]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/mvpp2.c
net: mvpp2: adjust mvpp2_{rxq,txq}_init for PPv2.2
[people/ms/u-boot.git] / drivers / net / mvpp2.c
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * U-Boot version:
9 * Copyright (C) 2016 Stefan Roese <sr@denx.de>
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33
34 DECLARE_GLOBAL_DATA_PTR;
35
36 /* Some linux -> U-Boot compatibility stuff */
37 #define netdev_err(dev, fmt, args...) \
38 printf(fmt, ##args)
39 #define netdev_warn(dev, fmt, args...) \
40 printf(fmt, ##args)
41 #define netdev_info(dev, fmt, args...) \
42 printf(fmt, ##args)
43 #define netdev_dbg(dev, fmt, args...) \
44 printf(fmt, ##args)
45
46 #define ETH_ALEN 6 /* Octets in one ethernet addr */
47
48 #define __verify_pcpu_ptr(ptr) \
49 do { \
50 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
51 (void)__vpp_verify; \
52 } while (0)
53
54 #define VERIFY_PERCPU_PTR(__p) \
55 ({ \
56 __verify_pcpu_ptr(__p); \
57 (typeof(*(__p)) __kernel __force *)(__p); \
58 })
59
60 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
61 #define smp_processor_id() 0
62 #define num_present_cpus() 1
63 #define for_each_present_cpu(cpu) \
64 for ((cpu) = 0; (cpu) < 1; (cpu)++)
65
66 #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
67
68 #define CONFIG_NR_CPUS 1
69 #define ETH_HLEN ETHER_HDR_SIZE /* Total octets in header */
70
71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
72 #define WRAP (2 + ETH_HLEN + 4 + 32)
73 #define MTU 1500
74 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
75
76 #define MVPP2_SMI_TIMEOUT 10000
77
78 /* RX Fifo Registers */
79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
81 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
82 #define MVPP2_RX_FIFO_INIT_REG 0x64
83
84 /* RX DMA Top Registers */
85 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
86 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
87 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
88 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
89 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
90 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
91 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
92 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
93 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
94 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
95 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
96 #define MVPP2_RXQ_POOL_LONG_OFFS 24
97 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
98 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
99 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
100 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
101 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
102
103 /* Parser Registers */
104 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
105 #define MVPP2_PRS_PORT_LU_MAX 0xf
106 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
107 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
108 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
109 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
110 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
111 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
112 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
113 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
114 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
115 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
116 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
117 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
118 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
119 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
120 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
121
122 /* Classifier Registers */
123 #define MVPP2_CLS_MODE_REG 0x1800
124 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
125 #define MVPP2_CLS_PORT_WAY_REG 0x1810
126 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
127 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
128 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
129 #define MVPP2_CLS_LKP_TBL_REG 0x1818
130 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
131 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
132 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
133 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
134 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
135 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
136 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
137 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
138 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
139 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
140 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
141 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
142
143 /* Descriptor Manager Top Registers */
144 #define MVPP2_RXQ_NUM_REG 0x2040
145 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
146 #define MVPP22_DESC_ADDR_OFFS 8
147 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
148 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
149 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
150 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
151 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
152 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
153 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
154 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
155 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
156 #define MVPP2_RXQ_THRESH_REG 0x204c
157 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
158 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
159 #define MVPP2_RXQ_INDEX_REG 0x2050
160 #define MVPP2_TXQ_NUM_REG 0x2080
161 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
162 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
163 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
164 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
165 #define MVPP2_TXQ_THRESH_REG 0x2094
166 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
167 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
168 #define MVPP2_TXQ_INDEX_REG 0x2098
169 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
170 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
171 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
172 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
173 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
174 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
175 #define MVPP2_TXQ_PENDING_REG 0x20a0
176 #define MVPP2_TXQ_PENDING_MASK 0x3fff
177 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
178 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
179 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
180 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
181 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
182 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
183 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
184 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
185 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
186 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
187 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
188 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
189 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
190 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
191 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
192 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
193 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
194
195 /* MBUS bridge registers */
196 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
197 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
198 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
199 #define MVPP2_BASE_ADDR_ENABLE 0x4060
200
201 /* Interrupt Cause and Mask registers */
202 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
203 #define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
204 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
205 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
206 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
207 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
208 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
209 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
210 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
211 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
212 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
213 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
214 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
215 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
216 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
217 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
218 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
219 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
220 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
221 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
222
223 /* Buffer Manager registers */
224 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
225 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
226 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
227 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
228 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
229 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
230 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
231 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
232 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
233 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
234 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
235 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
236 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
237 #define MVPP2_BM_START_MASK BIT(0)
238 #define MVPP2_BM_STOP_MASK BIT(1)
239 #define MVPP2_BM_STATE_MASK BIT(4)
240 #define MVPP2_BM_LOW_THRESH_OFFS 8
241 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
242 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
243 MVPP2_BM_LOW_THRESH_OFFS)
244 #define MVPP2_BM_HIGH_THRESH_OFFS 16
245 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
246 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
247 MVPP2_BM_HIGH_THRESH_OFFS)
248 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
249 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
250 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
251 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
252 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
253 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
254 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
255 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
256 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
257 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
258 #define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444
259 #define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff
260 #define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00
261 #define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8
262 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
263 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
264 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
265 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
266 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
267 #define MVPP21_BM_MC_RLS_REG 0x64c4
268 #define MVPP2_BM_MC_ID_MASK 0xfff
269 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
270 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
271 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
272 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
273 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
274 #define MVPP22_BM_MC_RLS_REG 0x64d4
275
276 /* TX Scheduler registers */
277 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
278 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
279 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
280 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
281 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
282 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
283 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
284 #define MVPP2_TXP_MTU_MAX 0x7FFFF
285 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
286 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
287 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
288 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
289 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
290 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
291 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
292 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
293 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
294 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
295 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
296 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
297 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
298 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
299
300 /* TX general registers */
301 #define MVPP2_TX_SNOOP_REG 0x8800
302 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
303 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
304
305 /* LMS registers */
306 #define MVPP2_SRC_ADDR_MIDDLE 0x24
307 #define MVPP2_SRC_ADDR_HIGH 0x28
308 #define MVPP2_PHY_AN_CFG0_REG 0x34
309 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
310 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
311 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
312
313 /* Per-port registers */
314 #define MVPP2_GMAC_CTRL_0_REG 0x0
315 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
316 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
317 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
318 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
319 #define MVPP2_GMAC_CTRL_1_REG 0x4
320 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
321 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
322 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
323 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
324 #define MVPP2_GMAC_SA_LOW_OFFS 7
325 #define MVPP2_GMAC_CTRL_2_REG 0x8
326 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
327 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
328 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
329 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
330 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
331 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
332 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
333 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
334 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
335 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
336 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
337 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
338 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
339 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
340 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
341 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
342 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
343 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
344
345 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
346
347 /* Descriptor ring Macros */
348 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
349 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
350
351 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
352 #define MVPP2_SMI 0x0054
353 #define MVPP2_PHY_REG_MASK 0x1f
354 /* SMI register fields */
355 #define MVPP2_SMI_DATA_OFFS 0 /* Data */
356 #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS)
357 #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
358 #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
359 #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
360 #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS)
361 #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */
362 #define MVPP2_SMI_BUSY (1 << 28) /* Busy */
363
364 #define MVPP2_PHY_ADDR_MASK 0x1f
365 #define MVPP2_PHY_REG_MASK 0x1f
366
367 /* Various constants */
368
369 /* Coalescing */
370 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
371 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
372 #define MVPP2_RX_COAL_PKTS 32
373 #define MVPP2_RX_COAL_USEC 100
374
375 /* The two bytes Marvell header. Either contains a special value used
376 * by Marvell switches when a specific hardware mode is enabled (not
377 * supported by this driver) or is filled automatically by zeroes on
378 * the RX side. Those two bytes being at the front of the Ethernet
379 * header, they allow to have the IP header aligned on a 4 bytes
380 * boundary automatically: the hardware skips those two bytes on its
381 * own.
382 */
383 #define MVPP2_MH_SIZE 2
384 #define MVPP2_ETH_TYPE_LEN 2
385 #define MVPP2_PPPOE_HDR_SIZE 8
386 #define MVPP2_VLAN_TAG_LEN 4
387
388 /* Lbtd 802.3 type */
389 #define MVPP2_IP_LBDT_TYPE 0xfffa
390
391 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32
392 #define MVPP2_TX_CSUM_MAX_SIZE 9800
393
394 /* Timeout constants */
395 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
396 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
397
398 #define MVPP2_TX_MTU_MAX 0x7ffff
399
400 /* Maximum number of T-CONTs of PON port */
401 #define MVPP2_MAX_TCONT 16
402
403 /* Maximum number of supported ports */
404 #define MVPP2_MAX_PORTS 4
405
406 /* Maximum number of TXQs used by single port */
407 #define MVPP2_MAX_TXQ 8
408
409 /* Maximum number of RXQs used by single port */
410 #define MVPP2_MAX_RXQ 8
411
412 /* Default number of TXQs in use */
413 #define MVPP2_DEFAULT_TXQ 1
414
415 /* Dfault number of RXQs in use */
416 #define MVPP2_DEFAULT_RXQ 1
417 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */
418
419 /* Total number of RXQs available to all ports */
420 #define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
421
422 /* Max number of Rx descriptors */
423 #define MVPP2_MAX_RXD 16
424
425 /* Max number of Tx descriptors */
426 #define MVPP2_MAX_TXD 16
427
428 /* Amount of Tx descriptors that can be reserved at once by CPU */
429 #define MVPP2_CPU_DESC_CHUNK 64
430
431 /* Max number of Tx descriptors in each aggregated queue */
432 #define MVPP2_AGGR_TXQ_SIZE 256
433
434 /* Descriptor aligned size */
435 #define MVPP2_DESC_ALIGNED_SIZE 32
436
437 /* Descriptor alignment mask */
438 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
439
440 /* RX FIFO constants */
441 #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
442 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
443 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
444
445 /* RX buffer constants */
446 #define MVPP2_SKB_SHINFO_SIZE \
447 0
448
449 #define MVPP2_RX_PKT_SIZE(mtu) \
450 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
451 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
452
453 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
454 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
455 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
456 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
457
458 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
459
460 /* IPv6 max L3 address size */
461 #define MVPP2_MAX_L3_ADDR_SIZE 16
462
463 /* Port flags */
464 #define MVPP2_F_LOOPBACK BIT(0)
465
466 /* Marvell tag types */
467 enum mvpp2_tag_type {
468 MVPP2_TAG_TYPE_NONE = 0,
469 MVPP2_TAG_TYPE_MH = 1,
470 MVPP2_TAG_TYPE_DSA = 2,
471 MVPP2_TAG_TYPE_EDSA = 3,
472 MVPP2_TAG_TYPE_VLAN = 4,
473 MVPP2_TAG_TYPE_LAST = 5
474 };
475
476 /* Parser constants */
477 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
478 #define MVPP2_PRS_TCAM_WORDS 6
479 #define MVPP2_PRS_SRAM_WORDS 4
480 #define MVPP2_PRS_FLOW_ID_SIZE 64
481 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
482 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
483 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
484 #define MVPP2_PRS_IPV4_HEAD 0x40
485 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
486 #define MVPP2_PRS_IPV4_MC 0xe0
487 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
488 #define MVPP2_PRS_IPV4_BC_MASK 0xff
489 #define MVPP2_PRS_IPV4_IHL 0x5
490 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
491 #define MVPP2_PRS_IPV6_MC 0xff
492 #define MVPP2_PRS_IPV6_MC_MASK 0xff
493 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
494 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
495 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
496 #define MVPP2_PRS_DBL_VLANS_MAX 100
497
498 /* Tcam structure:
499 * - lookup ID - 4 bits
500 * - port ID - 1 byte
501 * - additional information - 1 byte
502 * - header data - 8 bytes
503 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
504 */
505 #define MVPP2_PRS_AI_BITS 8
506 #define MVPP2_PRS_PORT_MASK 0xff
507 #define MVPP2_PRS_LU_MASK 0xf
508 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
509 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
510 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
511 (((offs) * 2) - ((offs) % 2) + 2)
512 #define MVPP2_PRS_TCAM_AI_BYTE 16
513 #define MVPP2_PRS_TCAM_PORT_BYTE 17
514 #define MVPP2_PRS_TCAM_LU_BYTE 20
515 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
516 #define MVPP2_PRS_TCAM_INV_WORD 5
517 /* Tcam entries ID */
518 #define MVPP2_PE_DROP_ALL 0
519 #define MVPP2_PE_FIRST_FREE_TID 1
520 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
521 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
522 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
523 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
524 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
525 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
526 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
527 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
528 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
529 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
530 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
531 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
532 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
533 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
534 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
535 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
536 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
537 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
538 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
539 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
540 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
541 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
542 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
543 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
544 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
545
546 /* Sram structure
547 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
548 */
549 #define MVPP2_PRS_SRAM_RI_OFFS 0
550 #define MVPP2_PRS_SRAM_RI_WORD 0
551 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
552 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
553 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
554 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
555 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
556 #define MVPP2_PRS_SRAM_UDF_OFFS 73
557 #define MVPP2_PRS_SRAM_UDF_BITS 8
558 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
559 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
560 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
561 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
562 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
563 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
564 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
565 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
566 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
567 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
568 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
569 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
570 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
571 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
572 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
573 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
574 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
575 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
576 #define MVPP2_PRS_SRAM_AI_OFFS 90
577 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
578 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
579 #define MVPP2_PRS_SRAM_AI_MASK 0xff
580 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
581 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
582 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
583 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
584
585 /* Sram result info bits assignment */
586 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
587 #define MVPP2_PRS_RI_DSA_MASK 0x2
588 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
589 #define MVPP2_PRS_RI_VLAN_NONE 0x0
590 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
591 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
592 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
593 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
594 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
595 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
596 #define MVPP2_PRS_RI_L2_UCAST 0x0
597 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
598 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
599 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
600 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
601 #define MVPP2_PRS_RI_L3_UN 0x0
602 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
603 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
604 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
605 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
606 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
607 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
608 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
609 #define MVPP2_PRS_RI_L3_UCAST 0x0
610 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
611 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
612 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
613 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
614 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
615 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
616 #define MVPP2_PRS_RI_L4_TCP BIT(22)
617 #define MVPP2_PRS_RI_L4_UDP BIT(23)
618 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
619 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
620 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
621 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
622
623 /* Sram additional info bits assignment */
624 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
625 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
626 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
627 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
628 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
629 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
630 #define MVPP2_PRS_SINGLE_VLAN_AI 0
631 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
632
633 /* DSA/EDSA type */
634 #define MVPP2_PRS_TAGGED true
635 #define MVPP2_PRS_UNTAGGED false
636 #define MVPP2_PRS_EDSA true
637 #define MVPP2_PRS_DSA false
638
639 /* MAC entries, shadow udf */
640 enum mvpp2_prs_udf {
641 MVPP2_PRS_UDF_MAC_DEF,
642 MVPP2_PRS_UDF_MAC_RANGE,
643 MVPP2_PRS_UDF_L2_DEF,
644 MVPP2_PRS_UDF_L2_DEF_COPY,
645 MVPP2_PRS_UDF_L2_USER,
646 };
647
648 /* Lookup ID */
649 enum mvpp2_prs_lookup {
650 MVPP2_PRS_LU_MH,
651 MVPP2_PRS_LU_MAC,
652 MVPP2_PRS_LU_DSA,
653 MVPP2_PRS_LU_VLAN,
654 MVPP2_PRS_LU_L2,
655 MVPP2_PRS_LU_PPPOE,
656 MVPP2_PRS_LU_IP4,
657 MVPP2_PRS_LU_IP6,
658 MVPP2_PRS_LU_FLOWS,
659 MVPP2_PRS_LU_LAST,
660 };
661
662 /* L3 cast enum */
663 enum mvpp2_prs_l3_cast {
664 MVPP2_PRS_L3_UNI_CAST,
665 MVPP2_PRS_L3_MULTI_CAST,
666 MVPP2_PRS_L3_BROAD_CAST
667 };
668
669 /* Classifier constants */
670 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
671 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
672 #define MVPP2_CLS_LKP_TBL_SIZE 64
673
674 /* BM constants */
675 #define MVPP2_BM_POOLS_NUM 1
676 #define MVPP2_BM_LONG_BUF_NUM 16
677 #define MVPP2_BM_SHORT_BUF_NUM 16
678 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
679 #define MVPP2_BM_POOL_PTR_ALIGN 128
680 #define MVPP2_BM_SWF_LONG_POOL(port) 0
681
682 /* BM cookie (32 bits) definition */
683 #define MVPP2_BM_COOKIE_POOL_OFFS 8
684 #define MVPP2_BM_COOKIE_CPU_OFFS 24
685
686 /* BM short pool packet size
687 * These value assure that for SWF the total number
688 * of bytes allocated for each buffer will be 512
689 */
690 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
691
692 enum mvpp2_bm_type {
693 MVPP2_BM_FREE,
694 MVPP2_BM_SWF_LONG,
695 MVPP2_BM_SWF_SHORT
696 };
697
698 /* Definitions */
699
700 /* Shared Packet Processor resources */
701 struct mvpp2 {
702 /* Shared registers' base addresses */
703 void __iomem *base;
704 void __iomem *lms_base;
705
706 /* List of pointers to port structures */
707 struct mvpp2_port **port_list;
708
709 /* Aggregated TXQs */
710 struct mvpp2_tx_queue *aggr_txqs;
711
712 /* BM pools */
713 struct mvpp2_bm_pool *bm_pools;
714
715 /* PRS shadow table */
716 struct mvpp2_prs_shadow *prs_shadow;
717 /* PRS auxiliary table for double vlan entries control */
718 bool *prs_double_vlans;
719
720 /* Tclk value */
721 u32 tclk;
722
723 /* HW version */
724 enum { MVPP21, MVPP22 } hw_version;
725
726 struct mii_dev *bus;
727 };
728
729 struct mvpp2_pcpu_stats {
730 u64 rx_packets;
731 u64 rx_bytes;
732 u64 tx_packets;
733 u64 tx_bytes;
734 };
735
736 struct mvpp2_port {
737 u8 id;
738
739 int irq;
740
741 struct mvpp2 *priv;
742
743 /* Per-port registers' base address */
744 void __iomem *base;
745
746 struct mvpp2_rx_queue **rxqs;
747 struct mvpp2_tx_queue **txqs;
748
749 int pkt_size;
750
751 u32 pending_cause_rx;
752
753 /* Per-CPU port control */
754 struct mvpp2_port_pcpu __percpu *pcpu;
755
756 /* Flags */
757 unsigned long flags;
758
759 u16 tx_ring_size;
760 u16 rx_ring_size;
761 struct mvpp2_pcpu_stats __percpu *stats;
762
763 struct phy_device *phy_dev;
764 phy_interface_t phy_interface;
765 int phy_node;
766 int phyaddr;
767 int init;
768 unsigned int link;
769 unsigned int duplex;
770 unsigned int speed;
771
772 struct mvpp2_bm_pool *pool_long;
773 struct mvpp2_bm_pool *pool_short;
774
775 /* Index of first port's physical RXQ */
776 u8 first_rxq;
777
778 u8 dev_addr[ETH_ALEN];
779 };
780
781 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
782 * layout of the transmit and reception DMA descriptors, and their
783 * layout is therefore defined by the hardware design
784 */
785
786 #define MVPP2_TXD_L3_OFF_SHIFT 0
787 #define MVPP2_TXD_IP_HLEN_SHIFT 8
788 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
789 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
790 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
791 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
792 #define MVPP2_TXD_L4_UDP BIT(24)
793 #define MVPP2_TXD_L3_IP6 BIT(26)
794 #define MVPP2_TXD_L_DESC BIT(28)
795 #define MVPP2_TXD_F_DESC BIT(29)
796
797 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
798 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
799 #define MVPP2_RXD_ERR_CRC 0x0
800 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
801 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
802 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
803 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
804 #define MVPP2_RXD_HWF_SYNC BIT(21)
805 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
806 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
807 #define MVPP2_RXD_L4_TCP BIT(25)
808 #define MVPP2_RXD_L4_UDP BIT(26)
809 #define MVPP2_RXD_L3_IP4 BIT(28)
810 #define MVPP2_RXD_L3_IP6 BIT(30)
811 #define MVPP2_RXD_BUF_HDR BIT(31)
812
813 /* HW TX descriptor for PPv2.1 */
814 struct mvpp21_tx_desc {
815 u32 command; /* Options used by HW for packet transmitting.*/
816 u8 packet_offset; /* the offset from the buffer beginning */
817 u8 phys_txq; /* destination queue ID */
818 u16 data_size; /* data size of transmitted packet in bytes */
819 u32 buf_dma_addr; /* physical addr of transmitted buffer */
820 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
821 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
822 u32 reserved2; /* reserved (for future use) */
823 };
824
825 /* HW RX descriptor for PPv2.1 */
826 struct mvpp21_rx_desc {
827 u32 status; /* info about received packet */
828 u16 reserved1; /* parser_info (for future use, PnC) */
829 u16 data_size; /* size of received packet in bytes */
830 u32 buf_dma_addr; /* physical address of the buffer */
831 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
832 u16 reserved2; /* gem_port_id (for future use, PON) */
833 u16 reserved3; /* csum_l4 (for future use, PnC) */
834 u8 reserved4; /* bm_qset (for future use, BM) */
835 u8 reserved5;
836 u16 reserved6; /* classify_info (for future use, PnC) */
837 u32 reserved7; /* flow_id (for future use, PnC) */
838 u32 reserved8;
839 };
840
841 /* HW TX descriptor for PPv2.2 */
842 struct mvpp22_tx_desc {
843 u32 command;
844 u8 packet_offset;
845 u8 phys_txq;
846 u16 data_size;
847 u64 reserved1;
848 u64 buf_dma_addr_ptp;
849 u64 buf_cookie_misc;
850 };
851
852 /* HW RX descriptor for PPv2.2 */
853 struct mvpp22_rx_desc {
854 u32 status;
855 u16 reserved1;
856 u16 data_size;
857 u32 reserved2;
858 u32 reserved3;
859 u64 buf_dma_addr_key_hash;
860 u64 buf_cookie_misc;
861 };
862
863 /* Opaque type used by the driver to manipulate the HW TX and RX
864 * descriptors
865 */
866 struct mvpp2_tx_desc {
867 union {
868 struct mvpp21_tx_desc pp21;
869 struct mvpp22_tx_desc pp22;
870 };
871 };
872
873 struct mvpp2_rx_desc {
874 union {
875 struct mvpp21_rx_desc pp21;
876 struct mvpp22_rx_desc pp22;
877 };
878 };
879
880 /* Per-CPU Tx queue control */
881 struct mvpp2_txq_pcpu {
882 int cpu;
883
884 /* Number of Tx DMA descriptors in the descriptor ring */
885 int size;
886
887 /* Number of currently used Tx DMA descriptor in the
888 * descriptor ring
889 */
890 int count;
891
892 /* Number of Tx DMA descriptors reserved for each CPU */
893 int reserved_num;
894
895 /* Index of last TX DMA descriptor that was inserted */
896 int txq_put_index;
897
898 /* Index of the TX DMA descriptor to be cleaned up */
899 int txq_get_index;
900 };
901
902 struct mvpp2_tx_queue {
903 /* Physical number of this Tx queue */
904 u8 id;
905
906 /* Logical number of this Tx queue */
907 u8 log_id;
908
909 /* Number of Tx DMA descriptors in the descriptor ring */
910 int size;
911
912 /* Number of currently used Tx DMA descriptor in the descriptor ring */
913 int count;
914
915 /* Per-CPU control of physical Tx queues */
916 struct mvpp2_txq_pcpu __percpu *pcpu;
917
918 u32 done_pkts_coal;
919
920 /* Virtual address of thex Tx DMA descriptors array */
921 struct mvpp2_tx_desc *descs;
922
923 /* DMA address of the Tx DMA descriptors array */
924 dma_addr_t descs_dma;
925
926 /* Index of the last Tx DMA descriptor */
927 int last_desc;
928
929 /* Index of the next Tx DMA descriptor to process */
930 int next_desc_to_proc;
931 };
932
933 struct mvpp2_rx_queue {
934 /* RX queue number, in the range 0-31 for physical RXQs */
935 u8 id;
936
937 /* Num of rx descriptors in the rx descriptor ring */
938 int size;
939
940 u32 pkts_coal;
941 u32 time_coal;
942
943 /* Virtual address of the RX DMA descriptors array */
944 struct mvpp2_rx_desc *descs;
945
946 /* DMA address of the RX DMA descriptors array */
947 dma_addr_t descs_dma;
948
949 /* Index of the last RX DMA descriptor */
950 int last_desc;
951
952 /* Index of the next RX DMA descriptor to process */
953 int next_desc_to_proc;
954
955 /* ID of port to which physical RXQ is mapped */
956 int port;
957
958 /* Port's logic RXQ number to which physical RXQ is mapped */
959 int logic_rxq;
960 };
961
962 union mvpp2_prs_tcam_entry {
963 u32 word[MVPP2_PRS_TCAM_WORDS];
964 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
965 };
966
967 union mvpp2_prs_sram_entry {
968 u32 word[MVPP2_PRS_SRAM_WORDS];
969 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
970 };
971
972 struct mvpp2_prs_entry {
973 u32 index;
974 union mvpp2_prs_tcam_entry tcam;
975 union mvpp2_prs_sram_entry sram;
976 };
977
978 struct mvpp2_prs_shadow {
979 bool valid;
980 bool finish;
981
982 /* Lookup ID */
983 int lu;
984
985 /* User defined offset */
986 int udf;
987
988 /* Result info */
989 u32 ri;
990 u32 ri_mask;
991 };
992
993 struct mvpp2_cls_flow_entry {
994 u32 index;
995 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
996 };
997
998 struct mvpp2_cls_lookup_entry {
999 u32 lkpid;
1000 u32 way;
1001 u32 data;
1002 };
1003
1004 struct mvpp2_bm_pool {
1005 /* Pool number in the range 0-7 */
1006 int id;
1007 enum mvpp2_bm_type type;
1008
1009 /* Buffer Pointers Pool External (BPPE) size */
1010 int size;
1011 /* Number of buffers for this pool */
1012 int buf_num;
1013 /* Pool buffer size */
1014 int buf_size;
1015 /* Packet size */
1016 int pkt_size;
1017
1018 /* BPPE virtual base address */
1019 unsigned long *virt_addr;
1020 /* BPPE DMA base address */
1021 dma_addr_t dma_addr;
1022
1023 /* Ports using BM pool */
1024 u32 port_map;
1025
1026 /* Occupied buffers indicator */
1027 int in_use_thresh;
1028 };
1029
1030 /* Static declaractions */
1031
1032 /* Number of RXQs used by single port */
1033 static int rxq_number = MVPP2_DEFAULT_RXQ;
1034 /* Number of TXQs used by single port */
1035 static int txq_number = MVPP2_DEFAULT_TXQ;
1036
1037 #define MVPP2_DRIVER_NAME "mvpp2"
1038 #define MVPP2_DRIVER_VERSION "1.0"
1039
1040 /*
1041 * U-Boot internal data, mostly uncached buffers for descriptors and data
1042 */
1043 struct buffer_location {
1044 struct mvpp2_tx_desc *aggr_tx_descs;
1045 struct mvpp2_tx_desc *tx_descs;
1046 struct mvpp2_rx_desc *rx_descs;
1047 unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1048 unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1049 int first_rxq;
1050 };
1051
1052 /*
1053 * All 4 interfaces use the same global buffer, since only one interface
1054 * can be enabled at once
1055 */
1056 static struct buffer_location buffer_loc;
1057
1058 /*
1059 * Page table entries are set to 1MB, or multiples of 1MB
1060 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1061 */
1062 #define BD_SPACE (1 << 20)
1063
1064 /* Utility/helper methods */
1065
1066 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1067 {
1068 writel(data, priv->base + offset);
1069 }
1070
1071 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1072 {
1073 return readl(priv->base + offset);
1074 }
1075
1076 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1077 struct mvpp2_tx_desc *tx_desc,
1078 dma_addr_t dma_addr)
1079 {
1080 if (port->priv->hw_version == MVPP21) {
1081 tx_desc->pp21.buf_dma_addr = dma_addr;
1082 } else {
1083 u64 val = (u64)dma_addr;
1084
1085 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1086 tx_desc->pp22.buf_dma_addr_ptp |= val;
1087 }
1088 }
1089
1090 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1091 struct mvpp2_tx_desc *tx_desc,
1092 size_t size)
1093 {
1094 if (port->priv->hw_version == MVPP21)
1095 tx_desc->pp21.data_size = size;
1096 else
1097 tx_desc->pp22.data_size = size;
1098 }
1099
1100 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1101 struct mvpp2_tx_desc *tx_desc,
1102 unsigned int txq)
1103 {
1104 if (port->priv->hw_version == MVPP21)
1105 tx_desc->pp21.phys_txq = txq;
1106 else
1107 tx_desc->pp22.phys_txq = txq;
1108 }
1109
1110 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1111 struct mvpp2_tx_desc *tx_desc,
1112 unsigned int command)
1113 {
1114 if (port->priv->hw_version == MVPP21)
1115 tx_desc->pp21.command = command;
1116 else
1117 tx_desc->pp22.command = command;
1118 }
1119
1120 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1121 struct mvpp2_tx_desc *tx_desc,
1122 unsigned int offset)
1123 {
1124 if (port->priv->hw_version == MVPP21)
1125 tx_desc->pp21.packet_offset = offset;
1126 else
1127 tx_desc->pp22.packet_offset = offset;
1128 }
1129
1130 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1131 struct mvpp2_rx_desc *rx_desc)
1132 {
1133 if (port->priv->hw_version == MVPP21)
1134 return rx_desc->pp21.buf_dma_addr;
1135 else
1136 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1137 }
1138
1139 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1140 struct mvpp2_rx_desc *rx_desc)
1141 {
1142 if (port->priv->hw_version == MVPP21)
1143 return rx_desc->pp21.buf_cookie;
1144 else
1145 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1146 }
1147
1148 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1149 struct mvpp2_rx_desc *rx_desc)
1150 {
1151 if (port->priv->hw_version == MVPP21)
1152 return rx_desc->pp21.data_size;
1153 else
1154 return rx_desc->pp22.data_size;
1155 }
1156
1157 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1158 struct mvpp2_rx_desc *rx_desc)
1159 {
1160 if (port->priv->hw_version == MVPP21)
1161 return rx_desc->pp21.status;
1162 else
1163 return rx_desc->pp22.status;
1164 }
1165
1166 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1167 {
1168 txq_pcpu->txq_get_index++;
1169 if (txq_pcpu->txq_get_index == txq_pcpu->size)
1170 txq_pcpu->txq_get_index = 0;
1171 }
1172
1173 /* Get number of physical egress port */
1174 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1175 {
1176 return MVPP2_MAX_TCONT + port->id;
1177 }
1178
1179 /* Get number of physical TXQ */
1180 static inline int mvpp2_txq_phys(int port, int txq)
1181 {
1182 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1183 }
1184
1185 /* Parser configuration routines */
1186
1187 /* Update parser tcam and sram hw entries */
1188 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1189 {
1190 int i;
1191
1192 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1193 return -EINVAL;
1194
1195 /* Clear entry invalidation bit */
1196 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1197
1198 /* Write tcam index - indirect access */
1199 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1200 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1201 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1202
1203 /* Write sram index - indirect access */
1204 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1205 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1206 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1207
1208 return 0;
1209 }
1210
1211 /* Read tcam entry from hw */
1212 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1213 {
1214 int i;
1215
1216 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1217 return -EINVAL;
1218
1219 /* Write tcam index - indirect access */
1220 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1221
1222 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1223 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1224 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1225 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1226
1227 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1228 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1229
1230 /* Write sram index - indirect access */
1231 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1232 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1233 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1234
1235 return 0;
1236 }
1237
1238 /* Invalidate tcam hw entry */
1239 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1240 {
1241 /* Write index - indirect access */
1242 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1243 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1244 MVPP2_PRS_TCAM_INV_MASK);
1245 }
1246
1247 /* Enable shadow table entry and set its lookup ID */
1248 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1249 {
1250 priv->prs_shadow[index].valid = true;
1251 priv->prs_shadow[index].lu = lu;
1252 }
1253
1254 /* Update ri fields in shadow table entry */
1255 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1256 unsigned int ri, unsigned int ri_mask)
1257 {
1258 priv->prs_shadow[index].ri_mask = ri_mask;
1259 priv->prs_shadow[index].ri = ri;
1260 }
1261
1262 /* Update lookup field in tcam sw entry */
1263 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1264 {
1265 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1266
1267 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1268 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1269 }
1270
1271 /* Update mask for single port in tcam sw entry */
1272 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1273 unsigned int port, bool add)
1274 {
1275 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1276
1277 if (add)
1278 pe->tcam.byte[enable_off] &= ~(1 << port);
1279 else
1280 pe->tcam.byte[enable_off] |= 1 << port;
1281 }
1282
1283 /* Update port map in tcam sw entry */
1284 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1285 unsigned int ports)
1286 {
1287 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1288 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1289
1290 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1291 pe->tcam.byte[enable_off] &= ~port_mask;
1292 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1293 }
1294
1295 /* Obtain port map from tcam sw entry */
1296 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1297 {
1298 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1299
1300 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1301 }
1302
1303 /* Set byte of data and its enable bits in tcam sw entry */
1304 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1305 unsigned int offs, unsigned char byte,
1306 unsigned char enable)
1307 {
1308 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1309 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1310 }
1311
1312 /* Get byte of data and its enable bits from tcam sw entry */
1313 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1314 unsigned int offs, unsigned char *byte,
1315 unsigned char *enable)
1316 {
1317 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1318 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1319 }
1320
1321 /* Set ethertype in tcam sw entry */
1322 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1323 unsigned short ethertype)
1324 {
1325 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1326 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1327 }
1328
1329 /* Set bits in sram sw entry */
1330 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1331 int val)
1332 {
1333 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1334 }
1335
1336 /* Clear bits in sram sw entry */
1337 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1338 int val)
1339 {
1340 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1341 }
1342
1343 /* Update ri bits in sram sw entry */
1344 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1345 unsigned int bits, unsigned int mask)
1346 {
1347 unsigned int i;
1348
1349 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1350 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1351
1352 if (!(mask & BIT(i)))
1353 continue;
1354
1355 if (bits & BIT(i))
1356 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1357 else
1358 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1359
1360 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1361 }
1362 }
1363
1364 /* Update ai bits in sram sw entry */
1365 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1366 unsigned int bits, unsigned int mask)
1367 {
1368 unsigned int i;
1369 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1370
1371 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1372
1373 if (!(mask & BIT(i)))
1374 continue;
1375
1376 if (bits & BIT(i))
1377 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1378 else
1379 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1380
1381 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1382 }
1383 }
1384
1385 /* Read ai bits from sram sw entry */
1386 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1387 {
1388 u8 bits;
1389 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1390 int ai_en_off = ai_off + 1;
1391 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1392
1393 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1394 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1395
1396 return bits;
1397 }
1398
1399 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1400 * lookup interation
1401 */
1402 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1403 unsigned int lu)
1404 {
1405 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1406
1407 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1408 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1409 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1410 }
1411
1412 /* In the sram sw entry set sign and value of the next lookup offset
1413 * and the offset value generated to the classifier
1414 */
1415 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1416 unsigned int op)
1417 {
1418 /* Set sign */
1419 if (shift < 0) {
1420 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1421 shift = 0 - shift;
1422 } else {
1423 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1424 }
1425
1426 /* Set value */
1427 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1428 (unsigned char)shift;
1429
1430 /* Reset and set operation */
1431 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1432 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1433 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1434
1435 /* Set base offset as current */
1436 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1437 }
1438
1439 /* In the sram sw entry set sign and value of the user defined offset
1440 * generated to the classifier
1441 */
1442 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1443 unsigned int type, int offset,
1444 unsigned int op)
1445 {
1446 /* Set sign */
1447 if (offset < 0) {
1448 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1449 offset = 0 - offset;
1450 } else {
1451 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1452 }
1453
1454 /* Set value */
1455 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1456 MVPP2_PRS_SRAM_UDF_MASK);
1457 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1458 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1459 MVPP2_PRS_SRAM_UDF_BITS)] &=
1460 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1461 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1462 MVPP2_PRS_SRAM_UDF_BITS)] |=
1463 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1464
1465 /* Set offset type */
1466 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1467 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1468 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1469
1470 /* Set offset operation */
1471 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1472 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1473 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1474
1475 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1476 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1477 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1478 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1479
1480 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1481 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1482 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1483
1484 /* Set base offset as current */
1485 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1486 }
1487
1488 /* Find parser flow entry */
1489 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1490 {
1491 struct mvpp2_prs_entry *pe;
1492 int tid;
1493
1494 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1495 if (!pe)
1496 return NULL;
1497 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1498
1499 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1500 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1501 u8 bits;
1502
1503 if (!priv->prs_shadow[tid].valid ||
1504 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1505 continue;
1506
1507 pe->index = tid;
1508 mvpp2_prs_hw_read(priv, pe);
1509 bits = mvpp2_prs_sram_ai_get(pe);
1510
1511 /* Sram store classification lookup ID in AI bits [5:0] */
1512 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1513 return pe;
1514 }
1515 kfree(pe);
1516
1517 return NULL;
1518 }
1519
1520 /* Return first free tcam index, seeking from start to end */
1521 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1522 unsigned char end)
1523 {
1524 int tid;
1525
1526 if (start > end)
1527 swap(start, end);
1528
1529 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1530 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1531
1532 for (tid = start; tid <= end; tid++) {
1533 if (!priv->prs_shadow[tid].valid)
1534 return tid;
1535 }
1536
1537 return -EINVAL;
1538 }
1539
1540 /* Enable/disable dropping all mac da's */
1541 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1542 {
1543 struct mvpp2_prs_entry pe;
1544
1545 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1546 /* Entry exist - update port only */
1547 pe.index = MVPP2_PE_DROP_ALL;
1548 mvpp2_prs_hw_read(priv, &pe);
1549 } else {
1550 /* Entry doesn't exist - create new */
1551 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1552 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1553 pe.index = MVPP2_PE_DROP_ALL;
1554
1555 /* Non-promiscuous mode for all ports - DROP unknown packets */
1556 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1557 MVPP2_PRS_RI_DROP_MASK);
1558
1559 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1560 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1561
1562 /* Update shadow table */
1563 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1564
1565 /* Mask all ports */
1566 mvpp2_prs_tcam_port_map_set(&pe, 0);
1567 }
1568
1569 /* Update port mask */
1570 mvpp2_prs_tcam_port_set(&pe, port, add);
1571
1572 mvpp2_prs_hw_write(priv, &pe);
1573 }
1574
1575 /* Set port to promiscuous mode */
1576 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1577 {
1578 struct mvpp2_prs_entry pe;
1579
1580 /* Promiscuous mode - Accept unknown packets */
1581
1582 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1583 /* Entry exist - update port only */
1584 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1585 mvpp2_prs_hw_read(priv, &pe);
1586 } else {
1587 /* Entry doesn't exist - create new */
1588 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1589 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1590 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1591
1592 /* Continue - set next lookup */
1593 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1594
1595 /* Set result info bits */
1596 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1597 MVPP2_PRS_RI_L2_CAST_MASK);
1598
1599 /* Shift to ethertype */
1600 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1601 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1602
1603 /* Mask all ports */
1604 mvpp2_prs_tcam_port_map_set(&pe, 0);
1605
1606 /* Update shadow table */
1607 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1608 }
1609
1610 /* Update port mask */
1611 mvpp2_prs_tcam_port_set(&pe, port, add);
1612
1613 mvpp2_prs_hw_write(priv, &pe);
1614 }
1615
1616 /* Accept multicast */
1617 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1618 bool add)
1619 {
1620 struct mvpp2_prs_entry pe;
1621 unsigned char da_mc;
1622
1623 /* Ethernet multicast address first byte is
1624 * 0x01 for IPv4 and 0x33 for IPv6
1625 */
1626 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1627
1628 if (priv->prs_shadow[index].valid) {
1629 /* Entry exist - update port only */
1630 pe.index = index;
1631 mvpp2_prs_hw_read(priv, &pe);
1632 } else {
1633 /* Entry doesn't exist - create new */
1634 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1635 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1636 pe.index = index;
1637
1638 /* Continue - set next lookup */
1639 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1640
1641 /* Set result info bits */
1642 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1643 MVPP2_PRS_RI_L2_CAST_MASK);
1644
1645 /* Update tcam entry data first byte */
1646 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1647
1648 /* Shift to ethertype */
1649 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1650 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1651
1652 /* Mask all ports */
1653 mvpp2_prs_tcam_port_map_set(&pe, 0);
1654
1655 /* Update shadow table */
1656 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1657 }
1658
1659 /* Update port mask */
1660 mvpp2_prs_tcam_port_set(&pe, port, add);
1661
1662 mvpp2_prs_hw_write(priv, &pe);
1663 }
1664
1665 /* Parser per-port initialization */
1666 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1667 int lu_max, int offset)
1668 {
1669 u32 val;
1670
1671 /* Set lookup ID */
1672 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1673 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1674 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1675 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1676
1677 /* Set maximum number of loops for packet received from port */
1678 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1679 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1680 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1681 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1682
1683 /* Set initial offset for packet header extraction for the first
1684 * searching loop
1685 */
1686 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1687 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1688 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1689 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1690 }
1691
1692 /* Default flow entries initialization for all ports */
1693 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1694 {
1695 struct mvpp2_prs_entry pe;
1696 int port;
1697
1698 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1699 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1700 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1701 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1702
1703 /* Mask all ports */
1704 mvpp2_prs_tcam_port_map_set(&pe, 0);
1705
1706 /* Set flow ID*/
1707 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1708 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1709
1710 /* Update shadow table and hw entry */
1711 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1712 mvpp2_prs_hw_write(priv, &pe);
1713 }
1714 }
1715
1716 /* Set default entry for Marvell Header field */
1717 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1718 {
1719 struct mvpp2_prs_entry pe;
1720
1721 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1722
1723 pe.index = MVPP2_PE_MH_DEFAULT;
1724 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1725 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1726 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1727 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1728
1729 /* Unmask all ports */
1730 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1731
1732 /* Update shadow table and hw entry */
1733 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1734 mvpp2_prs_hw_write(priv, &pe);
1735 }
1736
1737 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1738 * multicast MAC addresses
1739 */
1740 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1741 {
1742 struct mvpp2_prs_entry pe;
1743
1744 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1745
1746 /* Non-promiscuous mode for all ports - DROP unknown packets */
1747 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1748 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1749
1750 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1751 MVPP2_PRS_RI_DROP_MASK);
1752 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1753 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1754
1755 /* Unmask all ports */
1756 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1757
1758 /* Update shadow table and hw entry */
1759 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1760 mvpp2_prs_hw_write(priv, &pe);
1761
1762 /* place holders only - no ports */
1763 mvpp2_prs_mac_drop_all_set(priv, 0, false);
1764 mvpp2_prs_mac_promisc_set(priv, 0, false);
1765 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1766 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1767 }
1768
1769 /* Match basic ethertypes */
1770 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1771 {
1772 struct mvpp2_prs_entry pe;
1773 int tid;
1774
1775 /* Ethertype: PPPoE */
1776 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1777 MVPP2_PE_LAST_FREE_TID);
1778 if (tid < 0)
1779 return tid;
1780
1781 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1782 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1783 pe.index = tid;
1784
1785 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
1786
1787 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
1788 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1789 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
1790 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
1791 MVPP2_PRS_RI_PPPOE_MASK);
1792
1793 /* Update shadow table and hw entry */
1794 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1795 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1796 priv->prs_shadow[pe.index].finish = false;
1797 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
1798 MVPP2_PRS_RI_PPPOE_MASK);
1799 mvpp2_prs_hw_write(priv, &pe);
1800
1801 /* Ethertype: ARP */
1802 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1803 MVPP2_PE_LAST_FREE_TID);
1804 if (tid < 0)
1805 return tid;
1806
1807 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1808 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1809 pe.index = tid;
1810
1811 mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
1812
1813 /* Generate flow in the next iteration*/
1814 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1815 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1816 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
1817 MVPP2_PRS_RI_L3_PROTO_MASK);
1818 /* Set L3 offset */
1819 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1820 MVPP2_ETH_TYPE_LEN,
1821 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1822
1823 /* Update shadow table and hw entry */
1824 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1825 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1826 priv->prs_shadow[pe.index].finish = true;
1827 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
1828 MVPP2_PRS_RI_L3_PROTO_MASK);
1829 mvpp2_prs_hw_write(priv, &pe);
1830
1831 /* Ethertype: LBTD */
1832 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1833 MVPP2_PE_LAST_FREE_TID);
1834 if (tid < 0)
1835 return tid;
1836
1837 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1838 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1839 pe.index = tid;
1840
1841 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
1842
1843 /* Generate flow in the next iteration*/
1844 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1845 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1846 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1847 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1848 MVPP2_PRS_RI_CPU_CODE_MASK |
1849 MVPP2_PRS_RI_UDF3_MASK);
1850 /* Set L3 offset */
1851 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1852 MVPP2_ETH_TYPE_LEN,
1853 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1854
1855 /* Update shadow table and hw entry */
1856 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1857 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1858 priv->prs_shadow[pe.index].finish = true;
1859 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1860 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1861 MVPP2_PRS_RI_CPU_CODE_MASK |
1862 MVPP2_PRS_RI_UDF3_MASK);
1863 mvpp2_prs_hw_write(priv, &pe);
1864
1865 /* Ethertype: IPv4 without options */
1866 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1867 MVPP2_PE_LAST_FREE_TID);
1868 if (tid < 0)
1869 return tid;
1870
1871 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1872 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1873 pe.index = tid;
1874
1875 mvpp2_prs_match_etype(&pe, 0, PROT_IP);
1876 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1877 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
1878 MVPP2_PRS_IPV4_HEAD_MASK |
1879 MVPP2_PRS_IPV4_IHL_MASK);
1880
1881 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1882 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
1883 MVPP2_PRS_RI_L3_PROTO_MASK);
1884 /* Skip eth_type + 4 bytes of IP header */
1885 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
1886 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1887 /* Set L3 offset */
1888 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1889 MVPP2_ETH_TYPE_LEN,
1890 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1891
1892 /* Update shadow table and hw entry */
1893 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1894 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1895 priv->prs_shadow[pe.index].finish = false;
1896 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
1897 MVPP2_PRS_RI_L3_PROTO_MASK);
1898 mvpp2_prs_hw_write(priv, &pe);
1899
1900 /* Ethertype: IPv4 with options */
1901 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1902 MVPP2_PE_LAST_FREE_TID);
1903 if (tid < 0)
1904 return tid;
1905
1906 pe.index = tid;
1907
1908 /* Clear tcam data before updating */
1909 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
1910 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
1911
1912 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1913 MVPP2_PRS_IPV4_HEAD,
1914 MVPP2_PRS_IPV4_HEAD_MASK);
1915
1916 /* Clear ri before updating */
1917 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1918 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1919 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
1920 MVPP2_PRS_RI_L3_PROTO_MASK);
1921
1922 /* Update shadow table and hw entry */
1923 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1924 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1925 priv->prs_shadow[pe.index].finish = false;
1926 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
1927 MVPP2_PRS_RI_L3_PROTO_MASK);
1928 mvpp2_prs_hw_write(priv, &pe);
1929
1930 /* Ethertype: IPv6 without options */
1931 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1932 MVPP2_PE_LAST_FREE_TID);
1933 if (tid < 0)
1934 return tid;
1935
1936 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1937 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1938 pe.index = tid;
1939
1940 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
1941
1942 /* Skip DIP of IPV6 header */
1943 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
1944 MVPP2_MAX_L3_ADDR_SIZE,
1945 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1946 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
1947 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
1948 MVPP2_PRS_RI_L3_PROTO_MASK);
1949 /* Set L3 offset */
1950 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1951 MVPP2_ETH_TYPE_LEN,
1952 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1953
1954 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1955 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1956 priv->prs_shadow[pe.index].finish = false;
1957 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
1958 MVPP2_PRS_RI_L3_PROTO_MASK);
1959 mvpp2_prs_hw_write(priv, &pe);
1960
1961 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
1962 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1963 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1964 pe.index = MVPP2_PE_ETH_TYPE_UN;
1965
1966 /* Unmask all ports */
1967 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1968
1969 /* Generate flow in the next iteration*/
1970 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1971 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1972 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
1973 MVPP2_PRS_RI_L3_PROTO_MASK);
1974 /* Set L3 offset even it's unknown L3 */
1975 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1976 MVPP2_ETH_TYPE_LEN,
1977 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1978
1979 /* Update shadow table and hw entry */
1980 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1981 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1982 priv->prs_shadow[pe.index].finish = true;
1983 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
1984 MVPP2_PRS_RI_L3_PROTO_MASK);
1985 mvpp2_prs_hw_write(priv, &pe);
1986
1987 return 0;
1988 }
1989
1990 /* Parser default initialization */
1991 static int mvpp2_prs_default_init(struct udevice *dev,
1992 struct mvpp2 *priv)
1993 {
1994 int err, index, i;
1995
1996 /* Enable tcam table */
1997 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
1998
1999 /* Clear all tcam and sram entries */
2000 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2001 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2002 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2003 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2004
2005 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2006 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2007 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2008 }
2009
2010 /* Invalidate all tcam entries */
2011 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2012 mvpp2_prs_hw_inv(priv, index);
2013
2014 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2015 sizeof(struct mvpp2_prs_shadow),
2016 GFP_KERNEL);
2017 if (!priv->prs_shadow)
2018 return -ENOMEM;
2019
2020 /* Always start from lookup = 0 */
2021 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2022 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2023 MVPP2_PRS_PORT_LU_MAX, 0);
2024
2025 mvpp2_prs_def_flow_init(priv);
2026
2027 mvpp2_prs_mh_init(priv);
2028
2029 mvpp2_prs_mac_init(priv);
2030
2031 err = mvpp2_prs_etype_init(priv);
2032 if (err)
2033 return err;
2034
2035 return 0;
2036 }
2037
2038 /* Compare MAC DA with tcam entry data */
2039 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2040 const u8 *da, unsigned char *mask)
2041 {
2042 unsigned char tcam_byte, tcam_mask;
2043 int index;
2044
2045 for (index = 0; index < ETH_ALEN; index++) {
2046 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2047 if (tcam_mask != mask[index])
2048 return false;
2049
2050 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2051 return false;
2052 }
2053
2054 return true;
2055 }
2056
2057 /* Find tcam entry with matched pair <MAC DA, port> */
2058 static struct mvpp2_prs_entry *
2059 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2060 unsigned char *mask, int udf_type)
2061 {
2062 struct mvpp2_prs_entry *pe;
2063 int tid;
2064
2065 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2066 if (!pe)
2067 return NULL;
2068 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2069
2070 /* Go through the all entires with MVPP2_PRS_LU_MAC */
2071 for (tid = MVPP2_PE_FIRST_FREE_TID;
2072 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2073 unsigned int entry_pmap;
2074
2075 if (!priv->prs_shadow[tid].valid ||
2076 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2077 (priv->prs_shadow[tid].udf != udf_type))
2078 continue;
2079
2080 pe->index = tid;
2081 mvpp2_prs_hw_read(priv, pe);
2082 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2083
2084 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2085 entry_pmap == pmap)
2086 return pe;
2087 }
2088 kfree(pe);
2089
2090 return NULL;
2091 }
2092
2093 /* Update parser's mac da entry */
2094 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2095 const u8 *da, bool add)
2096 {
2097 struct mvpp2_prs_entry *pe;
2098 unsigned int pmap, len, ri;
2099 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2100 int tid;
2101
2102 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2103 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2104 MVPP2_PRS_UDF_MAC_DEF);
2105
2106 /* No such entry */
2107 if (!pe) {
2108 if (!add)
2109 return 0;
2110
2111 /* Create new TCAM entry */
2112 /* Find first range mac entry*/
2113 for (tid = MVPP2_PE_FIRST_FREE_TID;
2114 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2115 if (priv->prs_shadow[tid].valid &&
2116 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2117 (priv->prs_shadow[tid].udf ==
2118 MVPP2_PRS_UDF_MAC_RANGE))
2119 break;
2120
2121 /* Go through the all entries from first to last */
2122 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2123 tid - 1);
2124 if (tid < 0)
2125 return tid;
2126
2127 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2128 if (!pe)
2129 return -1;
2130 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2131 pe->index = tid;
2132
2133 /* Mask all ports */
2134 mvpp2_prs_tcam_port_map_set(pe, 0);
2135 }
2136
2137 /* Update port mask */
2138 mvpp2_prs_tcam_port_set(pe, port, add);
2139
2140 /* Invalidate the entry if no ports are left enabled */
2141 pmap = mvpp2_prs_tcam_port_map_get(pe);
2142 if (pmap == 0) {
2143 if (add) {
2144 kfree(pe);
2145 return -1;
2146 }
2147 mvpp2_prs_hw_inv(priv, pe->index);
2148 priv->prs_shadow[pe->index].valid = false;
2149 kfree(pe);
2150 return 0;
2151 }
2152
2153 /* Continue - set next lookup */
2154 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2155
2156 /* Set match on DA */
2157 len = ETH_ALEN;
2158 while (len--)
2159 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2160
2161 /* Set result info bits */
2162 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2163
2164 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2165 MVPP2_PRS_RI_MAC_ME_MASK);
2166 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2167 MVPP2_PRS_RI_MAC_ME_MASK);
2168
2169 /* Shift to ethertype */
2170 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2171 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2172
2173 /* Update shadow table and hw entry */
2174 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2175 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2176 mvpp2_prs_hw_write(priv, pe);
2177
2178 kfree(pe);
2179
2180 return 0;
2181 }
2182
2183 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2184 {
2185 int err;
2186
2187 /* Remove old parser entry */
2188 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2189 false);
2190 if (err)
2191 return err;
2192
2193 /* Add new parser entry */
2194 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2195 if (err)
2196 return err;
2197
2198 /* Set addr in the device */
2199 memcpy(port->dev_addr, da, ETH_ALEN);
2200
2201 return 0;
2202 }
2203
2204 /* Set prs flow for the port */
2205 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2206 {
2207 struct mvpp2_prs_entry *pe;
2208 int tid;
2209
2210 pe = mvpp2_prs_flow_find(port->priv, port->id);
2211
2212 /* Such entry not exist */
2213 if (!pe) {
2214 /* Go through the all entires from last to first */
2215 tid = mvpp2_prs_tcam_first_free(port->priv,
2216 MVPP2_PE_LAST_FREE_TID,
2217 MVPP2_PE_FIRST_FREE_TID);
2218 if (tid < 0)
2219 return tid;
2220
2221 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2222 if (!pe)
2223 return -ENOMEM;
2224
2225 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2226 pe->index = tid;
2227
2228 /* Set flow ID*/
2229 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2230 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2231
2232 /* Update shadow table */
2233 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2234 }
2235
2236 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2237 mvpp2_prs_hw_write(port->priv, pe);
2238 kfree(pe);
2239
2240 return 0;
2241 }
2242
2243 /* Classifier configuration routines */
2244
2245 /* Update classification flow table registers */
2246 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2247 struct mvpp2_cls_flow_entry *fe)
2248 {
2249 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2250 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
2251 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
2252 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
2253 }
2254
2255 /* Update classification lookup table register */
2256 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2257 struct mvpp2_cls_lookup_entry *le)
2258 {
2259 u32 val;
2260
2261 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2262 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2263 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2264 }
2265
2266 /* Classifier default initialization */
2267 static void mvpp2_cls_init(struct mvpp2 *priv)
2268 {
2269 struct mvpp2_cls_lookup_entry le;
2270 struct mvpp2_cls_flow_entry fe;
2271 int index;
2272
2273 /* Enable classifier */
2274 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2275
2276 /* Clear classifier flow table */
2277 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2278 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2279 fe.index = index;
2280 mvpp2_cls_flow_write(priv, &fe);
2281 }
2282
2283 /* Clear classifier lookup table */
2284 le.data = 0;
2285 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2286 le.lkpid = index;
2287 le.way = 0;
2288 mvpp2_cls_lookup_write(priv, &le);
2289
2290 le.way = 1;
2291 mvpp2_cls_lookup_write(priv, &le);
2292 }
2293 }
2294
2295 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2296 {
2297 struct mvpp2_cls_lookup_entry le;
2298 u32 val;
2299
2300 /* Set way for the port */
2301 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2302 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2303 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2304
2305 /* Pick the entry to be accessed in lookup ID decoding table
2306 * according to the way and lkpid.
2307 */
2308 le.lkpid = port->id;
2309 le.way = 0;
2310 le.data = 0;
2311
2312 /* Set initial CPU queue for receiving packets */
2313 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2314 le.data |= port->first_rxq;
2315
2316 /* Disable classification engines */
2317 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2318
2319 /* Update lookup ID table entry */
2320 mvpp2_cls_lookup_write(port->priv, &le);
2321 }
2322
2323 /* Set CPU queue number for oversize packets */
2324 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2325 {
2326 u32 val;
2327
2328 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2329 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2330
2331 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2332 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2333
2334 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2335 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2336 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2337 }
2338
2339 /* Buffer Manager configuration routines */
2340
2341 /* Create pool */
2342 static int mvpp2_bm_pool_create(struct udevice *dev,
2343 struct mvpp2 *priv,
2344 struct mvpp2_bm_pool *bm_pool, int size)
2345 {
2346 u32 val;
2347
2348 /* Number of buffer pointers must be a multiple of 16, as per
2349 * hardware constraints
2350 */
2351 if (!IS_ALIGNED(size, 16))
2352 return -EINVAL;
2353
2354 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2355 bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2356 if (!bm_pool->virt_addr)
2357 return -ENOMEM;
2358
2359 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2360 MVPP2_BM_POOL_PTR_ALIGN)) {
2361 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2362 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2363 return -ENOMEM;
2364 }
2365
2366 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2367 lower_32_bits(bm_pool->dma_addr));
2368 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2369
2370 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2371 val |= MVPP2_BM_START_MASK;
2372 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2373
2374 bm_pool->type = MVPP2_BM_FREE;
2375 bm_pool->size = size;
2376 bm_pool->pkt_size = 0;
2377 bm_pool->buf_num = 0;
2378
2379 return 0;
2380 }
2381
2382 /* Set pool buffer size */
2383 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2384 struct mvpp2_bm_pool *bm_pool,
2385 int buf_size)
2386 {
2387 u32 val;
2388
2389 bm_pool->buf_size = buf_size;
2390
2391 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2392 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2393 }
2394
2395 /* Free all buffers from the pool */
2396 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2397 struct mvpp2_bm_pool *bm_pool)
2398 {
2399 bm_pool->buf_num = 0;
2400 }
2401
2402 /* Cleanup pool */
2403 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2404 struct mvpp2 *priv,
2405 struct mvpp2_bm_pool *bm_pool)
2406 {
2407 u32 val;
2408
2409 mvpp2_bm_bufs_free(dev, priv, bm_pool);
2410 if (bm_pool->buf_num) {
2411 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2412 return 0;
2413 }
2414
2415 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2416 val |= MVPP2_BM_STOP_MASK;
2417 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2418
2419 return 0;
2420 }
2421
2422 static int mvpp2_bm_pools_init(struct udevice *dev,
2423 struct mvpp2 *priv)
2424 {
2425 int i, err, size;
2426 struct mvpp2_bm_pool *bm_pool;
2427
2428 /* Create all pools with maximum size */
2429 size = MVPP2_BM_POOL_SIZE_MAX;
2430 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2431 bm_pool = &priv->bm_pools[i];
2432 bm_pool->id = i;
2433 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2434 if (err)
2435 goto err_unroll_pools;
2436 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
2437 }
2438 return 0;
2439
2440 err_unroll_pools:
2441 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2442 for (i = i - 1; i >= 0; i--)
2443 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2444 return err;
2445 }
2446
2447 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2448 {
2449 int i, err;
2450
2451 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2452 /* Mask BM all interrupts */
2453 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2454 /* Clear BM cause register */
2455 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2456 }
2457
2458 /* Allocate and initialize BM pools */
2459 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2460 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2461 if (!priv->bm_pools)
2462 return -ENOMEM;
2463
2464 err = mvpp2_bm_pools_init(dev, priv);
2465 if (err < 0)
2466 return err;
2467 return 0;
2468 }
2469
2470 /* Attach long pool to rxq */
2471 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2472 int lrxq, int long_pool)
2473 {
2474 u32 val, mask;
2475 int prxq;
2476
2477 /* Get queue physical ID */
2478 prxq = port->rxqs[lrxq]->id;
2479
2480 if (port->priv->hw_version == MVPP21)
2481 mask = MVPP21_RXQ_POOL_LONG_MASK;
2482 else
2483 mask = MVPP22_RXQ_POOL_LONG_MASK;
2484
2485 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2486 val &= ~mask;
2487 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2488 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2489 }
2490
2491 /* Set pool number in a BM cookie */
2492 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2493 {
2494 u32 bm;
2495
2496 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2497 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2498
2499 return bm;
2500 }
2501
2502 /* Get pool number from a BM cookie */
2503 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2504 {
2505 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2506 }
2507
2508 /* Release buffer to BM */
2509 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2510 dma_addr_t buf_dma_addr,
2511 unsigned long buf_phys_addr)
2512 {
2513 if (port->priv->hw_version == MVPP22) {
2514 u32 val = 0;
2515
2516 if (sizeof(dma_addr_t) == 8)
2517 val |= upper_32_bits(buf_dma_addr) &
2518 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2519
2520 if (sizeof(phys_addr_t) == 8)
2521 val |= (upper_32_bits(buf_phys_addr)
2522 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2523 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2524
2525 mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2526 }
2527
2528 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2529 * returned in the "cookie" field of the RX
2530 * descriptor. Instead of storing the virtual address, we
2531 * store the physical address
2532 */
2533 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2534 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2535 }
2536
2537 /* Refill BM pool */
2538 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2539 dma_addr_t dma_addr,
2540 phys_addr_t phys_addr)
2541 {
2542 int pool = mvpp2_bm_cookie_pool_get(bm);
2543
2544 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2545 }
2546
2547 /* Allocate buffers for the pool */
2548 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2549 struct mvpp2_bm_pool *bm_pool, int buf_num)
2550 {
2551 int i;
2552
2553 if (buf_num < 0 ||
2554 (buf_num + bm_pool->buf_num > bm_pool->size)) {
2555 netdev_err(port->dev,
2556 "cannot allocate %d buffers for pool %d\n",
2557 buf_num, bm_pool->id);
2558 return 0;
2559 }
2560
2561 for (i = 0; i < buf_num; i++) {
2562 mvpp2_bm_pool_put(port, bm_pool->id,
2563 (dma_addr_t)buffer_loc.rx_buffer[i],
2564 (unsigned long)buffer_loc.rx_buffer[i]);
2565
2566 }
2567
2568 /* Update BM driver with number of buffers added to pool */
2569 bm_pool->buf_num += i;
2570 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
2571
2572 return i;
2573 }
2574
2575 /* Notify the driver that BM pool is being used as specific type and return the
2576 * pool pointer on success
2577 */
2578 static struct mvpp2_bm_pool *
2579 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2580 int pkt_size)
2581 {
2582 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2583 int num;
2584
2585 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2586 netdev_err(port->dev, "mixing pool types is forbidden\n");
2587 return NULL;
2588 }
2589
2590 if (new_pool->type == MVPP2_BM_FREE)
2591 new_pool->type = type;
2592
2593 /* Allocate buffers in case BM pool is used as long pool, but packet
2594 * size doesn't match MTU or BM pool hasn't being used yet
2595 */
2596 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2597 (new_pool->pkt_size == 0)) {
2598 int pkts_num;
2599
2600 /* Set default buffer number or free all the buffers in case
2601 * the pool is not empty
2602 */
2603 pkts_num = new_pool->buf_num;
2604 if (pkts_num == 0)
2605 pkts_num = type == MVPP2_BM_SWF_LONG ?
2606 MVPP2_BM_LONG_BUF_NUM :
2607 MVPP2_BM_SHORT_BUF_NUM;
2608 else
2609 mvpp2_bm_bufs_free(NULL,
2610 port->priv, new_pool);
2611
2612 new_pool->pkt_size = pkt_size;
2613
2614 /* Allocate buffers for this pool */
2615 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2616 if (num != pkts_num) {
2617 dev_err(dev, "pool %d: %d of %d allocated\n",
2618 new_pool->id, num, pkts_num);
2619 return NULL;
2620 }
2621 }
2622
2623 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
2624 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
2625
2626 return new_pool;
2627 }
2628
2629 /* Initialize pools for swf */
2630 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2631 {
2632 int rxq;
2633
2634 if (!port->pool_long) {
2635 port->pool_long =
2636 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2637 MVPP2_BM_SWF_LONG,
2638 port->pkt_size);
2639 if (!port->pool_long)
2640 return -ENOMEM;
2641
2642 port->pool_long->port_map |= (1 << port->id);
2643
2644 for (rxq = 0; rxq < rxq_number; rxq++)
2645 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2646 }
2647
2648 return 0;
2649 }
2650
2651 /* Port configuration routines */
2652
2653 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2654 {
2655 u32 val;
2656
2657 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2658
2659 switch (port->phy_interface) {
2660 case PHY_INTERFACE_MODE_SGMII:
2661 val |= MVPP2_GMAC_INBAND_AN_MASK;
2662 break;
2663 case PHY_INTERFACE_MODE_RGMII:
2664 val |= MVPP2_GMAC_PORT_RGMII_MASK;
2665 default:
2666 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2667 }
2668
2669 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2670 }
2671
2672 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2673 {
2674 u32 val;
2675
2676 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2677 val |= MVPP2_GMAC_FC_ADV_EN;
2678 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2679 }
2680
2681 static void mvpp2_port_enable(struct mvpp2_port *port)
2682 {
2683 u32 val;
2684
2685 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2686 val |= MVPP2_GMAC_PORT_EN_MASK;
2687 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2688 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2689 }
2690
2691 static void mvpp2_port_disable(struct mvpp2_port *port)
2692 {
2693 u32 val;
2694
2695 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2696 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2697 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2698 }
2699
2700 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2701 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2702 {
2703 u32 val;
2704
2705 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2706 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2707 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2708 }
2709
2710 /* Configure loopback port */
2711 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2712 {
2713 u32 val;
2714
2715 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2716
2717 if (port->speed == 1000)
2718 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2719 else
2720 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2721
2722 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2723 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2724 else
2725 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2726
2727 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2728 }
2729
2730 static void mvpp2_port_reset(struct mvpp2_port *port)
2731 {
2732 u32 val;
2733
2734 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2735 ~MVPP2_GMAC_PORT_RESET_MASK;
2736 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2737
2738 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2739 MVPP2_GMAC_PORT_RESET_MASK)
2740 continue;
2741 }
2742
2743 /* Change maximum receive size of the port */
2744 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2745 {
2746 u32 val;
2747
2748 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2749 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2750 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2751 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2752 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2753 }
2754
2755 /* Set defaults to the MVPP2 port */
2756 static void mvpp2_defaults_set(struct mvpp2_port *port)
2757 {
2758 int tx_port_num, val, queue, ptxq, lrxq;
2759
2760 if (port->priv->hw_version == MVPP21) {
2761 /* Configure port to loopback if needed */
2762 if (port->flags & MVPP2_F_LOOPBACK)
2763 mvpp2_port_loopback_set(port);
2764
2765 /* Update TX FIFO MIN Threshold */
2766 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2767 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
2768 /* Min. TX threshold must be less than minimal packet length */
2769 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
2770 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2771 }
2772
2773 /* Disable Legacy WRR, Disable EJP, Release from reset */
2774 tx_port_num = mvpp2_egress_port(port);
2775 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
2776 tx_port_num);
2777 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
2778
2779 /* Close bandwidth for all queues */
2780 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
2781 ptxq = mvpp2_txq_phys(port->id, queue);
2782 mvpp2_write(port->priv,
2783 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
2784 }
2785
2786 /* Set refill period to 1 usec, refill tokens
2787 * and bucket size to maximum
2788 */
2789 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
2790 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
2791 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
2792 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
2793 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
2794 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
2795 val = MVPP2_TXP_TOKEN_SIZE_MAX;
2796 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
2797
2798 /* Set MaximumLowLatencyPacketSize value to 256 */
2799 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
2800 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
2801 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
2802
2803 /* Enable Rx cache snoop */
2804 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2805 queue = port->rxqs[lrxq]->id;
2806 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2807 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
2808 MVPP2_SNOOP_BUF_HDR_MASK;
2809 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2810 }
2811 }
2812
2813 /* Enable/disable receiving packets */
2814 static void mvpp2_ingress_enable(struct mvpp2_port *port)
2815 {
2816 u32 val;
2817 int lrxq, queue;
2818
2819 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2820 queue = port->rxqs[lrxq]->id;
2821 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2822 val &= ~MVPP2_RXQ_DISABLE_MASK;
2823 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2824 }
2825 }
2826
2827 static void mvpp2_ingress_disable(struct mvpp2_port *port)
2828 {
2829 u32 val;
2830 int lrxq, queue;
2831
2832 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2833 queue = port->rxqs[lrxq]->id;
2834 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2835 val |= MVPP2_RXQ_DISABLE_MASK;
2836 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2837 }
2838 }
2839
2840 /* Enable transmit via physical egress queue
2841 * - HW starts take descriptors from DRAM
2842 */
2843 static void mvpp2_egress_enable(struct mvpp2_port *port)
2844 {
2845 u32 qmap;
2846 int queue;
2847 int tx_port_num = mvpp2_egress_port(port);
2848
2849 /* Enable all initialized TXs. */
2850 qmap = 0;
2851 for (queue = 0; queue < txq_number; queue++) {
2852 struct mvpp2_tx_queue *txq = port->txqs[queue];
2853
2854 if (txq->descs != NULL)
2855 qmap |= (1 << queue);
2856 }
2857
2858 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2859 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
2860 }
2861
2862 /* Disable transmit via physical egress queue
2863 * - HW doesn't take descriptors from DRAM
2864 */
2865 static void mvpp2_egress_disable(struct mvpp2_port *port)
2866 {
2867 u32 reg_data;
2868 int delay;
2869 int tx_port_num = mvpp2_egress_port(port);
2870
2871 /* Issue stop command for active channels only */
2872 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2873 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
2874 MVPP2_TXP_SCHED_ENQ_MASK;
2875 if (reg_data != 0)
2876 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
2877 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
2878
2879 /* Wait for all Tx activity to terminate. */
2880 delay = 0;
2881 do {
2882 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
2883 netdev_warn(port->dev,
2884 "Tx stop timed out, status=0x%08x\n",
2885 reg_data);
2886 break;
2887 }
2888 mdelay(1);
2889 delay++;
2890
2891 /* Check port TX Command register that all
2892 * Tx queues are stopped
2893 */
2894 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
2895 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
2896 }
2897
2898 /* Rx descriptors helper methods */
2899
2900 /* Get number of Rx descriptors occupied by received packets */
2901 static inline int
2902 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
2903 {
2904 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
2905
2906 return val & MVPP2_RXQ_OCCUPIED_MASK;
2907 }
2908
2909 /* Update Rx queue status with the number of occupied and available
2910 * Rx descriptor slots.
2911 */
2912 static inline void
2913 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
2914 int used_count, int free_count)
2915 {
2916 /* Decrement the number of used descriptors and increment count
2917 * increment the number of free descriptors.
2918 */
2919 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
2920
2921 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
2922 }
2923
2924 /* Get pointer to next RX descriptor to be processed by SW */
2925 static inline struct mvpp2_rx_desc *
2926 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
2927 {
2928 int rx_desc = rxq->next_desc_to_proc;
2929
2930 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
2931 prefetch(rxq->descs + rxq->next_desc_to_proc);
2932 return rxq->descs + rx_desc;
2933 }
2934
2935 /* Set rx queue offset */
2936 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
2937 int prxq, int offset)
2938 {
2939 u32 val;
2940
2941 /* Convert offset from bytes to units of 32 bytes */
2942 offset = offset >> 5;
2943
2944 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2945 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
2946
2947 /* Offset is in */
2948 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
2949 MVPP2_RXQ_PACKET_OFFSET_MASK);
2950
2951 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2952 }
2953
2954 /* Obtain BM cookie information from descriptor */
2955 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
2956 struct mvpp2_rx_desc *rx_desc)
2957 {
2958 int cpu = smp_processor_id();
2959 int pool;
2960
2961 pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
2962 MVPP2_RXD_BM_POOL_ID_MASK) >>
2963 MVPP2_RXD_BM_POOL_ID_OFFS;
2964
2965 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
2966 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
2967 }
2968
2969 /* Tx descriptors helper methods */
2970
2971 /* Get number of Tx descriptors waiting to be transmitted by HW */
2972 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
2973 struct mvpp2_tx_queue *txq)
2974 {
2975 u32 val;
2976
2977 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
2978 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
2979
2980 return val & MVPP2_TXQ_PENDING_MASK;
2981 }
2982
2983 /* Get pointer to next Tx descriptor to be processed (send) by HW */
2984 static struct mvpp2_tx_desc *
2985 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
2986 {
2987 int tx_desc = txq->next_desc_to_proc;
2988
2989 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
2990 return txq->descs + tx_desc;
2991 }
2992
2993 /* Update HW with number of aggregated Tx descriptors to be sent */
2994 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
2995 {
2996 /* aggregated access - relevant TXQ number is written in TX desc */
2997 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
2998 }
2999
3000 /* Get number of sent descriptors and decrement counter.
3001 * The number of sent descriptors is returned.
3002 * Per-CPU access
3003 */
3004 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3005 struct mvpp2_tx_queue *txq)
3006 {
3007 u32 val;
3008
3009 /* Reading status reg resets transmitted descriptor counter */
3010 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3011
3012 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3013 MVPP2_TRANSMITTED_COUNT_OFFSET;
3014 }
3015
3016 static void mvpp2_txq_sent_counter_clear(void *arg)
3017 {
3018 struct mvpp2_port *port = arg;
3019 int queue;
3020
3021 for (queue = 0; queue < txq_number; queue++) {
3022 int id = port->txqs[queue]->id;
3023
3024 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3025 }
3026 }
3027
3028 /* Set max sizes for Tx queues */
3029 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3030 {
3031 u32 val, size, mtu;
3032 int txq, tx_port_num;
3033
3034 mtu = port->pkt_size * 8;
3035 if (mtu > MVPP2_TXP_MTU_MAX)
3036 mtu = MVPP2_TXP_MTU_MAX;
3037
3038 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3039 mtu = 3 * mtu;
3040
3041 /* Indirect access to registers */
3042 tx_port_num = mvpp2_egress_port(port);
3043 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3044
3045 /* Set MTU */
3046 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
3047 val &= ~MVPP2_TXP_MTU_MAX;
3048 val |= mtu;
3049 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
3050
3051 /* TXP token size and all TXQs token size must be larger that MTU */
3052 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
3053 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
3054 if (size < mtu) {
3055 size = mtu;
3056 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
3057 val |= size;
3058 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3059 }
3060
3061 for (txq = 0; txq < txq_number; txq++) {
3062 val = mvpp2_read(port->priv,
3063 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
3064 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
3065
3066 if (size < mtu) {
3067 size = mtu;
3068 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
3069 val |= size;
3070 mvpp2_write(port->priv,
3071 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
3072 val);
3073 }
3074 }
3075 }
3076
3077 /* Free Tx queue skbuffs */
3078 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
3079 struct mvpp2_tx_queue *txq,
3080 struct mvpp2_txq_pcpu *txq_pcpu, int num)
3081 {
3082 int i;
3083
3084 for (i = 0; i < num; i++)
3085 mvpp2_txq_inc_get(txq_pcpu);
3086 }
3087
3088 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
3089 u32 cause)
3090 {
3091 int queue = fls(cause) - 1;
3092
3093 return port->rxqs[queue];
3094 }
3095
3096 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
3097 u32 cause)
3098 {
3099 int queue = fls(cause) - 1;
3100
3101 return port->txqs[queue];
3102 }
3103
3104 /* Rx/Tx queue initialization/cleanup methods */
3105
3106 /* Allocate and initialize descriptors for aggr TXQ */
3107 static int mvpp2_aggr_txq_init(struct udevice *dev,
3108 struct mvpp2_tx_queue *aggr_txq,
3109 int desc_num, int cpu,
3110 struct mvpp2 *priv)
3111 {
3112 u32 txq_dma;
3113
3114 /* Allocate memory for TX descriptors */
3115 aggr_txq->descs = buffer_loc.aggr_tx_descs;
3116 aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
3117 if (!aggr_txq->descs)
3118 return -ENOMEM;
3119
3120 /* Make sure descriptor address is cache line size aligned */
3121 BUG_ON(aggr_txq->descs !=
3122 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3123
3124 aggr_txq->last_desc = aggr_txq->size - 1;
3125
3126 /* Aggr TXQ no reset WA */
3127 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
3128 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
3129
3130 /* Set Tx descriptors queue starting address indirect
3131 * access
3132 */
3133 if (priv->hw_version == MVPP21)
3134 txq_dma = aggr_txq->descs_dma;
3135 else
3136 txq_dma = aggr_txq->descs_dma >>
3137 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
3138
3139 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
3140 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
3141
3142 return 0;
3143 }
3144
3145 /* Create a specified Rx queue */
3146 static int mvpp2_rxq_init(struct mvpp2_port *port,
3147 struct mvpp2_rx_queue *rxq)
3148
3149 {
3150 u32 rxq_dma;
3151
3152 rxq->size = port->rx_ring_size;
3153
3154 /* Allocate memory for RX descriptors */
3155 rxq->descs = buffer_loc.rx_descs;
3156 rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
3157 if (!rxq->descs)
3158 return -ENOMEM;
3159
3160 BUG_ON(rxq->descs !=
3161 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3162
3163 rxq->last_desc = rxq->size - 1;
3164
3165 /* Zero occupied and non-occupied counters - direct access */
3166 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
3167
3168 /* Set Rx descriptors queue starting address - indirect access */
3169 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
3170 if (port->priv->hw_version == MVPP21)
3171 rxq_dma = rxq->descs_dma;
3172 else
3173 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
3174 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
3175 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
3176 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
3177
3178 /* Set Offset */
3179 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
3180
3181 /* Add number of descriptors ready for receiving packets */
3182 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
3183
3184 return 0;
3185 }
3186
3187 /* Push packets received by the RXQ to BM pool */
3188 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
3189 struct mvpp2_rx_queue *rxq)
3190 {
3191 int rx_received, i;
3192
3193 rx_received = mvpp2_rxq_received(port, rxq->id);
3194 if (!rx_received)
3195 return;
3196
3197 for (i = 0; i < rx_received; i++) {
3198 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
3199 u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
3200
3201 mvpp2_pool_refill(port, bm,
3202 mvpp2_rxdesc_dma_addr_get(port, rx_desc),
3203 mvpp2_rxdesc_cookie_get(port, rx_desc));
3204 }
3205 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
3206 }
3207
3208 /* Cleanup Rx queue */
3209 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
3210 struct mvpp2_rx_queue *rxq)
3211 {
3212 mvpp2_rxq_drop_pkts(port, rxq);
3213
3214 rxq->descs = NULL;
3215 rxq->last_desc = 0;
3216 rxq->next_desc_to_proc = 0;
3217 rxq->descs_dma = 0;
3218
3219 /* Clear Rx descriptors queue starting address and size;
3220 * free descriptor number
3221 */
3222 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
3223 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
3224 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
3225 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
3226 }
3227
3228 /* Create and initialize a Tx queue */
3229 static int mvpp2_txq_init(struct mvpp2_port *port,
3230 struct mvpp2_tx_queue *txq)
3231 {
3232 u32 val;
3233 int cpu, desc, desc_per_txq, tx_port_num;
3234 struct mvpp2_txq_pcpu *txq_pcpu;
3235
3236 txq->size = port->tx_ring_size;
3237
3238 /* Allocate memory for Tx descriptors */
3239 txq->descs = buffer_loc.tx_descs;
3240 txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
3241 if (!txq->descs)
3242 return -ENOMEM;
3243
3244 /* Make sure descriptor address is cache line size aligned */
3245 BUG_ON(txq->descs !=
3246 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3247
3248 txq->last_desc = txq->size - 1;
3249
3250 /* Set Tx descriptors queue starting address - indirect access */
3251 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3252 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
3253 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
3254 MVPP2_TXQ_DESC_SIZE_MASK);
3255 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
3256 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
3257 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
3258 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3259 val &= ~MVPP2_TXQ_PENDING_MASK;
3260 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
3261
3262 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
3263 * for each existing TXQ.
3264 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
3265 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
3266 */
3267 desc_per_txq = 16;
3268 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
3269 (txq->log_id * desc_per_txq);
3270
3271 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
3272 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
3273 MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
3274
3275 /* WRR / EJP configuration - indirect access */
3276 tx_port_num = mvpp2_egress_port(port);
3277 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3278
3279 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
3280 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
3281 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
3282 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
3283 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
3284
3285 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
3286 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
3287 val);
3288
3289 for_each_present_cpu(cpu) {
3290 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3291 txq_pcpu->size = txq->size;
3292 }
3293
3294 return 0;
3295 }
3296
3297 /* Free allocated TXQ resources */
3298 static void mvpp2_txq_deinit(struct mvpp2_port *port,
3299 struct mvpp2_tx_queue *txq)
3300 {
3301 txq->descs = NULL;
3302 txq->last_desc = 0;
3303 txq->next_desc_to_proc = 0;
3304 txq->descs_dma = 0;
3305
3306 /* Set minimum bandwidth for disabled TXQs */
3307 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
3308
3309 /* Set Tx descriptors queue starting address and size */
3310 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3311 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
3312 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
3313 }
3314
3315 /* Cleanup Tx ports */
3316 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
3317 {
3318 struct mvpp2_txq_pcpu *txq_pcpu;
3319 int delay, pending, cpu;
3320 u32 val;
3321
3322 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3323 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
3324 val |= MVPP2_TXQ_DRAIN_EN_MASK;
3325 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3326
3327 /* The napi queue has been stopped so wait for all packets
3328 * to be transmitted.
3329 */
3330 delay = 0;
3331 do {
3332 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
3333 netdev_warn(port->dev,
3334 "port %d: cleaning queue %d timed out\n",
3335 port->id, txq->log_id);
3336 break;
3337 }
3338 mdelay(1);
3339 delay++;
3340
3341 pending = mvpp2_txq_pend_desc_num_get(port, txq);
3342 } while (pending);
3343
3344 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
3345 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3346
3347 for_each_present_cpu(cpu) {
3348 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3349
3350 /* Release all packets */
3351 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
3352
3353 /* Reset queue */
3354 txq_pcpu->count = 0;
3355 txq_pcpu->txq_put_index = 0;
3356 txq_pcpu->txq_get_index = 0;
3357 }
3358 }
3359
3360 /* Cleanup all Tx queues */
3361 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
3362 {
3363 struct mvpp2_tx_queue *txq;
3364 int queue;
3365 u32 val;
3366
3367 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
3368
3369 /* Reset Tx ports and delete Tx queues */
3370 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
3371 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3372
3373 for (queue = 0; queue < txq_number; queue++) {
3374 txq = port->txqs[queue];
3375 mvpp2_txq_clean(port, txq);
3376 mvpp2_txq_deinit(port, txq);
3377 }
3378
3379 mvpp2_txq_sent_counter_clear(port);
3380
3381 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
3382 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3383 }
3384
3385 /* Cleanup all Rx queues */
3386 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
3387 {
3388 int queue;
3389
3390 for (queue = 0; queue < rxq_number; queue++)
3391 mvpp2_rxq_deinit(port, port->rxqs[queue]);
3392 }
3393
3394 /* Init all Rx queues for port */
3395 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
3396 {
3397 int queue, err;
3398
3399 for (queue = 0; queue < rxq_number; queue++) {
3400 err = mvpp2_rxq_init(port, port->rxqs[queue]);
3401 if (err)
3402 goto err_cleanup;
3403 }
3404 return 0;
3405
3406 err_cleanup:
3407 mvpp2_cleanup_rxqs(port);
3408 return err;
3409 }
3410
3411 /* Init all tx queues for port */
3412 static int mvpp2_setup_txqs(struct mvpp2_port *port)
3413 {
3414 struct mvpp2_tx_queue *txq;
3415 int queue, err;
3416
3417 for (queue = 0; queue < txq_number; queue++) {
3418 txq = port->txqs[queue];
3419 err = mvpp2_txq_init(port, txq);
3420 if (err)
3421 goto err_cleanup;
3422 }
3423
3424 mvpp2_txq_sent_counter_clear(port);
3425 return 0;
3426
3427 err_cleanup:
3428 mvpp2_cleanup_txqs(port);
3429 return err;
3430 }
3431
3432 /* Adjust link */
3433 static void mvpp2_link_event(struct mvpp2_port *port)
3434 {
3435 struct phy_device *phydev = port->phy_dev;
3436 int status_change = 0;
3437 u32 val;
3438
3439 if (phydev->link) {
3440 if ((port->speed != phydev->speed) ||
3441 (port->duplex != phydev->duplex)) {
3442 u32 val;
3443
3444 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3445 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
3446 MVPP2_GMAC_CONFIG_GMII_SPEED |
3447 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3448 MVPP2_GMAC_AN_SPEED_EN |
3449 MVPP2_GMAC_AN_DUPLEX_EN);
3450
3451 if (phydev->duplex)
3452 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
3453
3454 if (phydev->speed == SPEED_1000)
3455 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
3456 else if (phydev->speed == SPEED_100)
3457 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
3458
3459 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3460
3461 port->duplex = phydev->duplex;
3462 port->speed = phydev->speed;
3463 }
3464 }
3465
3466 if (phydev->link != port->link) {
3467 if (!phydev->link) {
3468 port->duplex = -1;
3469 port->speed = 0;
3470 }
3471
3472 port->link = phydev->link;
3473 status_change = 1;
3474 }
3475
3476 if (status_change) {
3477 if (phydev->link) {
3478 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3479 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
3480 MVPP2_GMAC_FORCE_LINK_DOWN);
3481 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3482 mvpp2_egress_enable(port);
3483 mvpp2_ingress_enable(port);
3484 } else {
3485 mvpp2_ingress_disable(port);
3486 mvpp2_egress_disable(port);
3487 }
3488 }
3489 }
3490
3491 /* Main RX/TX processing routines */
3492
3493 /* Display more error info */
3494 static void mvpp2_rx_error(struct mvpp2_port *port,
3495 struct mvpp2_rx_desc *rx_desc)
3496 {
3497 u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
3498 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
3499
3500 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
3501 case MVPP2_RXD_ERR_CRC:
3502 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
3503 status, sz);
3504 break;
3505 case MVPP2_RXD_ERR_OVERRUN:
3506 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
3507 status, sz);
3508 break;
3509 case MVPP2_RXD_ERR_RESOURCE:
3510 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
3511 status, sz);
3512 break;
3513 }
3514 }
3515
3516 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
3517 static int mvpp2_rx_refill(struct mvpp2_port *port,
3518 struct mvpp2_bm_pool *bm_pool,
3519 u32 bm, dma_addr_t dma_addr)
3520 {
3521 mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
3522 return 0;
3523 }
3524
3525 /* Set hw internals when starting port */
3526 static void mvpp2_start_dev(struct mvpp2_port *port)
3527 {
3528 mvpp2_gmac_max_rx_size_set(port);
3529 mvpp2_txp_max_tx_size_set(port);
3530
3531 mvpp2_port_enable(port);
3532 }
3533
3534 /* Set hw internals when stopping port */
3535 static void mvpp2_stop_dev(struct mvpp2_port *port)
3536 {
3537 /* Stop new packets from arriving to RXQs */
3538 mvpp2_ingress_disable(port);
3539
3540 mvpp2_egress_disable(port);
3541 mvpp2_port_disable(port);
3542 }
3543
3544 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
3545 {
3546 struct phy_device *phy_dev;
3547
3548 if (!port->init || port->link == 0) {
3549 phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
3550 port->phy_interface);
3551 port->phy_dev = phy_dev;
3552 if (!phy_dev) {
3553 netdev_err(port->dev, "cannot connect to phy\n");
3554 return -ENODEV;
3555 }
3556 phy_dev->supported &= PHY_GBIT_FEATURES;
3557 phy_dev->advertising = phy_dev->supported;
3558
3559 port->phy_dev = phy_dev;
3560 port->link = 0;
3561 port->duplex = 0;
3562 port->speed = 0;
3563
3564 phy_config(phy_dev);
3565 phy_startup(phy_dev);
3566 if (!phy_dev->link) {
3567 printf("%s: No link\n", phy_dev->dev->name);
3568 return -1;
3569 }
3570
3571 port->init = 1;
3572 } else {
3573 mvpp2_egress_enable(port);
3574 mvpp2_ingress_enable(port);
3575 }
3576
3577 return 0;
3578 }
3579
3580 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
3581 {
3582 unsigned char mac_bcast[ETH_ALEN] = {
3583 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3584 int err;
3585
3586 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
3587 if (err) {
3588 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
3589 return err;
3590 }
3591 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
3592 port->dev_addr, true);
3593 if (err) {
3594 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
3595 return err;
3596 }
3597 err = mvpp2_prs_def_flow(port);
3598 if (err) {
3599 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
3600 return err;
3601 }
3602
3603 /* Allocate the Rx/Tx queues */
3604 err = mvpp2_setup_rxqs(port);
3605 if (err) {
3606 netdev_err(port->dev, "cannot allocate Rx queues\n");
3607 return err;
3608 }
3609
3610 err = mvpp2_setup_txqs(port);
3611 if (err) {
3612 netdev_err(port->dev, "cannot allocate Tx queues\n");
3613 return err;
3614 }
3615
3616 err = mvpp2_phy_connect(dev, port);
3617 if (err < 0)
3618 return err;
3619
3620 mvpp2_link_event(port);
3621
3622 mvpp2_start_dev(port);
3623
3624 return 0;
3625 }
3626
3627 /* No Device ops here in U-Boot */
3628
3629 /* Driver initialization */
3630
3631 static void mvpp2_port_power_up(struct mvpp2_port *port)
3632 {
3633 mvpp2_port_mii_set(port);
3634 mvpp2_port_periodic_xon_disable(port);
3635 mvpp2_port_fc_adv_enable(port);
3636 mvpp2_port_reset(port);
3637 }
3638
3639 /* Initialize port HW */
3640 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
3641 {
3642 struct mvpp2 *priv = port->priv;
3643 struct mvpp2_txq_pcpu *txq_pcpu;
3644 int queue, cpu, err;
3645
3646 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
3647 return -EINVAL;
3648
3649 /* Disable port */
3650 mvpp2_egress_disable(port);
3651 mvpp2_port_disable(port);
3652
3653 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
3654 GFP_KERNEL);
3655 if (!port->txqs)
3656 return -ENOMEM;
3657
3658 /* Associate physical Tx queues to this port and initialize.
3659 * The mapping is predefined.
3660 */
3661 for (queue = 0; queue < txq_number; queue++) {
3662 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
3663 struct mvpp2_tx_queue *txq;
3664
3665 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
3666 if (!txq)
3667 return -ENOMEM;
3668
3669 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
3670 GFP_KERNEL);
3671 if (!txq->pcpu)
3672 return -ENOMEM;
3673
3674 txq->id = queue_phy_id;
3675 txq->log_id = queue;
3676 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
3677 for_each_present_cpu(cpu) {
3678 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3679 txq_pcpu->cpu = cpu;
3680 }
3681
3682 port->txqs[queue] = txq;
3683 }
3684
3685 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
3686 GFP_KERNEL);
3687 if (!port->rxqs)
3688 return -ENOMEM;
3689
3690 /* Allocate and initialize Rx queue for this port */
3691 for (queue = 0; queue < rxq_number; queue++) {
3692 struct mvpp2_rx_queue *rxq;
3693
3694 /* Map physical Rx queue to port's logical Rx queue */
3695 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
3696 if (!rxq)
3697 return -ENOMEM;
3698 /* Map this Rx queue to a physical queue */
3699 rxq->id = port->first_rxq + queue;
3700 rxq->port = port->id;
3701 rxq->logic_rxq = queue;
3702
3703 port->rxqs[queue] = rxq;
3704 }
3705
3706 /* Configure Rx queue group interrupt for this port */
3707 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), CONFIG_MV_ETH_RXQ);
3708
3709 /* Create Rx descriptor rings */
3710 for (queue = 0; queue < rxq_number; queue++) {
3711 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
3712
3713 rxq->size = port->rx_ring_size;
3714 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
3715 rxq->time_coal = MVPP2_RX_COAL_USEC;
3716 }
3717
3718 mvpp2_ingress_disable(port);
3719
3720 /* Port default configuration */
3721 mvpp2_defaults_set(port);
3722
3723 /* Port's classifier configuration */
3724 mvpp2_cls_oversize_rxq_set(port);
3725 mvpp2_cls_port_config(port);
3726
3727 /* Provide an initial Rx packet size */
3728 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
3729
3730 /* Initialize pools for swf */
3731 err = mvpp2_swf_bm_pool_init(port);
3732 if (err)
3733 return err;
3734
3735 return 0;
3736 }
3737
3738 /* Ports initialization */
3739 static int mvpp2_port_probe(struct udevice *dev,
3740 struct mvpp2_port *port,
3741 int port_node,
3742 struct mvpp2 *priv,
3743 int *next_first_rxq)
3744 {
3745 int phy_node;
3746 u32 id;
3747 u32 phyaddr;
3748 const char *phy_mode_str;
3749 int phy_mode = -1;
3750 int priv_common_regs_num = 2;
3751 int err;
3752
3753 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
3754 if (phy_node < 0) {
3755 dev_err(&pdev->dev, "missing phy\n");
3756 return -ENODEV;
3757 }
3758
3759 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
3760 if (phy_mode_str)
3761 phy_mode = phy_get_interface_by_name(phy_mode_str);
3762 if (phy_mode == -1) {
3763 dev_err(&pdev->dev, "incorrect phy mode\n");
3764 return -EINVAL;
3765 }
3766
3767 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
3768 if (id == -1) {
3769 dev_err(&pdev->dev, "missing port-id value\n");
3770 return -EINVAL;
3771 }
3772
3773 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
3774
3775 port->priv = priv;
3776 port->id = id;
3777 port->first_rxq = *next_first_rxq;
3778 port->phy_node = phy_node;
3779 port->phy_interface = phy_mode;
3780 port->phyaddr = phyaddr;
3781
3782 port->base = (void __iomem *)dev_get_addr_index(dev->parent,
3783 priv_common_regs_num
3784 + id);
3785 if (IS_ERR(port->base))
3786 return PTR_ERR(port->base);
3787
3788 port->tx_ring_size = MVPP2_MAX_TXD;
3789 port->rx_ring_size = MVPP2_MAX_RXD;
3790
3791 err = mvpp2_port_init(dev, port);
3792 if (err < 0) {
3793 dev_err(&pdev->dev, "failed to init port %d\n", id);
3794 return err;
3795 }
3796 mvpp2_port_power_up(port);
3797
3798 /* Increment the first Rx queue number to be used by the next port */
3799 *next_first_rxq += CONFIG_MV_ETH_RXQ;
3800 priv->port_list[id] = port;
3801 return 0;
3802 }
3803
3804 /* Initialize decoding windows */
3805 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
3806 struct mvpp2 *priv)
3807 {
3808 u32 win_enable;
3809 int i;
3810
3811 for (i = 0; i < 6; i++) {
3812 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
3813 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
3814
3815 if (i < 4)
3816 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
3817 }
3818
3819 win_enable = 0;
3820
3821 for (i = 0; i < dram->num_cs; i++) {
3822 const struct mbus_dram_window *cs = dram->cs + i;
3823
3824 mvpp2_write(priv, MVPP2_WIN_BASE(i),
3825 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
3826 dram->mbus_dram_target_id);
3827
3828 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
3829 (cs->size - 1) & 0xffff0000);
3830
3831 win_enable |= (1 << i);
3832 }
3833
3834 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
3835 }
3836
3837 /* Initialize Rx FIFO's */
3838 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
3839 {
3840 int port;
3841
3842 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
3843 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
3844 MVPP2_RX_FIFO_PORT_DATA_SIZE);
3845 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
3846 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
3847 }
3848
3849 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
3850 MVPP2_RX_FIFO_PORT_MIN_PKT);
3851 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
3852 }
3853
3854 /* Initialize network controller common part HW */
3855 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
3856 {
3857 const struct mbus_dram_target_info *dram_target_info;
3858 int err, i;
3859 u32 val;
3860
3861 /* Checks for hardware constraints (U-Boot uses only one rxq) */
3862 if ((rxq_number > MVPP2_MAX_RXQ) || (txq_number > MVPP2_MAX_TXQ)) {
3863 dev_err(&pdev->dev, "invalid queue size parameter\n");
3864 return -EINVAL;
3865 }
3866
3867 /* MBUS windows configuration */
3868 dram_target_info = mvebu_mbus_dram_info();
3869 if (dram_target_info)
3870 mvpp2_conf_mbus_windows(dram_target_info, priv);
3871
3872 /* Disable HW PHY polling */
3873 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
3874 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
3875 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
3876
3877 /* Allocate and initialize aggregated TXQs */
3878 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
3879 sizeof(struct mvpp2_tx_queue),
3880 GFP_KERNEL);
3881 if (!priv->aggr_txqs)
3882 return -ENOMEM;
3883
3884 for_each_present_cpu(i) {
3885 priv->aggr_txqs[i].id = i;
3886 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
3887 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
3888 MVPP2_AGGR_TXQ_SIZE, i, priv);
3889 if (err < 0)
3890 return err;
3891 }
3892
3893 /* Rx Fifo Init */
3894 mvpp2_rx_fifo_init(priv);
3895
3896 /* Reset Rx queue group interrupt configuration */
3897 for (i = 0; i < MVPP2_MAX_PORTS; i++)
3898 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i),
3899 CONFIG_MV_ETH_RXQ);
3900
3901 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
3902 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
3903
3904 /* Allow cache snoop when transmiting packets */
3905 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
3906
3907 /* Buffer Manager initialization */
3908 err = mvpp2_bm_init(dev, priv);
3909 if (err < 0)
3910 return err;
3911
3912 /* Parser default initialization */
3913 err = mvpp2_prs_default_init(dev, priv);
3914 if (err < 0)
3915 return err;
3916
3917 /* Classifier default initialization */
3918 mvpp2_cls_init(priv);
3919
3920 return 0;
3921 }
3922
3923 /* SMI / MDIO functions */
3924
3925 static int smi_wait_ready(struct mvpp2 *priv)
3926 {
3927 u32 timeout = MVPP2_SMI_TIMEOUT;
3928 u32 smi_reg;
3929
3930 /* wait till the SMI is not busy */
3931 do {
3932 /* read smi register */
3933 smi_reg = readl(priv->lms_base + MVPP2_SMI);
3934 if (timeout-- == 0) {
3935 printf("Error: SMI busy timeout\n");
3936 return -EFAULT;
3937 }
3938 } while (smi_reg & MVPP2_SMI_BUSY);
3939
3940 return 0;
3941 }
3942
3943 /*
3944 * mpp2_mdio_read - miiphy_read callback function.
3945 *
3946 * Returns 16bit phy register value, or 0xffff on error
3947 */
3948 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
3949 {
3950 struct mvpp2 *priv = bus->priv;
3951 u32 smi_reg;
3952 u32 timeout;
3953
3954 /* check parameters */
3955 if (addr > MVPP2_PHY_ADDR_MASK) {
3956 printf("Error: Invalid PHY address %d\n", addr);
3957 return -EFAULT;
3958 }
3959
3960 if (reg > MVPP2_PHY_REG_MASK) {
3961 printf("Err: Invalid register offset %d\n", reg);
3962 return -EFAULT;
3963 }
3964
3965 /* wait till the SMI is not busy */
3966 if (smi_wait_ready(priv) < 0)
3967 return -EFAULT;
3968
3969 /* fill the phy address and regiser offset and read opcode */
3970 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
3971 | (reg << MVPP2_SMI_REG_ADDR_OFFS)
3972 | MVPP2_SMI_OPCODE_READ;
3973
3974 /* write the smi register */
3975 writel(smi_reg, priv->lms_base + MVPP2_SMI);
3976
3977 /* wait till read value is ready */
3978 timeout = MVPP2_SMI_TIMEOUT;
3979
3980 do {
3981 /* read smi register */
3982 smi_reg = readl(priv->lms_base + MVPP2_SMI);
3983 if (timeout-- == 0) {
3984 printf("Err: SMI read ready timeout\n");
3985 return -EFAULT;
3986 }
3987 } while (!(smi_reg & MVPP2_SMI_READ_VALID));
3988
3989 /* Wait for the data to update in the SMI register */
3990 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
3991 ;
3992
3993 return readl(priv->lms_base + MVPP2_SMI) & MVPP2_SMI_DATA_MASK;
3994 }
3995
3996 /*
3997 * mpp2_mdio_write - miiphy_write callback function.
3998 *
3999 * Returns 0 if write succeed, -EINVAL on bad parameters
4000 * -ETIME on timeout
4001 */
4002 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
4003 u16 value)
4004 {
4005 struct mvpp2 *priv = bus->priv;
4006 u32 smi_reg;
4007
4008 /* check parameters */
4009 if (addr > MVPP2_PHY_ADDR_MASK) {
4010 printf("Error: Invalid PHY address %d\n", addr);
4011 return -EFAULT;
4012 }
4013
4014 if (reg > MVPP2_PHY_REG_MASK) {
4015 printf("Err: Invalid register offset %d\n", reg);
4016 return -EFAULT;
4017 }
4018
4019 /* wait till the SMI is not busy */
4020 if (smi_wait_ready(priv) < 0)
4021 return -EFAULT;
4022
4023 /* fill the phy addr and reg offset and write opcode and data */
4024 smi_reg = value << MVPP2_SMI_DATA_OFFS;
4025 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
4026 | (reg << MVPP2_SMI_REG_ADDR_OFFS);
4027 smi_reg &= ~MVPP2_SMI_OPCODE_READ;
4028
4029 /* write the smi register */
4030 writel(smi_reg, priv->lms_base + MVPP2_SMI);
4031
4032 return 0;
4033 }
4034
4035 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
4036 {
4037 struct mvpp2_port *port = dev_get_priv(dev);
4038 struct mvpp2_rx_desc *rx_desc;
4039 struct mvpp2_bm_pool *bm_pool;
4040 dma_addr_t dma_addr;
4041 u32 bm, rx_status;
4042 int pool, rx_bytes, err;
4043 int rx_received;
4044 struct mvpp2_rx_queue *rxq;
4045 u32 cause_rx_tx, cause_rx, cause_misc;
4046 u8 *data;
4047
4048 cause_rx_tx = mvpp2_read(port->priv,
4049 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
4050 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
4051 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
4052 if (!cause_rx_tx && !cause_misc)
4053 return 0;
4054
4055 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
4056
4057 /* Process RX packets */
4058 cause_rx |= port->pending_cause_rx;
4059 rxq = mvpp2_get_rx_queue(port, cause_rx);
4060
4061 /* Get number of received packets and clamp the to-do */
4062 rx_received = mvpp2_rxq_received(port, rxq->id);
4063
4064 /* Return if no packets are received */
4065 if (!rx_received)
4066 return 0;
4067
4068 rx_desc = mvpp2_rxq_next_desc_get(rxq);
4069 rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
4070 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
4071 rx_bytes -= MVPP2_MH_SIZE;
4072 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
4073
4074 bm = mvpp2_bm_cookie_build(port, rx_desc);
4075 pool = mvpp2_bm_cookie_pool_get(bm);
4076 bm_pool = &port->priv->bm_pools[pool];
4077
4078 /* In case of an error, release the requested buffer pointer
4079 * to the Buffer Manager. This request process is controlled
4080 * by the hardware, and the information about the buffer is
4081 * comprised by the RX descriptor.
4082 */
4083 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
4084 mvpp2_rx_error(port, rx_desc);
4085 /* Return the buffer to the pool */
4086 mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
4087 return 0;
4088 }
4089
4090 err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
4091 if (err) {
4092 netdev_err(port->dev, "failed to refill BM pools\n");
4093 return 0;
4094 }
4095
4096 /* Update Rx queue management counters */
4097 mb();
4098 mvpp2_rxq_status_update(port, rxq->id, 1, 1);
4099
4100 /* give packet to stack - skip on first n bytes */
4101 data = (u8 *)dma_addr + 2 + 32;
4102
4103 if (rx_bytes <= 0)
4104 return 0;
4105
4106 /*
4107 * No cache invalidation needed here, since the rx_buffer's are
4108 * located in a uncached memory region
4109 */
4110 *packetp = data;
4111
4112 return rx_bytes;
4113 }
4114
4115 /* Drain Txq */
4116 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4117 int enable)
4118 {
4119 u32 val;
4120
4121 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4122 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4123 if (enable)
4124 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4125 else
4126 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4127 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4128 }
4129
4130 static int mvpp2_send(struct udevice *dev, void *packet, int length)
4131 {
4132 struct mvpp2_port *port = dev_get_priv(dev);
4133 struct mvpp2_tx_queue *txq, *aggr_txq;
4134 struct mvpp2_tx_desc *tx_desc;
4135 int tx_done;
4136 int timeout;
4137
4138 txq = port->txqs[0];
4139 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
4140
4141 /* Get a descriptor for the first part of the packet */
4142 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
4143 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
4144 mvpp2_txdesc_size_set(port, tx_desc, length);
4145 mvpp2_txdesc_offset_set(port, tx_desc,
4146 (dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
4147 mvpp2_txdesc_dma_addr_set(port, tx_desc,
4148 (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
4149 /* First and Last descriptor */
4150 mvpp2_txdesc_cmd_set(port, tx_desc,
4151 MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
4152 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
4153
4154 /* Flush tx data */
4155 flush_dcache_range((unsigned long)packet,
4156 (unsigned long)packet + ALIGN(length, PKTALIGN));
4157
4158 /* Enable transmit */
4159 mb();
4160 mvpp2_aggr_txq_pend_desc_add(port, 1);
4161
4162 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4163
4164 timeout = 0;
4165 do {
4166 if (timeout++ > 10000) {
4167 printf("timeout: packet not sent from aggregated to phys TXQ\n");
4168 return 0;
4169 }
4170 tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
4171 } while (tx_done);
4172
4173 /* Enable TXQ drain */
4174 mvpp2_txq_drain(port, txq, 1);
4175
4176 timeout = 0;
4177 do {
4178 if (timeout++ > 10000) {
4179 printf("timeout: packet not sent\n");
4180 return 0;
4181 }
4182 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4183 } while (!tx_done);
4184
4185 /* Disable TXQ drain */
4186 mvpp2_txq_drain(port, txq, 0);
4187
4188 return 0;
4189 }
4190
4191 static int mvpp2_start(struct udevice *dev)
4192 {
4193 struct eth_pdata *pdata = dev_get_platdata(dev);
4194 struct mvpp2_port *port = dev_get_priv(dev);
4195
4196 /* Load current MAC address */
4197 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
4198
4199 /* Reconfigure parser accept the original MAC address */
4200 mvpp2_prs_update_mac_da(port, port->dev_addr);
4201
4202 mvpp2_port_power_up(port);
4203
4204 mvpp2_open(dev, port);
4205
4206 return 0;
4207 }
4208
4209 static void mvpp2_stop(struct udevice *dev)
4210 {
4211 struct mvpp2_port *port = dev_get_priv(dev);
4212
4213 mvpp2_stop_dev(port);
4214 mvpp2_cleanup_rxqs(port);
4215 mvpp2_cleanup_txqs(port);
4216 }
4217
4218 static int mvpp2_probe(struct udevice *dev)
4219 {
4220 struct mvpp2_port *port = dev_get_priv(dev);
4221 struct mvpp2 *priv = dev_get_priv(dev->parent);
4222 int err;
4223
4224 /* Initialize network controller */
4225 err = mvpp2_init(dev, priv);
4226 if (err < 0) {
4227 dev_err(&pdev->dev, "failed to initialize controller\n");
4228 return err;
4229 }
4230
4231 return mvpp2_port_probe(dev, port, dev_of_offset(dev), priv,
4232 &buffer_loc.first_rxq);
4233 }
4234
4235 static const struct eth_ops mvpp2_ops = {
4236 .start = mvpp2_start,
4237 .send = mvpp2_send,
4238 .recv = mvpp2_recv,
4239 .stop = mvpp2_stop,
4240 };
4241
4242 static struct driver mvpp2_driver = {
4243 .name = "mvpp2",
4244 .id = UCLASS_ETH,
4245 .probe = mvpp2_probe,
4246 .ops = &mvpp2_ops,
4247 .priv_auto_alloc_size = sizeof(struct mvpp2_port),
4248 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
4249 };
4250
4251 /*
4252 * Use a MISC device to bind the n instances (child nodes) of the
4253 * network base controller in UCLASS_ETH.
4254 */
4255 static int mvpp2_base_probe(struct udevice *dev)
4256 {
4257 struct mvpp2 *priv = dev_get_priv(dev);
4258 struct mii_dev *bus;
4259 void *bd_space;
4260 u32 size = 0;
4261 int i;
4262
4263 /* Save hw-version */
4264 priv->hw_version = dev_get_driver_data(dev);
4265
4266 /*
4267 * U-Boot special buffer handling:
4268 *
4269 * Allocate buffer area for descs and rx_buffers. This is only
4270 * done once for all interfaces. As only one interface can
4271 * be active. Make this area DMA-safe by disabling the D-cache
4272 */
4273
4274 /* Align buffer area for descs and rx_buffers to 1MiB */
4275 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
4276 mmu_set_region_dcache_behaviour((unsigned long)bd_space,
4277 BD_SPACE, DCACHE_OFF);
4278
4279 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
4280 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
4281
4282 buffer_loc.tx_descs =
4283 (struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
4284 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
4285
4286 buffer_loc.rx_descs =
4287 (struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
4288 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
4289
4290 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
4291 buffer_loc.bm_pool[i] =
4292 (unsigned long *)((unsigned long)bd_space + size);
4293 if (priv->hw_version == MVPP21)
4294 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
4295 else
4296 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
4297 }
4298
4299 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
4300 buffer_loc.rx_buffer[i] =
4301 (unsigned long *)((unsigned long)bd_space + size);
4302 size += RX_BUFFER_SIZE;
4303 }
4304
4305 /* Save base addresses for later use */
4306 priv->base = (void *)dev_get_addr_index(dev, 0);
4307 if (IS_ERR(priv->base))
4308 return PTR_ERR(priv->base);
4309
4310 priv->lms_base = (void *)dev_get_addr_index(dev, 1);
4311 if (IS_ERR(priv->lms_base))
4312 return PTR_ERR(priv->lms_base);
4313
4314 /* Finally create and register the MDIO bus driver */
4315 bus = mdio_alloc();
4316 if (!bus) {
4317 printf("Failed to allocate MDIO bus\n");
4318 return -ENOMEM;
4319 }
4320
4321 bus->read = mpp2_mdio_read;
4322 bus->write = mpp2_mdio_write;
4323 snprintf(bus->name, sizeof(bus->name), dev->name);
4324 bus->priv = (void *)priv;
4325 priv->bus = bus;
4326
4327 return mdio_register(bus);
4328 }
4329
4330 static int mvpp2_base_bind(struct udevice *parent)
4331 {
4332 const void *blob = gd->fdt_blob;
4333 int node = dev_of_offset(parent);
4334 struct uclass_driver *drv;
4335 struct udevice *dev;
4336 struct eth_pdata *plat;
4337 char *name;
4338 int subnode;
4339 u32 id;
4340
4341 /* Lookup eth driver */
4342 drv = lists_uclass_lookup(UCLASS_ETH);
4343 if (!drv) {
4344 puts("Cannot find eth driver\n");
4345 return -ENOENT;
4346 }
4347
4348 fdt_for_each_subnode(subnode, blob, node) {
4349 /* Skip disabled ports */
4350 if (!fdtdec_get_is_enabled(blob, subnode))
4351 continue;
4352
4353 plat = calloc(1, sizeof(*plat));
4354 if (!plat)
4355 return -ENOMEM;
4356
4357 id = fdtdec_get_int(blob, subnode, "port-id", -1);
4358
4359 name = calloc(1, 16);
4360 sprintf(name, "mvpp2-%d", id);
4361
4362 /* Create child device UCLASS_ETH and bind it */
4363 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
4364 dev_set_of_offset(dev, subnode);
4365 }
4366
4367 return 0;
4368 }
4369
4370 static const struct udevice_id mvpp2_ids[] = {
4371 {
4372 .compatible = "marvell,armada-375-pp2",
4373 .data = MVPP21,
4374 },
4375 { }
4376 };
4377
4378 U_BOOT_DRIVER(mvpp2_base) = {
4379 .name = "mvpp2_base",
4380 .id = UCLASS_MISC,
4381 .of_match = mvpp2_ids,
4382 .bind = mvpp2_base_bind,
4383 .probe = mvpp2_base_probe,
4384 .priv_auto_alloc_size = sizeof(struct mvpp2),
4385 };