]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/hyperv/netvsc_drv.c
wimax/i2400m: fix a memory leak bug
[thirdparty/linux.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28
29 #include <net/arp.h>
30 #include <net/route.h>
31 #include <net/sock.h>
32 #include <net/pkt_sched.h>
33 #include <net/checksum.h>
34 #include <net/ip6_checksum.h>
35
36 #include "hyperv_net.h"
37
38 #define RING_SIZE_MIN 64
39 #define RETRY_US_LO 5000
40 #define RETRY_US_HI 10000
41 #define RETRY_MAX 2000 /* >10 sec */
42
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
45
46 static unsigned int ring_size __ro_after_init = 128;
47 module_param(ring_size, uint, 0444);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 unsigned int netvsc_ring_bytes __ro_after_init;
50
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 NETIF_MSG_TX_ERR;
55
56 static int debug = -1;
57 module_param(debug, int, 0444);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static LIST_HEAD(netvsc_dev_list);
61
62 static void netvsc_change_rx_flags(struct net_device *net, int change)
63 {
64 struct net_device_context *ndev_ctx = netdev_priv(net);
65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 int inc;
67
68 if (!vf_netdev)
69 return;
70
71 if (change & IFF_PROMISC) {
72 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 dev_set_promiscuity(vf_netdev, inc);
74 }
75
76 if (change & IFF_ALLMULTI) {
77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 dev_set_allmulti(vf_netdev, inc);
79 }
80 }
81
82 static void netvsc_set_rx_mode(struct net_device *net)
83 {
84 struct net_device_context *ndev_ctx = netdev_priv(net);
85 struct net_device *vf_netdev;
86 struct netvsc_device *nvdev;
87
88 rcu_read_lock();
89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 if (vf_netdev) {
91 dev_uc_sync(vf_netdev, net);
92 dev_mc_sync(vf_netdev, net);
93 }
94
95 nvdev = rcu_dereference(ndev_ctx->nvdev);
96 if (nvdev)
97 rndis_filter_update(nvdev);
98 rcu_read_unlock();
99 }
100
101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 struct net_device *ndev)
103 {
104 nvscdev->tx_disable = false;
105 virt_wmb(); /* ensure queue wake up mechanism is on */
106
107 netif_tx_wake_all_queues(ndev);
108 }
109
110 static int netvsc_open(struct net_device *net)
111 {
112 struct net_device_context *ndev_ctx = netdev_priv(net);
113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 struct rndis_device *rdev;
116 int ret = 0;
117
118 netif_carrier_off(net);
119
120 /* Open up the device */
121 ret = rndis_filter_open(nvdev);
122 if (ret != 0) {
123 netdev_err(net, "unable to open device (ret %d).\n", ret);
124 return ret;
125 }
126
127 rdev = nvdev->extension;
128 if (!rdev->link_state) {
129 netif_carrier_on(net);
130 netvsc_tx_enable(nvdev, net);
131 }
132
133 if (vf_netdev) {
134 /* Setting synthetic device up transparently sets
135 * slave as up. If open fails, then slave will be
136 * still be offline (and not used).
137 */
138 ret = dev_open(vf_netdev, NULL);
139 if (ret)
140 netdev_warn(net,
141 "unable to open slave: %s: %d\n",
142 vf_netdev->name, ret);
143 }
144 return 0;
145 }
146
147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148 {
149 unsigned int retry = 0;
150 int i;
151
152 /* Ensure pending bytes in ring are read */
153 for (;;) {
154 u32 aread = 0;
155
156 for (i = 0; i < nvdev->num_chn; i++) {
157 struct vmbus_channel *chn
158 = nvdev->chan_table[i].channel;
159
160 if (!chn)
161 continue;
162
163 /* make sure receive not running now */
164 napi_synchronize(&nvdev->chan_table[i].napi);
165
166 aread = hv_get_bytes_to_read(&chn->inbound);
167 if (aread)
168 break;
169
170 aread = hv_get_bytes_to_read(&chn->outbound);
171 if (aread)
172 break;
173 }
174
175 if (aread == 0)
176 return 0;
177
178 if (++retry > RETRY_MAX)
179 return -ETIMEDOUT;
180
181 usleep_range(RETRY_US_LO, RETRY_US_HI);
182 }
183 }
184
185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 struct net_device *ndev)
187 {
188 if (nvscdev) {
189 nvscdev->tx_disable = true;
190 virt_wmb(); /* ensure txq will not wake up after stop */
191 }
192
193 netif_tx_disable(ndev);
194 }
195
196 static int netvsc_close(struct net_device *net)
197 {
198 struct net_device_context *net_device_ctx = netdev_priv(net);
199 struct net_device *vf_netdev
200 = rtnl_dereference(net_device_ctx->vf_netdev);
201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 int ret;
203
204 netvsc_tx_disable(nvdev, net);
205
206 /* No need to close rndis filter if it is removed already */
207 if (!nvdev)
208 return 0;
209
210 ret = rndis_filter_close(nvdev);
211 if (ret != 0) {
212 netdev_err(net, "unable to close device (ret %d).\n", ret);
213 return ret;
214 }
215
216 ret = netvsc_wait_until_empty(nvdev);
217 if (ret)
218 netdev_err(net, "Ring buffer not empty after closing rndis\n");
219
220 if (vf_netdev)
221 dev_close(vf_netdev);
222
223 return ret;
224 }
225
226 static inline void *init_ppi_data(struct rndis_message *msg,
227 u32 ppi_size, u32 pkt_type)
228 {
229 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 struct rndis_per_packet_info *ppi;
231
232 rndis_pkt->data_offset += ppi_size;
233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 + rndis_pkt->per_pkt_info_len;
235
236 ppi->size = ppi_size;
237 ppi->type = pkt_type;
238 ppi->internal = 0;
239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240
241 rndis_pkt->per_pkt_info_len += ppi_size;
242
243 return ppi + 1;
244 }
245
246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247 * packets. We can use ethtool to change UDP hash level when necessary.
248 */
249 static inline u32 netvsc_get_hash(
250 struct sk_buff *skb,
251 const struct net_device_context *ndc)
252 {
253 struct flow_keys flow;
254 u32 hash, pkt_proto = 0;
255 static u32 hashrnd __read_mostly;
256
257 net_get_random_once(&hashrnd, sizeof(hashrnd));
258
259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 return 0;
261
262 switch (flow.basic.ip_proto) {
263 case IPPROTO_TCP:
264 if (flow.basic.n_proto == htons(ETH_P_IP))
265 pkt_proto = HV_TCP4_L4HASH;
266 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 pkt_proto = HV_TCP6_L4HASH;
268
269 break;
270
271 case IPPROTO_UDP:
272 if (flow.basic.n_proto == htons(ETH_P_IP))
273 pkt_proto = HV_UDP4_L4HASH;
274 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 pkt_proto = HV_UDP6_L4HASH;
276
277 break;
278 }
279
280 if (pkt_proto & ndc->l4_hash) {
281 return skb_get_hash(skb);
282 } else {
283 if (flow.basic.n_proto == htons(ETH_P_IP))
284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 else
288 hash = 0;
289
290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291 }
292
293 return hash;
294 }
295
296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 struct sk_buff *skb, int old_idx)
298 {
299 const struct net_device_context *ndc = netdev_priv(ndev);
300 struct sock *sk = skb->sk;
301 int q_idx;
302
303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 (VRSS_SEND_TAB_SIZE - 1)];
305
306 /* If queue index changed record the new value */
307 if (q_idx != old_idx &&
308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 sk_tx_queue_set(sk, q_idx);
310
311 return q_idx;
312 }
313
314 /*
315 * Select queue for transmit.
316 *
317 * If a valid queue has already been assigned, then use that.
318 * Otherwise compute tx queue based on hash and the send table.
319 *
320 * This is basically similar to default (netdev_pick_tx) with the added step
321 * of using the host send_table when no other queue has been assigned.
322 *
323 * TODO support XPS - but get_xps_queue not exported
324 */
325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326 {
327 int q_idx = sk_tx_queue_get(skb->sk);
328
329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 /* If forwarding a packet, we use the recorded queue when
331 * available for better cache locality.
332 */
333 if (skb_rx_queue_recorded(skb))
334 q_idx = skb_get_rx_queue(skb);
335 else
336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 }
338
339 return q_idx;
340 }
341
342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 struct net_device *sb_dev)
344 {
345 struct net_device_context *ndc = netdev_priv(ndev);
346 struct net_device *vf_netdev;
347 u16 txq;
348
349 rcu_read_lock();
350 vf_netdev = rcu_dereference(ndc->vf_netdev);
351 if (vf_netdev) {
352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353
354 if (vf_ops->ndo_select_queue)
355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 else
357 txq = netdev_pick_tx(vf_netdev, skb, NULL);
358
359 /* Record the queue selected by VF so that it can be
360 * used for common case where VF has more queues than
361 * the synthetic device.
362 */
363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 } else {
365 txq = netvsc_pick_tx(ndev, skb);
366 }
367 rcu_read_unlock();
368
369 while (unlikely(txq >= ndev->real_num_tx_queues))
370 txq -= ndev->real_num_tx_queues;
371
372 return txq;
373 }
374
375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 struct hv_page_buffer *pb)
377 {
378 int j = 0;
379
380 /* Deal with compound pages by ignoring unused part
381 * of the page.
382 */
383 page += (offset >> PAGE_SHIFT);
384 offset &= ~PAGE_MASK;
385
386 while (len > 0) {
387 unsigned long bytes;
388
389 bytes = PAGE_SIZE - offset;
390 if (bytes > len)
391 bytes = len;
392 pb[j].pfn = page_to_pfn(page);
393 pb[j].offset = offset;
394 pb[j].len = bytes;
395
396 offset += bytes;
397 len -= bytes;
398
399 if (offset == PAGE_SIZE && len) {
400 page++;
401 offset = 0;
402 j++;
403 }
404 }
405
406 return j + 1;
407 }
408
409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 struct hv_netvsc_packet *packet,
411 struct hv_page_buffer *pb)
412 {
413 u32 slots_used = 0;
414 char *data = skb->data;
415 int frags = skb_shinfo(skb)->nr_frags;
416 int i;
417
418 /* The packet is laid out thus:
419 * 1. hdr: RNDIS header and PPI
420 * 2. skb linear data
421 * 3. skb fragment data
422 */
423 slots_used += fill_pg_buf(virt_to_page(hdr),
424 offset_in_page(hdr),
425 len, &pb[slots_used]);
426
427 packet->rmsg_size = len;
428 packet->rmsg_pgcnt = slots_used;
429
430 slots_used += fill_pg_buf(virt_to_page(data),
431 offset_in_page(data),
432 skb_headlen(skb), &pb[slots_used]);
433
434 for (i = 0; i < frags; i++) {
435 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437 slots_used += fill_pg_buf(skb_frag_page(frag),
438 frag->page_offset,
439 skb_frag_size(frag), &pb[slots_used]);
440 }
441 return slots_used;
442 }
443
444 static int count_skb_frag_slots(struct sk_buff *skb)
445 {
446 int i, frags = skb_shinfo(skb)->nr_frags;
447 int pages = 0;
448
449 for (i = 0; i < frags; i++) {
450 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 unsigned long size = skb_frag_size(frag);
452 unsigned long offset = frag->page_offset;
453
454 /* Skip unused frames from start of page */
455 offset &= ~PAGE_MASK;
456 pages += PFN_UP(offset + size);
457 }
458 return pages;
459 }
460
461 static int netvsc_get_slots(struct sk_buff *skb)
462 {
463 char *data = skb->data;
464 unsigned int offset = offset_in_page(data);
465 unsigned int len = skb_headlen(skb);
466 int slots;
467 int frag_slots;
468
469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 frag_slots = count_skb_frag_slots(skb);
471 return slots + frag_slots;
472 }
473
474 static u32 net_checksum_info(struct sk_buff *skb)
475 {
476 if (skb->protocol == htons(ETH_P_IP)) {
477 struct iphdr *ip = ip_hdr(skb);
478
479 if (ip->protocol == IPPROTO_TCP)
480 return TRANSPORT_INFO_IPV4_TCP;
481 else if (ip->protocol == IPPROTO_UDP)
482 return TRANSPORT_INFO_IPV4_UDP;
483 } else {
484 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485
486 if (ip6->nexthdr == IPPROTO_TCP)
487 return TRANSPORT_INFO_IPV6_TCP;
488 else if (ip6->nexthdr == IPPROTO_UDP)
489 return TRANSPORT_INFO_IPV6_UDP;
490 }
491
492 return TRANSPORT_INFO_NOT_IP;
493 }
494
495 /* Send skb on the slave VF device. */
496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 struct sk_buff *skb)
498 {
499 struct net_device_context *ndev_ctx = netdev_priv(net);
500 unsigned int len = skb->len;
501 int rc;
502
503 skb->dev = vf_netdev;
504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505
506 rc = dev_queue_xmit(skb);
507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 struct netvsc_vf_pcpu_stats *pcpu_stats
509 = this_cpu_ptr(ndev_ctx->vf_stats);
510
511 u64_stats_update_begin(&pcpu_stats->syncp);
512 pcpu_stats->tx_packets++;
513 pcpu_stats->tx_bytes += len;
514 u64_stats_update_end(&pcpu_stats->syncp);
515 } else {
516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 }
518
519 return rc;
520 }
521
522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523 {
524 struct net_device_context *net_device_ctx = netdev_priv(net);
525 struct hv_netvsc_packet *packet = NULL;
526 int ret;
527 unsigned int num_data_pgs;
528 struct rndis_message *rndis_msg;
529 struct net_device *vf_netdev;
530 u32 rndis_msg_size;
531 u32 hash;
532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533
534 /* if VF is present and up then redirect packets
535 * already called with rcu_read_lock_bh
536 */
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 !netpoll_tx_running(net))
540 return netvsc_vf_xmit(net, vf_netdev, skb);
541
542 /* We will atmost need two pages to describe the rndis
543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 * of pages in a single packet. If skb is scattered around
545 * more pages we try linearizing it.
546 */
547
548 num_data_pgs = netvsc_get_slots(skb) + 2;
549
550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 ++net_device_ctx->eth_stats.tx_scattered;
552
553 if (skb_linearize(skb))
554 goto no_memory;
555
556 num_data_pgs = netvsc_get_slots(skb) + 2;
557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 ++net_device_ctx->eth_stats.tx_too_big;
559 goto drop;
560 }
561 }
562
563 /*
564 * Place the rndis header in the skb head room and
565 * the skb->cb will be used for hv_netvsc_packet
566 * structure.
567 */
568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 if (ret)
570 goto no_memory;
571
572 /* Use the skb control buffer for building up the packet */
573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 FIELD_SIZEOF(struct sk_buff, cb));
575 packet = (struct hv_netvsc_packet *)skb->cb;
576
577 packet->q_idx = skb_get_queue_mapping(skb);
578
579 packet->total_data_buflen = skb->len;
580 packet->total_bytes = skb->len;
581 packet->total_packets = 1;
582
583 rndis_msg = (struct rndis_message *)skb->head;
584
585 /* Add the rndis header */
586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 rndis_msg->msg_len = packet->total_data_buflen;
588
589 rndis_msg->msg.pkt = (struct rndis_packet) {
590 .data_offset = sizeof(struct rndis_packet),
591 .data_len = packet->total_data_buflen,
592 .per_pkt_info_offset = sizeof(struct rndis_packet),
593 };
594
595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596
597 hash = skb_get_hash_raw(skb);
598 if (hash != 0 && net->real_num_tx_queues > 1) {
599 u32 *hash_info;
600
601 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 NBL_HASH_VALUE);
604 *hash_info = hash;
605 }
606
607 if (skb_vlan_tag_present(skb)) {
608 struct ndis_pkt_8021q_info *vlan;
609
610 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 IEEE_8021Q_INFO);
613
614 vlan->value = 0;
615 vlan->vlanid = skb_vlan_tag_get_id(skb);
616 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 vlan->pri = skb_vlan_tag_get_prio(skb);
618 }
619
620 if (skb_is_gso(skb)) {
621 struct ndis_tcp_lso_info *lso_info;
622
623 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 TCP_LARGESEND_PKTINFO);
626
627 lso_info->value = 0;
628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 if (skb->protocol == htons(ETH_P_IP)) {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 ip_hdr(skb)->tot_len = 0;
633 ip_hdr(skb)->check = 0;
634 tcp_hdr(skb)->check =
635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 } else {
638 lso_info->lso_v2_transmit.ip_version =
639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 ipv6_hdr(skb)->payload_len = 0;
641 tcp_hdr(skb)->check =
642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 }
645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 struct ndis_tcp_ip_checksum_info *csum_info;
650
651 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 TCPIP_CHKSUM_PKTINFO);
654
655 csum_info->value = 0;
656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657
658 if (skb->protocol == htons(ETH_P_IP)) {
659 csum_info->transmit.is_ipv4 = 1;
660
661 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 csum_info->transmit.tcp_checksum = 1;
663 else
664 csum_info->transmit.udp_checksum = 1;
665 } else {
666 csum_info->transmit.is_ipv6 = 1;
667
668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 csum_info->transmit.tcp_checksum = 1;
670 else
671 csum_info->transmit.udp_checksum = 1;
672 }
673 } else {
674 /* Can't do offload of this type of checksum */
675 if (skb_checksum_help(skb))
676 goto drop;
677 }
678 }
679
680 /* Start filling in the page buffers with the rndis hdr */
681 rndis_msg->msg_len += rndis_msg_size;
682 packet->total_data_buflen = rndis_msg->msg_len;
683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 skb, packet, pb);
685
686 /* timestamp packet in software */
687 skb_tx_timestamp(skb);
688
689 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 if (likely(ret == 0))
691 return NETDEV_TX_OK;
692
693 if (ret == -EAGAIN) {
694 ++net_device_ctx->eth_stats.tx_busy;
695 return NETDEV_TX_BUSY;
696 }
697
698 if (ret == -ENOSPC)
699 ++net_device_ctx->eth_stats.tx_no_space;
700
701 drop:
702 dev_kfree_skb_any(skb);
703 net->stats.tx_dropped++;
704
705 return NETDEV_TX_OK;
706
707 no_memory:
708 ++net_device_ctx->eth_stats.tx_no_memory;
709 goto drop;
710 }
711
712 /*
713 * netvsc_linkstatus_callback - Link up/down notification
714 */
715 void netvsc_linkstatus_callback(struct net_device *net,
716 struct rndis_message *resp)
717 {
718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 struct net_device_context *ndev_ctx = netdev_priv(net);
720 struct netvsc_reconfig *event;
721 unsigned long flags;
722
723 /* Update the physical link speed when changing to another vSwitch */
724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 u32 speed;
726
727 speed = *(u32 *)((void *)indicate
728 + indicate->status_buf_offset) / 10000;
729 ndev_ctx->speed = speed;
730 return;
731 }
732
733 /* Handle these link change statuses below */
734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 return;
738
739 if (net->reg_state != NETREG_REGISTERED)
740 return;
741
742 event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 if (!event)
744 return;
745 event->event = indicate->status;
746
747 spin_lock_irqsave(&ndev_ctx->lock, flags);
748 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750
751 schedule_delayed_work(&ndev_ctx->dwork, 0);
752 }
753
754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
755 {
756 struct iphdr *iph = (struct iphdr *)skb->data;
757
758 iph->check = 0;
759 iph->check = ip_fast_csum(iph, iph->ihl);
760 }
761
762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 struct netvsc_channel *nvchan)
764 {
765 struct napi_struct *napi = &nvchan->napi;
766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 const struct ndis_tcp_ip_checksum_info *csum_info =
768 nvchan->rsc.csum_info;
769 struct sk_buff *skb;
770 int i;
771
772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 if (!skb)
774 return skb;
775
776 /*
777 * Copy to skb. This copy is needed here since the memory pointed by
778 * hv_netvsc_packet cannot be deallocated
779 */
780 for (i = 0; i < nvchan->rsc.cnt; i++)
781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782
783 skb->protocol = eth_type_trans(skb, net);
784
785 /* skb is already created with CHECKSUM_NONE */
786 skb_checksum_none_assert(skb);
787
788 /* Incoming packets may have IP header checksum verified by the host.
789 * They may not have IP header checksum computed after coalescing.
790 * We compute it here if the flags are set, because on Linux, the IP
791 * checksum is always checked.
792 */
793 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 csum_info->receive.ip_checksum_succeeded &&
795 skb->protocol == htons(ETH_P_IP))
796 netvsc_comp_ipcsum(skb);
797
798 /* Do L4 checksum offload if enabled and present.
799 */
800 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 if (csum_info->receive.tcp_checksum_succeeded ||
802 csum_info->receive.udp_checksum_succeeded)
803 skb->ip_summed = CHECKSUM_UNNECESSARY;
804 }
805
806 if (vlan) {
807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 (vlan->cfi ? VLAN_CFI_MASK : 0);
809
810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 vlan_tci);
812 }
813
814 return skb;
815 }
816
817 /*
818 * netvsc_recv_callback - Callback when we receive a packet from the
819 * "wire" on the specified device.
820 */
821 int netvsc_recv_callback(struct net_device *net,
822 struct netvsc_device *net_device,
823 struct netvsc_channel *nvchan)
824 {
825 struct net_device_context *net_device_ctx = netdev_priv(net);
826 struct vmbus_channel *channel = nvchan->channel;
827 u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 struct sk_buff *skb;
829 struct netvsc_stats *rx_stats;
830
831 if (net->reg_state != NETREG_REGISTERED)
832 return NVSP_STAT_FAIL;
833
834 /* Allocate a skb - TODO direct I/O to pages? */
835 skb = netvsc_alloc_recv_skb(net, nvchan);
836
837 if (unlikely(!skb)) {
838 ++net_device_ctx->eth_stats.rx_no_memory;
839 return NVSP_STAT_FAIL;
840 }
841
842 skb_record_rx_queue(skb, q_idx);
843
844 /*
845 * Even if injecting the packet, record the statistics
846 * on the synthetic device because modifying the VF device
847 * statistics will not work correctly.
848 */
849 rx_stats = &nvchan->rx_stats;
850 u64_stats_update_begin(&rx_stats->syncp);
851 rx_stats->packets++;
852 rx_stats->bytes += nvchan->rsc.pktlen;
853
854 if (skb->pkt_type == PACKET_BROADCAST)
855 ++rx_stats->broadcast;
856 else if (skb->pkt_type == PACKET_MULTICAST)
857 ++rx_stats->multicast;
858 u64_stats_update_end(&rx_stats->syncp);
859
860 napi_gro_receive(&nvchan->napi, skb);
861 return NVSP_STAT_SUCCESS;
862 }
863
864 static void netvsc_get_drvinfo(struct net_device *net,
865 struct ethtool_drvinfo *info)
866 {
867 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
868 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
869 }
870
871 static void netvsc_get_channels(struct net_device *net,
872 struct ethtool_channels *channel)
873 {
874 struct net_device_context *net_device_ctx = netdev_priv(net);
875 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
876
877 if (nvdev) {
878 channel->max_combined = nvdev->max_chn;
879 channel->combined_count = nvdev->num_chn;
880 }
881 }
882
883 /* Alloc struct netvsc_device_info, and initialize it from either existing
884 * struct netvsc_device, or from default values.
885 */
886 static struct netvsc_device_info *netvsc_devinfo_get
887 (struct netvsc_device *nvdev)
888 {
889 struct netvsc_device_info *dev_info;
890
891 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
892
893 if (!dev_info)
894 return NULL;
895
896 if (nvdev) {
897 dev_info->num_chn = nvdev->num_chn;
898 dev_info->send_sections = nvdev->send_section_cnt;
899 dev_info->send_section_size = nvdev->send_section_size;
900 dev_info->recv_sections = nvdev->recv_section_cnt;
901 dev_info->recv_section_size = nvdev->recv_section_size;
902
903 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
904 NETVSC_HASH_KEYLEN);
905 } else {
906 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
907 dev_info->send_sections = NETVSC_DEFAULT_TX;
908 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
909 dev_info->recv_sections = NETVSC_DEFAULT_RX;
910 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
911 }
912
913 return dev_info;
914 }
915
916 static int netvsc_detach(struct net_device *ndev,
917 struct netvsc_device *nvdev)
918 {
919 struct net_device_context *ndev_ctx = netdev_priv(ndev);
920 struct hv_device *hdev = ndev_ctx->device_ctx;
921 int ret;
922
923 /* Don't try continuing to try and setup sub channels */
924 if (cancel_work_sync(&nvdev->subchan_work))
925 nvdev->num_chn = 1;
926
927 /* If device was up (receiving) then shutdown */
928 if (netif_running(ndev)) {
929 netvsc_tx_disable(nvdev, ndev);
930
931 ret = rndis_filter_close(nvdev);
932 if (ret) {
933 netdev_err(ndev,
934 "unable to close device (ret %d).\n", ret);
935 return ret;
936 }
937
938 ret = netvsc_wait_until_empty(nvdev);
939 if (ret) {
940 netdev_err(ndev,
941 "Ring buffer not empty after closing rndis\n");
942 return ret;
943 }
944 }
945
946 netif_device_detach(ndev);
947
948 rndis_filter_device_remove(hdev, nvdev);
949
950 return 0;
951 }
952
953 static int netvsc_attach(struct net_device *ndev,
954 struct netvsc_device_info *dev_info)
955 {
956 struct net_device_context *ndev_ctx = netdev_priv(ndev);
957 struct hv_device *hdev = ndev_ctx->device_ctx;
958 struct netvsc_device *nvdev;
959 struct rndis_device *rdev;
960 int ret;
961
962 nvdev = rndis_filter_device_add(hdev, dev_info);
963 if (IS_ERR(nvdev))
964 return PTR_ERR(nvdev);
965
966 if (nvdev->num_chn > 1) {
967 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
968
969 /* if unavailable, just proceed with one queue */
970 if (ret) {
971 nvdev->max_chn = 1;
972 nvdev->num_chn = 1;
973 }
974 }
975
976 /* In any case device is now ready */
977 netif_device_attach(ndev);
978
979 /* Note: enable and attach happen when sub-channels setup */
980 netif_carrier_off(ndev);
981
982 if (netif_running(ndev)) {
983 ret = rndis_filter_open(nvdev);
984 if (ret)
985 return ret;
986
987 rdev = nvdev->extension;
988 if (!rdev->link_state)
989 netif_carrier_on(ndev);
990 }
991
992 return 0;
993 }
994
995 static int netvsc_set_channels(struct net_device *net,
996 struct ethtool_channels *channels)
997 {
998 struct net_device_context *net_device_ctx = netdev_priv(net);
999 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1000 unsigned int orig, count = channels->combined_count;
1001 struct netvsc_device_info *device_info;
1002 int ret;
1003
1004 /* We do not support separate count for rx, tx, or other */
1005 if (count == 0 ||
1006 channels->rx_count || channels->tx_count || channels->other_count)
1007 return -EINVAL;
1008
1009 if (!nvdev || nvdev->destroy)
1010 return -ENODEV;
1011
1012 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1013 return -EINVAL;
1014
1015 if (count > nvdev->max_chn)
1016 return -EINVAL;
1017
1018 orig = nvdev->num_chn;
1019
1020 device_info = netvsc_devinfo_get(nvdev);
1021
1022 if (!device_info)
1023 return -ENOMEM;
1024
1025 device_info->num_chn = count;
1026
1027 ret = netvsc_detach(net, nvdev);
1028 if (ret)
1029 goto out;
1030
1031 ret = netvsc_attach(net, device_info);
1032 if (ret) {
1033 device_info->num_chn = orig;
1034 if (netvsc_attach(net, device_info))
1035 netdev_err(net, "restoring channel setting failed\n");
1036 }
1037
1038 out:
1039 kfree(device_info);
1040 return ret;
1041 }
1042
1043 static bool
1044 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1045 {
1046 struct ethtool_link_ksettings diff1 = *cmd;
1047 struct ethtool_link_ksettings diff2 = {};
1048
1049 diff1.base.speed = 0;
1050 diff1.base.duplex = 0;
1051 /* advertising and cmd are usually set */
1052 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1053 diff1.base.cmd = 0;
1054 /* We set port to PORT_OTHER */
1055 diff2.base.port = PORT_OTHER;
1056
1057 return !memcmp(&diff1, &diff2, sizeof(diff1));
1058 }
1059
1060 static void netvsc_init_settings(struct net_device *dev)
1061 {
1062 struct net_device_context *ndc = netdev_priv(dev);
1063
1064 ndc->l4_hash = HV_DEFAULT_L4HASH;
1065
1066 ndc->speed = SPEED_UNKNOWN;
1067 ndc->duplex = DUPLEX_FULL;
1068
1069 dev->features = NETIF_F_LRO;
1070 }
1071
1072 static int netvsc_get_link_ksettings(struct net_device *dev,
1073 struct ethtool_link_ksettings *cmd)
1074 {
1075 struct net_device_context *ndc = netdev_priv(dev);
1076
1077 cmd->base.speed = ndc->speed;
1078 cmd->base.duplex = ndc->duplex;
1079 cmd->base.port = PORT_OTHER;
1080
1081 return 0;
1082 }
1083
1084 static int netvsc_set_link_ksettings(struct net_device *dev,
1085 const struct ethtool_link_ksettings *cmd)
1086 {
1087 struct net_device_context *ndc = netdev_priv(dev);
1088 u32 speed;
1089
1090 speed = cmd->base.speed;
1091 if (!ethtool_validate_speed(speed) ||
1092 !ethtool_validate_duplex(cmd->base.duplex) ||
1093 !netvsc_validate_ethtool_ss_cmd(cmd))
1094 return -EINVAL;
1095
1096 ndc->speed = speed;
1097 ndc->duplex = cmd->base.duplex;
1098
1099 return 0;
1100 }
1101
1102 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1103 {
1104 struct net_device_context *ndevctx = netdev_priv(ndev);
1105 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1106 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1107 int orig_mtu = ndev->mtu;
1108 struct netvsc_device_info *device_info;
1109 int ret = 0;
1110
1111 if (!nvdev || nvdev->destroy)
1112 return -ENODEV;
1113
1114 device_info = netvsc_devinfo_get(nvdev);
1115
1116 if (!device_info)
1117 return -ENOMEM;
1118
1119 /* Change MTU of underlying VF netdev first. */
1120 if (vf_netdev) {
1121 ret = dev_set_mtu(vf_netdev, mtu);
1122 if (ret)
1123 goto out;
1124 }
1125
1126 ret = netvsc_detach(ndev, nvdev);
1127 if (ret)
1128 goto rollback_vf;
1129
1130 ndev->mtu = mtu;
1131
1132 ret = netvsc_attach(ndev, device_info);
1133 if (!ret)
1134 goto out;
1135
1136 /* Attempt rollback to original MTU */
1137 ndev->mtu = orig_mtu;
1138
1139 if (netvsc_attach(ndev, device_info))
1140 netdev_err(ndev, "restoring mtu failed\n");
1141 rollback_vf:
1142 if (vf_netdev)
1143 dev_set_mtu(vf_netdev, orig_mtu);
1144
1145 out:
1146 kfree(device_info);
1147 return ret;
1148 }
1149
1150 static void netvsc_get_vf_stats(struct net_device *net,
1151 struct netvsc_vf_pcpu_stats *tot)
1152 {
1153 struct net_device_context *ndev_ctx = netdev_priv(net);
1154 int i;
1155
1156 memset(tot, 0, sizeof(*tot));
1157
1158 for_each_possible_cpu(i) {
1159 const struct netvsc_vf_pcpu_stats *stats
1160 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1161 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1162 unsigned int start;
1163
1164 do {
1165 start = u64_stats_fetch_begin_irq(&stats->syncp);
1166 rx_packets = stats->rx_packets;
1167 tx_packets = stats->tx_packets;
1168 rx_bytes = stats->rx_bytes;
1169 tx_bytes = stats->tx_bytes;
1170 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1171
1172 tot->rx_packets += rx_packets;
1173 tot->tx_packets += tx_packets;
1174 tot->rx_bytes += rx_bytes;
1175 tot->tx_bytes += tx_bytes;
1176 tot->tx_dropped += stats->tx_dropped;
1177 }
1178 }
1179
1180 static void netvsc_get_pcpu_stats(struct net_device *net,
1181 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1182 {
1183 struct net_device_context *ndev_ctx = netdev_priv(net);
1184 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1185 int i;
1186
1187 /* fetch percpu stats of vf */
1188 for_each_possible_cpu(i) {
1189 const struct netvsc_vf_pcpu_stats *stats =
1190 per_cpu_ptr(ndev_ctx->vf_stats, i);
1191 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1192 unsigned int start;
1193
1194 do {
1195 start = u64_stats_fetch_begin_irq(&stats->syncp);
1196 this_tot->vf_rx_packets = stats->rx_packets;
1197 this_tot->vf_tx_packets = stats->tx_packets;
1198 this_tot->vf_rx_bytes = stats->rx_bytes;
1199 this_tot->vf_tx_bytes = stats->tx_bytes;
1200 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1201 this_tot->rx_packets = this_tot->vf_rx_packets;
1202 this_tot->tx_packets = this_tot->vf_tx_packets;
1203 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1204 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1205 }
1206
1207 /* fetch percpu stats of netvsc */
1208 for (i = 0; i < nvdev->num_chn; i++) {
1209 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1210 const struct netvsc_stats *stats;
1211 struct netvsc_ethtool_pcpu_stats *this_tot =
1212 &pcpu_tot[nvchan->channel->target_cpu];
1213 u64 packets, bytes;
1214 unsigned int start;
1215
1216 stats = &nvchan->tx_stats;
1217 do {
1218 start = u64_stats_fetch_begin_irq(&stats->syncp);
1219 packets = stats->packets;
1220 bytes = stats->bytes;
1221 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1222
1223 this_tot->tx_bytes += bytes;
1224 this_tot->tx_packets += packets;
1225
1226 stats = &nvchan->rx_stats;
1227 do {
1228 start = u64_stats_fetch_begin_irq(&stats->syncp);
1229 packets = stats->packets;
1230 bytes = stats->bytes;
1231 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1232
1233 this_tot->rx_bytes += bytes;
1234 this_tot->rx_packets += packets;
1235 }
1236 }
1237
1238 static void netvsc_get_stats64(struct net_device *net,
1239 struct rtnl_link_stats64 *t)
1240 {
1241 struct net_device_context *ndev_ctx = netdev_priv(net);
1242 struct netvsc_device *nvdev;
1243 struct netvsc_vf_pcpu_stats vf_tot;
1244 int i;
1245
1246 rcu_read_lock();
1247
1248 nvdev = rcu_dereference(ndev_ctx->nvdev);
1249 if (!nvdev)
1250 goto out;
1251
1252 netdev_stats_to_stats64(t, &net->stats);
1253
1254 netvsc_get_vf_stats(net, &vf_tot);
1255 t->rx_packets += vf_tot.rx_packets;
1256 t->tx_packets += vf_tot.tx_packets;
1257 t->rx_bytes += vf_tot.rx_bytes;
1258 t->tx_bytes += vf_tot.tx_bytes;
1259 t->tx_dropped += vf_tot.tx_dropped;
1260
1261 for (i = 0; i < nvdev->num_chn; i++) {
1262 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1263 const struct netvsc_stats *stats;
1264 u64 packets, bytes, multicast;
1265 unsigned int start;
1266
1267 stats = &nvchan->tx_stats;
1268 do {
1269 start = u64_stats_fetch_begin_irq(&stats->syncp);
1270 packets = stats->packets;
1271 bytes = stats->bytes;
1272 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1273
1274 t->tx_bytes += bytes;
1275 t->tx_packets += packets;
1276
1277 stats = &nvchan->rx_stats;
1278 do {
1279 start = u64_stats_fetch_begin_irq(&stats->syncp);
1280 packets = stats->packets;
1281 bytes = stats->bytes;
1282 multicast = stats->multicast + stats->broadcast;
1283 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1284
1285 t->rx_bytes += bytes;
1286 t->rx_packets += packets;
1287 t->multicast += multicast;
1288 }
1289 out:
1290 rcu_read_unlock();
1291 }
1292
1293 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1294 {
1295 struct net_device_context *ndc = netdev_priv(ndev);
1296 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1297 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1298 struct sockaddr *addr = p;
1299 int err;
1300
1301 err = eth_prepare_mac_addr_change(ndev, p);
1302 if (err)
1303 return err;
1304
1305 if (!nvdev)
1306 return -ENODEV;
1307
1308 if (vf_netdev) {
1309 err = dev_set_mac_address(vf_netdev, addr, NULL);
1310 if (err)
1311 return err;
1312 }
1313
1314 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1315 if (!err) {
1316 eth_commit_mac_addr_change(ndev, p);
1317 } else if (vf_netdev) {
1318 /* rollback change on VF */
1319 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1320 dev_set_mac_address(vf_netdev, addr, NULL);
1321 }
1322
1323 return err;
1324 }
1325
1326 static const struct {
1327 char name[ETH_GSTRING_LEN];
1328 u16 offset;
1329 } netvsc_stats[] = {
1330 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1331 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1332 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1333 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1334 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1335 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1336 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1337 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1338 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1339 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1340 }, pcpu_stats[] = {
1341 { "cpu%u_rx_packets",
1342 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1343 { "cpu%u_rx_bytes",
1344 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1345 { "cpu%u_tx_packets",
1346 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1347 { "cpu%u_tx_bytes",
1348 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1349 { "cpu%u_vf_rx_packets",
1350 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1351 { "cpu%u_vf_rx_bytes",
1352 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1353 { "cpu%u_vf_tx_packets",
1354 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1355 { "cpu%u_vf_tx_bytes",
1356 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1357 }, vf_stats[] = {
1358 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1359 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1360 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1361 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1362 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1363 };
1364
1365 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1366 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1367
1368 /* statistics per queue (rx/tx packets/bytes) */
1369 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1370
1371 /* 4 statistics per queue (rx/tx packets/bytes) */
1372 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1373
1374 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1375 {
1376 struct net_device_context *ndc = netdev_priv(dev);
1377 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1378
1379 if (!nvdev)
1380 return -ENODEV;
1381
1382 switch (string_set) {
1383 case ETH_SS_STATS:
1384 return NETVSC_GLOBAL_STATS_LEN
1385 + NETVSC_VF_STATS_LEN
1386 + NETVSC_QUEUE_STATS_LEN(nvdev)
1387 + NETVSC_PCPU_STATS_LEN;
1388 default:
1389 return -EINVAL;
1390 }
1391 }
1392
1393 static void netvsc_get_ethtool_stats(struct net_device *dev,
1394 struct ethtool_stats *stats, u64 *data)
1395 {
1396 struct net_device_context *ndc = netdev_priv(dev);
1397 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1398 const void *nds = &ndc->eth_stats;
1399 const struct netvsc_stats *qstats;
1400 struct netvsc_vf_pcpu_stats sum;
1401 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1402 unsigned int start;
1403 u64 packets, bytes;
1404 int i, j, cpu;
1405
1406 if (!nvdev)
1407 return;
1408
1409 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1410 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1411
1412 netvsc_get_vf_stats(dev, &sum);
1413 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1414 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1415
1416 for (j = 0; j < nvdev->num_chn; j++) {
1417 qstats = &nvdev->chan_table[j].tx_stats;
1418
1419 do {
1420 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1421 packets = qstats->packets;
1422 bytes = qstats->bytes;
1423 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1424 data[i++] = packets;
1425 data[i++] = bytes;
1426
1427 qstats = &nvdev->chan_table[j].rx_stats;
1428 do {
1429 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1430 packets = qstats->packets;
1431 bytes = qstats->bytes;
1432 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1433 data[i++] = packets;
1434 data[i++] = bytes;
1435 }
1436
1437 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1438 sizeof(struct netvsc_ethtool_pcpu_stats),
1439 GFP_KERNEL);
1440 netvsc_get_pcpu_stats(dev, pcpu_sum);
1441 for_each_present_cpu(cpu) {
1442 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1443
1444 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1445 data[i++] = *(u64 *)((void *)this_sum
1446 + pcpu_stats[j].offset);
1447 }
1448 kvfree(pcpu_sum);
1449 }
1450
1451 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1452 {
1453 struct net_device_context *ndc = netdev_priv(dev);
1454 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1455 u8 *p = data;
1456 int i, cpu;
1457
1458 if (!nvdev)
1459 return;
1460
1461 switch (stringset) {
1462 case ETH_SS_STATS:
1463 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1464 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1465 p += ETH_GSTRING_LEN;
1466 }
1467
1468 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1469 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1470 p += ETH_GSTRING_LEN;
1471 }
1472
1473 for (i = 0; i < nvdev->num_chn; i++) {
1474 sprintf(p, "tx_queue_%u_packets", i);
1475 p += ETH_GSTRING_LEN;
1476 sprintf(p, "tx_queue_%u_bytes", i);
1477 p += ETH_GSTRING_LEN;
1478 sprintf(p, "rx_queue_%u_packets", i);
1479 p += ETH_GSTRING_LEN;
1480 sprintf(p, "rx_queue_%u_bytes", i);
1481 p += ETH_GSTRING_LEN;
1482 }
1483
1484 for_each_present_cpu(cpu) {
1485 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1486 sprintf(p, pcpu_stats[i].name, cpu);
1487 p += ETH_GSTRING_LEN;
1488 }
1489 }
1490
1491 break;
1492 }
1493 }
1494
1495 static int
1496 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1497 struct ethtool_rxnfc *info)
1498 {
1499 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1500
1501 info->data = RXH_IP_SRC | RXH_IP_DST;
1502
1503 switch (info->flow_type) {
1504 case TCP_V4_FLOW:
1505 if (ndc->l4_hash & HV_TCP4_L4HASH)
1506 info->data |= l4_flag;
1507
1508 break;
1509
1510 case TCP_V6_FLOW:
1511 if (ndc->l4_hash & HV_TCP6_L4HASH)
1512 info->data |= l4_flag;
1513
1514 break;
1515
1516 case UDP_V4_FLOW:
1517 if (ndc->l4_hash & HV_UDP4_L4HASH)
1518 info->data |= l4_flag;
1519
1520 break;
1521
1522 case UDP_V6_FLOW:
1523 if (ndc->l4_hash & HV_UDP6_L4HASH)
1524 info->data |= l4_flag;
1525
1526 break;
1527
1528 case IPV4_FLOW:
1529 case IPV6_FLOW:
1530 break;
1531 default:
1532 info->data = 0;
1533 break;
1534 }
1535
1536 return 0;
1537 }
1538
1539 static int
1540 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1541 u32 *rules)
1542 {
1543 struct net_device_context *ndc = netdev_priv(dev);
1544 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1545
1546 if (!nvdev)
1547 return -ENODEV;
1548
1549 switch (info->cmd) {
1550 case ETHTOOL_GRXRINGS:
1551 info->data = nvdev->num_chn;
1552 return 0;
1553
1554 case ETHTOOL_GRXFH:
1555 return netvsc_get_rss_hash_opts(ndc, info);
1556 }
1557 return -EOPNOTSUPP;
1558 }
1559
1560 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1561 struct ethtool_rxnfc *info)
1562 {
1563 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1564 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1565 switch (info->flow_type) {
1566 case TCP_V4_FLOW:
1567 ndc->l4_hash |= HV_TCP4_L4HASH;
1568 break;
1569
1570 case TCP_V6_FLOW:
1571 ndc->l4_hash |= HV_TCP6_L4HASH;
1572 break;
1573
1574 case UDP_V4_FLOW:
1575 ndc->l4_hash |= HV_UDP4_L4HASH;
1576 break;
1577
1578 case UDP_V6_FLOW:
1579 ndc->l4_hash |= HV_UDP6_L4HASH;
1580 break;
1581
1582 default:
1583 return -EOPNOTSUPP;
1584 }
1585
1586 return 0;
1587 }
1588
1589 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1590 switch (info->flow_type) {
1591 case TCP_V4_FLOW:
1592 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1593 break;
1594
1595 case TCP_V6_FLOW:
1596 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1597 break;
1598
1599 case UDP_V4_FLOW:
1600 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1601 break;
1602
1603 case UDP_V6_FLOW:
1604 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1605 break;
1606
1607 default:
1608 return -EOPNOTSUPP;
1609 }
1610
1611 return 0;
1612 }
1613
1614 return -EOPNOTSUPP;
1615 }
1616
1617 static int
1618 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1619 {
1620 struct net_device_context *ndc = netdev_priv(ndev);
1621
1622 if (info->cmd == ETHTOOL_SRXFH)
1623 return netvsc_set_rss_hash_opts(ndc, info);
1624
1625 return -EOPNOTSUPP;
1626 }
1627
1628 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1629 {
1630 return NETVSC_HASH_KEYLEN;
1631 }
1632
1633 static u32 netvsc_rss_indir_size(struct net_device *dev)
1634 {
1635 return ITAB_NUM;
1636 }
1637
1638 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1639 u8 *hfunc)
1640 {
1641 struct net_device_context *ndc = netdev_priv(dev);
1642 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1643 struct rndis_device *rndis_dev;
1644 int i;
1645
1646 if (!ndev)
1647 return -ENODEV;
1648
1649 if (hfunc)
1650 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1651
1652 rndis_dev = ndev->extension;
1653 if (indir) {
1654 for (i = 0; i < ITAB_NUM; i++)
1655 indir[i] = rndis_dev->rx_table[i];
1656 }
1657
1658 if (key)
1659 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1660
1661 return 0;
1662 }
1663
1664 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1665 const u8 *key, const u8 hfunc)
1666 {
1667 struct net_device_context *ndc = netdev_priv(dev);
1668 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1669 struct rndis_device *rndis_dev;
1670 int i;
1671
1672 if (!ndev)
1673 return -ENODEV;
1674
1675 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1676 return -EOPNOTSUPP;
1677
1678 rndis_dev = ndev->extension;
1679 if (indir) {
1680 for (i = 0; i < ITAB_NUM; i++)
1681 if (indir[i] >= ndev->num_chn)
1682 return -EINVAL;
1683
1684 for (i = 0; i < ITAB_NUM; i++)
1685 rndis_dev->rx_table[i] = indir[i];
1686 }
1687
1688 if (!key) {
1689 if (!indir)
1690 return 0;
1691
1692 key = rndis_dev->rss_key;
1693 }
1694
1695 return rndis_filter_set_rss_param(rndis_dev, key);
1696 }
1697
1698 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1699 * It does have pre-allocated receive area which is divided into sections.
1700 */
1701 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1702 struct ethtool_ringparam *ring)
1703 {
1704 u32 max_buf_size;
1705
1706 ring->rx_pending = nvdev->recv_section_cnt;
1707 ring->tx_pending = nvdev->send_section_cnt;
1708
1709 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1710 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1711 else
1712 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1713
1714 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1715 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1716 / nvdev->send_section_size;
1717 }
1718
1719 static void netvsc_get_ringparam(struct net_device *ndev,
1720 struct ethtool_ringparam *ring)
1721 {
1722 struct net_device_context *ndevctx = netdev_priv(ndev);
1723 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1724
1725 if (!nvdev)
1726 return;
1727
1728 __netvsc_get_ringparam(nvdev, ring);
1729 }
1730
1731 static int netvsc_set_ringparam(struct net_device *ndev,
1732 struct ethtool_ringparam *ring)
1733 {
1734 struct net_device_context *ndevctx = netdev_priv(ndev);
1735 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1736 struct netvsc_device_info *device_info;
1737 struct ethtool_ringparam orig;
1738 u32 new_tx, new_rx;
1739 int ret = 0;
1740
1741 if (!nvdev || nvdev->destroy)
1742 return -ENODEV;
1743
1744 memset(&orig, 0, sizeof(orig));
1745 __netvsc_get_ringparam(nvdev, &orig);
1746
1747 new_tx = clamp_t(u32, ring->tx_pending,
1748 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1749 new_rx = clamp_t(u32, ring->rx_pending,
1750 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1751
1752 if (new_tx == orig.tx_pending &&
1753 new_rx == orig.rx_pending)
1754 return 0; /* no change */
1755
1756 device_info = netvsc_devinfo_get(nvdev);
1757
1758 if (!device_info)
1759 return -ENOMEM;
1760
1761 device_info->send_sections = new_tx;
1762 device_info->recv_sections = new_rx;
1763
1764 ret = netvsc_detach(ndev, nvdev);
1765 if (ret)
1766 goto out;
1767
1768 ret = netvsc_attach(ndev, device_info);
1769 if (ret) {
1770 device_info->send_sections = orig.tx_pending;
1771 device_info->recv_sections = orig.rx_pending;
1772
1773 if (netvsc_attach(ndev, device_info))
1774 netdev_err(ndev, "restoring ringparam failed");
1775 }
1776
1777 out:
1778 kfree(device_info);
1779 return ret;
1780 }
1781
1782 static int netvsc_set_features(struct net_device *ndev,
1783 netdev_features_t features)
1784 {
1785 netdev_features_t change = features ^ ndev->features;
1786 struct net_device_context *ndevctx = netdev_priv(ndev);
1787 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1788 struct ndis_offload_params offloads;
1789
1790 if (!nvdev || nvdev->destroy)
1791 return -ENODEV;
1792
1793 if (!(change & NETIF_F_LRO))
1794 return 0;
1795
1796 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1797
1798 if (features & NETIF_F_LRO) {
1799 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1800 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1801 } else {
1802 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1803 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1804 }
1805
1806 return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1807 }
1808
1809 static u32 netvsc_get_msglevel(struct net_device *ndev)
1810 {
1811 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1812
1813 return ndev_ctx->msg_enable;
1814 }
1815
1816 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1817 {
1818 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1819
1820 ndev_ctx->msg_enable = val;
1821 }
1822
1823 static const struct ethtool_ops ethtool_ops = {
1824 .get_drvinfo = netvsc_get_drvinfo,
1825 .get_msglevel = netvsc_get_msglevel,
1826 .set_msglevel = netvsc_set_msglevel,
1827 .get_link = ethtool_op_get_link,
1828 .get_ethtool_stats = netvsc_get_ethtool_stats,
1829 .get_sset_count = netvsc_get_sset_count,
1830 .get_strings = netvsc_get_strings,
1831 .get_channels = netvsc_get_channels,
1832 .set_channels = netvsc_set_channels,
1833 .get_ts_info = ethtool_op_get_ts_info,
1834 .get_rxnfc = netvsc_get_rxnfc,
1835 .set_rxnfc = netvsc_set_rxnfc,
1836 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1837 .get_rxfh_indir_size = netvsc_rss_indir_size,
1838 .get_rxfh = netvsc_get_rxfh,
1839 .set_rxfh = netvsc_set_rxfh,
1840 .get_link_ksettings = netvsc_get_link_ksettings,
1841 .set_link_ksettings = netvsc_set_link_ksettings,
1842 .get_ringparam = netvsc_get_ringparam,
1843 .set_ringparam = netvsc_set_ringparam,
1844 };
1845
1846 static const struct net_device_ops device_ops = {
1847 .ndo_open = netvsc_open,
1848 .ndo_stop = netvsc_close,
1849 .ndo_start_xmit = netvsc_start_xmit,
1850 .ndo_change_rx_flags = netvsc_change_rx_flags,
1851 .ndo_set_rx_mode = netvsc_set_rx_mode,
1852 .ndo_set_features = netvsc_set_features,
1853 .ndo_change_mtu = netvsc_change_mtu,
1854 .ndo_validate_addr = eth_validate_addr,
1855 .ndo_set_mac_address = netvsc_set_mac_addr,
1856 .ndo_select_queue = netvsc_select_queue,
1857 .ndo_get_stats64 = netvsc_get_stats64,
1858 };
1859
1860 /*
1861 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1862 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1863 * present send GARP packet to network peers with netif_notify_peers().
1864 */
1865 static void netvsc_link_change(struct work_struct *w)
1866 {
1867 struct net_device_context *ndev_ctx =
1868 container_of(w, struct net_device_context, dwork.work);
1869 struct hv_device *device_obj = ndev_ctx->device_ctx;
1870 struct net_device *net = hv_get_drvdata(device_obj);
1871 struct netvsc_device *net_device;
1872 struct rndis_device *rdev;
1873 struct netvsc_reconfig *event = NULL;
1874 bool notify = false, reschedule = false;
1875 unsigned long flags, next_reconfig, delay;
1876
1877 /* if changes are happening, comeback later */
1878 if (!rtnl_trylock()) {
1879 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1880 return;
1881 }
1882
1883 net_device = rtnl_dereference(ndev_ctx->nvdev);
1884 if (!net_device)
1885 goto out_unlock;
1886
1887 rdev = net_device->extension;
1888
1889 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1890 if (time_is_after_jiffies(next_reconfig)) {
1891 /* link_watch only sends one notification with current state
1892 * per second, avoid doing reconfig more frequently. Handle
1893 * wrap around.
1894 */
1895 delay = next_reconfig - jiffies;
1896 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1897 schedule_delayed_work(&ndev_ctx->dwork, delay);
1898 goto out_unlock;
1899 }
1900 ndev_ctx->last_reconfig = jiffies;
1901
1902 spin_lock_irqsave(&ndev_ctx->lock, flags);
1903 if (!list_empty(&ndev_ctx->reconfig_events)) {
1904 event = list_first_entry(&ndev_ctx->reconfig_events,
1905 struct netvsc_reconfig, list);
1906 list_del(&event->list);
1907 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1908 }
1909 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1910
1911 if (!event)
1912 goto out_unlock;
1913
1914 switch (event->event) {
1915 /* Only the following events are possible due to the check in
1916 * netvsc_linkstatus_callback()
1917 */
1918 case RNDIS_STATUS_MEDIA_CONNECT:
1919 if (rdev->link_state) {
1920 rdev->link_state = false;
1921 netif_carrier_on(net);
1922 netvsc_tx_enable(net_device, net);
1923 } else {
1924 notify = true;
1925 }
1926 kfree(event);
1927 break;
1928 case RNDIS_STATUS_MEDIA_DISCONNECT:
1929 if (!rdev->link_state) {
1930 rdev->link_state = true;
1931 netif_carrier_off(net);
1932 netvsc_tx_disable(net_device, net);
1933 }
1934 kfree(event);
1935 break;
1936 case RNDIS_STATUS_NETWORK_CHANGE:
1937 /* Only makes sense if carrier is present */
1938 if (!rdev->link_state) {
1939 rdev->link_state = true;
1940 netif_carrier_off(net);
1941 netvsc_tx_disable(net_device, net);
1942 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1943 spin_lock_irqsave(&ndev_ctx->lock, flags);
1944 list_add(&event->list, &ndev_ctx->reconfig_events);
1945 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1946 reschedule = true;
1947 }
1948 break;
1949 }
1950
1951 rtnl_unlock();
1952
1953 if (notify)
1954 netdev_notify_peers(net);
1955
1956 /* link_watch only sends one notification with current state per
1957 * second, handle next reconfig event in 2 seconds.
1958 */
1959 if (reschedule)
1960 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1961
1962 return;
1963
1964 out_unlock:
1965 rtnl_unlock();
1966 }
1967
1968 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1969 {
1970 struct net_device_context *net_device_ctx;
1971 struct net_device *dev;
1972
1973 dev = netdev_master_upper_dev_get(vf_netdev);
1974 if (!dev || dev->netdev_ops != &device_ops)
1975 return NULL; /* not a netvsc device */
1976
1977 net_device_ctx = netdev_priv(dev);
1978 if (!rtnl_dereference(net_device_ctx->nvdev))
1979 return NULL; /* device is removed */
1980
1981 return dev;
1982 }
1983
1984 /* Called when VF is injecting data into network stack.
1985 * Change the associated network device from VF to netvsc.
1986 * note: already called with rcu_read_lock
1987 */
1988 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1989 {
1990 struct sk_buff *skb = *pskb;
1991 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1992 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1993 struct netvsc_vf_pcpu_stats *pcpu_stats
1994 = this_cpu_ptr(ndev_ctx->vf_stats);
1995
1996 skb = skb_share_check(skb, GFP_ATOMIC);
1997 if (unlikely(!skb))
1998 return RX_HANDLER_CONSUMED;
1999
2000 *pskb = skb;
2001
2002 skb->dev = ndev;
2003
2004 u64_stats_update_begin(&pcpu_stats->syncp);
2005 pcpu_stats->rx_packets++;
2006 pcpu_stats->rx_bytes += skb->len;
2007 u64_stats_update_end(&pcpu_stats->syncp);
2008
2009 return RX_HANDLER_ANOTHER;
2010 }
2011
2012 static int netvsc_vf_join(struct net_device *vf_netdev,
2013 struct net_device *ndev)
2014 {
2015 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016 int ret;
2017
2018 ret = netdev_rx_handler_register(vf_netdev,
2019 netvsc_vf_handle_frame, ndev);
2020 if (ret != 0) {
2021 netdev_err(vf_netdev,
2022 "can not register netvsc VF receive handler (err = %d)\n",
2023 ret);
2024 goto rx_handler_failed;
2025 }
2026
2027 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2028 NULL, NULL, NULL);
2029 if (ret != 0) {
2030 netdev_err(vf_netdev,
2031 "can not set master device %s (err = %d)\n",
2032 ndev->name, ret);
2033 goto upper_link_failed;
2034 }
2035
2036 /* set slave flag before open to prevent IPv6 addrconf */
2037 vf_netdev->flags |= IFF_SLAVE;
2038
2039 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2040
2041 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2042
2043 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2044 return 0;
2045
2046 upper_link_failed:
2047 netdev_rx_handler_unregister(vf_netdev);
2048 rx_handler_failed:
2049 return ret;
2050 }
2051
2052 static void __netvsc_vf_setup(struct net_device *ndev,
2053 struct net_device *vf_netdev)
2054 {
2055 int ret;
2056
2057 /* Align MTU of VF with master */
2058 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2059 if (ret)
2060 netdev_warn(vf_netdev,
2061 "unable to change mtu to %u\n", ndev->mtu);
2062
2063 /* set multicast etc flags on VF */
2064 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2065
2066 /* sync address list from ndev to VF */
2067 netif_addr_lock_bh(ndev);
2068 dev_uc_sync(vf_netdev, ndev);
2069 dev_mc_sync(vf_netdev, ndev);
2070 netif_addr_unlock_bh(ndev);
2071
2072 if (netif_running(ndev)) {
2073 ret = dev_open(vf_netdev, NULL);
2074 if (ret)
2075 netdev_warn(vf_netdev,
2076 "unable to open: %d\n", ret);
2077 }
2078 }
2079
2080 /* Setup VF as slave of the synthetic device.
2081 * Runs in workqueue to avoid recursion in netlink callbacks.
2082 */
2083 static void netvsc_vf_setup(struct work_struct *w)
2084 {
2085 struct net_device_context *ndev_ctx
2086 = container_of(w, struct net_device_context, vf_takeover.work);
2087 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2088 struct net_device *vf_netdev;
2089
2090 if (!rtnl_trylock()) {
2091 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2092 return;
2093 }
2094
2095 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2096 if (vf_netdev)
2097 __netvsc_vf_setup(ndev, vf_netdev);
2098
2099 rtnl_unlock();
2100 }
2101
2102 /* Find netvsc by VF serial number.
2103 * The PCI hyperv controller records the serial number as the slot kobj name.
2104 */
2105 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2106 {
2107 struct device *parent = vf_netdev->dev.parent;
2108 struct net_device_context *ndev_ctx;
2109 struct pci_dev *pdev;
2110 u32 serial;
2111
2112 if (!parent || !dev_is_pci(parent))
2113 return NULL; /* not a PCI device */
2114
2115 pdev = to_pci_dev(parent);
2116 if (!pdev->slot) {
2117 netdev_notice(vf_netdev, "no PCI slot information\n");
2118 return NULL;
2119 }
2120
2121 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2122 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2123 pci_slot_name(pdev->slot));
2124 return NULL;
2125 }
2126
2127 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2128 if (!ndev_ctx->vf_alloc)
2129 continue;
2130
2131 if (ndev_ctx->vf_serial == serial)
2132 return hv_get_drvdata(ndev_ctx->device_ctx);
2133 }
2134
2135 netdev_notice(vf_netdev,
2136 "no netdev found for vf serial:%u\n", serial);
2137 return NULL;
2138 }
2139
2140 static int netvsc_register_vf(struct net_device *vf_netdev)
2141 {
2142 struct net_device_context *net_device_ctx;
2143 struct netvsc_device *netvsc_dev;
2144 struct net_device *ndev;
2145 int ret;
2146
2147 if (vf_netdev->addr_len != ETH_ALEN)
2148 return NOTIFY_DONE;
2149
2150 ndev = get_netvsc_byslot(vf_netdev);
2151 if (!ndev)
2152 return NOTIFY_DONE;
2153
2154 net_device_ctx = netdev_priv(ndev);
2155 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2156 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2157 return NOTIFY_DONE;
2158
2159 /* if synthetic interface is a different namespace,
2160 * then move the VF to that namespace; join will be
2161 * done again in that context.
2162 */
2163 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2164 ret = dev_change_net_namespace(vf_netdev,
2165 dev_net(ndev), "eth%d");
2166 if (ret)
2167 netdev_err(vf_netdev,
2168 "could not move to same namespace as %s: %d\n",
2169 ndev->name, ret);
2170 else
2171 netdev_info(vf_netdev,
2172 "VF moved to namespace with: %s\n",
2173 ndev->name);
2174 return NOTIFY_DONE;
2175 }
2176
2177 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2178
2179 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2180 return NOTIFY_DONE;
2181
2182 dev_hold(vf_netdev);
2183 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2184 return NOTIFY_OK;
2185 }
2186
2187 /* VF up/down change detected, schedule to change data path */
2188 static int netvsc_vf_changed(struct net_device *vf_netdev)
2189 {
2190 struct net_device_context *net_device_ctx;
2191 struct netvsc_device *netvsc_dev;
2192 struct net_device *ndev;
2193 bool vf_is_up = netif_running(vf_netdev);
2194
2195 ndev = get_netvsc_byref(vf_netdev);
2196 if (!ndev)
2197 return NOTIFY_DONE;
2198
2199 net_device_ctx = netdev_priv(ndev);
2200 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2201 if (!netvsc_dev)
2202 return NOTIFY_DONE;
2203
2204 netvsc_switch_datapath(ndev, vf_is_up);
2205 netdev_info(ndev, "Data path switched %s VF: %s\n",
2206 vf_is_up ? "to" : "from", vf_netdev->name);
2207
2208 return NOTIFY_OK;
2209 }
2210
2211 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2212 {
2213 struct net_device *ndev;
2214 struct net_device_context *net_device_ctx;
2215
2216 ndev = get_netvsc_byref(vf_netdev);
2217 if (!ndev)
2218 return NOTIFY_DONE;
2219
2220 net_device_ctx = netdev_priv(ndev);
2221 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2222
2223 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2224
2225 netdev_rx_handler_unregister(vf_netdev);
2226 netdev_upper_dev_unlink(vf_netdev, ndev);
2227 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2228 dev_put(vf_netdev);
2229
2230 return NOTIFY_OK;
2231 }
2232
2233 static int netvsc_probe(struct hv_device *dev,
2234 const struct hv_vmbus_device_id *dev_id)
2235 {
2236 struct net_device *net = NULL;
2237 struct net_device_context *net_device_ctx;
2238 struct netvsc_device_info *device_info = NULL;
2239 struct netvsc_device *nvdev;
2240 int ret = -ENOMEM;
2241
2242 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2243 VRSS_CHANNEL_MAX);
2244 if (!net)
2245 goto no_net;
2246
2247 netif_carrier_off(net);
2248
2249 netvsc_init_settings(net);
2250
2251 net_device_ctx = netdev_priv(net);
2252 net_device_ctx->device_ctx = dev;
2253 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2254 if (netif_msg_probe(net_device_ctx))
2255 netdev_dbg(net, "netvsc msg_enable: %d\n",
2256 net_device_ctx->msg_enable);
2257
2258 hv_set_drvdata(dev, net);
2259
2260 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2261
2262 spin_lock_init(&net_device_ctx->lock);
2263 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2264 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2265
2266 net_device_ctx->vf_stats
2267 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2268 if (!net_device_ctx->vf_stats)
2269 goto no_stats;
2270
2271 net->netdev_ops = &device_ops;
2272 net->ethtool_ops = &ethtool_ops;
2273 SET_NETDEV_DEV(net, &dev->device);
2274
2275 /* We always need headroom for rndis header */
2276 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2277
2278 /* Initialize the number of queues to be 1, we may change it if more
2279 * channels are offered later.
2280 */
2281 netif_set_real_num_tx_queues(net, 1);
2282 netif_set_real_num_rx_queues(net, 1);
2283
2284 /* Notify the netvsc driver of the new device */
2285 device_info = netvsc_devinfo_get(NULL);
2286
2287 if (!device_info) {
2288 ret = -ENOMEM;
2289 goto devinfo_failed;
2290 }
2291
2292 nvdev = rndis_filter_device_add(dev, device_info);
2293 if (IS_ERR(nvdev)) {
2294 ret = PTR_ERR(nvdev);
2295 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2296 goto rndis_failed;
2297 }
2298
2299 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2300
2301 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2302 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2303 * all subchannels to show up, but that may not happen because
2304 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2305 * -> ... -> device_add() -> ... -> __device_attach() can't get
2306 * the device lock, so all the subchannels can't be processed --
2307 * finally netvsc_subchan_work() hangs forever.
2308 */
2309 rtnl_lock();
2310
2311 if (nvdev->num_chn > 1)
2312 schedule_work(&nvdev->subchan_work);
2313
2314 /* hw_features computed in rndis_netdev_set_hwcaps() */
2315 net->features = net->hw_features |
2316 NETIF_F_HIGHDMA | NETIF_F_SG |
2317 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2318 net->vlan_features = net->features;
2319
2320 netdev_lockdep_set_classes(net);
2321
2322 /* MTU range: 68 - 1500 or 65521 */
2323 net->min_mtu = NETVSC_MTU_MIN;
2324 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2325 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2326 else
2327 net->max_mtu = ETH_DATA_LEN;
2328
2329 ret = register_netdevice(net);
2330 if (ret != 0) {
2331 pr_err("Unable to register netdev.\n");
2332 goto register_failed;
2333 }
2334
2335 list_add(&net_device_ctx->list, &netvsc_dev_list);
2336 rtnl_unlock();
2337
2338 kfree(device_info);
2339 return 0;
2340
2341 register_failed:
2342 rtnl_unlock();
2343 rndis_filter_device_remove(dev, nvdev);
2344 rndis_failed:
2345 kfree(device_info);
2346 devinfo_failed:
2347 free_percpu(net_device_ctx->vf_stats);
2348 no_stats:
2349 hv_set_drvdata(dev, NULL);
2350 free_netdev(net);
2351 no_net:
2352 return ret;
2353 }
2354
2355 static int netvsc_remove(struct hv_device *dev)
2356 {
2357 struct net_device_context *ndev_ctx;
2358 struct net_device *vf_netdev, *net;
2359 struct netvsc_device *nvdev;
2360
2361 net = hv_get_drvdata(dev);
2362 if (net == NULL) {
2363 dev_err(&dev->device, "No net device to remove\n");
2364 return 0;
2365 }
2366
2367 ndev_ctx = netdev_priv(net);
2368
2369 cancel_delayed_work_sync(&ndev_ctx->dwork);
2370
2371 rtnl_lock();
2372 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2373 if (nvdev)
2374 cancel_work_sync(&nvdev->subchan_work);
2375
2376 /*
2377 * Call to the vsc driver to let it know that the device is being
2378 * removed. Also blocks mtu and channel changes.
2379 */
2380 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2381 if (vf_netdev)
2382 netvsc_unregister_vf(vf_netdev);
2383
2384 if (nvdev)
2385 rndis_filter_device_remove(dev, nvdev);
2386
2387 unregister_netdevice(net);
2388 list_del(&ndev_ctx->list);
2389
2390 rtnl_unlock();
2391
2392 hv_set_drvdata(dev, NULL);
2393
2394 free_percpu(ndev_ctx->vf_stats);
2395 free_netdev(net);
2396 return 0;
2397 }
2398
2399 static const struct hv_vmbus_device_id id_table[] = {
2400 /* Network guid */
2401 { HV_NIC_GUID, },
2402 { },
2403 };
2404
2405 MODULE_DEVICE_TABLE(vmbus, id_table);
2406
2407 /* The one and only one */
2408 static struct hv_driver netvsc_drv = {
2409 .name = KBUILD_MODNAME,
2410 .id_table = id_table,
2411 .probe = netvsc_probe,
2412 .remove = netvsc_remove,
2413 .driver = {
2414 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2415 },
2416 };
2417
2418 /*
2419 * On Hyper-V, every VF interface is matched with a corresponding
2420 * synthetic interface. The synthetic interface is presented first
2421 * to the guest. When the corresponding VF instance is registered,
2422 * we will take care of switching the data path.
2423 */
2424 static int netvsc_netdev_event(struct notifier_block *this,
2425 unsigned long event, void *ptr)
2426 {
2427 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2428
2429 /* Skip our own events */
2430 if (event_dev->netdev_ops == &device_ops)
2431 return NOTIFY_DONE;
2432
2433 /* Avoid non-Ethernet type devices */
2434 if (event_dev->type != ARPHRD_ETHER)
2435 return NOTIFY_DONE;
2436
2437 /* Avoid Vlan dev with same MAC registering as VF */
2438 if (is_vlan_dev(event_dev))
2439 return NOTIFY_DONE;
2440
2441 /* Avoid Bonding master dev with same MAC registering as VF */
2442 if ((event_dev->priv_flags & IFF_BONDING) &&
2443 (event_dev->flags & IFF_MASTER))
2444 return NOTIFY_DONE;
2445
2446 switch (event) {
2447 case NETDEV_REGISTER:
2448 return netvsc_register_vf(event_dev);
2449 case NETDEV_UNREGISTER:
2450 return netvsc_unregister_vf(event_dev);
2451 case NETDEV_UP:
2452 case NETDEV_DOWN:
2453 return netvsc_vf_changed(event_dev);
2454 default:
2455 return NOTIFY_DONE;
2456 }
2457 }
2458
2459 static struct notifier_block netvsc_netdev_notifier = {
2460 .notifier_call = netvsc_netdev_event,
2461 };
2462
2463 static void __exit netvsc_drv_exit(void)
2464 {
2465 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2466 vmbus_driver_unregister(&netvsc_drv);
2467 }
2468
2469 static int __init netvsc_drv_init(void)
2470 {
2471 int ret;
2472
2473 if (ring_size < RING_SIZE_MIN) {
2474 ring_size = RING_SIZE_MIN;
2475 pr_info("Increased ring_size to %u (min allowed)\n",
2476 ring_size);
2477 }
2478 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2479
2480 ret = vmbus_driver_register(&netvsc_drv);
2481 if (ret)
2482 return ret;
2483
2484 register_netdevice_notifier(&netvsc_netdev_notifier);
2485 return 0;
2486 }
2487
2488 MODULE_LICENSE("GPL");
2489 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2490
2491 module_init(netvsc_drv_init);
2492 module_exit(netvsc_drv_exit);