]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/mvpp2.c
net: sh-eth: Change read/write() param to struct sh_eth_info
[people/ms/u-boot.git] / drivers / net / mvpp2.c
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * U-Boot version:
9 * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33 #include <asm-generic/gpio.h>
34 #include <fdt_support.h>
35
36 DECLARE_GLOBAL_DATA_PTR;
37
38 /* Some linux -> U-Boot compatibility stuff */
39 #define netdev_err(dev, fmt, args...) \
40 printf(fmt, ##args)
41 #define netdev_warn(dev, fmt, args...) \
42 printf(fmt, ##args)
43 #define netdev_info(dev, fmt, args...) \
44 printf(fmt, ##args)
45 #define netdev_dbg(dev, fmt, args...) \
46 printf(fmt, ##args)
47
48 #define ETH_ALEN 6 /* Octets in one ethernet addr */
49
50 #define __verify_pcpu_ptr(ptr) \
51 do { \
52 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
53 (void)__vpp_verify; \
54 } while (0)
55
56 #define VERIFY_PERCPU_PTR(__p) \
57 ({ \
58 __verify_pcpu_ptr(__p); \
59 (typeof(*(__p)) __kernel __force *)(__p); \
60 })
61
62 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
63 #define smp_processor_id() 0
64 #define num_present_cpus() 1
65 #define for_each_present_cpu(cpu) \
66 for ((cpu) = 0; (cpu) < 1; (cpu)++)
67
68 #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
69
70 #define CONFIG_NR_CPUS 1
71 #define ETH_HLEN ETHER_HDR_SIZE /* Total octets in header */
72
73 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
74 #define WRAP (2 + ETH_HLEN + 4 + 32)
75 #define MTU 1500
76 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
77
78 #define MVPP2_SMI_TIMEOUT 10000
79
80 /* RX Fifo Registers */
81 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
82 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
83 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
84 #define MVPP2_RX_FIFO_INIT_REG 0x64
85
86 /* RX DMA Top Registers */
87 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
88 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
89 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
90 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
91 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
92 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
93 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
94 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
95 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
96 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
97 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
98 #define MVPP2_RXQ_POOL_LONG_OFFS 24
99 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
100 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
101 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
102 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
103 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
104
105 /* Parser Registers */
106 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
107 #define MVPP2_PRS_PORT_LU_MAX 0xf
108 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
109 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
110 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
111 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
112 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
113 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
114 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
115 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
116 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
117 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
118 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
119 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
120 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
121 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
122 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
123
124 /* Classifier Registers */
125 #define MVPP2_CLS_MODE_REG 0x1800
126 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
127 #define MVPP2_CLS_PORT_WAY_REG 0x1810
128 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
129 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
130 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
131 #define MVPP2_CLS_LKP_TBL_REG 0x1818
132 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
133 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
134 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
135 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
136 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
137 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
138 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
139 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
140 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
141 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
142 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
143 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
144
145 /* Descriptor Manager Top Registers */
146 #define MVPP2_RXQ_NUM_REG 0x2040
147 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
148 #define MVPP22_DESC_ADDR_OFFS 8
149 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
150 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
151 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
152 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
153 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
154 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
155 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
156 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
157 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
158 #define MVPP2_RXQ_THRESH_REG 0x204c
159 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
160 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
161 #define MVPP2_RXQ_INDEX_REG 0x2050
162 #define MVPP2_TXQ_NUM_REG 0x2080
163 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
164 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
165 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
166 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
167 #define MVPP2_TXQ_THRESH_REG 0x2094
168 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
169 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
170 #define MVPP2_TXQ_INDEX_REG 0x2098
171 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
172 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
173 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
174 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
175 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
176 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
177 #define MVPP2_TXQ_PENDING_REG 0x20a0
178 #define MVPP2_TXQ_PENDING_MASK 0x3fff
179 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
180 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
181 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
182 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
183 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
184 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
185 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
186 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
187 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
188 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
189 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
190 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
191 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
192 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
193 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
194 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
195 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
196
197 /* MBUS bridge registers */
198 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
199 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
200 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
201 #define MVPP2_BASE_ADDR_ENABLE 0x4060
202
203 /* AXI Bridge Registers */
204 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
205 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
206 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
207 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
208 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
209 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
210 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
211 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
212 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
213 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
214 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
215 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
216
217 /* Values for AXI Bridge registers */
218 #define MVPP22_AXI_ATTR_CACHE_OFFS 0
219 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
220
221 #define MVPP22_AXI_CODE_CACHE_OFFS 0
222 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4
223
224 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
225 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
226 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
227
228 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
229 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
230
231 /* Interrupt Cause and Mask registers */
232 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
233 #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
234
235 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
236 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
237 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
238 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
239
240 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
241 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
242
243 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
244 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
245 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
246 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
247
248 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
249 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
250 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
251 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
252 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
253 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
254 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
255 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
256 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
257 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
258 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
259 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
260 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
261 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
262 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
263 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
264 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
265 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
266
267 /* Buffer Manager registers */
268 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
269 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
270 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
271 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
272 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
273 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
274 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
275 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
276 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
277 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
278 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
279 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
280 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
281 #define MVPP2_BM_START_MASK BIT(0)
282 #define MVPP2_BM_STOP_MASK BIT(1)
283 #define MVPP2_BM_STATE_MASK BIT(4)
284 #define MVPP2_BM_LOW_THRESH_OFFS 8
285 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
286 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
287 MVPP2_BM_LOW_THRESH_OFFS)
288 #define MVPP2_BM_HIGH_THRESH_OFFS 16
289 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
290 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
291 MVPP2_BM_HIGH_THRESH_OFFS)
292 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
293 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
294 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
295 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
296 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
297 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
298 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
299 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
300 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
301 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
302 #define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444
303 #define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff
304 #define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00
305 #define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8
306 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
307 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
308 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
309 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
310 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
311 #define MVPP21_BM_MC_RLS_REG 0x64c4
312 #define MVPP2_BM_MC_ID_MASK 0xfff
313 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
314 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
315 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
316 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
317 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
318 #define MVPP22_BM_MC_RLS_REG 0x64d4
319 #define MVPP22_BM_POOL_BASE_HIGH_REG 0x6310
320 #define MVPP22_BM_POOL_BASE_HIGH_MASK 0xff
321
322 /* TX Scheduler registers */
323 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
324 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
325 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
326 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
327 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
328 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
329 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
330 #define MVPP2_TXP_MTU_MAX 0x7FFFF
331 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
332 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
333 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
334 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
335 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
336 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
337 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
338 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
339 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
340 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
341 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
342 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
343 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
344 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
345
346 /* TX general registers */
347 #define MVPP2_TX_SNOOP_REG 0x8800
348 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
349 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
350
351 /* LMS registers */
352 #define MVPP2_SRC_ADDR_MIDDLE 0x24
353 #define MVPP2_SRC_ADDR_HIGH 0x28
354 #define MVPP2_PHY_AN_CFG0_REG 0x34
355 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
356 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
357 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
358
359 /* Per-port registers */
360 #define MVPP2_GMAC_CTRL_0_REG 0x0
361 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
362 #define MVPP2_GMAC_PORT_TYPE_MASK BIT(1)
363 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
364 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
365 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
366 #define MVPP2_GMAC_CTRL_1_REG 0x4
367 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
368 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
369 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
370 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
371 #define MVPP2_GMAC_SA_LOW_OFFS 7
372 #define MVPP2_GMAC_CTRL_2_REG 0x8
373 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
374 #define MVPP2_GMAC_SGMII_MODE_MASK BIT(0)
375 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
376 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
377 #define MVPP2_GMAC_PORT_DIS_PADING_MASK BIT(5)
378 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
379 #define MVPP2_GMAC_CLK_125_BYPS_EN_MASK BIT(9)
380 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
381 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
382 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
383 #define MVPP2_GMAC_EN_PCS_AN BIT(2)
384 #define MVPP2_GMAC_AN_BYPASS_EN BIT(3)
385 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
386 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
387 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
388 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
389 #define MVPP2_GMAC_EN_FC_AN BIT(11)
390 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
391 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
392 #define MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG BIT(15)
393 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
394 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
395 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
396 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
397 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
398 #define MVPP2_GMAC_CTRL_4_REG 0x90
399 #define MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK BIT(0)
400 #define MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK BIT(5)
401 #define MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK BIT(6)
402 #define MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK BIT(7)
403
404 /*
405 * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
406 * relative to port->base.
407 */
408
409 /* Port Mac Control0 */
410 #define MVPP22_XLG_CTRL0_REG 0x100
411 #define MVPP22_XLG_PORT_EN BIT(0)
412 #define MVPP22_XLG_MAC_RESETN BIT(1)
413 #define MVPP22_XLG_RX_FC_EN BIT(7)
414 #define MVPP22_XLG_MIBCNT_DIS BIT(13)
415 /* Port Mac Control1 */
416 #define MVPP22_XLG_CTRL1_REG 0x104
417 #define MVPP22_XLG_MAX_RX_SIZE_OFFS 0
418 #define MVPP22_XLG_MAX_RX_SIZE_MASK 0x1fff
419 /* Port Interrupt Mask */
420 #define MVPP22_XLG_INTERRUPT_MASK_REG 0x118
421 #define MVPP22_XLG_INTERRUPT_LINK_CHANGE BIT(1)
422 /* Port Mac Control3 */
423 #define MVPP22_XLG_CTRL3_REG 0x11c
424 #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
425 #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
426 #define MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC (1 << 13)
427 /* Port Mac Control4 */
428 #define MVPP22_XLG_CTRL4_REG 0x184
429 #define MVPP22_XLG_FORWARD_802_3X_FC_EN BIT(5)
430 #define MVPP22_XLG_FORWARD_PFC_EN BIT(6)
431 #define MVPP22_XLG_MODE_DMA_1G BIT(12)
432 #define MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK BIT(14)
433
434 /* XPCS registers */
435
436 /* Global Configuration 0 */
437 #define MVPP22_XPCS_GLOBAL_CFG_0_REG 0x0
438 #define MVPP22_XPCS_PCSRESET BIT(0)
439 #define MVPP22_XPCS_PCSMODE_OFFS 3
440 #define MVPP22_XPCS_PCSMODE_MASK (0x3 << \
441 MVPP22_XPCS_PCSMODE_OFFS)
442 #define MVPP22_XPCS_LANEACTIVE_OFFS 5
443 #define MVPP22_XPCS_LANEACTIVE_MASK (0x3 << \
444 MVPP22_XPCS_LANEACTIVE_OFFS)
445
446 /* MPCS registers */
447
448 #define PCS40G_COMMON_CONTROL 0x14
449 #define FORWARD_ERROR_CORRECTION_MASK BIT(10)
450
451 #define PCS_CLOCK_RESET 0x14c
452 #define TX_SD_CLK_RESET_MASK BIT(0)
453 #define RX_SD_CLK_RESET_MASK BIT(1)
454 #define MAC_CLK_RESET_MASK BIT(2)
455 #define CLK_DIVISION_RATIO_OFFS 4
456 #define CLK_DIVISION_RATIO_MASK (0x7 << CLK_DIVISION_RATIO_OFFS)
457 #define CLK_DIV_PHASE_SET_MASK BIT(11)
458
459 /* System Soft Reset 1 */
460 #define GOP_SOFT_RESET_1_REG 0x108
461 #define NETC_GOP_SOFT_RESET_OFFS 6
462 #define NETC_GOP_SOFT_RESET_MASK (0x1 << \
463 NETC_GOP_SOFT_RESET_OFFS)
464
465 /* Ports Control 0 */
466 #define NETCOMP_PORTS_CONTROL_0_REG 0x110
467 #define NETC_BUS_WIDTH_SELECT_OFFS 1
468 #define NETC_BUS_WIDTH_SELECT_MASK (0x1 << \
469 NETC_BUS_WIDTH_SELECT_OFFS)
470 #define NETC_GIG_RX_DATA_SAMPLE_OFFS 29
471 #define NETC_GIG_RX_DATA_SAMPLE_MASK (0x1 << \
472 NETC_GIG_RX_DATA_SAMPLE_OFFS)
473 #define NETC_CLK_DIV_PHASE_OFFS 31
474 #define NETC_CLK_DIV_PHASE_MASK (0x1 << NETC_CLK_DIV_PHASE_OFFS)
475 /* Ports Control 1 */
476 #define NETCOMP_PORTS_CONTROL_1_REG 0x114
477 #define NETC_PORTS_ACTIVE_OFFSET(p) (0 + p)
478 #define NETC_PORTS_ACTIVE_MASK(p) (0x1 << \
479 NETC_PORTS_ACTIVE_OFFSET(p))
480 #define NETC_PORT_GIG_RF_RESET_OFFS(p) (28 + p)
481 #define NETC_PORT_GIG_RF_RESET_MASK(p) (0x1 << \
482 NETC_PORT_GIG_RF_RESET_OFFS(p))
483 #define NETCOMP_CONTROL_0_REG 0x120
484 #define NETC_GBE_PORT0_SGMII_MODE_OFFS 0
485 #define NETC_GBE_PORT0_SGMII_MODE_MASK (0x1 << \
486 NETC_GBE_PORT0_SGMII_MODE_OFFS)
487 #define NETC_GBE_PORT1_SGMII_MODE_OFFS 1
488 #define NETC_GBE_PORT1_SGMII_MODE_MASK (0x1 << \
489 NETC_GBE_PORT1_SGMII_MODE_OFFS)
490 #define NETC_GBE_PORT1_MII_MODE_OFFS 2
491 #define NETC_GBE_PORT1_MII_MODE_MASK (0x1 << \
492 NETC_GBE_PORT1_MII_MODE_OFFS)
493
494 #define MVPP22_SMI_MISC_CFG_REG (MVPP22_SMI + 0x04)
495 #define MVPP22_SMI_POLLING_EN BIT(10)
496
497 #define MVPP22_SMI_PHY_ADDR_REG(port) (MVPP22_SMI + 0x04 + \
498 (0x4 * (port)))
499
500 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
501
502 /* Descriptor ring Macros */
503 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
504 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
505
506 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
507 #define MVPP21_SMI 0x0054
508 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
509 #define MVPP22_SMI 0x1200
510 #define MVPP2_PHY_REG_MASK 0x1f
511 /* SMI register fields */
512 #define MVPP2_SMI_DATA_OFFS 0 /* Data */
513 #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS)
514 #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
515 #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
516 #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
517 #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS)
518 #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */
519 #define MVPP2_SMI_BUSY (1 << 28) /* Busy */
520
521 #define MVPP2_PHY_ADDR_MASK 0x1f
522 #define MVPP2_PHY_REG_MASK 0x1f
523
524 /* Additional PPv2.2 offsets */
525 #define MVPP22_MPCS 0x007000
526 #define MVPP22_XPCS 0x007400
527 #define MVPP22_PORT_BASE 0x007e00
528 #define MVPP22_PORT_OFFSET 0x001000
529 #define MVPP22_RFU1 0x318000
530
531 /* Maximum number of ports */
532 #define MVPP22_GOP_MAC_NUM 4
533
534 /* Sets the field located at the specified in data */
535 #define MVPP2_RGMII_TX_FIFO_MIN_TH 0x41
536 #define MVPP2_SGMII_TX_FIFO_MIN_TH 0x5
537 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH 0xb
538
539 /* Net Complex */
540 enum mv_netc_topology {
541 MV_NETC_GE_MAC2_SGMII = BIT(0),
542 MV_NETC_GE_MAC3_SGMII = BIT(1),
543 MV_NETC_GE_MAC3_RGMII = BIT(2),
544 };
545
546 enum mv_netc_phase {
547 MV_NETC_FIRST_PHASE,
548 MV_NETC_SECOND_PHASE,
549 };
550
551 enum mv_netc_sgmii_xmi_mode {
552 MV_NETC_GBE_SGMII,
553 MV_NETC_GBE_XMII,
554 };
555
556 enum mv_netc_mii_mode {
557 MV_NETC_GBE_RGMII,
558 MV_NETC_GBE_MII,
559 };
560
561 enum mv_netc_lanes {
562 MV_NETC_LANE_23,
563 MV_NETC_LANE_45,
564 };
565
566 /* Various constants */
567
568 /* Coalescing */
569 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
570 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
571 #define MVPP2_RX_COAL_PKTS 32
572 #define MVPP2_RX_COAL_USEC 100
573
574 /* The two bytes Marvell header. Either contains a special value used
575 * by Marvell switches when a specific hardware mode is enabled (not
576 * supported by this driver) or is filled automatically by zeroes on
577 * the RX side. Those two bytes being at the front of the Ethernet
578 * header, they allow to have the IP header aligned on a 4 bytes
579 * boundary automatically: the hardware skips those two bytes on its
580 * own.
581 */
582 #define MVPP2_MH_SIZE 2
583 #define MVPP2_ETH_TYPE_LEN 2
584 #define MVPP2_PPPOE_HDR_SIZE 8
585 #define MVPP2_VLAN_TAG_LEN 4
586
587 /* Lbtd 802.3 type */
588 #define MVPP2_IP_LBDT_TYPE 0xfffa
589
590 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32
591 #define MVPP2_TX_CSUM_MAX_SIZE 9800
592
593 /* Timeout constants */
594 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
595 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
596
597 #define MVPP2_TX_MTU_MAX 0x7ffff
598
599 /* Maximum number of T-CONTs of PON port */
600 #define MVPP2_MAX_TCONT 16
601
602 /* Maximum number of supported ports */
603 #define MVPP2_MAX_PORTS 4
604
605 /* Maximum number of TXQs used by single port */
606 #define MVPP2_MAX_TXQ 8
607
608 /* Default number of TXQs in use */
609 #define MVPP2_DEFAULT_TXQ 1
610
611 /* Dfault number of RXQs in use */
612 #define MVPP2_DEFAULT_RXQ 1
613 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */
614
615 /* Max number of Rx descriptors */
616 #define MVPP2_MAX_RXD 16
617
618 /* Max number of Tx descriptors */
619 #define MVPP2_MAX_TXD 16
620
621 /* Amount of Tx descriptors that can be reserved at once by CPU */
622 #define MVPP2_CPU_DESC_CHUNK 16
623
624 /* Max number of Tx descriptors in each aggregated queue */
625 #define MVPP2_AGGR_TXQ_SIZE 16
626
627 /* Descriptor aligned size */
628 #define MVPP2_DESC_ALIGNED_SIZE 32
629
630 /* Descriptor alignment mask */
631 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
632
633 /* RX FIFO constants */
634 #define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000
635 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80
636 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000
637 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000
638 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000
639 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200
640 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80
641 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40
642 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
643
644 /* TX general registers */
645 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2))
646 #define MVPP22_TX_FIFO_SIZE_MASK 0xf
647
648 /* TX FIFO constants */
649 #define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa
650 #define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3
651
652 /* RX buffer constants */
653 #define MVPP2_SKB_SHINFO_SIZE \
654 0
655
656 #define MVPP2_RX_PKT_SIZE(mtu) \
657 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
658 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
659
660 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
661 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
662 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
663 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
664
665 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
666
667 /* IPv6 max L3 address size */
668 #define MVPP2_MAX_L3_ADDR_SIZE 16
669
670 /* Port flags */
671 #define MVPP2_F_LOOPBACK BIT(0)
672
673 /* Marvell tag types */
674 enum mvpp2_tag_type {
675 MVPP2_TAG_TYPE_NONE = 0,
676 MVPP2_TAG_TYPE_MH = 1,
677 MVPP2_TAG_TYPE_DSA = 2,
678 MVPP2_TAG_TYPE_EDSA = 3,
679 MVPP2_TAG_TYPE_VLAN = 4,
680 MVPP2_TAG_TYPE_LAST = 5
681 };
682
683 /* Parser constants */
684 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
685 #define MVPP2_PRS_TCAM_WORDS 6
686 #define MVPP2_PRS_SRAM_WORDS 4
687 #define MVPP2_PRS_FLOW_ID_SIZE 64
688 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
689 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
690 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
691 #define MVPP2_PRS_IPV4_HEAD 0x40
692 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
693 #define MVPP2_PRS_IPV4_MC 0xe0
694 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
695 #define MVPP2_PRS_IPV4_BC_MASK 0xff
696 #define MVPP2_PRS_IPV4_IHL 0x5
697 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
698 #define MVPP2_PRS_IPV6_MC 0xff
699 #define MVPP2_PRS_IPV6_MC_MASK 0xff
700 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
701 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
702 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
703 #define MVPP2_PRS_DBL_VLANS_MAX 100
704
705 /* Tcam structure:
706 * - lookup ID - 4 bits
707 * - port ID - 1 byte
708 * - additional information - 1 byte
709 * - header data - 8 bytes
710 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
711 */
712 #define MVPP2_PRS_AI_BITS 8
713 #define MVPP2_PRS_PORT_MASK 0xff
714 #define MVPP2_PRS_LU_MASK 0xf
715 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
716 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
717 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
718 (((offs) * 2) - ((offs) % 2) + 2)
719 #define MVPP2_PRS_TCAM_AI_BYTE 16
720 #define MVPP2_PRS_TCAM_PORT_BYTE 17
721 #define MVPP2_PRS_TCAM_LU_BYTE 20
722 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
723 #define MVPP2_PRS_TCAM_INV_WORD 5
724 /* Tcam entries ID */
725 #define MVPP2_PE_DROP_ALL 0
726 #define MVPP2_PE_FIRST_FREE_TID 1
727 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
728 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
729 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
730 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
731 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
732 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
733 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
734 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
735 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
736 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
737 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
738 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
739 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
740 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
741 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
742 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
743 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
744 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
745 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
746 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
747 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
748 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
749 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
750 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
751 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
752
753 /* Sram structure
754 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
755 */
756 #define MVPP2_PRS_SRAM_RI_OFFS 0
757 #define MVPP2_PRS_SRAM_RI_WORD 0
758 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
759 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
760 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
761 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
762 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
763 #define MVPP2_PRS_SRAM_UDF_OFFS 73
764 #define MVPP2_PRS_SRAM_UDF_BITS 8
765 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
766 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
767 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
768 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
769 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
770 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
771 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
772 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
773 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
774 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
775 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
776 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
777 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
778 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
779 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
780 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
781 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
782 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
783 #define MVPP2_PRS_SRAM_AI_OFFS 90
784 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
785 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
786 #define MVPP2_PRS_SRAM_AI_MASK 0xff
787 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
788 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
789 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
790 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
791
792 /* Sram result info bits assignment */
793 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
794 #define MVPP2_PRS_RI_DSA_MASK 0x2
795 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
796 #define MVPP2_PRS_RI_VLAN_NONE 0x0
797 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
798 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
799 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
800 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
801 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
802 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
803 #define MVPP2_PRS_RI_L2_UCAST 0x0
804 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
805 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
806 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
807 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
808 #define MVPP2_PRS_RI_L3_UN 0x0
809 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
810 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
811 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
812 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
813 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
814 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
815 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
816 #define MVPP2_PRS_RI_L3_UCAST 0x0
817 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
818 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
819 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
820 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
821 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
822 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
823 #define MVPP2_PRS_RI_L4_TCP BIT(22)
824 #define MVPP2_PRS_RI_L4_UDP BIT(23)
825 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
826 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
827 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
828 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
829
830 /* Sram additional info bits assignment */
831 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
832 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
833 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
834 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
835 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
836 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
837 #define MVPP2_PRS_SINGLE_VLAN_AI 0
838 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
839
840 /* DSA/EDSA type */
841 #define MVPP2_PRS_TAGGED true
842 #define MVPP2_PRS_UNTAGGED false
843 #define MVPP2_PRS_EDSA true
844 #define MVPP2_PRS_DSA false
845
846 /* MAC entries, shadow udf */
847 enum mvpp2_prs_udf {
848 MVPP2_PRS_UDF_MAC_DEF,
849 MVPP2_PRS_UDF_MAC_RANGE,
850 MVPP2_PRS_UDF_L2_DEF,
851 MVPP2_PRS_UDF_L2_DEF_COPY,
852 MVPP2_PRS_UDF_L2_USER,
853 };
854
855 /* Lookup ID */
856 enum mvpp2_prs_lookup {
857 MVPP2_PRS_LU_MH,
858 MVPP2_PRS_LU_MAC,
859 MVPP2_PRS_LU_DSA,
860 MVPP2_PRS_LU_VLAN,
861 MVPP2_PRS_LU_L2,
862 MVPP2_PRS_LU_PPPOE,
863 MVPP2_PRS_LU_IP4,
864 MVPP2_PRS_LU_IP6,
865 MVPP2_PRS_LU_FLOWS,
866 MVPP2_PRS_LU_LAST,
867 };
868
869 /* L3 cast enum */
870 enum mvpp2_prs_l3_cast {
871 MVPP2_PRS_L3_UNI_CAST,
872 MVPP2_PRS_L3_MULTI_CAST,
873 MVPP2_PRS_L3_BROAD_CAST
874 };
875
876 /* Classifier constants */
877 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
878 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
879 #define MVPP2_CLS_LKP_TBL_SIZE 64
880
881 /* BM constants */
882 #define MVPP2_BM_POOLS_NUM 1
883 #define MVPP2_BM_LONG_BUF_NUM 16
884 #define MVPP2_BM_SHORT_BUF_NUM 16
885 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
886 #define MVPP2_BM_POOL_PTR_ALIGN 128
887 #define MVPP2_BM_SWF_LONG_POOL(port) 0
888
889 /* BM cookie (32 bits) definition */
890 #define MVPP2_BM_COOKIE_POOL_OFFS 8
891 #define MVPP2_BM_COOKIE_CPU_OFFS 24
892
893 /* BM short pool packet size
894 * These value assure that for SWF the total number
895 * of bytes allocated for each buffer will be 512
896 */
897 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
898
899 enum mvpp2_bm_type {
900 MVPP2_BM_FREE,
901 MVPP2_BM_SWF_LONG,
902 MVPP2_BM_SWF_SHORT
903 };
904
905 /* Definitions */
906
907 /* Shared Packet Processor resources */
908 struct mvpp2 {
909 /* Shared registers' base addresses */
910 void __iomem *base;
911 void __iomem *lms_base;
912 void __iomem *iface_base;
913 void __iomem *mdio_base;
914
915 void __iomem *mpcs_base;
916 void __iomem *xpcs_base;
917 void __iomem *rfu1_base;
918
919 u32 netc_config;
920
921 /* List of pointers to port structures */
922 struct mvpp2_port **port_list;
923
924 /* Aggregated TXQs */
925 struct mvpp2_tx_queue *aggr_txqs;
926
927 /* BM pools */
928 struct mvpp2_bm_pool *bm_pools;
929
930 /* PRS shadow table */
931 struct mvpp2_prs_shadow *prs_shadow;
932 /* PRS auxiliary table for double vlan entries control */
933 bool *prs_double_vlans;
934
935 /* Tclk value */
936 u32 tclk;
937
938 /* HW version */
939 enum { MVPP21, MVPP22 } hw_version;
940
941 /* Maximum number of RXQs per port */
942 unsigned int max_port_rxqs;
943
944 struct mii_dev *bus;
945
946 int probe_done;
947 u8 num_ports;
948 };
949
950 struct mvpp2_pcpu_stats {
951 u64 rx_packets;
952 u64 rx_bytes;
953 u64 tx_packets;
954 u64 tx_bytes;
955 };
956
957 struct mvpp2_port {
958 u8 id;
959
960 /* Index of the port from the "group of ports" complex point
961 * of view
962 */
963 int gop_id;
964
965 int irq;
966
967 struct mvpp2 *priv;
968
969 /* Per-port registers' base address */
970 void __iomem *base;
971
972 struct mvpp2_rx_queue **rxqs;
973 struct mvpp2_tx_queue **txqs;
974
975 int pkt_size;
976
977 u32 pending_cause_rx;
978
979 /* Per-CPU port control */
980 struct mvpp2_port_pcpu __percpu *pcpu;
981
982 /* Flags */
983 unsigned long flags;
984
985 u16 tx_ring_size;
986 u16 rx_ring_size;
987 struct mvpp2_pcpu_stats __percpu *stats;
988
989 struct phy_device *phy_dev;
990 phy_interface_t phy_interface;
991 int phy_node;
992 int phyaddr;
993 #ifdef CONFIG_DM_GPIO
994 struct gpio_desc phy_reset_gpio;
995 struct gpio_desc phy_tx_disable_gpio;
996 #endif
997 int init;
998 unsigned int link;
999 unsigned int duplex;
1000 unsigned int speed;
1001
1002 unsigned int phy_speed; /* SGMII 1Gbps vs 2.5Gbps */
1003
1004 struct mvpp2_bm_pool *pool_long;
1005 struct mvpp2_bm_pool *pool_short;
1006
1007 /* Index of first port's physical RXQ */
1008 u8 first_rxq;
1009
1010 u8 dev_addr[ETH_ALEN];
1011 };
1012
1013 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
1014 * layout of the transmit and reception DMA descriptors, and their
1015 * layout is therefore defined by the hardware design
1016 */
1017
1018 #define MVPP2_TXD_L3_OFF_SHIFT 0
1019 #define MVPP2_TXD_IP_HLEN_SHIFT 8
1020 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
1021 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
1022 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
1023 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
1024 #define MVPP2_TXD_L4_UDP BIT(24)
1025 #define MVPP2_TXD_L3_IP6 BIT(26)
1026 #define MVPP2_TXD_L_DESC BIT(28)
1027 #define MVPP2_TXD_F_DESC BIT(29)
1028
1029 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
1030 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
1031 #define MVPP2_RXD_ERR_CRC 0x0
1032 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
1033 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
1034 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
1035 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
1036 #define MVPP2_RXD_HWF_SYNC BIT(21)
1037 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
1038 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
1039 #define MVPP2_RXD_L4_TCP BIT(25)
1040 #define MVPP2_RXD_L4_UDP BIT(26)
1041 #define MVPP2_RXD_L3_IP4 BIT(28)
1042 #define MVPP2_RXD_L3_IP6 BIT(30)
1043 #define MVPP2_RXD_BUF_HDR BIT(31)
1044
1045 /* HW TX descriptor for PPv2.1 */
1046 struct mvpp21_tx_desc {
1047 u32 command; /* Options used by HW for packet transmitting.*/
1048 u8 packet_offset; /* the offset from the buffer beginning */
1049 u8 phys_txq; /* destination queue ID */
1050 u16 data_size; /* data size of transmitted packet in bytes */
1051 u32 buf_dma_addr; /* physical addr of transmitted buffer */
1052 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
1053 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
1054 u32 reserved2; /* reserved (for future use) */
1055 };
1056
1057 /* HW RX descriptor for PPv2.1 */
1058 struct mvpp21_rx_desc {
1059 u32 status; /* info about received packet */
1060 u16 reserved1; /* parser_info (for future use, PnC) */
1061 u16 data_size; /* size of received packet in bytes */
1062 u32 buf_dma_addr; /* physical address of the buffer */
1063 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
1064 u16 reserved2; /* gem_port_id (for future use, PON) */
1065 u16 reserved3; /* csum_l4 (for future use, PnC) */
1066 u8 reserved4; /* bm_qset (for future use, BM) */
1067 u8 reserved5;
1068 u16 reserved6; /* classify_info (for future use, PnC) */
1069 u32 reserved7; /* flow_id (for future use, PnC) */
1070 u32 reserved8;
1071 };
1072
1073 /* HW TX descriptor for PPv2.2 */
1074 struct mvpp22_tx_desc {
1075 u32 command;
1076 u8 packet_offset;
1077 u8 phys_txq;
1078 u16 data_size;
1079 u64 reserved1;
1080 u64 buf_dma_addr_ptp;
1081 u64 buf_cookie_misc;
1082 };
1083
1084 /* HW RX descriptor for PPv2.2 */
1085 struct mvpp22_rx_desc {
1086 u32 status;
1087 u16 reserved1;
1088 u16 data_size;
1089 u32 reserved2;
1090 u32 reserved3;
1091 u64 buf_dma_addr_key_hash;
1092 u64 buf_cookie_misc;
1093 };
1094
1095 /* Opaque type used by the driver to manipulate the HW TX and RX
1096 * descriptors
1097 */
1098 struct mvpp2_tx_desc {
1099 union {
1100 struct mvpp21_tx_desc pp21;
1101 struct mvpp22_tx_desc pp22;
1102 };
1103 };
1104
1105 struct mvpp2_rx_desc {
1106 union {
1107 struct mvpp21_rx_desc pp21;
1108 struct mvpp22_rx_desc pp22;
1109 };
1110 };
1111
1112 /* Per-CPU Tx queue control */
1113 struct mvpp2_txq_pcpu {
1114 int cpu;
1115
1116 /* Number of Tx DMA descriptors in the descriptor ring */
1117 int size;
1118
1119 /* Number of currently used Tx DMA descriptor in the
1120 * descriptor ring
1121 */
1122 int count;
1123
1124 /* Number of Tx DMA descriptors reserved for each CPU */
1125 int reserved_num;
1126
1127 /* Index of last TX DMA descriptor that was inserted */
1128 int txq_put_index;
1129
1130 /* Index of the TX DMA descriptor to be cleaned up */
1131 int txq_get_index;
1132 };
1133
1134 struct mvpp2_tx_queue {
1135 /* Physical number of this Tx queue */
1136 u8 id;
1137
1138 /* Logical number of this Tx queue */
1139 u8 log_id;
1140
1141 /* Number of Tx DMA descriptors in the descriptor ring */
1142 int size;
1143
1144 /* Number of currently used Tx DMA descriptor in the descriptor ring */
1145 int count;
1146
1147 /* Per-CPU control of physical Tx queues */
1148 struct mvpp2_txq_pcpu __percpu *pcpu;
1149
1150 u32 done_pkts_coal;
1151
1152 /* Virtual address of thex Tx DMA descriptors array */
1153 struct mvpp2_tx_desc *descs;
1154
1155 /* DMA address of the Tx DMA descriptors array */
1156 dma_addr_t descs_dma;
1157
1158 /* Index of the last Tx DMA descriptor */
1159 int last_desc;
1160
1161 /* Index of the next Tx DMA descriptor to process */
1162 int next_desc_to_proc;
1163 };
1164
1165 struct mvpp2_rx_queue {
1166 /* RX queue number, in the range 0-31 for physical RXQs */
1167 u8 id;
1168
1169 /* Num of rx descriptors in the rx descriptor ring */
1170 int size;
1171
1172 u32 pkts_coal;
1173 u32 time_coal;
1174
1175 /* Virtual address of the RX DMA descriptors array */
1176 struct mvpp2_rx_desc *descs;
1177
1178 /* DMA address of the RX DMA descriptors array */
1179 dma_addr_t descs_dma;
1180
1181 /* Index of the last RX DMA descriptor */
1182 int last_desc;
1183
1184 /* Index of the next RX DMA descriptor to process */
1185 int next_desc_to_proc;
1186
1187 /* ID of port to which physical RXQ is mapped */
1188 int port;
1189
1190 /* Port's logic RXQ number to which physical RXQ is mapped */
1191 int logic_rxq;
1192 };
1193
1194 union mvpp2_prs_tcam_entry {
1195 u32 word[MVPP2_PRS_TCAM_WORDS];
1196 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
1197 };
1198
1199 union mvpp2_prs_sram_entry {
1200 u32 word[MVPP2_PRS_SRAM_WORDS];
1201 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
1202 };
1203
1204 struct mvpp2_prs_entry {
1205 u32 index;
1206 union mvpp2_prs_tcam_entry tcam;
1207 union mvpp2_prs_sram_entry sram;
1208 };
1209
1210 struct mvpp2_prs_shadow {
1211 bool valid;
1212 bool finish;
1213
1214 /* Lookup ID */
1215 int lu;
1216
1217 /* User defined offset */
1218 int udf;
1219
1220 /* Result info */
1221 u32 ri;
1222 u32 ri_mask;
1223 };
1224
1225 struct mvpp2_cls_flow_entry {
1226 u32 index;
1227 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1228 };
1229
1230 struct mvpp2_cls_lookup_entry {
1231 u32 lkpid;
1232 u32 way;
1233 u32 data;
1234 };
1235
1236 struct mvpp2_bm_pool {
1237 /* Pool number in the range 0-7 */
1238 int id;
1239 enum mvpp2_bm_type type;
1240
1241 /* Buffer Pointers Pool External (BPPE) size */
1242 int size;
1243 /* Number of buffers for this pool */
1244 int buf_num;
1245 /* Pool buffer size */
1246 int buf_size;
1247 /* Packet size */
1248 int pkt_size;
1249
1250 /* BPPE virtual base address */
1251 unsigned long *virt_addr;
1252 /* BPPE DMA base address */
1253 dma_addr_t dma_addr;
1254
1255 /* Ports using BM pool */
1256 u32 port_map;
1257 };
1258
1259 /* Static declaractions */
1260
1261 /* Number of RXQs used by single port */
1262 static int rxq_number = MVPP2_DEFAULT_RXQ;
1263 /* Number of TXQs used by single port */
1264 static int txq_number = MVPP2_DEFAULT_TXQ;
1265
1266 static int base_id;
1267
1268 #define MVPP2_DRIVER_NAME "mvpp2"
1269 #define MVPP2_DRIVER_VERSION "1.0"
1270
1271 /*
1272 * U-Boot internal data, mostly uncached buffers for descriptors and data
1273 */
1274 struct buffer_location {
1275 struct mvpp2_tx_desc *aggr_tx_descs;
1276 struct mvpp2_tx_desc *tx_descs;
1277 struct mvpp2_rx_desc *rx_descs;
1278 unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1279 unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1280 int first_rxq;
1281 };
1282
1283 /*
1284 * All 4 interfaces use the same global buffer, since only one interface
1285 * can be enabled at once
1286 */
1287 static struct buffer_location buffer_loc;
1288
1289 /*
1290 * Page table entries are set to 1MB, or multiples of 1MB
1291 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1292 */
1293 #define BD_SPACE (1 << 20)
1294
1295 /* Utility/helper methods */
1296
1297 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1298 {
1299 writel(data, priv->base + offset);
1300 }
1301
1302 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1303 {
1304 return readl(priv->base + offset);
1305 }
1306
1307 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1308 struct mvpp2_tx_desc *tx_desc,
1309 dma_addr_t dma_addr)
1310 {
1311 if (port->priv->hw_version == MVPP21) {
1312 tx_desc->pp21.buf_dma_addr = dma_addr;
1313 } else {
1314 u64 val = (u64)dma_addr;
1315
1316 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1317 tx_desc->pp22.buf_dma_addr_ptp |= val;
1318 }
1319 }
1320
1321 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1322 struct mvpp2_tx_desc *tx_desc,
1323 size_t size)
1324 {
1325 if (port->priv->hw_version == MVPP21)
1326 tx_desc->pp21.data_size = size;
1327 else
1328 tx_desc->pp22.data_size = size;
1329 }
1330
1331 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1332 struct mvpp2_tx_desc *tx_desc,
1333 unsigned int txq)
1334 {
1335 if (port->priv->hw_version == MVPP21)
1336 tx_desc->pp21.phys_txq = txq;
1337 else
1338 tx_desc->pp22.phys_txq = txq;
1339 }
1340
1341 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1342 struct mvpp2_tx_desc *tx_desc,
1343 unsigned int command)
1344 {
1345 if (port->priv->hw_version == MVPP21)
1346 tx_desc->pp21.command = command;
1347 else
1348 tx_desc->pp22.command = command;
1349 }
1350
1351 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1352 struct mvpp2_tx_desc *tx_desc,
1353 unsigned int offset)
1354 {
1355 if (port->priv->hw_version == MVPP21)
1356 tx_desc->pp21.packet_offset = offset;
1357 else
1358 tx_desc->pp22.packet_offset = offset;
1359 }
1360
1361 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1362 struct mvpp2_rx_desc *rx_desc)
1363 {
1364 if (port->priv->hw_version == MVPP21)
1365 return rx_desc->pp21.buf_dma_addr;
1366 else
1367 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1368 }
1369
1370 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1371 struct mvpp2_rx_desc *rx_desc)
1372 {
1373 if (port->priv->hw_version == MVPP21)
1374 return rx_desc->pp21.buf_cookie;
1375 else
1376 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1377 }
1378
1379 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1380 struct mvpp2_rx_desc *rx_desc)
1381 {
1382 if (port->priv->hw_version == MVPP21)
1383 return rx_desc->pp21.data_size;
1384 else
1385 return rx_desc->pp22.data_size;
1386 }
1387
1388 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1389 struct mvpp2_rx_desc *rx_desc)
1390 {
1391 if (port->priv->hw_version == MVPP21)
1392 return rx_desc->pp21.status;
1393 else
1394 return rx_desc->pp22.status;
1395 }
1396
1397 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1398 {
1399 txq_pcpu->txq_get_index++;
1400 if (txq_pcpu->txq_get_index == txq_pcpu->size)
1401 txq_pcpu->txq_get_index = 0;
1402 }
1403
1404 /* Get number of physical egress port */
1405 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1406 {
1407 return MVPP2_MAX_TCONT + port->id;
1408 }
1409
1410 /* Get number of physical TXQ */
1411 static inline int mvpp2_txq_phys(int port, int txq)
1412 {
1413 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1414 }
1415
1416 /* Parser configuration routines */
1417
1418 /* Update parser tcam and sram hw entries */
1419 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1420 {
1421 int i;
1422
1423 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1424 return -EINVAL;
1425
1426 /* Clear entry invalidation bit */
1427 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1428
1429 /* Write tcam index - indirect access */
1430 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1431 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1432 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1433
1434 /* Write sram index - indirect access */
1435 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1436 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1437 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1438
1439 return 0;
1440 }
1441
1442 /* Read tcam entry from hw */
1443 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1444 {
1445 int i;
1446
1447 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1448 return -EINVAL;
1449
1450 /* Write tcam index - indirect access */
1451 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1452
1453 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1454 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1455 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1456 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1457
1458 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1459 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1460
1461 /* Write sram index - indirect access */
1462 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1463 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1464 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1465
1466 return 0;
1467 }
1468
1469 /* Invalidate tcam hw entry */
1470 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1471 {
1472 /* Write index - indirect access */
1473 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1474 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1475 MVPP2_PRS_TCAM_INV_MASK);
1476 }
1477
1478 /* Enable shadow table entry and set its lookup ID */
1479 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1480 {
1481 priv->prs_shadow[index].valid = true;
1482 priv->prs_shadow[index].lu = lu;
1483 }
1484
1485 /* Update ri fields in shadow table entry */
1486 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1487 unsigned int ri, unsigned int ri_mask)
1488 {
1489 priv->prs_shadow[index].ri_mask = ri_mask;
1490 priv->prs_shadow[index].ri = ri;
1491 }
1492
1493 /* Update lookup field in tcam sw entry */
1494 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1495 {
1496 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1497
1498 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1499 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1500 }
1501
1502 /* Update mask for single port in tcam sw entry */
1503 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1504 unsigned int port, bool add)
1505 {
1506 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1507
1508 if (add)
1509 pe->tcam.byte[enable_off] &= ~(1 << port);
1510 else
1511 pe->tcam.byte[enable_off] |= 1 << port;
1512 }
1513
1514 /* Update port map in tcam sw entry */
1515 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1516 unsigned int ports)
1517 {
1518 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1519 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1520
1521 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1522 pe->tcam.byte[enable_off] &= ~port_mask;
1523 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1524 }
1525
1526 /* Obtain port map from tcam sw entry */
1527 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1528 {
1529 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1530
1531 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1532 }
1533
1534 /* Set byte of data and its enable bits in tcam sw entry */
1535 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1536 unsigned int offs, unsigned char byte,
1537 unsigned char enable)
1538 {
1539 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1540 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1541 }
1542
1543 /* Get byte of data and its enable bits from tcam sw entry */
1544 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1545 unsigned int offs, unsigned char *byte,
1546 unsigned char *enable)
1547 {
1548 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1549 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1550 }
1551
1552 /* Set ethertype in tcam sw entry */
1553 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1554 unsigned short ethertype)
1555 {
1556 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1557 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1558 }
1559
1560 /* Set bits in sram sw entry */
1561 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1562 int val)
1563 {
1564 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1565 }
1566
1567 /* Clear bits in sram sw entry */
1568 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1569 int val)
1570 {
1571 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1572 }
1573
1574 /* Update ri bits in sram sw entry */
1575 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1576 unsigned int bits, unsigned int mask)
1577 {
1578 unsigned int i;
1579
1580 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1581 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1582
1583 if (!(mask & BIT(i)))
1584 continue;
1585
1586 if (bits & BIT(i))
1587 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1588 else
1589 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1590
1591 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1592 }
1593 }
1594
1595 /* Update ai bits in sram sw entry */
1596 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1597 unsigned int bits, unsigned int mask)
1598 {
1599 unsigned int i;
1600 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1601
1602 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1603
1604 if (!(mask & BIT(i)))
1605 continue;
1606
1607 if (bits & BIT(i))
1608 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1609 else
1610 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1611
1612 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1613 }
1614 }
1615
1616 /* Read ai bits from sram sw entry */
1617 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1618 {
1619 u8 bits;
1620 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1621 int ai_en_off = ai_off + 1;
1622 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1623
1624 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1625 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1626
1627 return bits;
1628 }
1629
1630 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1631 * lookup interation
1632 */
1633 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1634 unsigned int lu)
1635 {
1636 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1637
1638 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1639 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1640 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1641 }
1642
1643 /* In the sram sw entry set sign and value of the next lookup offset
1644 * and the offset value generated to the classifier
1645 */
1646 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1647 unsigned int op)
1648 {
1649 /* Set sign */
1650 if (shift < 0) {
1651 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1652 shift = 0 - shift;
1653 } else {
1654 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1655 }
1656
1657 /* Set value */
1658 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1659 (unsigned char)shift;
1660
1661 /* Reset and set operation */
1662 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1663 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1664 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1665
1666 /* Set base offset as current */
1667 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1668 }
1669
1670 /* In the sram sw entry set sign and value of the user defined offset
1671 * generated to the classifier
1672 */
1673 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1674 unsigned int type, int offset,
1675 unsigned int op)
1676 {
1677 /* Set sign */
1678 if (offset < 0) {
1679 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1680 offset = 0 - offset;
1681 } else {
1682 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1683 }
1684
1685 /* Set value */
1686 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1687 MVPP2_PRS_SRAM_UDF_MASK);
1688 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1689 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1690 MVPP2_PRS_SRAM_UDF_BITS)] &=
1691 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1692 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1693 MVPP2_PRS_SRAM_UDF_BITS)] |=
1694 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1695
1696 /* Set offset type */
1697 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1698 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1699 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1700
1701 /* Set offset operation */
1702 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1703 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1704 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1705
1706 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1707 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1708 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1709 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1710
1711 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1712 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1713 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1714
1715 /* Set base offset as current */
1716 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1717 }
1718
1719 /* Find parser flow entry */
1720 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1721 {
1722 struct mvpp2_prs_entry *pe;
1723 int tid;
1724
1725 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1726 if (!pe)
1727 return NULL;
1728 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1729
1730 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1731 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1732 u8 bits;
1733
1734 if (!priv->prs_shadow[tid].valid ||
1735 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1736 continue;
1737
1738 pe->index = tid;
1739 mvpp2_prs_hw_read(priv, pe);
1740 bits = mvpp2_prs_sram_ai_get(pe);
1741
1742 /* Sram store classification lookup ID in AI bits [5:0] */
1743 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1744 return pe;
1745 }
1746 kfree(pe);
1747
1748 return NULL;
1749 }
1750
1751 /* Return first free tcam index, seeking from start to end */
1752 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1753 unsigned char end)
1754 {
1755 int tid;
1756
1757 if (start > end)
1758 swap(start, end);
1759
1760 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1761 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1762
1763 for (tid = start; tid <= end; tid++) {
1764 if (!priv->prs_shadow[tid].valid)
1765 return tid;
1766 }
1767
1768 return -EINVAL;
1769 }
1770
1771 /* Enable/disable dropping all mac da's */
1772 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1773 {
1774 struct mvpp2_prs_entry pe;
1775
1776 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1777 /* Entry exist - update port only */
1778 pe.index = MVPP2_PE_DROP_ALL;
1779 mvpp2_prs_hw_read(priv, &pe);
1780 } else {
1781 /* Entry doesn't exist - create new */
1782 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1783 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1784 pe.index = MVPP2_PE_DROP_ALL;
1785
1786 /* Non-promiscuous mode for all ports - DROP unknown packets */
1787 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1788 MVPP2_PRS_RI_DROP_MASK);
1789
1790 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1791 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1792
1793 /* Update shadow table */
1794 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1795
1796 /* Mask all ports */
1797 mvpp2_prs_tcam_port_map_set(&pe, 0);
1798 }
1799
1800 /* Update port mask */
1801 mvpp2_prs_tcam_port_set(&pe, port, add);
1802
1803 mvpp2_prs_hw_write(priv, &pe);
1804 }
1805
1806 /* Set port to promiscuous mode */
1807 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1808 {
1809 struct mvpp2_prs_entry pe;
1810
1811 /* Promiscuous mode - Accept unknown packets */
1812
1813 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1814 /* Entry exist - update port only */
1815 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1816 mvpp2_prs_hw_read(priv, &pe);
1817 } else {
1818 /* Entry doesn't exist - create new */
1819 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1820 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1821 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1822
1823 /* Continue - set next lookup */
1824 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1825
1826 /* Set result info bits */
1827 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1828 MVPP2_PRS_RI_L2_CAST_MASK);
1829
1830 /* Shift to ethertype */
1831 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1832 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1833
1834 /* Mask all ports */
1835 mvpp2_prs_tcam_port_map_set(&pe, 0);
1836
1837 /* Update shadow table */
1838 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1839 }
1840
1841 /* Update port mask */
1842 mvpp2_prs_tcam_port_set(&pe, port, add);
1843
1844 mvpp2_prs_hw_write(priv, &pe);
1845 }
1846
1847 /* Accept multicast */
1848 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1849 bool add)
1850 {
1851 struct mvpp2_prs_entry pe;
1852 unsigned char da_mc;
1853
1854 /* Ethernet multicast address first byte is
1855 * 0x01 for IPv4 and 0x33 for IPv6
1856 */
1857 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1858
1859 if (priv->prs_shadow[index].valid) {
1860 /* Entry exist - update port only */
1861 pe.index = index;
1862 mvpp2_prs_hw_read(priv, &pe);
1863 } else {
1864 /* Entry doesn't exist - create new */
1865 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1866 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1867 pe.index = index;
1868
1869 /* Continue - set next lookup */
1870 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1871
1872 /* Set result info bits */
1873 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1874 MVPP2_PRS_RI_L2_CAST_MASK);
1875
1876 /* Update tcam entry data first byte */
1877 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1878
1879 /* Shift to ethertype */
1880 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1881 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1882
1883 /* Mask all ports */
1884 mvpp2_prs_tcam_port_map_set(&pe, 0);
1885
1886 /* Update shadow table */
1887 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1888 }
1889
1890 /* Update port mask */
1891 mvpp2_prs_tcam_port_set(&pe, port, add);
1892
1893 mvpp2_prs_hw_write(priv, &pe);
1894 }
1895
1896 /* Parser per-port initialization */
1897 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1898 int lu_max, int offset)
1899 {
1900 u32 val;
1901
1902 /* Set lookup ID */
1903 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1904 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1905 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1906 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1907
1908 /* Set maximum number of loops for packet received from port */
1909 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1910 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1911 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1912 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1913
1914 /* Set initial offset for packet header extraction for the first
1915 * searching loop
1916 */
1917 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1918 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1919 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1920 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1921 }
1922
1923 /* Default flow entries initialization for all ports */
1924 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1925 {
1926 struct mvpp2_prs_entry pe;
1927 int port;
1928
1929 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1930 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1931 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1932 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1933
1934 /* Mask all ports */
1935 mvpp2_prs_tcam_port_map_set(&pe, 0);
1936
1937 /* Set flow ID*/
1938 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1939 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1940
1941 /* Update shadow table and hw entry */
1942 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1943 mvpp2_prs_hw_write(priv, &pe);
1944 }
1945 }
1946
1947 /* Set default entry for Marvell Header field */
1948 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1949 {
1950 struct mvpp2_prs_entry pe;
1951
1952 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1953
1954 pe.index = MVPP2_PE_MH_DEFAULT;
1955 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1956 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1957 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1958 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1959
1960 /* Unmask all ports */
1961 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1962
1963 /* Update shadow table and hw entry */
1964 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1965 mvpp2_prs_hw_write(priv, &pe);
1966 }
1967
1968 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1969 * multicast MAC addresses
1970 */
1971 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1972 {
1973 struct mvpp2_prs_entry pe;
1974
1975 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1976
1977 /* Non-promiscuous mode for all ports - DROP unknown packets */
1978 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1979 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1980
1981 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1982 MVPP2_PRS_RI_DROP_MASK);
1983 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1984 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1985
1986 /* Unmask all ports */
1987 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1988
1989 /* Update shadow table and hw entry */
1990 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1991 mvpp2_prs_hw_write(priv, &pe);
1992
1993 /* place holders only - no ports */
1994 mvpp2_prs_mac_drop_all_set(priv, 0, false);
1995 mvpp2_prs_mac_promisc_set(priv, 0, false);
1996 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1997 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1998 }
1999
2000 /* Match basic ethertypes */
2001 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2002 {
2003 struct mvpp2_prs_entry pe;
2004 int tid;
2005
2006 /* Ethertype: PPPoE */
2007 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2008 MVPP2_PE_LAST_FREE_TID);
2009 if (tid < 0)
2010 return tid;
2011
2012 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2013 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2014 pe.index = tid;
2015
2016 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
2017
2018 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2019 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2020 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2021 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2022 MVPP2_PRS_RI_PPPOE_MASK);
2023
2024 /* Update shadow table and hw entry */
2025 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2026 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2027 priv->prs_shadow[pe.index].finish = false;
2028 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2029 MVPP2_PRS_RI_PPPOE_MASK);
2030 mvpp2_prs_hw_write(priv, &pe);
2031
2032 /* Ethertype: ARP */
2033 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2034 MVPP2_PE_LAST_FREE_TID);
2035 if (tid < 0)
2036 return tid;
2037
2038 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2039 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2040 pe.index = tid;
2041
2042 mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
2043
2044 /* Generate flow in the next iteration*/
2045 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2046 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2047 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2048 MVPP2_PRS_RI_L3_PROTO_MASK);
2049 /* Set L3 offset */
2050 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2051 MVPP2_ETH_TYPE_LEN,
2052 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2053
2054 /* Update shadow table and hw entry */
2055 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2056 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2057 priv->prs_shadow[pe.index].finish = true;
2058 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2059 MVPP2_PRS_RI_L3_PROTO_MASK);
2060 mvpp2_prs_hw_write(priv, &pe);
2061
2062 /* Ethertype: LBTD */
2063 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2064 MVPP2_PE_LAST_FREE_TID);
2065 if (tid < 0)
2066 return tid;
2067
2068 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2069 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2070 pe.index = tid;
2071
2072 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2073
2074 /* Generate flow in the next iteration*/
2075 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2076 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2077 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2078 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2079 MVPP2_PRS_RI_CPU_CODE_MASK |
2080 MVPP2_PRS_RI_UDF3_MASK);
2081 /* Set L3 offset */
2082 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2083 MVPP2_ETH_TYPE_LEN,
2084 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2085
2086 /* Update shadow table and hw entry */
2087 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2088 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2089 priv->prs_shadow[pe.index].finish = true;
2090 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2091 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2092 MVPP2_PRS_RI_CPU_CODE_MASK |
2093 MVPP2_PRS_RI_UDF3_MASK);
2094 mvpp2_prs_hw_write(priv, &pe);
2095
2096 /* Ethertype: IPv4 without options */
2097 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2098 MVPP2_PE_LAST_FREE_TID);
2099 if (tid < 0)
2100 return tid;
2101
2102 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2103 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2104 pe.index = tid;
2105
2106 mvpp2_prs_match_etype(&pe, 0, PROT_IP);
2107 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2108 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2109 MVPP2_PRS_IPV4_HEAD_MASK |
2110 MVPP2_PRS_IPV4_IHL_MASK);
2111
2112 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2113 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2114 MVPP2_PRS_RI_L3_PROTO_MASK);
2115 /* Skip eth_type + 4 bytes of IP header */
2116 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2117 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2118 /* Set L3 offset */
2119 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2120 MVPP2_ETH_TYPE_LEN,
2121 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2122
2123 /* Update shadow table and hw entry */
2124 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2125 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2126 priv->prs_shadow[pe.index].finish = false;
2127 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2128 MVPP2_PRS_RI_L3_PROTO_MASK);
2129 mvpp2_prs_hw_write(priv, &pe);
2130
2131 /* Ethertype: IPv4 with options */
2132 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2133 MVPP2_PE_LAST_FREE_TID);
2134 if (tid < 0)
2135 return tid;
2136
2137 pe.index = tid;
2138
2139 /* Clear tcam data before updating */
2140 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2141 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2142
2143 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2144 MVPP2_PRS_IPV4_HEAD,
2145 MVPP2_PRS_IPV4_HEAD_MASK);
2146
2147 /* Clear ri before updating */
2148 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2149 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2150 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2151 MVPP2_PRS_RI_L3_PROTO_MASK);
2152
2153 /* Update shadow table and hw entry */
2154 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2155 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2156 priv->prs_shadow[pe.index].finish = false;
2157 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2158 MVPP2_PRS_RI_L3_PROTO_MASK);
2159 mvpp2_prs_hw_write(priv, &pe);
2160
2161 /* Ethertype: IPv6 without options */
2162 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2163 MVPP2_PE_LAST_FREE_TID);
2164 if (tid < 0)
2165 return tid;
2166
2167 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2168 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2169 pe.index = tid;
2170
2171 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2172
2173 /* Skip DIP of IPV6 header */
2174 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2175 MVPP2_MAX_L3_ADDR_SIZE,
2176 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2177 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2178 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2179 MVPP2_PRS_RI_L3_PROTO_MASK);
2180 /* Set L3 offset */
2181 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2182 MVPP2_ETH_TYPE_LEN,
2183 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2184
2185 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2186 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2187 priv->prs_shadow[pe.index].finish = false;
2188 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2189 MVPP2_PRS_RI_L3_PROTO_MASK);
2190 mvpp2_prs_hw_write(priv, &pe);
2191
2192 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2193 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2194 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2195 pe.index = MVPP2_PE_ETH_TYPE_UN;
2196
2197 /* Unmask all ports */
2198 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2199
2200 /* Generate flow in the next iteration*/
2201 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2202 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2203 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2204 MVPP2_PRS_RI_L3_PROTO_MASK);
2205 /* Set L3 offset even it's unknown L3 */
2206 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2207 MVPP2_ETH_TYPE_LEN,
2208 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2209
2210 /* Update shadow table and hw entry */
2211 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2212 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2213 priv->prs_shadow[pe.index].finish = true;
2214 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2215 MVPP2_PRS_RI_L3_PROTO_MASK);
2216 mvpp2_prs_hw_write(priv, &pe);
2217
2218 return 0;
2219 }
2220
2221 /* Parser default initialization */
2222 static int mvpp2_prs_default_init(struct udevice *dev,
2223 struct mvpp2 *priv)
2224 {
2225 int err, index, i;
2226
2227 /* Enable tcam table */
2228 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2229
2230 /* Clear all tcam and sram entries */
2231 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2232 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2233 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2234 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2235
2236 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2237 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2238 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2239 }
2240
2241 /* Invalidate all tcam entries */
2242 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2243 mvpp2_prs_hw_inv(priv, index);
2244
2245 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2246 sizeof(struct mvpp2_prs_shadow),
2247 GFP_KERNEL);
2248 if (!priv->prs_shadow)
2249 return -ENOMEM;
2250
2251 /* Always start from lookup = 0 */
2252 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2253 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2254 MVPP2_PRS_PORT_LU_MAX, 0);
2255
2256 mvpp2_prs_def_flow_init(priv);
2257
2258 mvpp2_prs_mh_init(priv);
2259
2260 mvpp2_prs_mac_init(priv);
2261
2262 err = mvpp2_prs_etype_init(priv);
2263 if (err)
2264 return err;
2265
2266 return 0;
2267 }
2268
2269 /* Compare MAC DA with tcam entry data */
2270 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2271 const u8 *da, unsigned char *mask)
2272 {
2273 unsigned char tcam_byte, tcam_mask;
2274 int index;
2275
2276 for (index = 0; index < ETH_ALEN; index++) {
2277 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2278 if (tcam_mask != mask[index])
2279 return false;
2280
2281 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2282 return false;
2283 }
2284
2285 return true;
2286 }
2287
2288 /* Find tcam entry with matched pair <MAC DA, port> */
2289 static struct mvpp2_prs_entry *
2290 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2291 unsigned char *mask, int udf_type)
2292 {
2293 struct mvpp2_prs_entry *pe;
2294 int tid;
2295
2296 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2297 if (!pe)
2298 return NULL;
2299 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2300
2301 /* Go through the all entires with MVPP2_PRS_LU_MAC */
2302 for (tid = MVPP2_PE_FIRST_FREE_TID;
2303 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2304 unsigned int entry_pmap;
2305
2306 if (!priv->prs_shadow[tid].valid ||
2307 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2308 (priv->prs_shadow[tid].udf != udf_type))
2309 continue;
2310
2311 pe->index = tid;
2312 mvpp2_prs_hw_read(priv, pe);
2313 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2314
2315 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2316 entry_pmap == pmap)
2317 return pe;
2318 }
2319 kfree(pe);
2320
2321 return NULL;
2322 }
2323
2324 /* Update parser's mac da entry */
2325 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2326 const u8 *da, bool add)
2327 {
2328 struct mvpp2_prs_entry *pe;
2329 unsigned int pmap, len, ri;
2330 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2331 int tid;
2332
2333 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2334 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2335 MVPP2_PRS_UDF_MAC_DEF);
2336
2337 /* No such entry */
2338 if (!pe) {
2339 if (!add)
2340 return 0;
2341
2342 /* Create new TCAM entry */
2343 /* Find first range mac entry*/
2344 for (tid = MVPP2_PE_FIRST_FREE_TID;
2345 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2346 if (priv->prs_shadow[tid].valid &&
2347 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2348 (priv->prs_shadow[tid].udf ==
2349 MVPP2_PRS_UDF_MAC_RANGE))
2350 break;
2351
2352 /* Go through the all entries from first to last */
2353 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2354 tid - 1);
2355 if (tid < 0)
2356 return tid;
2357
2358 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2359 if (!pe)
2360 return -1;
2361 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2362 pe->index = tid;
2363
2364 /* Mask all ports */
2365 mvpp2_prs_tcam_port_map_set(pe, 0);
2366 }
2367
2368 /* Update port mask */
2369 mvpp2_prs_tcam_port_set(pe, port, add);
2370
2371 /* Invalidate the entry if no ports are left enabled */
2372 pmap = mvpp2_prs_tcam_port_map_get(pe);
2373 if (pmap == 0) {
2374 if (add) {
2375 kfree(pe);
2376 return -1;
2377 }
2378 mvpp2_prs_hw_inv(priv, pe->index);
2379 priv->prs_shadow[pe->index].valid = false;
2380 kfree(pe);
2381 return 0;
2382 }
2383
2384 /* Continue - set next lookup */
2385 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2386
2387 /* Set match on DA */
2388 len = ETH_ALEN;
2389 while (len--)
2390 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2391
2392 /* Set result info bits */
2393 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2394
2395 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2396 MVPP2_PRS_RI_MAC_ME_MASK);
2397 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2398 MVPP2_PRS_RI_MAC_ME_MASK);
2399
2400 /* Shift to ethertype */
2401 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2402 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2403
2404 /* Update shadow table and hw entry */
2405 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2406 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2407 mvpp2_prs_hw_write(priv, pe);
2408
2409 kfree(pe);
2410
2411 return 0;
2412 }
2413
2414 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2415 {
2416 int err;
2417
2418 /* Remove old parser entry */
2419 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2420 false);
2421 if (err)
2422 return err;
2423
2424 /* Add new parser entry */
2425 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2426 if (err)
2427 return err;
2428
2429 /* Set addr in the device */
2430 memcpy(port->dev_addr, da, ETH_ALEN);
2431
2432 return 0;
2433 }
2434
2435 /* Set prs flow for the port */
2436 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2437 {
2438 struct mvpp2_prs_entry *pe;
2439 int tid;
2440
2441 pe = mvpp2_prs_flow_find(port->priv, port->id);
2442
2443 /* Such entry not exist */
2444 if (!pe) {
2445 /* Go through the all entires from last to first */
2446 tid = mvpp2_prs_tcam_first_free(port->priv,
2447 MVPP2_PE_LAST_FREE_TID,
2448 MVPP2_PE_FIRST_FREE_TID);
2449 if (tid < 0)
2450 return tid;
2451
2452 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2453 if (!pe)
2454 return -ENOMEM;
2455
2456 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2457 pe->index = tid;
2458
2459 /* Set flow ID*/
2460 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2461 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2462
2463 /* Update shadow table */
2464 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2465 }
2466
2467 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2468 mvpp2_prs_hw_write(port->priv, pe);
2469 kfree(pe);
2470
2471 return 0;
2472 }
2473
2474 /* Classifier configuration routines */
2475
2476 /* Update classification flow table registers */
2477 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2478 struct mvpp2_cls_flow_entry *fe)
2479 {
2480 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2481 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
2482 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
2483 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
2484 }
2485
2486 /* Update classification lookup table register */
2487 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2488 struct mvpp2_cls_lookup_entry *le)
2489 {
2490 u32 val;
2491
2492 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2493 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2494 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2495 }
2496
2497 /* Classifier default initialization */
2498 static void mvpp2_cls_init(struct mvpp2 *priv)
2499 {
2500 struct mvpp2_cls_lookup_entry le;
2501 struct mvpp2_cls_flow_entry fe;
2502 int index;
2503
2504 /* Enable classifier */
2505 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2506
2507 /* Clear classifier flow table */
2508 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2509 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2510 fe.index = index;
2511 mvpp2_cls_flow_write(priv, &fe);
2512 }
2513
2514 /* Clear classifier lookup table */
2515 le.data = 0;
2516 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2517 le.lkpid = index;
2518 le.way = 0;
2519 mvpp2_cls_lookup_write(priv, &le);
2520
2521 le.way = 1;
2522 mvpp2_cls_lookup_write(priv, &le);
2523 }
2524 }
2525
2526 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2527 {
2528 struct mvpp2_cls_lookup_entry le;
2529 u32 val;
2530
2531 /* Set way for the port */
2532 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2533 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2534 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2535
2536 /* Pick the entry to be accessed in lookup ID decoding table
2537 * according to the way and lkpid.
2538 */
2539 le.lkpid = port->id;
2540 le.way = 0;
2541 le.data = 0;
2542
2543 /* Set initial CPU queue for receiving packets */
2544 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2545 le.data |= port->first_rxq;
2546
2547 /* Disable classification engines */
2548 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2549
2550 /* Update lookup ID table entry */
2551 mvpp2_cls_lookup_write(port->priv, &le);
2552 }
2553
2554 /* Set CPU queue number for oversize packets */
2555 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2556 {
2557 u32 val;
2558
2559 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2560 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2561
2562 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2563 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2564
2565 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2566 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2567 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2568 }
2569
2570 /* Buffer Manager configuration routines */
2571
2572 /* Create pool */
2573 static int mvpp2_bm_pool_create(struct udevice *dev,
2574 struct mvpp2 *priv,
2575 struct mvpp2_bm_pool *bm_pool, int size)
2576 {
2577 u32 val;
2578
2579 /* Number of buffer pointers must be a multiple of 16, as per
2580 * hardware constraints
2581 */
2582 if (!IS_ALIGNED(size, 16))
2583 return -EINVAL;
2584
2585 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2586 bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2587 if (!bm_pool->virt_addr)
2588 return -ENOMEM;
2589
2590 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2591 MVPP2_BM_POOL_PTR_ALIGN)) {
2592 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2593 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2594 return -ENOMEM;
2595 }
2596
2597 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2598 lower_32_bits(bm_pool->dma_addr));
2599 if (priv->hw_version == MVPP22)
2600 mvpp2_write(priv, MVPP22_BM_POOL_BASE_HIGH_REG,
2601 (upper_32_bits(bm_pool->dma_addr) &
2602 MVPP22_BM_POOL_BASE_HIGH_MASK));
2603 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2604
2605 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2606 val |= MVPP2_BM_START_MASK;
2607 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2608
2609 bm_pool->type = MVPP2_BM_FREE;
2610 bm_pool->size = size;
2611 bm_pool->pkt_size = 0;
2612 bm_pool->buf_num = 0;
2613
2614 return 0;
2615 }
2616
2617 /* Set pool buffer size */
2618 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2619 struct mvpp2_bm_pool *bm_pool,
2620 int buf_size)
2621 {
2622 u32 val;
2623
2624 bm_pool->buf_size = buf_size;
2625
2626 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2627 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2628 }
2629
2630 /* Free all buffers from the pool */
2631 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2632 struct mvpp2_bm_pool *bm_pool)
2633 {
2634 int i;
2635
2636 for (i = 0; i < bm_pool->buf_num; i++) {
2637 /* Allocate buffer back from the buffer manager */
2638 mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
2639 }
2640
2641 bm_pool->buf_num = 0;
2642 }
2643
2644 /* Cleanup pool */
2645 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2646 struct mvpp2 *priv,
2647 struct mvpp2_bm_pool *bm_pool)
2648 {
2649 u32 val;
2650
2651 mvpp2_bm_bufs_free(dev, priv, bm_pool);
2652 if (bm_pool->buf_num) {
2653 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2654 return 0;
2655 }
2656
2657 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2658 val |= MVPP2_BM_STOP_MASK;
2659 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2660
2661 return 0;
2662 }
2663
2664 static int mvpp2_bm_pools_init(struct udevice *dev,
2665 struct mvpp2 *priv)
2666 {
2667 int i, err, size;
2668 struct mvpp2_bm_pool *bm_pool;
2669
2670 /* Create all pools with maximum size */
2671 size = MVPP2_BM_POOL_SIZE_MAX;
2672 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2673 bm_pool = &priv->bm_pools[i];
2674 bm_pool->id = i;
2675 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2676 if (err)
2677 goto err_unroll_pools;
2678 mvpp2_bm_pool_bufsize_set(priv, bm_pool, RX_BUFFER_SIZE);
2679 }
2680 return 0;
2681
2682 err_unroll_pools:
2683 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2684 for (i = i - 1; i >= 0; i--)
2685 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2686 return err;
2687 }
2688
2689 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2690 {
2691 int i, err;
2692
2693 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2694 /* Mask BM all interrupts */
2695 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2696 /* Clear BM cause register */
2697 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2698 }
2699
2700 /* Allocate and initialize BM pools */
2701 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2702 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2703 if (!priv->bm_pools)
2704 return -ENOMEM;
2705
2706 err = mvpp2_bm_pools_init(dev, priv);
2707 if (err < 0)
2708 return err;
2709 return 0;
2710 }
2711
2712 /* Attach long pool to rxq */
2713 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2714 int lrxq, int long_pool)
2715 {
2716 u32 val, mask;
2717 int prxq;
2718
2719 /* Get queue physical ID */
2720 prxq = port->rxqs[lrxq]->id;
2721
2722 if (port->priv->hw_version == MVPP21)
2723 mask = MVPP21_RXQ_POOL_LONG_MASK;
2724 else
2725 mask = MVPP22_RXQ_POOL_LONG_MASK;
2726
2727 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2728 val &= ~mask;
2729 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2730 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2731 }
2732
2733 /* Set pool number in a BM cookie */
2734 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2735 {
2736 u32 bm;
2737
2738 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2739 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2740
2741 return bm;
2742 }
2743
2744 /* Get pool number from a BM cookie */
2745 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2746 {
2747 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2748 }
2749
2750 /* Release buffer to BM */
2751 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2752 dma_addr_t buf_dma_addr,
2753 unsigned long buf_phys_addr)
2754 {
2755 if (port->priv->hw_version == MVPP22) {
2756 u32 val = 0;
2757
2758 if (sizeof(dma_addr_t) == 8)
2759 val |= upper_32_bits(buf_dma_addr) &
2760 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2761
2762 if (sizeof(phys_addr_t) == 8)
2763 val |= (upper_32_bits(buf_phys_addr)
2764 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2765 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2766
2767 mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2768 }
2769
2770 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2771 * returned in the "cookie" field of the RX
2772 * descriptor. Instead of storing the virtual address, we
2773 * store the physical address
2774 */
2775 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2776 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2777 }
2778
2779 /* Refill BM pool */
2780 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2781 dma_addr_t dma_addr,
2782 phys_addr_t phys_addr)
2783 {
2784 int pool = mvpp2_bm_cookie_pool_get(bm);
2785
2786 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2787 }
2788
2789 /* Allocate buffers for the pool */
2790 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2791 struct mvpp2_bm_pool *bm_pool, int buf_num)
2792 {
2793 int i;
2794
2795 if (buf_num < 0 ||
2796 (buf_num + bm_pool->buf_num > bm_pool->size)) {
2797 netdev_err(port->dev,
2798 "cannot allocate %d buffers for pool %d\n",
2799 buf_num, bm_pool->id);
2800 return 0;
2801 }
2802
2803 for (i = 0; i < buf_num; i++) {
2804 mvpp2_bm_pool_put(port, bm_pool->id,
2805 (dma_addr_t)buffer_loc.rx_buffer[i],
2806 (unsigned long)buffer_loc.rx_buffer[i]);
2807
2808 }
2809
2810 /* Update BM driver with number of buffers added to pool */
2811 bm_pool->buf_num += i;
2812
2813 return i;
2814 }
2815
2816 /* Notify the driver that BM pool is being used as specific type and return the
2817 * pool pointer on success
2818 */
2819 static struct mvpp2_bm_pool *
2820 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2821 int pkt_size)
2822 {
2823 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2824 int num;
2825
2826 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2827 netdev_err(port->dev, "mixing pool types is forbidden\n");
2828 return NULL;
2829 }
2830
2831 if (new_pool->type == MVPP2_BM_FREE)
2832 new_pool->type = type;
2833
2834 /* Allocate buffers in case BM pool is used as long pool, but packet
2835 * size doesn't match MTU or BM pool hasn't being used yet
2836 */
2837 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2838 (new_pool->pkt_size == 0)) {
2839 int pkts_num;
2840
2841 /* Set default buffer number or free all the buffers in case
2842 * the pool is not empty
2843 */
2844 pkts_num = new_pool->buf_num;
2845 if (pkts_num == 0)
2846 pkts_num = type == MVPP2_BM_SWF_LONG ?
2847 MVPP2_BM_LONG_BUF_NUM :
2848 MVPP2_BM_SHORT_BUF_NUM;
2849 else
2850 mvpp2_bm_bufs_free(NULL,
2851 port->priv, new_pool);
2852
2853 new_pool->pkt_size = pkt_size;
2854
2855 /* Allocate buffers for this pool */
2856 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2857 if (num != pkts_num) {
2858 dev_err(dev, "pool %d: %d of %d allocated\n",
2859 new_pool->id, num, pkts_num);
2860 return NULL;
2861 }
2862 }
2863
2864 return new_pool;
2865 }
2866
2867 /* Initialize pools for swf */
2868 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2869 {
2870 int rxq;
2871
2872 if (!port->pool_long) {
2873 port->pool_long =
2874 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2875 MVPP2_BM_SWF_LONG,
2876 port->pkt_size);
2877 if (!port->pool_long)
2878 return -ENOMEM;
2879
2880 port->pool_long->port_map |= (1 << port->id);
2881
2882 for (rxq = 0; rxq < rxq_number; rxq++)
2883 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2884 }
2885
2886 return 0;
2887 }
2888
2889 /* Port configuration routines */
2890
2891 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2892 {
2893 u32 val;
2894
2895 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2896
2897 switch (port->phy_interface) {
2898 case PHY_INTERFACE_MODE_SGMII:
2899 val |= MVPP2_GMAC_INBAND_AN_MASK;
2900 break;
2901 case PHY_INTERFACE_MODE_RGMII:
2902 case PHY_INTERFACE_MODE_RGMII_ID:
2903 val |= MVPP2_GMAC_PORT_RGMII_MASK;
2904 default:
2905 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2906 }
2907
2908 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2909 }
2910
2911 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2912 {
2913 u32 val;
2914
2915 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2916 val |= MVPP2_GMAC_FC_ADV_EN;
2917 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2918 }
2919
2920 static void mvpp2_port_enable(struct mvpp2_port *port)
2921 {
2922 u32 val;
2923
2924 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2925 val |= MVPP2_GMAC_PORT_EN_MASK;
2926 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2927 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2928 }
2929
2930 static void mvpp2_port_disable(struct mvpp2_port *port)
2931 {
2932 u32 val;
2933
2934 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2935 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2936 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2937 }
2938
2939 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2940 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2941 {
2942 u32 val;
2943
2944 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2945 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2946 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2947 }
2948
2949 /* Configure loopback port */
2950 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2951 {
2952 u32 val;
2953
2954 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2955
2956 if (port->speed == 1000)
2957 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2958 else
2959 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2960
2961 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2962 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2963 else
2964 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2965
2966 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2967 }
2968
2969 static void mvpp2_port_reset(struct mvpp2_port *port)
2970 {
2971 u32 val;
2972
2973 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2974 ~MVPP2_GMAC_PORT_RESET_MASK;
2975 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2976
2977 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2978 MVPP2_GMAC_PORT_RESET_MASK)
2979 continue;
2980 }
2981
2982 /* Change maximum receive size of the port */
2983 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2984 {
2985 u32 val;
2986
2987 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2988 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2989 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2990 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2991 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2992 }
2993
2994 /* PPv2.2 GoP/GMAC config */
2995
2996 /* Set the MAC to reset or exit from reset */
2997 static int gop_gmac_reset(struct mvpp2_port *port, int reset)
2998 {
2999 u32 val;
3000
3001 /* read - modify - write */
3002 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3003 if (reset)
3004 val |= MVPP2_GMAC_PORT_RESET_MASK;
3005 else
3006 val &= ~MVPP2_GMAC_PORT_RESET_MASK;
3007 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3008
3009 return 0;
3010 }
3011
3012 /*
3013 * gop_gpcs_mode_cfg
3014 *
3015 * Configure port to working with Gig PCS or don't.
3016 */
3017 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
3018 {
3019 u32 val;
3020
3021 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3022 if (en)
3023 val |= MVPP2_GMAC_PCS_ENABLE_MASK;
3024 else
3025 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3026 /* enable / disable PCS on this port */
3027 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3028
3029 return 0;
3030 }
3031
3032 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
3033 {
3034 u32 val;
3035
3036 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3037 if (en)
3038 val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3039 else
3040 val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3041 /* enable / disable PCS on this port */
3042 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3043
3044 return 0;
3045 }
3046
3047 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port)
3048 {
3049 u32 val, thresh;
3050
3051 /*
3052 * Configure minimal level of the Tx FIFO before the lower part
3053 * starts to read a packet
3054 */
3055 thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3056 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3057 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3058 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3059 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3060
3061 /* Disable bypass of sync module */
3062 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3063 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3064 /* configure DP clock select according to mode */
3065 val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3066 /* configure QSGMII bypass according to mode */
3067 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3068 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3069
3070 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3071 /*
3072 * Configure GIG MAC to 1000Base-X mode connected to a fiber
3073 * transceiver
3074 */
3075 val |= MVPP2_GMAC_PORT_TYPE_MASK;
3076 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3077
3078 /* configure AN 0x9268 */
3079 val = MVPP2_GMAC_EN_PCS_AN |
3080 MVPP2_GMAC_AN_BYPASS_EN |
3081 MVPP2_GMAC_CONFIG_MII_SPEED |
3082 MVPP2_GMAC_CONFIG_GMII_SPEED |
3083 MVPP2_GMAC_FC_ADV_EN |
3084 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3085 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3086 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3087 }
3088
3089 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
3090 {
3091 u32 val, thresh;
3092
3093 /*
3094 * Configure minimal level of the Tx FIFO before the lower part
3095 * starts to read a packet
3096 */
3097 thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3098 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3099 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3100 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3101 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3102
3103 /* Disable bypass of sync module */
3104 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3105 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3106 /* configure DP clock select according to mode */
3107 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3108 /* configure QSGMII bypass according to mode */
3109 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3110 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3111
3112 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3113 /* configure GIG MAC to SGMII mode */
3114 val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3115 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3116
3117 /* configure AN */
3118 val = MVPP2_GMAC_EN_PCS_AN |
3119 MVPP2_GMAC_AN_BYPASS_EN |
3120 MVPP2_GMAC_AN_SPEED_EN |
3121 MVPP2_GMAC_EN_FC_AN |
3122 MVPP2_GMAC_AN_DUPLEX_EN |
3123 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3124 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3125 }
3126
3127 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
3128 {
3129 u32 val, thresh;
3130
3131 /*
3132 * Configure minimal level of the Tx FIFO before the lower part
3133 * starts to read a packet
3134 */
3135 thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
3136 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3137 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3138 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3139 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3140
3141 /* Disable bypass of sync module */
3142 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3143 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3144 /* configure DP clock select according to mode */
3145 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3146 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3147 val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
3148 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3149
3150 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3151 /* configure GIG MAC to SGMII mode */
3152 val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3153 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3154
3155 /* configure AN 0xb8e8 */
3156 val = MVPP2_GMAC_AN_BYPASS_EN |
3157 MVPP2_GMAC_AN_SPEED_EN |
3158 MVPP2_GMAC_EN_FC_AN |
3159 MVPP2_GMAC_AN_DUPLEX_EN |
3160 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3161 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3162 }
3163
3164 /* Set the internal mux's to the required MAC in the GOP */
3165 static int gop_gmac_mode_cfg(struct mvpp2_port *port)
3166 {
3167 u32 val;
3168
3169 /* Set TX FIFO thresholds */
3170 switch (port->phy_interface) {
3171 case PHY_INTERFACE_MODE_SGMII:
3172 if (port->phy_speed == 2500)
3173 gop_gmac_sgmii2_5_cfg(port);
3174 else
3175 gop_gmac_sgmii_cfg(port);
3176 break;
3177
3178 case PHY_INTERFACE_MODE_RGMII:
3179 case PHY_INTERFACE_MODE_RGMII_ID:
3180 gop_gmac_rgmii_cfg(port);
3181 break;
3182
3183 default:
3184 return -1;
3185 }
3186
3187 /* Jumbo frame support - 0x1400*2= 0x2800 bytes */
3188 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3189 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3190 val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
3191 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3192
3193 /* PeriodicXonEn disable */
3194 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3195 val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3196 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3197
3198 return 0;
3199 }
3200
3201 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
3202 {
3203 u32 val;
3204
3205 /* relevant only for MAC0 (XLG0 and GMAC0) */
3206 if (port->gop_id > 0)
3207 return;
3208
3209 /* configure 1Gig MAC mode */
3210 val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3211 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3212 val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
3213 writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3214 }
3215
3216 static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
3217 {
3218 u32 val;
3219
3220 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3221 if (reset)
3222 val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
3223 else
3224 val |= MVPP2_GMAC_SGMII_MODE_MASK;
3225 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3226
3227 return 0;
3228 }
3229
3230 /* Set the internal mux's to the required PCS in the PI */
3231 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes)
3232 {
3233 u32 val;
3234 int lane;
3235
3236 switch (num_of_lanes) {
3237 case 1:
3238 lane = 0;
3239 break;
3240 case 2:
3241 lane = 1;
3242 break;
3243 case 4:
3244 lane = 2;
3245 break;
3246 default:
3247 return -1;
3248 }
3249
3250 /* configure XG MAC mode */
3251 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3252 val &= ~MVPP22_XPCS_PCSMODE_MASK;
3253 val &= ~MVPP22_XPCS_LANEACTIVE_MASK;
3254 val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS;
3255 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3256
3257 return 0;
3258 }
3259
3260 static int gop_mpcs_mode(struct mvpp2_port *port)
3261 {
3262 u32 val;
3263
3264 /* configure PCS40G COMMON CONTROL */
3265 val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3266 val &= ~FORWARD_ERROR_CORRECTION_MASK;
3267 writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3268
3269 /* configure PCS CLOCK RESET */
3270 val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET);
3271 val &= ~CLK_DIVISION_RATIO_MASK;
3272 val |= 1 << CLK_DIVISION_RATIO_OFFS;
3273 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3274
3275 val &= ~CLK_DIV_PHASE_SET_MASK;
3276 val |= MAC_CLK_RESET_MASK;
3277 val |= RX_SD_CLK_RESET_MASK;
3278 val |= TX_SD_CLK_RESET_MASK;
3279 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3280
3281 return 0;
3282 }
3283
3284 /* Set the internal mux's to the required MAC in the GOP */
3285 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
3286 {
3287 u32 val;
3288
3289 /* configure 10G MAC mode */
3290 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3291 val |= MVPP22_XLG_RX_FC_EN;
3292 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3293
3294 val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3295 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3296 val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
3297 writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3298
3299 /* read - modify - write */
3300 val = readl(port->base + MVPP22_XLG_CTRL4_REG);
3301 val &= ~MVPP22_XLG_MODE_DMA_1G;
3302 val |= MVPP22_XLG_FORWARD_PFC_EN;
3303 val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
3304 val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
3305 writel(val, port->base + MVPP22_XLG_CTRL4_REG);
3306
3307 /* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
3308 val = readl(port->base + MVPP22_XLG_CTRL1_REG);
3309 val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
3310 val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
3311 writel(val, port->base + MVPP22_XLG_CTRL1_REG);
3312
3313 /* unmask link change interrupt */
3314 val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3315 val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
3316 val |= 1; /* unmask summary bit */
3317 writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3318
3319 return 0;
3320 }
3321
3322 /* Set PCS to reset or exit from reset */
3323 static int gop_xpcs_reset(struct mvpp2_port *port, int reset)
3324 {
3325 u32 val;
3326
3327 /* read - modify - write */
3328 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3329 if (reset)
3330 val &= ~MVPP22_XPCS_PCSRESET;
3331 else
3332 val |= MVPP22_XPCS_PCSRESET;
3333 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3334
3335 return 0;
3336 }
3337
3338 /* Set the MAC to reset or exit from reset */
3339 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
3340 {
3341 u32 val;
3342
3343 /* read - modify - write */
3344 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3345 if (reset)
3346 val &= ~MVPP22_XLG_MAC_RESETN;
3347 else
3348 val |= MVPP22_XLG_MAC_RESETN;
3349 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3350
3351 return 0;
3352 }
3353
3354 /*
3355 * gop_port_init
3356 *
3357 * Init physical port. Configures the port mode and all it's elements
3358 * accordingly.
3359 * Does not verify that the selected mode/port number is valid at the
3360 * core level.
3361 */
3362 static int gop_port_init(struct mvpp2_port *port)
3363 {
3364 int mac_num = port->gop_id;
3365 int num_of_act_lanes;
3366
3367 if (mac_num >= MVPP22_GOP_MAC_NUM) {
3368 netdev_err(NULL, "%s: illegal port number %d", __func__,
3369 mac_num);
3370 return -1;
3371 }
3372
3373 switch (port->phy_interface) {
3374 case PHY_INTERFACE_MODE_RGMII:
3375 case PHY_INTERFACE_MODE_RGMII_ID:
3376 gop_gmac_reset(port, 1);
3377
3378 /* configure PCS */
3379 gop_gpcs_mode_cfg(port, 0);
3380 gop_bypass_clk_cfg(port, 1);
3381
3382 /* configure MAC */
3383 gop_gmac_mode_cfg(port);
3384 /* pcs unreset */
3385 gop_gpcs_reset(port, 0);
3386
3387 /* mac unreset */
3388 gop_gmac_reset(port, 0);
3389 break;
3390
3391 case PHY_INTERFACE_MODE_SGMII:
3392 /* configure PCS */
3393 gop_gpcs_mode_cfg(port, 1);
3394
3395 /* configure MAC */
3396 gop_gmac_mode_cfg(port);
3397 /* select proper Mac mode */
3398 gop_xlg_2_gig_mac_cfg(port);
3399
3400 /* pcs unreset */
3401 gop_gpcs_reset(port, 0);
3402 /* mac unreset */
3403 gop_gmac_reset(port, 0);
3404 break;
3405
3406 case PHY_INTERFACE_MODE_SFI:
3407 num_of_act_lanes = 2;
3408 mac_num = 0;
3409 /* configure PCS */
3410 gop_xpcs_mode(port, num_of_act_lanes);
3411 gop_mpcs_mode(port);
3412 /* configure MAC */
3413 gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
3414
3415 /* pcs unreset */
3416 gop_xpcs_reset(port, 0);
3417
3418 /* mac unreset */
3419 gop_xlg_mac_reset(port, 0);
3420 break;
3421
3422 default:
3423 netdev_err(NULL, "%s: Requested port mode (%d) not supported\n",
3424 __func__, port->phy_interface);
3425 return -1;
3426 }
3427
3428 return 0;
3429 }
3430
3431 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
3432 {
3433 u32 val;
3434
3435 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3436 if (enable) {
3437 /* Enable port and MIB counters update */
3438 val |= MVPP22_XLG_PORT_EN;
3439 val &= ~MVPP22_XLG_MIBCNT_DIS;
3440 } else {
3441 /* Disable port */
3442 val &= ~MVPP22_XLG_PORT_EN;
3443 }
3444 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3445 }
3446
3447 static void gop_port_enable(struct mvpp2_port *port, int enable)
3448 {
3449 switch (port->phy_interface) {
3450 case PHY_INTERFACE_MODE_RGMII:
3451 case PHY_INTERFACE_MODE_RGMII_ID:
3452 case PHY_INTERFACE_MODE_SGMII:
3453 if (enable)
3454 mvpp2_port_enable(port);
3455 else
3456 mvpp2_port_disable(port);
3457 break;
3458
3459 case PHY_INTERFACE_MODE_SFI:
3460 gop_xlg_mac_port_enable(port, enable);
3461
3462 break;
3463 default:
3464 netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__,
3465 port->phy_interface);
3466 return;
3467 }
3468 }
3469
3470 /* RFU1 functions */
3471 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
3472 {
3473 return readl(priv->rfu1_base + offset);
3474 }
3475
3476 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
3477 {
3478 writel(data, priv->rfu1_base + offset);
3479 }
3480
3481 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
3482 {
3483 u32 val = 0;
3484
3485 if (gop_id == 2) {
3486 if (phy_type == PHY_INTERFACE_MODE_SGMII)
3487 val |= MV_NETC_GE_MAC2_SGMII;
3488 }
3489
3490 if (gop_id == 3) {
3491 if (phy_type == PHY_INTERFACE_MODE_SGMII)
3492 val |= MV_NETC_GE_MAC3_SGMII;
3493 else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3494 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3495 val |= MV_NETC_GE_MAC3_RGMII;
3496 }
3497
3498 return val;
3499 }
3500
3501 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
3502 {
3503 u32 reg;
3504
3505 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3506 reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
3507
3508 val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
3509 val &= NETC_PORTS_ACTIVE_MASK(gop_id);
3510
3511 reg |= val;
3512
3513 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3514 }
3515
3516 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
3517 {
3518 u32 reg;
3519
3520 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3521 reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
3522
3523 val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
3524 val &= NETC_GBE_PORT1_MII_MODE_MASK;
3525
3526 reg |= val;
3527
3528 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3529 }
3530
3531 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
3532 {
3533 u32 reg;
3534
3535 reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
3536 reg &= ~NETC_GOP_SOFT_RESET_MASK;
3537
3538 val <<= NETC_GOP_SOFT_RESET_OFFS;
3539 val &= NETC_GOP_SOFT_RESET_MASK;
3540
3541 reg |= val;
3542
3543 gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
3544 }
3545
3546 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
3547 {
3548 u32 reg;
3549
3550 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3551 reg &= ~NETC_CLK_DIV_PHASE_MASK;
3552
3553 val <<= NETC_CLK_DIV_PHASE_OFFS;
3554 val &= NETC_CLK_DIV_PHASE_MASK;
3555
3556 reg |= val;
3557
3558 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3559 }
3560
3561 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
3562 {
3563 u32 reg;
3564
3565 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3566 reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
3567
3568 val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
3569 val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
3570
3571 reg |= val;
3572
3573 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3574 }
3575
3576 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
3577 u32 val)
3578 {
3579 u32 reg, mask, offset;
3580
3581 if (gop_id == 2) {
3582 mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
3583 offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
3584 } else {
3585 mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
3586 offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
3587 }
3588 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3589 reg &= ~mask;
3590
3591 val <<= offset;
3592 val &= mask;
3593
3594 reg |= val;
3595
3596 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3597 }
3598
3599 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
3600 {
3601 u32 reg;
3602
3603 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3604 reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
3605
3606 val <<= NETC_BUS_WIDTH_SELECT_OFFS;
3607 val &= NETC_BUS_WIDTH_SELECT_MASK;
3608
3609 reg |= val;
3610
3611 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3612 }
3613
3614 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
3615 {
3616 u32 reg;
3617
3618 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3619 reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
3620
3621 val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
3622 val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
3623
3624 reg |= val;
3625
3626 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3627 }
3628
3629 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
3630 enum mv_netc_phase phase)
3631 {
3632 switch (phase) {
3633 case MV_NETC_FIRST_PHASE:
3634 /* Set Bus Width to HB mode = 1 */
3635 gop_netc_bus_width_select(priv, 1);
3636 /* Select RGMII mode */
3637 gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
3638 break;
3639
3640 case MV_NETC_SECOND_PHASE:
3641 /* De-assert the relevant port HB reset */
3642 gop_netc_port_rf_reset(priv, gop_id, 1);
3643 break;
3644 }
3645 }
3646
3647 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
3648 enum mv_netc_phase phase)
3649 {
3650 switch (phase) {
3651 case MV_NETC_FIRST_PHASE:
3652 /* Set Bus Width to HB mode = 1 */
3653 gop_netc_bus_width_select(priv, 1);
3654 /* Select SGMII mode */
3655 if (gop_id >= 1) {
3656 gop_netc_gbe_sgmii_mode_select(priv, gop_id,
3657 MV_NETC_GBE_SGMII);
3658 }
3659
3660 /* Configure the sample stages */
3661 gop_netc_sample_stages_timing(priv, 0);
3662 /* Configure the ComPhy Selector */
3663 /* gop_netc_com_phy_selector_config(netComplex); */
3664 break;
3665
3666 case MV_NETC_SECOND_PHASE:
3667 /* De-assert the relevant port HB reset */
3668 gop_netc_port_rf_reset(priv, gop_id, 1);
3669 break;
3670 }
3671 }
3672
3673 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
3674 {
3675 u32 c = priv->netc_config;
3676
3677 if (c & MV_NETC_GE_MAC2_SGMII)
3678 gop_netc_mac_to_sgmii(priv, 2, phase);
3679 else
3680 gop_netc_mac_to_xgmii(priv, 2, phase);
3681
3682 if (c & MV_NETC_GE_MAC3_SGMII) {
3683 gop_netc_mac_to_sgmii(priv, 3, phase);
3684 } else {
3685 gop_netc_mac_to_xgmii(priv, 3, phase);
3686 if (c & MV_NETC_GE_MAC3_RGMII)
3687 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
3688 else
3689 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
3690 }
3691
3692 /* Activate gop ports 0, 2, 3 */
3693 gop_netc_active_port(priv, 0, 1);
3694 gop_netc_active_port(priv, 2, 1);
3695 gop_netc_active_port(priv, 3, 1);
3696
3697 if (phase == MV_NETC_SECOND_PHASE) {
3698 /* Enable the GOP internal clock logic */
3699 gop_netc_gop_clock_logic_set(priv, 1);
3700 /* De-assert GOP unit reset */
3701 gop_netc_gop_reset(priv, 1);
3702 }
3703
3704 return 0;
3705 }
3706
3707 /* Set defaults to the MVPP2 port */
3708 static void mvpp2_defaults_set(struct mvpp2_port *port)
3709 {
3710 int tx_port_num, val, queue, ptxq, lrxq;
3711
3712 if (port->priv->hw_version == MVPP21) {
3713 /* Configure port to loopback if needed */
3714 if (port->flags & MVPP2_F_LOOPBACK)
3715 mvpp2_port_loopback_set(port);
3716
3717 /* Update TX FIFO MIN Threshold */
3718 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3719 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3720 /* Min. TX threshold must be less than minimal packet length */
3721 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3722 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3723 }
3724
3725 /* Disable Legacy WRR, Disable EJP, Release from reset */
3726 tx_port_num = mvpp2_egress_port(port);
3727 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3728 tx_port_num);
3729 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3730
3731 /* Close bandwidth for all queues */
3732 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3733 ptxq = mvpp2_txq_phys(port->id, queue);
3734 mvpp2_write(port->priv,
3735 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3736 }
3737
3738 /* Set refill period to 1 usec, refill tokens
3739 * and bucket size to maximum
3740 */
3741 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
3742 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3743 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3744 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3745 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3746 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3747 val = MVPP2_TXP_TOKEN_SIZE_MAX;
3748 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3749
3750 /* Set MaximumLowLatencyPacketSize value to 256 */
3751 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3752 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3753 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3754
3755 /* Enable Rx cache snoop */
3756 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3757 queue = port->rxqs[lrxq]->id;
3758 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3759 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3760 MVPP2_SNOOP_BUF_HDR_MASK;
3761 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3762 }
3763 }
3764
3765 /* Enable/disable receiving packets */
3766 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3767 {
3768 u32 val;
3769 int lrxq, queue;
3770
3771 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3772 queue = port->rxqs[lrxq]->id;
3773 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3774 val &= ~MVPP2_RXQ_DISABLE_MASK;
3775 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3776 }
3777 }
3778
3779 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3780 {
3781 u32 val;
3782 int lrxq, queue;
3783
3784 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3785 queue = port->rxqs[lrxq]->id;
3786 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3787 val |= MVPP2_RXQ_DISABLE_MASK;
3788 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3789 }
3790 }
3791
3792 /* Enable transmit via physical egress queue
3793 * - HW starts take descriptors from DRAM
3794 */
3795 static void mvpp2_egress_enable(struct mvpp2_port *port)
3796 {
3797 u32 qmap;
3798 int queue;
3799 int tx_port_num = mvpp2_egress_port(port);
3800
3801 /* Enable all initialized TXs. */
3802 qmap = 0;
3803 for (queue = 0; queue < txq_number; queue++) {
3804 struct mvpp2_tx_queue *txq = port->txqs[queue];
3805
3806 if (txq->descs != NULL)
3807 qmap |= (1 << queue);
3808 }
3809
3810 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3811 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
3812 }
3813
3814 /* Disable transmit via physical egress queue
3815 * - HW doesn't take descriptors from DRAM
3816 */
3817 static void mvpp2_egress_disable(struct mvpp2_port *port)
3818 {
3819 u32 reg_data;
3820 int delay;
3821 int tx_port_num = mvpp2_egress_port(port);
3822
3823 /* Issue stop command for active channels only */
3824 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3825 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
3826 MVPP2_TXP_SCHED_ENQ_MASK;
3827 if (reg_data != 0)
3828 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
3829 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
3830
3831 /* Wait for all Tx activity to terminate. */
3832 delay = 0;
3833 do {
3834 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
3835 netdev_warn(port->dev,
3836 "Tx stop timed out, status=0x%08x\n",
3837 reg_data);
3838 break;
3839 }
3840 mdelay(1);
3841 delay++;
3842
3843 /* Check port TX Command register that all
3844 * Tx queues are stopped
3845 */
3846 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
3847 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
3848 }
3849
3850 /* Rx descriptors helper methods */
3851
3852 /* Get number of Rx descriptors occupied by received packets */
3853 static inline int
3854 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
3855 {
3856 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
3857
3858 return val & MVPP2_RXQ_OCCUPIED_MASK;
3859 }
3860
3861 /* Update Rx queue status with the number of occupied and available
3862 * Rx descriptor slots.
3863 */
3864 static inline void
3865 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
3866 int used_count, int free_count)
3867 {
3868 /* Decrement the number of used descriptors and increment count
3869 * increment the number of free descriptors.
3870 */
3871 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
3872
3873 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
3874 }
3875
3876 /* Get pointer to next RX descriptor to be processed by SW */
3877 static inline struct mvpp2_rx_desc *
3878 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
3879 {
3880 int rx_desc = rxq->next_desc_to_proc;
3881
3882 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3883 prefetch(rxq->descs + rxq->next_desc_to_proc);
3884 return rxq->descs + rx_desc;
3885 }
3886
3887 /* Set rx queue offset */
3888 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3889 int prxq, int offset)
3890 {
3891 u32 val;
3892
3893 /* Convert offset from bytes to units of 32 bytes */
3894 offset = offset >> 5;
3895
3896 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3897 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3898
3899 /* Offset is in */
3900 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3901 MVPP2_RXQ_PACKET_OFFSET_MASK);
3902
3903 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3904 }
3905
3906 /* Obtain BM cookie information from descriptor */
3907 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3908 struct mvpp2_rx_desc *rx_desc)
3909 {
3910 int cpu = smp_processor_id();
3911 int pool;
3912
3913 pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3914 MVPP2_RXD_BM_POOL_ID_MASK) >>
3915 MVPP2_RXD_BM_POOL_ID_OFFS;
3916
3917 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3918 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3919 }
3920
3921 /* Tx descriptors helper methods */
3922
3923 /* Get number of Tx descriptors waiting to be transmitted by HW */
3924 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3925 struct mvpp2_tx_queue *txq)
3926 {
3927 u32 val;
3928
3929 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3930 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3931
3932 return val & MVPP2_TXQ_PENDING_MASK;
3933 }
3934
3935 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3936 static struct mvpp2_tx_desc *
3937 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3938 {
3939 int tx_desc = txq->next_desc_to_proc;
3940
3941 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3942 return txq->descs + tx_desc;
3943 }
3944
3945 /* Update HW with number of aggregated Tx descriptors to be sent */
3946 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3947 {
3948 /* aggregated access - relevant TXQ number is written in TX desc */
3949 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3950 }
3951
3952 /* Get number of sent descriptors and decrement counter.
3953 * The number of sent descriptors is returned.
3954 * Per-CPU access
3955 */
3956 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3957 struct mvpp2_tx_queue *txq)
3958 {
3959 u32 val;
3960
3961 /* Reading status reg resets transmitted descriptor counter */
3962 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3963
3964 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3965 MVPP2_TRANSMITTED_COUNT_OFFSET;
3966 }
3967
3968 static void mvpp2_txq_sent_counter_clear(void *arg)
3969 {
3970 struct mvpp2_port *port = arg;
3971 int queue;
3972
3973 for (queue = 0; queue < txq_number; queue++) {
3974 int id = port->txqs[queue]->id;
3975
3976 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3977 }
3978 }
3979
3980 /* Set max sizes for Tx queues */
3981 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3982 {
3983 u32 val, size, mtu;
3984 int txq, tx_port_num;
3985
3986 mtu = port->pkt_size * 8;
3987 if (mtu > MVPP2_TXP_MTU_MAX)
3988 mtu = MVPP2_TXP_MTU_MAX;
3989
3990 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3991 mtu = 3 * mtu;
3992
3993 /* Indirect access to registers */
3994 tx_port_num = mvpp2_egress_port(port);
3995 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3996
3997 /* Set MTU */
3998 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
3999 val &= ~MVPP2_TXP_MTU_MAX;
4000 val |= mtu;
4001 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4002
4003 /* TXP token size and all TXQs token size must be larger that MTU */
4004 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4005 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4006 if (size < mtu) {
4007 size = mtu;
4008 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4009 val |= size;
4010 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4011 }
4012
4013 for (txq = 0; txq < txq_number; txq++) {
4014 val = mvpp2_read(port->priv,
4015 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4016 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4017
4018 if (size < mtu) {
4019 size = mtu;
4020 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4021 val |= size;
4022 mvpp2_write(port->priv,
4023 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4024 val);
4025 }
4026 }
4027 }
4028
4029 /* Free Tx queue skbuffs */
4030 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4031 struct mvpp2_tx_queue *txq,
4032 struct mvpp2_txq_pcpu *txq_pcpu, int num)
4033 {
4034 int i;
4035
4036 for (i = 0; i < num; i++)
4037 mvpp2_txq_inc_get(txq_pcpu);
4038 }
4039
4040 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4041 u32 cause)
4042 {
4043 int queue = fls(cause) - 1;
4044
4045 return port->rxqs[queue];
4046 }
4047
4048 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4049 u32 cause)
4050 {
4051 int queue = fls(cause) - 1;
4052
4053 return port->txqs[queue];
4054 }
4055
4056 /* Rx/Tx queue initialization/cleanup methods */
4057
4058 /* Allocate and initialize descriptors for aggr TXQ */
4059 static int mvpp2_aggr_txq_init(struct udevice *dev,
4060 struct mvpp2_tx_queue *aggr_txq,
4061 int desc_num, int cpu,
4062 struct mvpp2 *priv)
4063 {
4064 u32 txq_dma;
4065
4066 /* Allocate memory for TX descriptors */
4067 aggr_txq->descs = buffer_loc.aggr_tx_descs;
4068 aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
4069 if (!aggr_txq->descs)
4070 return -ENOMEM;
4071
4072 /* Make sure descriptor address is cache line size aligned */
4073 BUG_ON(aggr_txq->descs !=
4074 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4075
4076 aggr_txq->last_desc = aggr_txq->size - 1;
4077
4078 /* Aggr TXQ no reset WA */
4079 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4080 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4081
4082 /* Set Tx descriptors queue starting address indirect
4083 * access
4084 */
4085 if (priv->hw_version == MVPP21)
4086 txq_dma = aggr_txq->descs_dma;
4087 else
4088 txq_dma = aggr_txq->descs_dma >>
4089 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4090
4091 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4092 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4093
4094 return 0;
4095 }
4096
4097 /* Create a specified Rx queue */
4098 static int mvpp2_rxq_init(struct mvpp2_port *port,
4099 struct mvpp2_rx_queue *rxq)
4100
4101 {
4102 u32 rxq_dma;
4103
4104 rxq->size = port->rx_ring_size;
4105
4106 /* Allocate memory for RX descriptors */
4107 rxq->descs = buffer_loc.rx_descs;
4108 rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
4109 if (!rxq->descs)
4110 return -ENOMEM;
4111
4112 BUG_ON(rxq->descs !=
4113 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4114
4115 rxq->last_desc = rxq->size - 1;
4116
4117 /* Zero occupied and non-occupied counters - direct access */
4118 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4119
4120 /* Set Rx descriptors queue starting address - indirect access */
4121 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4122 if (port->priv->hw_version == MVPP21)
4123 rxq_dma = rxq->descs_dma;
4124 else
4125 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4126 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4127 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4128 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4129
4130 /* Set Offset */
4131 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4132
4133 /* Add number of descriptors ready for receiving packets */
4134 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4135
4136 return 0;
4137 }
4138
4139 /* Push packets received by the RXQ to BM pool */
4140 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4141 struct mvpp2_rx_queue *rxq)
4142 {
4143 int rx_received, i;
4144
4145 rx_received = mvpp2_rxq_received(port, rxq->id);
4146 if (!rx_received)
4147 return;
4148
4149 for (i = 0; i < rx_received; i++) {
4150 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4151 u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4152
4153 mvpp2_pool_refill(port, bm,
4154 mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4155 mvpp2_rxdesc_cookie_get(port, rx_desc));
4156 }
4157 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4158 }
4159
4160 /* Cleanup Rx queue */
4161 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4162 struct mvpp2_rx_queue *rxq)
4163 {
4164 mvpp2_rxq_drop_pkts(port, rxq);
4165
4166 rxq->descs = NULL;
4167 rxq->last_desc = 0;
4168 rxq->next_desc_to_proc = 0;
4169 rxq->descs_dma = 0;
4170
4171 /* Clear Rx descriptors queue starting address and size;
4172 * free descriptor number
4173 */
4174 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4175 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4176 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4177 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4178 }
4179
4180 /* Create and initialize a Tx queue */
4181 static int mvpp2_txq_init(struct mvpp2_port *port,
4182 struct mvpp2_tx_queue *txq)
4183 {
4184 u32 val;
4185 int cpu, desc, desc_per_txq, tx_port_num;
4186 struct mvpp2_txq_pcpu *txq_pcpu;
4187
4188 txq->size = port->tx_ring_size;
4189
4190 /* Allocate memory for Tx descriptors */
4191 txq->descs = buffer_loc.tx_descs;
4192 txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
4193 if (!txq->descs)
4194 return -ENOMEM;
4195
4196 /* Make sure descriptor address is cache line size aligned */
4197 BUG_ON(txq->descs !=
4198 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4199
4200 txq->last_desc = txq->size - 1;
4201
4202 /* Set Tx descriptors queue starting address - indirect access */
4203 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4204 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
4205 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4206 MVPP2_TXQ_DESC_SIZE_MASK);
4207 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4208 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4209 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4210 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4211 val &= ~MVPP2_TXQ_PENDING_MASK;
4212 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4213
4214 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
4215 * for each existing TXQ.
4216 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4217 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4218 */
4219 desc_per_txq = 16;
4220 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4221 (txq->log_id * desc_per_txq);
4222
4223 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4224 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4225 MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
4226
4227 /* WRR / EJP configuration - indirect access */
4228 tx_port_num = mvpp2_egress_port(port);
4229 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4230
4231 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4232 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4233 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4234 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4235 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4236
4237 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4238 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4239 val);
4240
4241 for_each_present_cpu(cpu) {
4242 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4243 txq_pcpu->size = txq->size;
4244 }
4245
4246 return 0;
4247 }
4248
4249 /* Free allocated TXQ resources */
4250 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4251 struct mvpp2_tx_queue *txq)
4252 {
4253 txq->descs = NULL;
4254 txq->last_desc = 0;
4255 txq->next_desc_to_proc = 0;
4256 txq->descs_dma = 0;
4257
4258 /* Set minimum bandwidth for disabled TXQs */
4259 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4260
4261 /* Set Tx descriptors queue starting address and size */
4262 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4263 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4264 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4265 }
4266
4267 /* Cleanup Tx ports */
4268 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4269 {
4270 struct mvpp2_txq_pcpu *txq_pcpu;
4271 int delay, pending, cpu;
4272 u32 val;
4273
4274 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4275 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4276 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4277 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4278
4279 /* The napi queue has been stopped so wait for all packets
4280 * to be transmitted.
4281 */
4282 delay = 0;
4283 do {
4284 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4285 netdev_warn(port->dev,
4286 "port %d: cleaning queue %d timed out\n",
4287 port->id, txq->log_id);
4288 break;
4289 }
4290 mdelay(1);
4291 delay++;
4292
4293 pending = mvpp2_txq_pend_desc_num_get(port, txq);
4294 } while (pending);
4295
4296 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4297 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4298
4299 for_each_present_cpu(cpu) {
4300 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4301
4302 /* Release all packets */
4303 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4304
4305 /* Reset queue */
4306 txq_pcpu->count = 0;
4307 txq_pcpu->txq_put_index = 0;
4308 txq_pcpu->txq_get_index = 0;
4309 }
4310 }
4311
4312 /* Cleanup all Tx queues */
4313 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4314 {
4315 struct mvpp2_tx_queue *txq;
4316 int queue;
4317 u32 val;
4318
4319 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4320
4321 /* Reset Tx ports and delete Tx queues */
4322 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4323 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4324
4325 for (queue = 0; queue < txq_number; queue++) {
4326 txq = port->txqs[queue];
4327 mvpp2_txq_clean(port, txq);
4328 mvpp2_txq_deinit(port, txq);
4329 }
4330
4331 mvpp2_txq_sent_counter_clear(port);
4332
4333 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4334 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4335 }
4336
4337 /* Cleanup all Rx queues */
4338 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4339 {
4340 int queue;
4341
4342 for (queue = 0; queue < rxq_number; queue++)
4343 mvpp2_rxq_deinit(port, port->rxqs[queue]);
4344 }
4345
4346 /* Init all Rx queues for port */
4347 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4348 {
4349 int queue, err;
4350
4351 for (queue = 0; queue < rxq_number; queue++) {
4352 err = mvpp2_rxq_init(port, port->rxqs[queue]);
4353 if (err)
4354 goto err_cleanup;
4355 }
4356 return 0;
4357
4358 err_cleanup:
4359 mvpp2_cleanup_rxqs(port);
4360 return err;
4361 }
4362
4363 /* Init all tx queues for port */
4364 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4365 {
4366 struct mvpp2_tx_queue *txq;
4367 int queue, err;
4368
4369 for (queue = 0; queue < txq_number; queue++) {
4370 txq = port->txqs[queue];
4371 err = mvpp2_txq_init(port, txq);
4372 if (err)
4373 goto err_cleanup;
4374 }
4375
4376 mvpp2_txq_sent_counter_clear(port);
4377 return 0;
4378
4379 err_cleanup:
4380 mvpp2_cleanup_txqs(port);
4381 return err;
4382 }
4383
4384 /* Adjust link */
4385 static void mvpp2_link_event(struct mvpp2_port *port)
4386 {
4387 struct phy_device *phydev = port->phy_dev;
4388 int status_change = 0;
4389 u32 val;
4390
4391 if (phydev->link) {
4392 if ((port->speed != phydev->speed) ||
4393 (port->duplex != phydev->duplex)) {
4394 u32 val;
4395
4396 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4397 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4398 MVPP2_GMAC_CONFIG_GMII_SPEED |
4399 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4400 MVPP2_GMAC_AN_SPEED_EN |
4401 MVPP2_GMAC_AN_DUPLEX_EN);
4402
4403 if (phydev->duplex)
4404 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4405
4406 if (phydev->speed == SPEED_1000)
4407 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4408 else if (phydev->speed == SPEED_100)
4409 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4410
4411 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4412
4413 port->duplex = phydev->duplex;
4414 port->speed = phydev->speed;
4415 }
4416 }
4417
4418 if (phydev->link != port->link) {
4419 if (!phydev->link) {
4420 port->duplex = -1;
4421 port->speed = 0;
4422 }
4423
4424 port->link = phydev->link;
4425 status_change = 1;
4426 }
4427
4428 if (status_change) {
4429 if (phydev->link) {
4430 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4431 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4432 MVPP2_GMAC_FORCE_LINK_DOWN);
4433 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4434 mvpp2_egress_enable(port);
4435 mvpp2_ingress_enable(port);
4436 } else {
4437 mvpp2_ingress_disable(port);
4438 mvpp2_egress_disable(port);
4439 }
4440 }
4441 }
4442
4443 /* Main RX/TX processing routines */
4444
4445 /* Display more error info */
4446 static void mvpp2_rx_error(struct mvpp2_port *port,
4447 struct mvpp2_rx_desc *rx_desc)
4448 {
4449 u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4450 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
4451
4452 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4453 case MVPP2_RXD_ERR_CRC:
4454 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
4455 status, sz);
4456 break;
4457 case MVPP2_RXD_ERR_OVERRUN:
4458 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
4459 status, sz);
4460 break;
4461 case MVPP2_RXD_ERR_RESOURCE:
4462 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
4463 status, sz);
4464 break;
4465 }
4466 }
4467
4468 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4469 static int mvpp2_rx_refill(struct mvpp2_port *port,
4470 struct mvpp2_bm_pool *bm_pool,
4471 u32 bm, dma_addr_t dma_addr)
4472 {
4473 mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
4474 return 0;
4475 }
4476
4477 /* Set hw internals when starting port */
4478 static void mvpp2_start_dev(struct mvpp2_port *port)
4479 {
4480 switch (port->phy_interface) {
4481 case PHY_INTERFACE_MODE_RGMII:
4482 case PHY_INTERFACE_MODE_RGMII_ID:
4483 case PHY_INTERFACE_MODE_SGMII:
4484 mvpp2_gmac_max_rx_size_set(port);
4485 default:
4486 break;
4487 }
4488
4489 mvpp2_txp_max_tx_size_set(port);
4490
4491 if (port->priv->hw_version == MVPP21)
4492 mvpp2_port_enable(port);
4493 else
4494 gop_port_enable(port, 1);
4495 }
4496
4497 /* Set hw internals when stopping port */
4498 static void mvpp2_stop_dev(struct mvpp2_port *port)
4499 {
4500 /* Stop new packets from arriving to RXQs */
4501 mvpp2_ingress_disable(port);
4502
4503 mvpp2_egress_disable(port);
4504
4505 if (port->priv->hw_version == MVPP21)
4506 mvpp2_port_disable(port);
4507 else
4508 gop_port_enable(port, 0);
4509 }
4510
4511 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
4512 {
4513 struct phy_device *phy_dev;
4514
4515 if (!port->init || port->link == 0) {
4516 phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
4517 port->phy_interface);
4518 port->phy_dev = phy_dev;
4519 if (!phy_dev) {
4520 netdev_err(port->dev, "cannot connect to phy\n");
4521 return -ENODEV;
4522 }
4523 phy_dev->supported &= PHY_GBIT_FEATURES;
4524 phy_dev->advertising = phy_dev->supported;
4525
4526 port->phy_dev = phy_dev;
4527 port->link = 0;
4528 port->duplex = 0;
4529 port->speed = 0;
4530
4531 phy_config(phy_dev);
4532 phy_startup(phy_dev);
4533 if (!phy_dev->link) {
4534 printf("%s: No link\n", phy_dev->dev->name);
4535 return -1;
4536 }
4537
4538 port->init = 1;
4539 } else {
4540 mvpp2_egress_enable(port);
4541 mvpp2_ingress_enable(port);
4542 }
4543
4544 return 0;
4545 }
4546
4547 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
4548 {
4549 unsigned char mac_bcast[ETH_ALEN] = {
4550 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4551 int err;
4552
4553 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
4554 if (err) {
4555 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
4556 return err;
4557 }
4558 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
4559 port->dev_addr, true);
4560 if (err) {
4561 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
4562 return err;
4563 }
4564 err = mvpp2_prs_def_flow(port);
4565 if (err) {
4566 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
4567 return err;
4568 }
4569
4570 /* Allocate the Rx/Tx queues */
4571 err = mvpp2_setup_rxqs(port);
4572 if (err) {
4573 netdev_err(port->dev, "cannot allocate Rx queues\n");
4574 return err;
4575 }
4576
4577 err = mvpp2_setup_txqs(port);
4578 if (err) {
4579 netdev_err(port->dev, "cannot allocate Tx queues\n");
4580 return err;
4581 }
4582
4583 if (port->phy_node) {
4584 err = mvpp2_phy_connect(dev, port);
4585 if (err < 0)
4586 return err;
4587
4588 mvpp2_link_event(port);
4589 } else {
4590 mvpp2_egress_enable(port);
4591 mvpp2_ingress_enable(port);
4592 }
4593
4594 mvpp2_start_dev(port);
4595
4596 return 0;
4597 }
4598
4599 /* No Device ops here in U-Boot */
4600
4601 /* Driver initialization */
4602
4603 static void mvpp2_port_power_up(struct mvpp2_port *port)
4604 {
4605 struct mvpp2 *priv = port->priv;
4606
4607 /* On PPv2.2 the GoP / interface configuration has already been done */
4608 if (priv->hw_version == MVPP21)
4609 mvpp2_port_mii_set(port);
4610 mvpp2_port_periodic_xon_disable(port);
4611 if (priv->hw_version == MVPP21)
4612 mvpp2_port_fc_adv_enable(port);
4613 mvpp2_port_reset(port);
4614 }
4615
4616 /* Initialize port HW */
4617 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
4618 {
4619 struct mvpp2 *priv = port->priv;
4620 struct mvpp2_txq_pcpu *txq_pcpu;
4621 int queue, cpu, err;
4622
4623 if (port->first_rxq + rxq_number >
4624 MVPP2_MAX_PORTS * priv->max_port_rxqs)
4625 return -EINVAL;
4626
4627 /* Disable port */
4628 mvpp2_egress_disable(port);
4629 if (priv->hw_version == MVPP21)
4630 mvpp2_port_disable(port);
4631 else
4632 gop_port_enable(port, 0);
4633
4634 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
4635 GFP_KERNEL);
4636 if (!port->txqs)
4637 return -ENOMEM;
4638
4639 /* Associate physical Tx queues to this port and initialize.
4640 * The mapping is predefined.
4641 */
4642 for (queue = 0; queue < txq_number; queue++) {
4643 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
4644 struct mvpp2_tx_queue *txq;
4645
4646 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
4647 if (!txq)
4648 return -ENOMEM;
4649
4650 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
4651 GFP_KERNEL);
4652 if (!txq->pcpu)
4653 return -ENOMEM;
4654
4655 txq->id = queue_phy_id;
4656 txq->log_id = queue;
4657 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
4658 for_each_present_cpu(cpu) {
4659 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4660 txq_pcpu->cpu = cpu;
4661 }
4662
4663 port->txqs[queue] = txq;
4664 }
4665
4666 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
4667 GFP_KERNEL);
4668 if (!port->rxqs)
4669 return -ENOMEM;
4670
4671 /* Allocate and initialize Rx queue for this port */
4672 for (queue = 0; queue < rxq_number; queue++) {
4673 struct mvpp2_rx_queue *rxq;
4674
4675 /* Map physical Rx queue to port's logical Rx queue */
4676 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
4677 if (!rxq)
4678 return -ENOMEM;
4679 /* Map this Rx queue to a physical queue */
4680 rxq->id = port->first_rxq + queue;
4681 rxq->port = port->id;
4682 rxq->logic_rxq = queue;
4683
4684 port->rxqs[queue] = rxq;
4685 }
4686
4687
4688 /* Create Rx descriptor rings */
4689 for (queue = 0; queue < rxq_number; queue++) {
4690 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
4691
4692 rxq->size = port->rx_ring_size;
4693 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
4694 rxq->time_coal = MVPP2_RX_COAL_USEC;
4695 }
4696
4697 mvpp2_ingress_disable(port);
4698
4699 /* Port default configuration */
4700 mvpp2_defaults_set(port);
4701
4702 /* Port's classifier configuration */
4703 mvpp2_cls_oversize_rxq_set(port);
4704 mvpp2_cls_port_config(port);
4705
4706 /* Provide an initial Rx packet size */
4707 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
4708
4709 /* Initialize pools for swf */
4710 err = mvpp2_swf_bm_pool_init(port);
4711 if (err)
4712 return err;
4713
4714 return 0;
4715 }
4716
4717 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
4718 {
4719 int port_node = dev_of_offset(dev);
4720 const char *phy_mode_str;
4721 int phy_node, mdio_off, cp_node;
4722 u32 id;
4723 u32 phyaddr = 0;
4724 int phy_mode = -1;
4725 u64 mdio_addr;
4726
4727 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
4728
4729 if (phy_node > 0) {
4730 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
4731 if (phyaddr < 0) {
4732 dev_err(&pdev->dev, "could not find phy address\n");
4733 return -1;
4734 }
4735 mdio_off = fdt_parent_offset(gd->fdt_blob, phy_node);
4736
4737 /* TODO: This WA for mdio issue. U-boot 2017 don't have
4738 * mdio driver and on MACHIATOBin board ports from CP1
4739 * connected to mdio on CP0.
4740 * WA is to get mdio address from phy handler parent
4741 * base address. WA should be removed after
4742 * mdio driver implementation.
4743 */
4744 mdio_addr = fdtdec_get_uint(gd->fdt_blob,
4745 mdio_off, "reg", 0);
4746
4747 cp_node = fdt_parent_offset(gd->fdt_blob, mdio_off);
4748 mdio_addr |= fdt_get_base_address((void *)gd->fdt_blob,
4749 cp_node);
4750
4751 port->priv->mdio_base = (void *)mdio_addr;
4752
4753 if (port->priv->mdio_base < 0) {
4754 dev_err(&pdev->dev, "could not find mdio base address\n");
4755 return -1;
4756 }
4757 } else {
4758 phy_node = 0;
4759 }
4760
4761 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
4762 if (phy_mode_str)
4763 phy_mode = phy_get_interface_by_name(phy_mode_str);
4764 if (phy_mode == -1) {
4765 dev_err(&pdev->dev, "incorrect phy mode\n");
4766 return -EINVAL;
4767 }
4768
4769 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
4770 if (id == -1) {
4771 dev_err(&pdev->dev, "missing port-id value\n");
4772 return -EINVAL;
4773 }
4774
4775 #ifdef CONFIG_DM_GPIO
4776 gpio_request_by_name(dev, "phy-reset-gpios", 0,
4777 &port->phy_reset_gpio, GPIOD_IS_OUT);
4778 gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0,
4779 &port->phy_tx_disable_gpio, GPIOD_IS_OUT);
4780 #endif
4781
4782 /*
4783 * ToDo:
4784 * Not sure if this DT property "phy-speed" will get accepted, so
4785 * this might change later
4786 */
4787 /* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */
4788 port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node,
4789 "phy-speed", 1000);
4790
4791 port->id = id;
4792 if (port->priv->hw_version == MVPP21)
4793 port->first_rxq = port->id * rxq_number;
4794 else
4795 port->first_rxq = port->id * port->priv->max_port_rxqs;
4796 port->phy_node = phy_node;
4797 port->phy_interface = phy_mode;
4798 port->phyaddr = phyaddr;
4799
4800 return 0;
4801 }
4802
4803 #ifdef CONFIG_DM_GPIO
4804 /* Port GPIO initialization */
4805 static void mvpp2_gpio_init(struct mvpp2_port *port)
4806 {
4807 if (dm_gpio_is_valid(&port->phy_reset_gpio)) {
4808 dm_gpio_set_value(&port->phy_reset_gpio, 0);
4809 udelay(1000);
4810 dm_gpio_set_value(&port->phy_reset_gpio, 1);
4811 }
4812
4813 if (dm_gpio_is_valid(&port->phy_tx_disable_gpio))
4814 dm_gpio_set_value(&port->phy_tx_disable_gpio, 0);
4815 }
4816 #endif
4817
4818 /* Ports initialization */
4819 static int mvpp2_port_probe(struct udevice *dev,
4820 struct mvpp2_port *port,
4821 int port_node,
4822 struct mvpp2 *priv)
4823 {
4824 int err;
4825
4826 port->tx_ring_size = MVPP2_MAX_TXD;
4827 port->rx_ring_size = MVPP2_MAX_RXD;
4828
4829 err = mvpp2_port_init(dev, port);
4830 if (err < 0) {
4831 dev_err(&pdev->dev, "failed to init port %d\n", port->id);
4832 return err;
4833 }
4834 mvpp2_port_power_up(port);
4835
4836 #ifdef CONFIG_DM_GPIO
4837 mvpp2_gpio_init(port);
4838 #endif
4839
4840 priv->port_list[port->id] = port;
4841 priv->num_ports++;
4842 return 0;
4843 }
4844
4845 /* Initialize decoding windows */
4846 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
4847 struct mvpp2 *priv)
4848 {
4849 u32 win_enable;
4850 int i;
4851
4852 for (i = 0; i < 6; i++) {
4853 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
4854 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
4855
4856 if (i < 4)
4857 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
4858 }
4859
4860 win_enable = 0;
4861
4862 for (i = 0; i < dram->num_cs; i++) {
4863 const struct mbus_dram_window *cs = dram->cs + i;
4864
4865 mvpp2_write(priv, MVPP2_WIN_BASE(i),
4866 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
4867 dram->mbus_dram_target_id);
4868
4869 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
4870 (cs->size - 1) & 0xffff0000);
4871
4872 win_enable |= (1 << i);
4873 }
4874
4875 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
4876 }
4877
4878 /* Initialize Rx FIFO's */
4879 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
4880 {
4881 int port;
4882
4883 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4884 if (priv->hw_version == MVPP22) {
4885 if (port == 0) {
4886 mvpp2_write(priv,
4887 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4888 MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
4889 mvpp2_write(priv,
4890 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4891 MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
4892 } else if (port == 1) {
4893 mvpp2_write(priv,
4894 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4895 MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
4896 mvpp2_write(priv,
4897 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4898 MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
4899 } else {
4900 mvpp2_write(priv,
4901 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4902 MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
4903 mvpp2_write(priv,
4904 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4905 MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
4906 }
4907 } else {
4908 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4909 MVPP21_RX_FIFO_PORT_DATA_SIZE);
4910 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4911 MVPP21_RX_FIFO_PORT_ATTR_SIZE);
4912 }
4913 }
4914
4915 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
4916 MVPP2_RX_FIFO_PORT_MIN_PKT);
4917 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
4918 }
4919
4920 /* Initialize Tx FIFO's */
4921 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
4922 {
4923 int port, val;
4924
4925 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4926 /* Port 0 supports 10KB TX FIFO */
4927 if (port == 0) {
4928 val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
4929 MVPP22_TX_FIFO_SIZE_MASK;
4930 } else {
4931 val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
4932 MVPP22_TX_FIFO_SIZE_MASK;
4933 }
4934 mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
4935 }
4936 }
4937
4938 static void mvpp2_axi_init(struct mvpp2 *priv)
4939 {
4940 u32 val, rdval, wrval;
4941
4942 mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4943
4944 /* AXI Bridge Configuration */
4945
4946 rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
4947 << MVPP22_AXI_ATTR_CACHE_OFFS;
4948 rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4949 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
4950
4951 wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
4952 << MVPP22_AXI_ATTR_CACHE_OFFS;
4953 wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4954 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
4955
4956 /* BM */
4957 mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
4958 mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
4959
4960 /* Descriptors */
4961 mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
4962 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
4963 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
4964 mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
4965
4966 /* Buffer Data */
4967 mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
4968 mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
4969
4970 val = MVPP22_AXI_CODE_CACHE_NON_CACHE
4971 << MVPP22_AXI_CODE_CACHE_OFFS;
4972 val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
4973 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4974 mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
4975 mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
4976
4977 val = MVPP22_AXI_CODE_CACHE_RD_CACHE
4978 << MVPP22_AXI_CODE_CACHE_OFFS;
4979 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4980 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4981
4982 mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
4983
4984 val = MVPP22_AXI_CODE_CACHE_WR_CACHE
4985 << MVPP22_AXI_CODE_CACHE_OFFS;
4986 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4987 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4988
4989 mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
4990 }
4991
4992 /* Initialize network controller common part HW */
4993 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
4994 {
4995 const struct mbus_dram_target_info *dram_target_info;
4996 int err, i;
4997 u32 val;
4998
4999 /* Checks for hardware constraints (U-Boot uses only one rxq) */
5000 if ((rxq_number > priv->max_port_rxqs) ||
5001 (txq_number > MVPP2_MAX_TXQ)) {
5002 dev_err(&pdev->dev, "invalid queue size parameter\n");
5003 return -EINVAL;
5004 }
5005
5006 if (priv->hw_version == MVPP22)
5007 mvpp2_axi_init(priv);
5008 else {
5009 /* MBUS windows configuration */
5010 dram_target_info = mvebu_mbus_dram_info();
5011 if (dram_target_info)
5012 mvpp2_conf_mbus_windows(dram_target_info, priv);
5013 }
5014
5015 if (priv->hw_version == MVPP21) {
5016 /* Disable HW PHY polling */
5017 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5018 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
5019 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5020 } else {
5021 /* Enable HW PHY polling */
5022 val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5023 val |= MVPP22_SMI_POLLING_EN;
5024 writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5025 }
5026
5027 /* Allocate and initialize aggregated TXQs */
5028 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
5029 sizeof(struct mvpp2_tx_queue),
5030 GFP_KERNEL);
5031 if (!priv->aggr_txqs)
5032 return -ENOMEM;
5033
5034 for_each_present_cpu(i) {
5035 priv->aggr_txqs[i].id = i;
5036 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
5037 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
5038 MVPP2_AGGR_TXQ_SIZE, i, priv);
5039 if (err < 0)
5040 return err;
5041 }
5042
5043 /* Rx Fifo Init */
5044 mvpp2_rx_fifo_init(priv);
5045
5046 /* Tx Fifo Init */
5047 if (priv->hw_version == MVPP22)
5048 mvpp2_tx_fifo_init(priv);
5049
5050 if (priv->hw_version == MVPP21)
5051 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
5052 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
5053
5054 /* Allow cache snoop when transmiting packets */
5055 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
5056
5057 /* Buffer Manager initialization */
5058 err = mvpp2_bm_init(dev, priv);
5059 if (err < 0)
5060 return err;
5061
5062 /* Parser default initialization */
5063 err = mvpp2_prs_default_init(dev, priv);
5064 if (err < 0)
5065 return err;
5066
5067 /* Classifier default initialization */
5068 mvpp2_cls_init(priv);
5069
5070 return 0;
5071 }
5072
5073 /* SMI / MDIO functions */
5074
5075 static int smi_wait_ready(struct mvpp2 *priv)
5076 {
5077 u32 timeout = MVPP2_SMI_TIMEOUT;
5078 u32 smi_reg;
5079
5080 /* wait till the SMI is not busy */
5081 do {
5082 /* read smi register */
5083 smi_reg = readl(priv->mdio_base);
5084 if (timeout-- == 0) {
5085 printf("Error: SMI busy timeout\n");
5086 return -EFAULT;
5087 }
5088 } while (smi_reg & MVPP2_SMI_BUSY);
5089
5090 return 0;
5091 }
5092
5093 /*
5094 * mpp2_mdio_read - miiphy_read callback function.
5095 *
5096 * Returns 16bit phy register value, or 0xffff on error
5097 */
5098 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
5099 {
5100 struct mvpp2 *priv = bus->priv;
5101 u32 smi_reg;
5102 u32 timeout;
5103
5104 /* check parameters */
5105 if (addr > MVPP2_PHY_ADDR_MASK) {
5106 printf("Error: Invalid PHY address %d\n", addr);
5107 return -EFAULT;
5108 }
5109
5110 if (reg > MVPP2_PHY_REG_MASK) {
5111 printf("Err: Invalid register offset %d\n", reg);
5112 return -EFAULT;
5113 }
5114
5115 /* wait till the SMI is not busy */
5116 if (smi_wait_ready(priv) < 0)
5117 return -EFAULT;
5118
5119 /* fill the phy address and regiser offset and read opcode */
5120 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5121 | (reg << MVPP2_SMI_REG_ADDR_OFFS)
5122 | MVPP2_SMI_OPCODE_READ;
5123
5124 /* write the smi register */
5125 writel(smi_reg, priv->mdio_base);
5126
5127 /* wait till read value is ready */
5128 timeout = MVPP2_SMI_TIMEOUT;
5129
5130 do {
5131 /* read smi register */
5132 smi_reg = readl(priv->mdio_base);
5133 if (timeout-- == 0) {
5134 printf("Err: SMI read ready timeout\n");
5135 return -EFAULT;
5136 }
5137 } while (!(smi_reg & MVPP2_SMI_READ_VALID));
5138
5139 /* Wait for the data to update in the SMI register */
5140 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
5141 ;
5142
5143 return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK;
5144 }
5145
5146 /*
5147 * mpp2_mdio_write - miiphy_write callback function.
5148 *
5149 * Returns 0 if write succeed, -EINVAL on bad parameters
5150 * -ETIME on timeout
5151 */
5152 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
5153 u16 value)
5154 {
5155 struct mvpp2 *priv = bus->priv;
5156 u32 smi_reg;
5157
5158 /* check parameters */
5159 if (addr > MVPP2_PHY_ADDR_MASK) {
5160 printf("Error: Invalid PHY address %d\n", addr);
5161 return -EFAULT;
5162 }
5163
5164 if (reg > MVPP2_PHY_REG_MASK) {
5165 printf("Err: Invalid register offset %d\n", reg);
5166 return -EFAULT;
5167 }
5168
5169 /* wait till the SMI is not busy */
5170 if (smi_wait_ready(priv) < 0)
5171 return -EFAULT;
5172
5173 /* fill the phy addr and reg offset and write opcode and data */
5174 smi_reg = value << MVPP2_SMI_DATA_OFFS;
5175 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5176 | (reg << MVPP2_SMI_REG_ADDR_OFFS);
5177 smi_reg &= ~MVPP2_SMI_OPCODE_READ;
5178
5179 /* write the smi register */
5180 writel(smi_reg, priv->mdio_base);
5181
5182 return 0;
5183 }
5184
5185 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
5186 {
5187 struct mvpp2_port *port = dev_get_priv(dev);
5188 struct mvpp2_rx_desc *rx_desc;
5189 struct mvpp2_bm_pool *bm_pool;
5190 dma_addr_t dma_addr;
5191 u32 bm, rx_status;
5192 int pool, rx_bytes, err;
5193 int rx_received;
5194 struct mvpp2_rx_queue *rxq;
5195 u8 *data;
5196
5197 /* Process RX packets */
5198 rxq = port->rxqs[0];
5199
5200 /* Get number of received packets and clamp the to-do */
5201 rx_received = mvpp2_rxq_received(port, rxq->id);
5202
5203 /* Return if no packets are received */
5204 if (!rx_received)
5205 return 0;
5206
5207 rx_desc = mvpp2_rxq_next_desc_get(rxq);
5208 rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5209 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5210 rx_bytes -= MVPP2_MH_SIZE;
5211 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5212
5213 bm = mvpp2_bm_cookie_build(port, rx_desc);
5214 pool = mvpp2_bm_cookie_pool_get(bm);
5215 bm_pool = &port->priv->bm_pools[pool];
5216
5217 /* In case of an error, release the requested buffer pointer
5218 * to the Buffer Manager. This request process is controlled
5219 * by the hardware, and the information about the buffer is
5220 * comprised by the RX descriptor.
5221 */
5222 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5223 mvpp2_rx_error(port, rx_desc);
5224 /* Return the buffer to the pool */
5225 mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
5226 return 0;
5227 }
5228
5229 err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
5230 if (err) {
5231 netdev_err(port->dev, "failed to refill BM pools\n");
5232 return 0;
5233 }
5234
5235 /* Update Rx queue management counters */
5236 mb();
5237 mvpp2_rxq_status_update(port, rxq->id, 1, 1);
5238
5239 /* give packet to stack - skip on first n bytes */
5240 data = (u8 *)dma_addr + 2 + 32;
5241
5242 if (rx_bytes <= 0)
5243 return 0;
5244
5245 /*
5246 * No cache invalidation needed here, since the rx_buffer's are
5247 * located in a uncached memory region
5248 */
5249 *packetp = data;
5250
5251 return rx_bytes;
5252 }
5253
5254 static int mvpp2_send(struct udevice *dev, void *packet, int length)
5255 {
5256 struct mvpp2_port *port = dev_get_priv(dev);
5257 struct mvpp2_tx_queue *txq, *aggr_txq;
5258 struct mvpp2_tx_desc *tx_desc;
5259 int tx_done;
5260 int timeout;
5261
5262 txq = port->txqs[0];
5263 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5264
5265 /* Get a descriptor for the first part of the packet */
5266 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5267 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5268 mvpp2_txdesc_size_set(port, tx_desc, length);
5269 mvpp2_txdesc_offset_set(port, tx_desc,
5270 (dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
5271 mvpp2_txdesc_dma_addr_set(port, tx_desc,
5272 (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
5273 /* First and Last descriptor */
5274 mvpp2_txdesc_cmd_set(port, tx_desc,
5275 MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
5276 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
5277
5278 /* Flush tx data */
5279 flush_dcache_range((unsigned long)packet,
5280 (unsigned long)packet + ALIGN(length, PKTALIGN));
5281
5282 /* Enable transmit */
5283 mb();
5284 mvpp2_aggr_txq_pend_desc_add(port, 1);
5285
5286 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5287
5288 timeout = 0;
5289 do {
5290 if (timeout++ > 10000) {
5291 printf("timeout: packet not sent from aggregated to phys TXQ\n");
5292 return 0;
5293 }
5294 tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
5295 } while (tx_done);
5296
5297 timeout = 0;
5298 do {
5299 if (timeout++ > 10000) {
5300 printf("timeout: packet not sent\n");
5301 return 0;
5302 }
5303 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5304 } while (!tx_done);
5305
5306 return 0;
5307 }
5308
5309 static int mvpp2_start(struct udevice *dev)
5310 {
5311 struct eth_pdata *pdata = dev_get_platdata(dev);
5312 struct mvpp2_port *port = dev_get_priv(dev);
5313
5314 /* Load current MAC address */
5315 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
5316
5317 /* Reconfigure parser accept the original MAC address */
5318 mvpp2_prs_update_mac_da(port, port->dev_addr);
5319
5320 switch (port->phy_interface) {
5321 case PHY_INTERFACE_MODE_RGMII:
5322 case PHY_INTERFACE_MODE_RGMII_ID:
5323 case PHY_INTERFACE_MODE_SGMII:
5324 mvpp2_port_power_up(port);
5325 default:
5326 break;
5327 }
5328
5329 mvpp2_open(dev, port);
5330
5331 return 0;
5332 }
5333
5334 static void mvpp2_stop(struct udevice *dev)
5335 {
5336 struct mvpp2_port *port = dev_get_priv(dev);
5337
5338 mvpp2_stop_dev(port);
5339 mvpp2_cleanup_rxqs(port);
5340 mvpp2_cleanup_txqs(port);
5341 }
5342
5343 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port)
5344 {
5345 writel(port->phyaddr, port->priv->iface_base +
5346 MVPP22_SMI_PHY_ADDR_REG(port->gop_id));
5347
5348 return 0;
5349 }
5350
5351 static int mvpp2_base_probe(struct udevice *dev)
5352 {
5353 struct mvpp2 *priv = dev_get_priv(dev);
5354 struct mii_dev *bus;
5355 void *bd_space;
5356 u32 size = 0;
5357 int i;
5358
5359 /* Save hw-version */
5360 priv->hw_version = dev_get_driver_data(dev);
5361
5362 /*
5363 * U-Boot special buffer handling:
5364 *
5365 * Allocate buffer area for descs and rx_buffers. This is only
5366 * done once for all interfaces. As only one interface can
5367 * be active. Make this area DMA-safe by disabling the D-cache
5368 */
5369
5370 /* Align buffer area for descs and rx_buffers to 1MiB */
5371 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
5372 mmu_set_region_dcache_behaviour((unsigned long)bd_space,
5373 BD_SPACE, DCACHE_OFF);
5374
5375 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
5376 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
5377
5378 buffer_loc.tx_descs =
5379 (struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
5380 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
5381
5382 buffer_loc.rx_descs =
5383 (struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
5384 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
5385
5386 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
5387 buffer_loc.bm_pool[i] =
5388 (unsigned long *)((unsigned long)bd_space + size);
5389 if (priv->hw_version == MVPP21)
5390 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
5391 else
5392 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
5393 }
5394
5395 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
5396 buffer_loc.rx_buffer[i] =
5397 (unsigned long *)((unsigned long)bd_space + size);
5398 size += RX_BUFFER_SIZE;
5399 }
5400
5401 /* Clear the complete area so that all descriptors are cleared */
5402 memset(bd_space, 0, size);
5403
5404 /* Save base addresses for later use */
5405 priv->base = (void *)devfdt_get_addr_index(dev, 0);
5406 if (IS_ERR(priv->base))
5407 return PTR_ERR(priv->base);
5408
5409 if (priv->hw_version == MVPP21) {
5410 priv->lms_base = (void *)devfdt_get_addr_index(dev, 1);
5411 if (IS_ERR(priv->lms_base))
5412 return PTR_ERR(priv->lms_base);
5413
5414 priv->mdio_base = priv->lms_base + MVPP21_SMI;
5415 } else {
5416 priv->iface_base = (void *)devfdt_get_addr_index(dev, 1);
5417 if (IS_ERR(priv->iface_base))
5418 return PTR_ERR(priv->iface_base);
5419
5420 priv->mdio_base = priv->iface_base + MVPP22_SMI;
5421
5422 /* Store common base addresses for all ports */
5423 priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
5424 priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
5425 priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
5426 }
5427
5428 if (priv->hw_version == MVPP21)
5429 priv->max_port_rxqs = 8;
5430 else
5431 priv->max_port_rxqs = 32;
5432
5433 /* Finally create and register the MDIO bus driver */
5434 bus = mdio_alloc();
5435 if (!bus) {
5436 printf("Failed to allocate MDIO bus\n");
5437 return -ENOMEM;
5438 }
5439
5440 bus->read = mpp2_mdio_read;
5441 bus->write = mpp2_mdio_write;
5442 snprintf(bus->name, sizeof(bus->name), dev->name);
5443 bus->priv = (void *)priv;
5444 priv->bus = bus;
5445
5446 return mdio_register(bus);
5447 }
5448
5449 static int mvpp2_probe(struct udevice *dev)
5450 {
5451 struct mvpp2_port *port = dev_get_priv(dev);
5452 struct mvpp2 *priv = dev_get_priv(dev->parent);
5453 int err;
5454
5455 /* Only call the probe function for the parent once */
5456 if (!priv->probe_done)
5457 err = mvpp2_base_probe(dev->parent);
5458
5459 port->priv = dev_get_priv(dev->parent);
5460
5461 err = phy_info_parse(dev, port);
5462 if (err)
5463 return err;
5464
5465 /*
5466 * We need the port specific io base addresses at this stage, since
5467 * gop_port_init() accesses these registers
5468 */
5469 if (priv->hw_version == MVPP21) {
5470 int priv_common_regs_num = 2;
5471
5472 port->base = (void __iomem *)devfdt_get_addr_index(
5473 dev->parent, priv_common_regs_num + port->id);
5474 if (IS_ERR(port->base))
5475 return PTR_ERR(port->base);
5476 } else {
5477 port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
5478 "gop-port-id", -1);
5479 if (port->id == -1) {
5480 dev_err(&pdev->dev, "missing gop-port-id value\n");
5481 return -EINVAL;
5482 }
5483
5484 port->base = priv->iface_base + MVPP22_PORT_BASE +
5485 port->gop_id * MVPP22_PORT_OFFSET;
5486
5487 /* Set phy address of the port */
5488 if(port->phy_node)
5489 mvpp22_smi_phy_addr_cfg(port);
5490
5491 /* GoP Init */
5492 gop_port_init(port);
5493 }
5494
5495 if (!priv->probe_done) {
5496 /* Initialize network controller */
5497 err = mvpp2_init(dev, priv);
5498 if (err < 0) {
5499 dev_err(&pdev->dev, "failed to initialize controller\n");
5500 return err;
5501 }
5502 priv->num_ports = 0;
5503 priv->probe_done = 1;
5504 }
5505
5506 err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
5507 if (err)
5508 return err;
5509
5510 if (priv->hw_version == MVPP22) {
5511 priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
5512 port->phy_interface);
5513
5514 /* Netcomplex configurations for all ports */
5515 gop_netc_init(priv, MV_NETC_FIRST_PHASE);
5516 gop_netc_init(priv, MV_NETC_SECOND_PHASE);
5517 }
5518
5519 return 0;
5520 }
5521
5522 /*
5523 * Empty BM pool and stop its activity before the OS is started
5524 */
5525 static int mvpp2_remove(struct udevice *dev)
5526 {
5527 struct mvpp2_port *port = dev_get_priv(dev);
5528 struct mvpp2 *priv = port->priv;
5529 int i;
5530
5531 priv->num_ports--;
5532
5533 if (priv->num_ports)
5534 return 0;
5535
5536 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
5537 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
5538
5539 return 0;
5540 }
5541
5542 static const struct eth_ops mvpp2_ops = {
5543 .start = mvpp2_start,
5544 .send = mvpp2_send,
5545 .recv = mvpp2_recv,
5546 .stop = mvpp2_stop,
5547 };
5548
5549 static struct driver mvpp2_driver = {
5550 .name = "mvpp2",
5551 .id = UCLASS_ETH,
5552 .probe = mvpp2_probe,
5553 .remove = mvpp2_remove,
5554 .ops = &mvpp2_ops,
5555 .priv_auto_alloc_size = sizeof(struct mvpp2_port),
5556 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5557 .flags = DM_FLAG_ACTIVE_DMA,
5558 };
5559
5560 /*
5561 * Use a MISC device to bind the n instances (child nodes) of the
5562 * network base controller in UCLASS_ETH.
5563 */
5564 static int mvpp2_base_bind(struct udevice *parent)
5565 {
5566 const void *blob = gd->fdt_blob;
5567 int node = dev_of_offset(parent);
5568 struct uclass_driver *drv;
5569 struct udevice *dev;
5570 struct eth_pdata *plat;
5571 char *name;
5572 int subnode;
5573 u32 id;
5574 int base_id_add;
5575
5576 /* Lookup eth driver */
5577 drv = lists_uclass_lookup(UCLASS_ETH);
5578 if (!drv) {
5579 puts("Cannot find eth driver\n");
5580 return -ENOENT;
5581 }
5582
5583 base_id_add = base_id;
5584
5585 fdt_for_each_subnode(subnode, blob, node) {
5586 /* Increment base_id for all subnodes, also the disabled ones */
5587 base_id++;
5588
5589 /* Skip disabled ports */
5590 if (!fdtdec_get_is_enabled(blob, subnode))
5591 continue;
5592
5593 plat = calloc(1, sizeof(*plat));
5594 if (!plat)
5595 return -ENOMEM;
5596
5597 id = fdtdec_get_int(blob, subnode, "port-id", -1);
5598 id += base_id_add;
5599
5600 name = calloc(1, 16);
5601 sprintf(name, "mvpp2-%d", id);
5602
5603 /* Create child device UCLASS_ETH and bind it */
5604 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
5605 dev_set_of_offset(dev, subnode);
5606 }
5607
5608 return 0;
5609 }
5610
5611 static const struct udevice_id mvpp2_ids[] = {
5612 {
5613 .compatible = "marvell,armada-375-pp2",
5614 .data = MVPP21,
5615 },
5616 {
5617 .compatible = "marvell,armada-7k-pp22",
5618 .data = MVPP22,
5619 },
5620 { }
5621 };
5622
5623 U_BOOT_DRIVER(mvpp2_base) = {
5624 .name = "mvpp2_base",
5625 .id = UCLASS_MISC,
5626 .of_match = mvpp2_ids,
5627 .bind = mvpp2_base_bind,
5628 .priv_auto_alloc_size = sizeof(struct mvpp2),
5629 };