1484 {
1485 struct net_device_context *ndc = netdev_priv(dev);
1486 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1487 const void *nds = &ndc->eth_stats;
1488 const struct netvsc_stats *qstats;
1489 struct netvsc_vf_pcpu_stats sum;
1490 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1491 unsigned int start;
1492 u64 packets, bytes;
1493 u64 xdp_drop;
1494 int i, j, cpu;
1495
1496 if (!nvdev)
1497 return;
1498
1499 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1500 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1501
1502 netvsc_get_vf_stats(dev, &sum);
1503 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1504 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1505
1506 for (j = 0; j < nvdev->num_chn; j++) {
1507 qstats = &nvdev->chan_table[j].tx_stats;
1508
1509 do {
1510 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1511 packets = qstats->packets;
1512 bytes = qstats->bytes;
1513 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1514 data[i++] = packets;
1515 data[i++] = bytes;
1516
1517 qstats = &nvdev->chan_table[j].rx_stats;
1518 do {
1519 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1520 packets = qstats->packets;
1521 bytes = qstats->bytes;
1522 xdp_drop = qstats->xdp_drop;
1523 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1524 data[i++] = packets;
1525 data[i++] = bytes;
1526 data[i++] = xdp_drop;
1527 }
1528
1529 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1530 sizeof(struct netvsc_ethtool_pcpu_stats),
1531 GFP_KERNEL);
1532 netvsc_get_pcpu_stats(dev, pcpu_sum);
1533 for_each_present_cpu(cpu) {
1534 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1535
1536 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1537 data[i++] = *(u64 *)((void *)this_sum
1538 + pcpu_stats[j].offset);
1539 }
1540 kvfree(pcpu_sum);
1541 }
1542
1543 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1544 {
1545 struct net_device_context *ndc = netdev_priv(dev);
1546 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1547 u8 *p = data;
1548 int i, cpu;
1549
1550 if (!nvdev)
1551 return;
1552
1553 switch (stringset) {
1554 case ETH_SS_STATS:
1555 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1556 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1557 p += ETH_GSTRING_LEN;
1558 }
1559
1560 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1561 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1562 p += ETH_GSTRING_LEN;
1563 }
1564
1565 for (i = 0; i < nvdev->num_chn; i++) {
1566 sprintf(p, "tx_queue_%u_packets", i);
1567 p += ETH_GSTRING_LEN;
1568 sprintf(p, "tx_queue_%u_bytes", i);
1569 p += ETH_GSTRING_LEN;
1570 sprintf(p, "rx_queue_%u_packets", i);
1571 p += ETH_GSTRING_LEN;
1572 sprintf(p, "rx_queue_%u_bytes", i);
1573 p += ETH_GSTRING_LEN;
1574 sprintf(p, "rx_queue_%u_xdp_drop", i);
1575 p += ETH_GSTRING_LEN;
1576 }
1577
1578 for_each_present_cpu(cpu) {
1579 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1580 sprintf(p, pcpu_stats[i].name, cpu);
1581 p += ETH_GSTRING_LEN;
1582 }
1583 }
1584
1585 break;
1586 }
1587 }
1588
1589 static int
1590 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1591 struct ethtool_rxnfc *info)
1592 {
1593 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1594
1595 info->data = RXH_IP_SRC | RXH_IP_DST;
1596
1597 switch (info->flow_type) {
1598 case TCP_V4_FLOW:
1599 if (ndc->l4_hash & HV_TCP4_L4HASH)
1600 info->data |= l4_flag;
1601
1602 break;
1603
1604 case TCP_V6_FLOW:
1605 if (ndc->l4_hash & HV_TCP6_L4HASH)
1606 info->data |= l4_flag;
1607
1608 break;
1609
1610 case UDP_V4_FLOW:
1611 if (ndc->l4_hash & HV_UDP4_L4HASH)
1612 info->data |= l4_flag;
1613
1614 break;
1615
1616 case UDP_V6_FLOW:
1617 if (ndc->l4_hash & HV_UDP6_L4HASH)
1618 info->data |= l4_flag;
1619
1620 break;
1621
1622 case IPV4_FLOW:
1623 case IPV6_FLOW:
1624 break;
1625 default:
1626 info->data = 0;
1627 break;
1628 }
1629
1630 return 0;
1631 }
1632
1633 static int
1634 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1635 u32 *rules)
1636 {
1637 struct net_device_context *ndc = netdev_priv(dev);
1638 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1639
1640 if (!nvdev)
1641 return -ENODEV;
1642
1643 switch (info->cmd) {
1644 case ETHTOOL_GRXRINGS:
1645 info->data = nvdev->num_chn;
1646 return 0;
1647
1648 case ETHTOOL_GRXFH:
1649 return netvsc_get_rss_hash_opts(ndc, info);
1650 }
1651 return -EOPNOTSUPP;
1652 }
1653
1654 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1655 struct ethtool_rxnfc *info)
1656 {
1657 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1658 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1659 switch (info->flow_type) {
1660 case TCP_V4_FLOW:
1661 ndc->l4_hash |= HV_TCP4_L4HASH;
1662 break;
1663
1664 case TCP_V6_FLOW:
1665 ndc->l4_hash |= HV_TCP6_L4HASH;
1666 break;
1667
1668 case UDP_V4_FLOW:
1669 ndc->l4_hash |= HV_UDP4_L4HASH;
1670 break;
1671
1672 case UDP_V6_FLOW:
1673 ndc->l4_hash |= HV_UDP6_L4HASH;
1674 break;
1675
1676 default:
1677 return -EOPNOTSUPP;
1678 }
1679
1680 return 0;
1681 }
1682
1683 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1684 switch (info->flow_type) {
1685 case TCP_V4_FLOW:
1686 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1687 break;
1688
1689 case TCP_V6_FLOW:
1690 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1691 break;
1692
1693 case UDP_V4_FLOW:
1694 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1695 break;
1696
1697 case UDP_V6_FLOW:
1698 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1699 break;
1700
1701 default:
1702 return -EOPNOTSUPP;
1703 }
1704
1705 return 0;
1706 }
1707
1708 return -EOPNOTSUPP;
1709 }
1710
1711 static int
1712 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1713 {
1714 struct net_device_context *ndc = netdev_priv(ndev);
1715
1716 if (info->cmd == ETHTOOL_SRXFH)
1717 return netvsc_set_rss_hash_opts(ndc, info);
1718
1719 return -EOPNOTSUPP;
1720 }
1721
1722 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1723 {
1724 return NETVSC_HASH_KEYLEN;
1725 }
1726
1727 static u32 netvsc_rss_indir_size(struct net_device *dev)
1728 {
1729 return ITAB_NUM;
1730 }
1731
1732 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1733 u8 *hfunc)
1734 {
1735 struct net_device_context *ndc = netdev_priv(dev);
1736 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1737 struct rndis_device *rndis_dev;
1738 int i;
1739
1740 if (!ndev)
1741 return -ENODEV;
1742
1743 if (hfunc)
1744 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1745
1746 rndis_dev = ndev->extension;
1747 if (indir) {
1748 for (i = 0; i < ITAB_NUM; i++)
1749 indir[i] = ndc->rx_table[i];
1750 }
1751
1752 if (key)
1753 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1754
1755 return 0;
1756 }
1757
1758 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1759 const u8 *key, const u8 hfunc)
1760 {
1761 struct net_device_context *ndc = netdev_priv(dev);
1762 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1763 struct rndis_device *rndis_dev;
1764 int i;
1765
1766 if (!ndev)
1767 return -ENODEV;
1768
1769 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1770 return -EOPNOTSUPP;
1771
1772 rndis_dev = ndev->extension;
1773 if (indir) {
1774 for (i = 0; i < ITAB_NUM; i++)
1775 if (indir[i] >= ndev->num_chn)
1776 return -EINVAL;
1777
1778 for (i = 0; i < ITAB_NUM; i++)
1779 ndc->rx_table[i] = indir[i];
1780 }
1781
1782 if (!key) {
1783 if (!indir)
1784 return 0;
1785
1786 key = rndis_dev->rss_key;
1787 }
1788
1789 return rndis_filter_set_rss_param(rndis_dev, key);
1790 }
1791
1792 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1793 * It does have pre-allocated receive area which is divided into sections.
1794 */
1795 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1796 struct ethtool_ringparam *ring)
1797 {
1798 u32 max_buf_size;
1799
1800 ring->rx_pending = nvdev->recv_section_cnt;
1801 ring->tx_pending = nvdev->send_section_cnt;
1802
1803 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1804 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1805 else
1806 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1807
1808 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1809 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1810 / nvdev->send_section_size;
1811 }
1812
1813 static void netvsc_get_ringparam(struct net_device *ndev,
1814 struct ethtool_ringparam *ring)
1815 {
1816 struct net_device_context *ndevctx = netdev_priv(ndev);
1817 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1818
1819 if (!nvdev)
1820 return;
1821
1822 __netvsc_get_ringparam(nvdev, ring);
1823 }
1824
1825 static int netvsc_set_ringparam(struct net_device *ndev,
1826 struct ethtool_ringparam *ring)
1827 {
1828 struct net_device_context *ndevctx = netdev_priv(ndev);
1829 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1830 struct netvsc_device_info *device_info;
1831 struct ethtool_ringparam orig;
1832 u32 new_tx, new_rx;
1833 int ret = 0;
1834
1835 if (!nvdev || nvdev->destroy)
1836 return -ENODEV;
1837
1838 memset(&orig, 0, sizeof(orig));
1839 __netvsc_get_ringparam(nvdev, &orig);
1840
1841 new_tx = clamp_t(u32, ring->tx_pending,
1842 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1843 new_rx = clamp_t(u32, ring->rx_pending,
1844 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1845
1846 if (new_tx == orig.tx_pending &&
1847 new_rx == orig.rx_pending)
1848 return 0; /* no change */
1849
1850 device_info = netvsc_devinfo_get(nvdev);
1851
1852 if (!device_info)
1853 return -ENOMEM;
1854
1855 device_info->send_sections = new_tx;
1856 device_info->recv_sections = new_rx;
1857
1858 ret = netvsc_detach(ndev, nvdev);
1859 if (ret)
1860 goto out;
1861
1862 ret = netvsc_attach(ndev, device_info);
1863 if (ret) {
1864 device_info->send_sections = orig.tx_pending;
1865 device_info->recv_sections = orig.rx_pending;
1866
1867 if (netvsc_attach(ndev, device_info))
1868 netdev_err(ndev, "restoring ringparam failed");
1869 }
1870
1871 out:
1872 netvsc_devinfo_put(device_info);
1873 return ret;
1874 }
1875
1876 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1877 netdev_features_t features)
1878 {
1879 struct net_device_context *ndevctx = netdev_priv(ndev);
1880 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1881
1882 if (!nvdev || nvdev->destroy)
1883 return features;
1884
1885 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1886 features ^= NETIF_F_LRO;
1887 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1888 }
1889
1890 return features;
1891 }
1892
1893 static int netvsc_set_features(struct net_device *ndev,
1894 netdev_features_t features)
1895 {
1896 netdev_features_t change = features ^ ndev->features;
1897 struct net_device_context *ndevctx = netdev_priv(ndev);
1898 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1899 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1900 struct ndis_offload_params offloads;
1901 int ret = 0;
1902
1903 if (!nvdev || nvdev->destroy)
1904 return -ENODEV;
1905
1906 if (!(change & NETIF_F_LRO))
1907 goto syncvf;
1908
1909 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1910
1911 if (features & NETIF_F_LRO) {
1912 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1913 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1914 } else {
1915 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1916 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1917 }
1918
1919 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1920
1921 if (ret) {
1922 features ^= NETIF_F_LRO;
1923 ndev->features = features;
1924 }
1925
1926 syncvf:
1927 if (!vf_netdev)
1928 return ret;
1929
1930 vf_netdev->wanted_features = features;
1931 netdev_update_features(vf_netdev);
1932
1933 return ret;
1934 }
1935
1936 static u32 netvsc_get_msglevel(struct net_device *ndev)
1937 {
1938 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1939
1940 return ndev_ctx->msg_enable;
1941 }
1942
1943 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1944 {
1945 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1946
1947 ndev_ctx->msg_enable = val;
1948 }
1949
1950 static const struct ethtool_ops ethtool_ops = {
1951 .get_drvinfo = netvsc_get_drvinfo,
1952 .get_msglevel = netvsc_get_msglevel,
1953 .set_msglevel = netvsc_set_msglevel,
1954 .get_link = ethtool_op_get_link,
1955 .get_ethtool_stats = netvsc_get_ethtool_stats,
1956 .get_sset_count = netvsc_get_sset_count,
1957 .get_strings = netvsc_get_strings,
1958 .get_channels = netvsc_get_channels,
1959 .set_channels = netvsc_set_channels,
1960 .get_ts_info = ethtool_op_get_ts_info,
1961 .get_rxnfc = netvsc_get_rxnfc,
1962 .set_rxnfc = netvsc_set_rxnfc,
1963 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1964 .get_rxfh_indir_size = netvsc_rss_indir_size,
1965 .get_rxfh = netvsc_get_rxfh,
1966 .set_rxfh = netvsc_set_rxfh,
1967 .get_link_ksettings = netvsc_get_link_ksettings,
1968 .set_link_ksettings = netvsc_set_link_ksettings,
1969 .get_ringparam = netvsc_get_ringparam,
1970 .set_ringparam = netvsc_set_ringparam,
1971 };
1972
1973 static const struct net_device_ops device_ops = {
1974 .ndo_open = netvsc_open,
1975 .ndo_stop = netvsc_close,
1976 .ndo_start_xmit = netvsc_start_xmit,
1977 .ndo_change_rx_flags = netvsc_change_rx_flags,
1978 .ndo_set_rx_mode = netvsc_set_rx_mode,
1979 .ndo_fix_features = netvsc_fix_features,
1980 .ndo_set_features = netvsc_set_features,
1981 .ndo_change_mtu = netvsc_change_mtu,
1982 .ndo_validate_addr = eth_validate_addr,
1983 .ndo_set_mac_address = netvsc_set_mac_addr,
1984 .ndo_select_queue = netvsc_select_queue,
1985 .ndo_get_stats64 = netvsc_get_stats64,
1986 .ndo_bpf = netvsc_bpf,
1987 };
1988
1989 /*
1990 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1991 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1992 * present send GARP packet to network peers with netif_notify_peers().
1993 */
1994 static void netvsc_link_change(struct work_struct *w)
1995 {
1996 struct net_device_context *ndev_ctx =
1997 container_of(w, struct net_device_context, dwork.work);
1998 struct hv_device *device_obj = ndev_ctx->device_ctx;
1999 struct net_device *net = hv_get_drvdata(device_obj);
2000 struct netvsc_device *net_device;
2001 struct rndis_device *rdev;
2002 struct netvsc_reconfig *event = NULL;
2003 bool notify = false, reschedule = false;
2004 unsigned long flags, next_reconfig, delay;
2005
2006 /* if changes are happening, comeback later */
2007 if (!rtnl_trylock()) {
2008 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2009 return;
2010 }
2011
2012 net_device = rtnl_dereference(ndev_ctx->nvdev);
2013 if (!net_device)
2014 goto out_unlock;
2015
2016 rdev = net_device->extension;
2017
2018 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2019 if (time_is_after_jiffies(next_reconfig)) {
2020 /* link_watch only sends one notification with current state
2021 * per second, avoid doing reconfig more frequently. Handle
2022 * wrap around.
2023 */
2024 delay = next_reconfig - jiffies;
2025 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2026 schedule_delayed_work(&ndev_ctx->dwork, delay);
2027 goto out_unlock;
2028 }
2029 ndev_ctx->last_reconfig = jiffies;
2030
2031 spin_lock_irqsave(&ndev_ctx->lock, flags);
2032 if (!list_empty(&ndev_ctx->reconfig_events)) {
2033 event = list_first_entry(&ndev_ctx->reconfig_events,
2034 struct netvsc_reconfig, list);
2035 list_del(&event->list);
2036 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2037 }
2038 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2039
2040 if (!event)
2041 goto out_unlock;
2042
2043 switch (event->event) {
2044 /* Only the following events are possible due to the check in
2045 * netvsc_linkstatus_callback()
2046 */
2047 case RNDIS_STATUS_MEDIA_CONNECT:
2048 if (rdev->link_state) {
2049 rdev->link_state = false;
2050 netif_carrier_on(net);
2051 netvsc_tx_enable(net_device, net);
2052 } else {
2053 notify = true;
2054 }
2055 kfree(event);
2056 break;
2057 case RNDIS_STATUS_MEDIA_DISCONNECT:
2058 if (!rdev->link_state) {
2059 rdev->link_state = true;
2060 netif_carrier_off(net);
2061 netvsc_tx_disable(net_device, net);
2062 }
2063 kfree(event);
2064 break;
2065 case RNDIS_STATUS_NETWORK_CHANGE:
2066 /* Only makes sense if carrier is present */
2067 if (!rdev->link_state) {
2068 rdev->link_state = true;
2069 netif_carrier_off(net);
2070 netvsc_tx_disable(net_device, net);
2071 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2072 spin_lock_irqsave(&ndev_ctx->lock, flags);
2073 list_add(&event->list, &ndev_ctx->reconfig_events);
2074 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2075 reschedule = true;
2076 }
2077 break;
2078 }
2079
2080 rtnl_unlock();
2081
2082 if (notify)
2083 netdev_notify_peers(net);
2084
2085 /* link_watch only sends one notification with current state per
2086 * second, handle next reconfig event in 2 seconds.
2087 */
2088 if (reschedule)
2089 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2090
2091 return;
2092
2093 out_unlock:
2094 rtnl_unlock();
2095 }
2096
2097 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2098 {
2099 struct net_device_context *net_device_ctx;
2100 struct net_device *dev;
2101
2102 dev = netdev_master_upper_dev_get(vf_netdev);
2103 if (!dev || dev->netdev_ops != &device_ops)
2104 return NULL; /* not a netvsc device */
2105
2106 net_device_ctx = netdev_priv(dev);
2107 if (!rtnl_dereference(net_device_ctx->nvdev))
2108 return NULL; /* device is removed */
2109
2110 return dev;
2111 }
2112
2113 /* Called when VF is injecting data into network stack.
2114 * Change the associated network device from VF to netvsc.
2115 * note: already called with rcu_read_lock
2116 */
2117 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2118 {
2119 struct sk_buff *skb = *pskb;
2120 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2121 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2122 struct netvsc_vf_pcpu_stats *pcpu_stats
2123 = this_cpu_ptr(ndev_ctx->vf_stats);
2124
2125 skb = skb_share_check(skb, GFP_ATOMIC);
2126 if (unlikely(!skb))
2127 return RX_HANDLER_CONSUMED;
2128
2129 *pskb = skb;
2130
2131 skb->dev = ndev;
2132
2133 u64_stats_update_begin(&pcpu_stats->syncp);
2134 pcpu_stats->rx_packets++;
2135 pcpu_stats->rx_bytes += skb->len;
2136 u64_stats_update_end(&pcpu_stats->syncp);
2137
2138 return RX_HANDLER_ANOTHER;
2139 }
2140
2141 static int netvsc_vf_join(struct net_device *vf_netdev,
2142 struct net_device *ndev)
2143 {
2144 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2145 int ret;
2146
2147 ret = netdev_rx_handler_register(vf_netdev,
2148 netvsc_vf_handle_frame, ndev);
2149 if (ret != 0) {
2150 netdev_err(vf_netdev,
2151 "can not register netvsc VF receive handler (err = %d)\n",
2152 ret);
2153 goto rx_handler_failed;
2154 }
2155
2156 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2157 NULL, NULL, NULL);
2158 if (ret != 0) {
2159 netdev_err(vf_netdev,
2160 "can not set master device %s (err = %d)\n",
2161 ndev->name, ret);
2162 goto upper_link_failed;
2163 }
2164
2165 /* set slave flag before open to prevent IPv6 addrconf */
2166 vf_netdev->flags |= IFF_SLAVE;
2167
2168 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2169
2170 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2171
2172 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2173 return 0;
2174
2175 upper_link_failed:
2176 netdev_rx_handler_unregister(vf_netdev);
2177 rx_handler_failed:
2178 return ret;
2179 }
2180
2181 static void __netvsc_vf_setup(struct net_device *ndev,
2182 struct net_device *vf_netdev)
2183 {
2184 int ret;
2185
2186 /* Align MTU of VF with master */
2187 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2188 if (ret)
2189 netdev_warn(vf_netdev,
2190 "unable to change mtu to %u\n", ndev->mtu);
2191
2192 /* set multicast etc flags on VF */
2193 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2194
2195 /* sync address list from ndev to VF */
2196 netif_addr_lock_bh(ndev);
2197 dev_uc_sync(vf_netdev, ndev);
2198 dev_mc_sync(vf_netdev, ndev);
2199 netif_addr_unlock_bh(ndev);
2200
2201 if (netif_running(ndev)) {
2202 ret = dev_open(vf_netdev, NULL);
2203 if (ret)
2204 netdev_warn(vf_netdev,
2205 "unable to open: %d\n", ret);
2206 }
2207 }
2208
2209 /* Setup VF as slave of the synthetic device.
2210 * Runs in workqueue to avoid recursion in netlink callbacks.
2211 */
2212 static void netvsc_vf_setup(struct work_struct *w)
2213 {
2214 struct net_device_context *ndev_ctx
2215 = container_of(w, struct net_device_context, vf_takeover.work);
2216 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2217 struct net_device *vf_netdev;
2218
2219 if (!rtnl_trylock()) {
2220 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2221 return;
2222 }
2223
2224 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2225 if (vf_netdev)
2226 __netvsc_vf_setup(ndev, vf_netdev);
2227
2228 rtnl_unlock();
2229 }
2230
2231 /* Find netvsc by VF serial number.
2232 * The PCI hyperv controller records the serial number as the slot kobj name.
2233 */
2234 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2235 {
2236 struct device *parent = vf_netdev->dev.parent;
2237 struct net_device_context *ndev_ctx;
2238 struct pci_dev *pdev;
2239 u32 serial;
2240
2241 if (!parent || !dev_is_pci(parent))
2242 return NULL; /* not a PCI device */
2243
2244 pdev = to_pci_dev(parent);
2245 if (!pdev->slot) {
2246 netdev_notice(vf_netdev, "no PCI slot information\n");
2247 return NULL;
2248 }
2249
2250 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2251 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2252 pci_slot_name(pdev->slot));
2253 return NULL;
2254 }
2255
2256 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2257 if (!ndev_ctx->vf_alloc)
2258 continue;
2259
2260 if (ndev_ctx->vf_serial == serial)
2261 return hv_get_drvdata(ndev_ctx->device_ctx);
2262 }
2263
2264 netdev_notice(vf_netdev,
2265 "no netdev found for vf serial:%u\n", serial);
2266 return NULL;
2267 }
2268
2269 static int netvsc_register_vf(struct net_device *vf_netdev)
2270 {
2271 struct net_device_context *net_device_ctx;
2272 struct netvsc_device *netvsc_dev;
2273 struct bpf_prog *prog;
2274 struct net_device *ndev;
2275 int ret;
2276
2277 if (vf_netdev->addr_len != ETH_ALEN)
2278 return NOTIFY_DONE;
2279
2280 ndev = get_netvsc_byslot(vf_netdev);
2281 if (!ndev)
2282 return NOTIFY_DONE;
2283
2284 net_device_ctx = netdev_priv(ndev);
2285 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2286 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2287 return NOTIFY_DONE;
2288
2289 /* if synthetic interface is a different namespace,
2290 * then move the VF to that namespace; join will be
2291 * done again in that context.
2292 */
2293 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2294 ret = dev_change_net_namespace(vf_netdev,
2295 dev_net(ndev), "eth%d");
2296 if (ret)
2297 netdev_err(vf_netdev,
2298 "could not move to same namespace as %s: %d\n",
2299 ndev->name, ret);
2300 else
2301 netdev_info(vf_netdev,
2302 "VF moved to namespace with: %s\n",
2303 ndev->name);
2304 return NOTIFY_DONE;
2305 }
2306
2307 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2308
2309 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2310 return NOTIFY_DONE;
2311
2312 dev_hold(vf_netdev);
2313 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2314
2315 vf_netdev->wanted_features = ndev->features;
2316 netdev_update_features(vf_netdev);
2317
2318 prog = netvsc_xdp_get(netvsc_dev);
2319 netvsc_vf_setxdp(vf_netdev, prog);
2320
2321 return NOTIFY_OK;
2322 }
2323
2324 /* VF up/down change detected, schedule to change data path */
2325 static int netvsc_vf_changed(struct net_device *vf_netdev)
2326 {
2327 struct net_device_context *net_device_ctx;
2328 struct netvsc_device *netvsc_dev;
2329 struct net_device *ndev;
2330 bool vf_is_up = netif_running(vf_netdev);
2331
2332 ndev = get_netvsc_byref(vf_netdev);
2333 if (!ndev)
2334 return NOTIFY_DONE;
2335
2336 net_device_ctx = netdev_priv(ndev);
2337 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2338 if (!netvsc_dev)
2339 return NOTIFY_DONE;
2340
2341 netvsc_switch_datapath(ndev, vf_is_up);
2342 netdev_info(ndev, "Data path switched %s VF: %s\n",
2343 vf_is_up ? "to" : "from", vf_netdev->name);
2344
2345 return NOTIFY_OK;
2346 }
2347
2348 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2349 {
2350 struct net_device *ndev;
2351 struct net_device_context *net_device_ctx;
2352
2353 ndev = get_netvsc_byref(vf_netdev);
2354 if (!ndev)
2355 return NOTIFY_DONE;
2356
2357 net_device_ctx = netdev_priv(ndev);
2358 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2359
2360 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2361
2362 netvsc_vf_setxdp(vf_netdev, NULL);
2363
2364 netdev_rx_handler_unregister(vf_netdev);
2365 netdev_upper_dev_unlink(vf_netdev, ndev);
2366 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2367 dev_put(vf_netdev);
2368
2369 return NOTIFY_OK;
2370 }
2371
2372 static int netvsc_probe(struct hv_device *dev,
2373 const struct hv_vmbus_device_id *dev_id)
2374 {
2375 struct net_device *net = NULL;
2376 struct net_device_context *net_device_ctx;
2377 struct netvsc_device_info *device_info = NULL;
2378 struct netvsc_device *nvdev;
2379 int ret = -ENOMEM;
2380
2381 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2382 VRSS_CHANNEL_MAX);
2383 if (!net)
2384 goto no_net;
2385
2386 netif_carrier_off(net);
2387
2388 netvsc_init_settings(net);
2389
2390 net_device_ctx = netdev_priv(net);
2391 net_device_ctx->device_ctx = dev;
2392 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2393 if (netif_msg_probe(net_device_ctx))
2394 netdev_dbg(net, "netvsc msg_enable: %d\n",
2395 net_device_ctx->msg_enable);
2396
2397 hv_set_drvdata(dev, net);
2398
2399 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2400
2401 spin_lock_init(&net_device_ctx->lock);
2402 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2403 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2404
2405 net_device_ctx->vf_stats
2406 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2407 if (!net_device_ctx->vf_stats)
2408 goto no_stats;
2409
2410 net->netdev_ops = &device_ops;
2411 net->ethtool_ops = &ethtool_ops;
2412 SET_NETDEV_DEV(net, &dev->device);
2413
2414 /* We always need headroom for rndis header */
2415 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2416
2417 /* Initialize the number of queues to be 1, we may change it if more
2418 * channels are offered later.
2419 */
2420 netif_set_real_num_tx_queues(net, 1);
2421 netif_set_real_num_rx_queues(net, 1);
2422
2423 /* Notify the netvsc driver of the new device */
2424 device_info = netvsc_devinfo_get(NULL);
2425
2426 if (!device_info) {
2427 ret = -ENOMEM;
2428 goto devinfo_failed;
2429 }
2430
2431 nvdev = rndis_filter_device_add(dev, device_info);
2432 if (IS_ERR(nvdev)) {
2433 ret = PTR_ERR(nvdev);
2434 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2435 goto rndis_failed;
2436 }
2437
2438 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2439
2440 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2441 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2442 * all subchannels to show up, but that may not happen because
2443 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2444 * -> ... -> device_add() -> ... -> __device_attach() can't get
2445 * the device lock, so all the subchannels can't be processed --
2446 * finally netvsc_subchan_work() hangs forever.
2447 */
2448 rtnl_lock();
2449
2450 if (nvdev->num_chn > 1)
2451 schedule_work(&nvdev->subchan_work);
2452
2453 /* hw_features computed in rndis_netdev_set_hwcaps() */
2454 net->features = net->hw_features |
2455 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2456 NETIF_F_HW_VLAN_CTAG_RX;
2457 net->vlan_features = net->features;
2458
2459 /* MTU range: 68 - 1500 or 65521 */
2460 net->min_mtu = NETVSC_MTU_MIN;
2461 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2462 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2463 else
2464 net->max_mtu = ETH_DATA_LEN;
2465
2466 nvdev->tx_disable = false;
2467
2468 ret = register_netdevice(net);
2469 if (ret != 0) {
2470 pr_err("Unable to register netdev.\n");
2471 goto register_failed;
2472 }
2473
2474 list_add(&net_device_ctx->list, &netvsc_dev_list);
2475 rtnl_unlock();
2476
2477 netvsc_devinfo_put(device_info);
2478 return 0;
2479
2480 register_failed:
2481 rtnl_unlock();
2482 rndis_filter_device_remove(dev, nvdev);
2483 rndis_failed:
2484 netvsc_devinfo_put(device_info);
2485 devinfo_failed:
2486 free_percpu(net_device_ctx->vf_stats);
2487 no_stats:
2488 hv_set_drvdata(dev, NULL);
2489 free_netdev(net);
2490 no_net:
2491 return ret;
2492 }
2493
2494 static int netvsc_remove(struct hv_device *dev)
2495 {
2496 struct net_device_context *ndev_ctx;
2497 struct net_device *vf_netdev, *net;
2498 struct netvsc_device *nvdev;
2499
2500 net = hv_get_drvdata(dev);
2501 if (net == NULL) {
2502 dev_err(&dev->device, "No net device to remove\n");
2503 return 0;
2504 }
2505
2506 ndev_ctx = netdev_priv(net);
2507
2508 cancel_delayed_work_sync(&ndev_ctx->dwork);
2509
2510 rtnl_lock();
2511 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2512 if (nvdev) {
2513 cancel_work_sync(&nvdev->subchan_work);
2514 netvsc_xdp_set(net, NULL, NULL, nvdev);
2515 }
2516
2517 /*
2518 * Call to the vsc driver to let it know that the device is being
2519 * removed. Also blocks mtu and channel changes.
2520 */
2521 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2522 if (vf_netdev)
2523 netvsc_unregister_vf(vf_netdev);
2524
2525 if (nvdev)
2526 rndis_filter_device_remove(dev, nvdev);
2527
2528 unregister_netdevice(net);
2529 list_del(&ndev_ctx->list);
2530
2531 rtnl_unlock();
2532
2533 hv_set_drvdata(dev, NULL);
2534
2535 free_percpu(ndev_ctx->vf_stats);
2536 free_netdev(net);
2537 return 0;
2538 }
2539
2540 static int netvsc_suspend(struct hv_device *dev)
2541 {
2542 struct net_device_context *ndev_ctx;
2543 struct net_device *vf_netdev, *net;
2544 struct netvsc_device *nvdev;
2545 int ret;
2546
2547 net = hv_get_drvdata(dev);
2548
2549 ndev_ctx = netdev_priv(net);
2550 cancel_delayed_work_sync(&ndev_ctx->dwork);
2551
2552 rtnl_lock();
2553
2554 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2555 if (nvdev == NULL) {
2556 ret = -ENODEV;
2557 goto out;
2558 }
2559
2560 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2561 if (vf_netdev)
2562 netvsc_unregister_vf(vf_netdev);
2563
2564 /* Save the current config info */
2565 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2566
2567 ret = netvsc_detach(net, nvdev);
2568 out:
2569 rtnl_unlock();
2570
2571 return ret;
2572 }
2573
2574 static int netvsc_resume(struct hv_device *dev)
2575 {
2576 struct net_device *net = hv_get_drvdata(dev);
2577 struct net_device_context *net_device_ctx;
2578 struct netvsc_device_info *device_info;
2579 int ret;
2580
2581 rtnl_lock();
2582
2583 net_device_ctx = netdev_priv(net);
2584 device_info = net_device_ctx->saved_netvsc_dev_info;
2585
2586 ret = netvsc_attach(net, device_info);
2587
2588 netvsc_devinfo_put(device_info);
2589 net_device_ctx->saved_netvsc_dev_info = NULL;
2590
2591 rtnl_unlock();
2592
2593 return ret;
2594 }
2595 static const struct hv_vmbus_device_id id_table[] = {
2596 /* Network guid */
2597 { HV_NIC_GUID, },
2598 { },
2599 };
2600
2601 MODULE_DEVICE_TABLE(vmbus, id_table);
2602
2603 /* The one and only one */
2604 static struct hv_driver netvsc_drv = {
2605 .name = KBUILD_MODNAME,
2606 .id_table = id_table,
2607 .probe = netvsc_probe,
2608 .remove = netvsc_remove,
2609 .suspend = netvsc_suspend,
2610 .resume = netvsc_resume,
2611 .driver = {
2612 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2613 },
2614 };
2615
2616 /*
2617 * On Hyper-V, every VF interface is matched with a corresponding
2618 * synthetic interface. The synthetic interface is presented first
2619 * to the guest. When the corresponding VF instance is registered,
2620 * we will take care of switching the data path.
2621 */
2622 static int netvsc_netdev_event(struct notifier_block *this,
2623 unsigned long event, void *ptr)
2624 {
2625 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2626
2627 /* Skip our own events */
2628 if (event_dev->netdev_ops == &device_ops)
2629 return NOTIFY_DONE;
2630
2631 /* Avoid non-Ethernet type devices */
2632 if (event_dev->type != ARPHRD_ETHER)
2633 return NOTIFY_DONE;
2634
2635 /* Avoid Vlan dev with same MAC registering as VF */
2636 if (is_vlan_dev(event_dev))
2637 return NOTIFY_DONE;
2638
2639 /* Avoid Bonding master dev with same MAC registering as VF */
2640 if ((event_dev->priv_flags & IFF_BONDING) &&
2641 (event_dev->flags & IFF_MASTER))
2642 return NOTIFY_DONE;
2643
2644 switch (event) {
2645 case NETDEV_REGISTER:
2646 return netvsc_register_vf(event_dev);
2647 case NETDEV_UNREGISTER:
2648 return netvsc_unregister_vf(event_dev);
2649 case NETDEV_UP:
2650 case NETDEV_DOWN:
2651 return netvsc_vf_changed(event_dev);
2652 default:
2653 return NOTIFY_DONE;
2654 }
2655 }
2656
2657 static struct notifier_block netvsc_netdev_notifier = {
2658 .notifier_call = netvsc_netdev_event,
2659 };
2660
2661 static void __exit netvsc_drv_exit(void)
2662 {
2663 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2664 vmbus_driver_unregister(&netvsc_drv);
2665 }
2666
2667 static int __init netvsc_drv_init(void)
2668 {
2669 int ret;
2670
2671 if (ring_size < RING_SIZE_MIN) {
2672 ring_size = RING_SIZE_MIN;
2673 pr_info("Increased ring_size to %u (min allowed)\n",
2674 ring_size);
2675 }
2676 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2677
2678 ret = vmbus_driver_register(&netvsc_drv);
2679 if (ret)
2680 return ret;
2681
2682 register_netdevice_notifier(&netvsc_netdev_notifier);
2683 return 0;
2684 }
2685
2686 MODULE_LICENSE("GPL");
2687 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2688
2689 module_init(netvsc_drv_init);
2690 module_exit(netvsc_drv_exit);