]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/net/phy/phy.c
net: phy: Fix signed shift overflow
[thirdparty/u-boot.git] / drivers / net / phy / phy.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Generic PHY Management code
4 *
5 * Copyright 2011 Freescale Semiconductor, Inc.
6 * author Andy Fleming
7 *
8 * Based loosely off of Linux's PHY Lib
9 */
10 #include <common.h>
11 #include <console.h>
12 #include <dm.h>
13 #include <log.h>
14 #include <malloc.h>
15 #include <net.h>
16 #include <command.h>
17 #include <miiphy.h>
18 #include <phy.h>
19 #include <errno.h>
20 #include <asm/global_data.h>
21 #include <dm/of_extra.h>
22 #include <linux/bitops.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/compiler.h>
26
27 DECLARE_GLOBAL_DATA_PTR;
28
29 /* Generic PHY support and helper functions */
30
31 /**
32 * genphy_config_advert - sanitize and advertise auto-negotiation parameters
33 * @phydev: target phy_device struct
34 *
35 * Description: Writes MII_ADVERTISE with the appropriate values,
36 * after sanitizing the values to make sure we only advertise
37 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement
38 * hasn't changed, and > 0 if it has changed.
39 */
40 static int genphy_config_advert(struct phy_device *phydev)
41 {
42 u32 advertise;
43 int oldadv, adv, bmsr;
44 int err, changed = 0;
45
46 /* Only allow advertising what this PHY supports */
47 phydev->advertising &= phydev->supported;
48 advertise = phydev->advertising;
49
50 /* Setup standard advertisement */
51 adv = phy_read(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE);
52 oldadv = adv;
53
54 if (adv < 0)
55 return adv;
56
57 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP |
58 ADVERTISE_PAUSE_ASYM);
59 if (advertise & ADVERTISED_10baseT_Half)
60 adv |= ADVERTISE_10HALF;
61 if (advertise & ADVERTISED_10baseT_Full)
62 adv |= ADVERTISE_10FULL;
63 if (advertise & ADVERTISED_100baseT_Half)
64 adv |= ADVERTISE_100HALF;
65 if (advertise & ADVERTISED_100baseT_Full)
66 adv |= ADVERTISE_100FULL;
67 if (advertise & ADVERTISED_Pause)
68 adv |= ADVERTISE_PAUSE_CAP;
69 if (advertise & ADVERTISED_Asym_Pause)
70 adv |= ADVERTISE_PAUSE_ASYM;
71 if (advertise & ADVERTISED_1000baseX_Half)
72 adv |= ADVERTISE_1000XHALF;
73 if (advertise & ADVERTISED_1000baseX_Full)
74 adv |= ADVERTISE_1000XFULL;
75
76 if (adv != oldadv) {
77 err = phy_write(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE, adv);
78
79 if (err < 0)
80 return err;
81 changed = 1;
82 }
83
84 bmsr = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
85 if (bmsr < 0)
86 return bmsr;
87
88 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
89 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
90 * logical 1.
91 */
92 if (!(bmsr & BMSR_ESTATEN))
93 return changed;
94
95 /* Configure gigabit if it's supported */
96 adv = phy_read(phydev, MDIO_DEVAD_NONE, MII_CTRL1000);
97 oldadv = adv;
98
99 if (adv < 0)
100 return adv;
101
102 adv &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
103
104 if (phydev->supported & (SUPPORTED_1000baseT_Half |
105 SUPPORTED_1000baseT_Full)) {
106 if (advertise & SUPPORTED_1000baseT_Half)
107 adv |= ADVERTISE_1000HALF;
108 if (advertise & SUPPORTED_1000baseT_Full)
109 adv |= ADVERTISE_1000FULL;
110 }
111
112 if (adv != oldadv)
113 changed = 1;
114
115 err = phy_write(phydev, MDIO_DEVAD_NONE, MII_CTRL1000, adv);
116 if (err < 0)
117 return err;
118
119 return changed;
120 }
121
122 /**
123 * genphy_setup_forced - configures/forces speed/duplex from @phydev
124 * @phydev: target phy_device struct
125 *
126 * Description: Configures MII_BMCR to force speed/duplex
127 * to the values in phydev. Assumes that the values are valid.
128 */
129 static int genphy_setup_forced(struct phy_device *phydev)
130 {
131 int err;
132 int ctl = BMCR_ANRESTART;
133
134 phydev->pause = 0;
135 phydev->asym_pause = 0;
136
137 if (phydev->speed == SPEED_1000)
138 ctl |= BMCR_SPEED1000;
139 else if (phydev->speed == SPEED_100)
140 ctl |= BMCR_SPEED100;
141
142 if (phydev->duplex == DUPLEX_FULL)
143 ctl |= BMCR_FULLDPLX;
144
145 err = phy_write(phydev, MDIO_DEVAD_NONE, MII_BMCR, ctl);
146
147 return err;
148 }
149
150 /**
151 * genphy_restart_aneg - Enable and Restart Autonegotiation
152 * @phydev: target phy_device struct
153 */
154 int genphy_restart_aneg(struct phy_device *phydev)
155 {
156 int ctl;
157
158 ctl = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR);
159
160 if (ctl < 0)
161 return ctl;
162
163 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
164
165 /* Don't isolate the PHY if we're negotiating */
166 ctl &= ~(BMCR_ISOLATE);
167
168 ctl = phy_write(phydev, MDIO_DEVAD_NONE, MII_BMCR, ctl);
169
170 return ctl;
171 }
172
173 /**
174 * genphy_config_aneg - restart auto-negotiation or write BMCR
175 * @phydev: target phy_device struct
176 *
177 * Description: If auto-negotiation is enabled, we configure the
178 * advertising, and then restart auto-negotiation. If it is not
179 * enabled, then we write the BMCR.
180 */
181 int genphy_config_aneg(struct phy_device *phydev)
182 {
183 int result;
184
185 if (phydev->autoneg != AUTONEG_ENABLE)
186 return genphy_setup_forced(phydev);
187
188 result = genphy_config_advert(phydev);
189
190 if (result < 0) /* error */
191 return result;
192
193 if (result == 0) {
194 /*
195 * Advertisment hasn't changed, but maybe aneg was never on to
196 * begin with? Or maybe phy was isolated?
197 */
198 int ctl = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR);
199
200 if (ctl < 0)
201 return ctl;
202
203 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
204 result = 1; /* do restart aneg */
205 }
206
207 /*
208 * Only restart aneg if we are advertising something different
209 * than we were before.
210 */
211 if (result > 0)
212 result = genphy_restart_aneg(phydev);
213
214 return result;
215 }
216
217 /**
218 * genphy_update_link - update link status in @phydev
219 * @phydev: target phy_device struct
220 *
221 * Description: Update the value in phydev->link to reflect the
222 * current link value. In order to do this, we need to read
223 * the status register twice, keeping the second value.
224 */
225 int genphy_update_link(struct phy_device *phydev)
226 {
227 unsigned int mii_reg;
228
229 /*
230 * Wait if the link is up, and autonegotiation is in progress
231 * (ie - we're capable and it's not done)
232 */
233 mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
234
235 /*
236 * If we already saw the link up, and it hasn't gone down, then
237 * we don't need to wait for autoneg again
238 */
239 if (phydev->link && mii_reg & BMSR_LSTATUS)
240 return 0;
241
242 if ((phydev->autoneg == AUTONEG_ENABLE) &&
243 !(mii_reg & BMSR_ANEGCOMPLETE)) {
244 int i = 0;
245
246 printf("%s Waiting for PHY auto negotiation to complete",
247 phydev->dev->name);
248 while (!(mii_reg & BMSR_ANEGCOMPLETE)) {
249 /*
250 * Timeout reached ?
251 */
252 if (i > (PHY_ANEG_TIMEOUT / 50)) {
253 printf(" TIMEOUT !\n");
254 phydev->link = 0;
255 return -ETIMEDOUT;
256 }
257
258 if (ctrlc()) {
259 puts("user interrupt!\n");
260 phydev->link = 0;
261 return -EINTR;
262 }
263
264 if ((i++ % 10) == 0)
265 printf(".");
266
267 mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
268 mdelay(50); /* 50 ms */
269 }
270 printf(" done\n");
271 phydev->link = 1;
272 } else {
273 /* Read the link a second time to clear the latched state */
274 mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
275
276 if (mii_reg & BMSR_LSTATUS)
277 phydev->link = 1;
278 else
279 phydev->link = 0;
280 }
281
282 return 0;
283 }
284
285 /*
286 * Generic function which updates the speed and duplex. If
287 * autonegotiation is enabled, it uses the AND of the link
288 * partner's advertised capabilities and our advertised
289 * capabilities. If autonegotiation is disabled, we use the
290 * appropriate bits in the control register.
291 *
292 * Stolen from Linux's mii.c and phy_device.c
293 */
294 int genphy_parse_link(struct phy_device *phydev)
295 {
296 int mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
297
298 /* We're using autonegotiation */
299 if (phydev->autoneg == AUTONEG_ENABLE) {
300 u32 lpa = 0;
301 int gblpa = 0;
302 u32 estatus = 0;
303
304 /* Check for gigabit capability */
305 if (phydev->supported & (SUPPORTED_1000baseT_Full |
306 SUPPORTED_1000baseT_Half)) {
307 /* We want a list of states supported by
308 * both PHYs in the link
309 */
310 gblpa = phy_read(phydev, MDIO_DEVAD_NONE, MII_STAT1000);
311 if (gblpa < 0) {
312 debug("Could not read MII_STAT1000. ");
313 debug("Ignoring gigabit capability\n");
314 gblpa = 0;
315 }
316 gblpa &= phy_read(phydev,
317 MDIO_DEVAD_NONE, MII_CTRL1000) << 2;
318 }
319
320 /* Set the baseline so we only have to set them
321 * if they're different
322 */
323 phydev->speed = SPEED_10;
324 phydev->duplex = DUPLEX_HALF;
325
326 /* Check the gigabit fields */
327 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
328 phydev->speed = SPEED_1000;
329
330 if (gblpa & PHY_1000BTSR_1000FD)
331 phydev->duplex = DUPLEX_FULL;
332
333 /* We're done! */
334 return 0;
335 }
336
337 lpa = phy_read(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE);
338 lpa &= phy_read(phydev, MDIO_DEVAD_NONE, MII_LPA);
339
340 if (lpa & (LPA_100FULL | LPA_100HALF)) {
341 phydev->speed = SPEED_100;
342
343 if (lpa & LPA_100FULL)
344 phydev->duplex = DUPLEX_FULL;
345
346 } else if (lpa & LPA_10FULL) {
347 phydev->duplex = DUPLEX_FULL;
348 }
349
350 /*
351 * Extended status may indicate that the PHY supports
352 * 1000BASE-T/X even though the 1000BASE-T registers
353 * are missing. In this case we can't tell whether the
354 * peer also supports it, so we only check extended
355 * status if the 1000BASE-T registers are actually
356 * missing.
357 */
358 if ((mii_reg & BMSR_ESTATEN) && !(mii_reg & BMSR_ERCAP))
359 estatus = phy_read(phydev, MDIO_DEVAD_NONE,
360 MII_ESTATUS);
361
362 if (estatus & (ESTATUS_1000_XFULL | ESTATUS_1000_XHALF |
363 ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
364 phydev->speed = SPEED_1000;
365 if (estatus & (ESTATUS_1000_XFULL | ESTATUS_1000_TFULL))
366 phydev->duplex = DUPLEX_FULL;
367 }
368
369 } else {
370 u32 bmcr = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR);
371
372 phydev->speed = SPEED_10;
373 phydev->duplex = DUPLEX_HALF;
374
375 if (bmcr & BMCR_FULLDPLX)
376 phydev->duplex = DUPLEX_FULL;
377
378 if (bmcr & BMCR_SPEED1000)
379 phydev->speed = SPEED_1000;
380 else if (bmcr & BMCR_SPEED100)
381 phydev->speed = SPEED_100;
382 }
383
384 return 0;
385 }
386
387 int genphy_config(struct phy_device *phydev)
388 {
389 int val;
390 u32 features;
391
392 features = (SUPPORTED_TP | SUPPORTED_MII
393 | SUPPORTED_AUI | SUPPORTED_FIBRE |
394 SUPPORTED_BNC);
395
396 /* Do we support autonegotiation? */
397 val = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
398
399 if (val < 0)
400 return val;
401
402 if (val & BMSR_ANEGCAPABLE)
403 features |= SUPPORTED_Autoneg;
404
405 if (val & BMSR_100FULL)
406 features |= SUPPORTED_100baseT_Full;
407 if (val & BMSR_100HALF)
408 features |= SUPPORTED_100baseT_Half;
409 if (val & BMSR_10FULL)
410 features |= SUPPORTED_10baseT_Full;
411 if (val & BMSR_10HALF)
412 features |= SUPPORTED_10baseT_Half;
413
414 if (val & BMSR_ESTATEN) {
415 val = phy_read(phydev, MDIO_DEVAD_NONE, MII_ESTATUS);
416
417 if (val < 0)
418 return val;
419
420 if (val & ESTATUS_1000_TFULL)
421 features |= SUPPORTED_1000baseT_Full;
422 if (val & ESTATUS_1000_THALF)
423 features |= SUPPORTED_1000baseT_Half;
424 if (val & ESTATUS_1000_XFULL)
425 features |= SUPPORTED_1000baseX_Full;
426 if (val & ESTATUS_1000_XHALF)
427 features |= SUPPORTED_1000baseX_Half;
428 }
429
430 phydev->supported &= features;
431 phydev->advertising &= features;
432
433 genphy_config_aneg(phydev);
434
435 return 0;
436 }
437
438 int genphy_startup(struct phy_device *phydev)
439 {
440 int ret;
441
442 ret = genphy_update_link(phydev);
443 if (ret)
444 return ret;
445
446 return genphy_parse_link(phydev);
447 }
448
449 int genphy_shutdown(struct phy_device *phydev)
450 {
451 return 0;
452 }
453
454 U_BOOT_PHY_DRIVER(genphy) = {
455 .uid = 0xffffffff,
456 .mask = 0xffffffff,
457 .name = "Generic PHY",
458 .features = PHY_GBIT_FEATURES | SUPPORTED_MII |
459 SUPPORTED_AUI | SUPPORTED_FIBRE |
460 SUPPORTED_BNC,
461 .config = genphy_config,
462 .startup = genphy_startup,
463 .shutdown = genphy_shutdown,
464 };
465
466 int phy_set_supported(struct phy_device *phydev, u32 max_speed)
467 {
468 /* The default values for phydev->supported are provided by the PHY
469 * driver "features" member, we want to reset to sane defaults first
470 * before supporting higher speeds.
471 */
472 phydev->supported &= PHY_DEFAULT_FEATURES;
473
474 switch (max_speed) {
475 default:
476 return -ENOTSUPP;
477 case SPEED_1000:
478 phydev->supported |= PHY_1000BT_FEATURES;
479 /* fall through */
480 case SPEED_100:
481 phydev->supported |= PHY_100BT_FEATURES;
482 /* fall through */
483 case SPEED_10:
484 phydev->supported |= PHY_10BT_FEATURES;
485 }
486
487 return 0;
488 }
489
490 static int phy_probe(struct phy_device *phydev)
491 {
492 int err = 0;
493
494 phydev->advertising = phydev->drv->features;
495 phydev->supported = phydev->drv->features;
496
497 phydev->mmds = phydev->drv->mmds;
498
499 if (phydev->drv->probe)
500 err = phydev->drv->probe(phydev);
501
502 return err;
503 }
504
505 static struct phy_driver *generic_for_phy(struct phy_device *phydev)
506 {
507 #ifdef CONFIG_PHYLIB_10G
508 if (phydev->is_c45)
509 return ll_entry_get(struct phy_driver, gen10g, phy_driver);
510 #endif
511
512 return ll_entry_get(struct phy_driver, genphy, phy_driver);
513 }
514
515 static struct phy_driver *get_phy_driver(struct phy_device *phydev)
516 {
517 const int ll_n_ents = ll_entry_count(struct phy_driver, phy_driver);
518 int phy_id = phydev->phy_id;
519 struct phy_driver *ll_entry;
520 struct phy_driver *drv;
521
522 ll_entry = ll_entry_start(struct phy_driver, phy_driver);
523 for (drv = ll_entry; drv != ll_entry + ll_n_ents; drv++)
524 if ((drv->uid & drv->mask) == (phy_id & drv->mask))
525 return drv;
526
527 /* If we made it here, there's no driver for this PHY */
528 return generic_for_phy(phydev);
529 }
530
531 struct phy_device *phy_device_create(struct mii_dev *bus, int addr,
532 u32 phy_id, bool is_c45)
533 {
534 struct phy_device *dev;
535
536 /*
537 * We allocate the device, and initialize the
538 * default values
539 */
540 dev = malloc(sizeof(*dev));
541 if (!dev) {
542 printf("Failed to allocate PHY device for %s:%d\n",
543 bus ? bus->name : "(null bus)", addr);
544 return NULL;
545 }
546
547 memset(dev, 0, sizeof(*dev));
548
549 dev->duplex = -1;
550 dev->link = 0;
551 dev->interface = PHY_INTERFACE_MODE_NA;
552
553 dev->node = ofnode_null();
554
555 dev->autoneg = AUTONEG_ENABLE;
556
557 dev->addr = addr;
558 dev->phy_id = phy_id;
559 dev->is_c45 = is_c45;
560 dev->bus = bus;
561
562 dev->drv = get_phy_driver(dev);
563
564 if (phy_probe(dev)) {
565 printf("%s, PHY probe failed\n", __func__);
566 return NULL;
567 }
568
569 if (addr >= 0 && addr < PHY_MAX_ADDR && phy_id != PHY_FIXED_ID)
570 bus->phymap[addr] = dev;
571
572 return dev;
573 }
574
575 /**
576 * get_phy_id - reads the specified addr for its ID.
577 * @bus: the target MII bus
578 * @addr: PHY address on the MII bus
579 * @phy_id: where to store the ID retrieved.
580 *
581 * Description: Reads the ID registers of the PHY at @addr on the
582 * @bus, stores it in @phy_id and returns zero on success.
583 */
584 int __weak get_phy_id(struct mii_dev *bus, int addr, int devad, u32 *phy_id)
585 {
586 int phy_reg;
587
588 /*
589 * Grab the bits from PHYIR1, and put them
590 * in the upper half
591 */
592 phy_reg = bus->read(bus, addr, devad, MII_PHYSID1);
593
594 if (phy_reg < 0)
595 return -EIO;
596
597 *phy_id = (phy_reg & 0xffff) << 16;
598
599 /* Grab the bits from PHYIR2, and put them in the lower half */
600 phy_reg = bus->read(bus, addr, devad, MII_PHYSID2);
601
602 if (phy_reg < 0)
603 return -EIO;
604
605 *phy_id |= (phy_reg & 0xffff);
606
607 return 0;
608 }
609
610 static struct phy_device *create_phy_by_mask(struct mii_dev *bus,
611 uint phy_mask, int devad)
612 {
613 u32 phy_id = 0xffffffff;
614 bool is_c45;
615
616 while (phy_mask) {
617 int addr = ffs(phy_mask) - 1;
618 int r = get_phy_id(bus, addr, devad, &phy_id);
619
620 /*
621 * If the PHY ID is flat 0 we ignore it. There are C45 PHYs
622 * that return all 0s for C22 reads (like Aquantia AQR112) and
623 * there are C22 PHYs that return all 0s for C45 reads (like
624 * Atheros AR8035).
625 */
626 if (r == 0 && phy_id == 0)
627 goto next;
628
629 /* If the PHY ID is mostly f's, we didn't find anything */
630 if (r == 0 && (phy_id & 0x1fffffff) != 0x1fffffff) {
631 is_c45 = (devad == MDIO_DEVAD_NONE) ? false : true;
632 return phy_device_create(bus, addr, phy_id, is_c45);
633 }
634 next:
635 phy_mask &= ~(1 << addr);
636 }
637 return NULL;
638 }
639
640 static struct phy_device *search_for_existing_phy(struct mii_dev *bus,
641 uint phy_mask)
642 {
643 /* If we have one, return the existing device, with new interface */
644 while (phy_mask) {
645 unsigned int addr = ffs(phy_mask) - 1;
646
647 if (bus->phymap[addr])
648 return bus->phymap[addr];
649
650 phy_mask &= ~(1U << addr);
651 }
652 return NULL;
653 }
654
655 static struct phy_device *get_phy_device_by_mask(struct mii_dev *bus,
656 uint phy_mask)
657 {
658 struct phy_device *phydev;
659 int devad[] = {
660 /* Clause-22 */
661 MDIO_DEVAD_NONE,
662 /* Clause-45 */
663 MDIO_MMD_PMAPMD,
664 MDIO_MMD_WIS,
665 MDIO_MMD_PCS,
666 MDIO_MMD_PHYXS,
667 MDIO_MMD_VEND1,
668 };
669 int i, devad_cnt;
670
671 devad_cnt = sizeof(devad)/sizeof(int);
672 phydev = search_for_existing_phy(bus, phy_mask);
673 if (phydev)
674 return phydev;
675 /* try different access clauses */
676 for (i = 0; i < devad_cnt; i++) {
677 phydev = create_phy_by_mask(bus, phy_mask, devad[i]);
678 if (IS_ERR(phydev))
679 return NULL;
680 if (phydev)
681 return phydev;
682 }
683
684 debug("\n%s PHY: ", bus->name);
685 while (phy_mask) {
686 int addr = ffs(phy_mask) - 1;
687
688 debug("%d ", addr);
689 phy_mask &= ~(1 << addr);
690 }
691 debug("not found\n");
692
693 return NULL;
694 }
695
696 /**
697 * get_phy_device - reads the specified PHY device and returns its
698 * @phy_device struct
699 * @bus: the target MII bus
700 * @addr: PHY address on the MII bus
701 *
702 * Description: Reads the ID registers of the PHY at @addr on the
703 * @bus, then allocates and returns the phy_device to represent it.
704 */
705 static struct phy_device *get_phy_device(struct mii_dev *bus, int addr)
706 {
707 return get_phy_device_by_mask(bus, 1 << addr);
708 }
709
710 int phy_reset(struct phy_device *phydev)
711 {
712 int reg;
713 int timeout = 500;
714 int devad = MDIO_DEVAD_NONE;
715
716 if (phydev->flags & PHY_FLAG_BROKEN_RESET)
717 return 0;
718
719 #ifdef CONFIG_PHYLIB_10G
720 /* If it's 10G, we need to issue reset through one of the MMDs */
721 if (phydev->is_c45) {
722 if (!phydev->mmds)
723 gen10g_discover_mmds(phydev);
724
725 devad = ffs(phydev->mmds) - 1;
726 }
727 #endif
728
729 if (phy_write(phydev, devad, MII_BMCR, BMCR_RESET) < 0) {
730 debug("PHY reset failed\n");
731 return -1;
732 }
733
734 #if CONFIG_PHY_RESET_DELAY > 0
735 udelay(CONFIG_PHY_RESET_DELAY); /* Intel LXT971A needs this */
736 #endif
737 /*
738 * Poll the control register for the reset bit to go to 0 (it is
739 * auto-clearing). This should happen within 0.5 seconds per the
740 * IEEE spec.
741 */
742 reg = phy_read(phydev, devad, MII_BMCR);
743 while ((reg & BMCR_RESET) && timeout--) {
744 reg = phy_read(phydev, devad, MII_BMCR);
745
746 if (reg < 0) {
747 debug("PHY status read failed\n");
748 return -1;
749 }
750 udelay(1000);
751 }
752
753 if (reg & BMCR_RESET) {
754 puts("PHY reset timed out\n");
755 return -1;
756 }
757
758 return 0;
759 }
760
761 int miiphy_reset(const char *devname, unsigned char addr)
762 {
763 struct mii_dev *bus = miiphy_get_dev_by_name(devname);
764 struct phy_device *phydev;
765
766 phydev = get_phy_device(bus, addr);
767
768 return phy_reset(phydev);
769 }
770
771 struct phy_device *phy_find_by_mask(struct mii_dev *bus, uint phy_mask)
772 {
773 /* Reset the bus */
774 if (bus->reset) {
775 bus->reset(bus);
776
777 /* Wait 15ms to make sure the PHY has come out of hard reset */
778 mdelay(15);
779 }
780
781 return get_phy_device_by_mask(bus, phy_mask);
782 }
783
784 static void phy_connect_dev(struct phy_device *phydev, struct udevice *dev,
785 phy_interface_t interface)
786 {
787 /* Soft Reset the PHY */
788 phy_reset(phydev);
789 if (phydev->dev && phydev->dev != dev) {
790 printf("%s:%d is connected to %s. Reconnecting to %s\n",
791 phydev->bus->name, phydev->addr,
792 phydev->dev->name, dev->name);
793 }
794 phydev->dev = dev;
795 phydev->interface = interface;
796 debug("%s connected to %s mode %s\n", dev->name, phydev->drv->name,
797 phy_string_for_interface(interface));
798 }
799
800 #ifdef CONFIG_PHY_XILINX_GMII2RGMII
801 static struct phy_device *phy_connect_gmii2rgmii(struct mii_dev *bus,
802 struct udevice *dev)
803 {
804 struct phy_device *phydev = NULL;
805 ofnode node;
806
807 ofnode_for_each_subnode(node, dev_ofnode(dev)) {
808 node = ofnode_by_compatible(node, "xlnx,gmii-to-rgmii-1.0");
809 if (ofnode_valid(node)) {
810 int gmiirgmii_phyaddr;
811
812 gmiirgmii_phyaddr = ofnode_read_u32_default(node, "reg", 0);
813 phydev = phy_device_create(bus, gmiirgmii_phyaddr,
814 PHY_GMII2RGMII_ID, false);
815 if (phydev)
816 phydev->node = node;
817 break;
818 }
819
820 node = ofnode_first_subnode(node);
821 }
822
823 return phydev;
824 }
825 #endif
826
827 #ifdef CONFIG_PHY_FIXED
828 /**
829 * fixed_phy_create() - create an unconnected fixed-link pseudo-PHY device
830 * @node: OF node for the container of the fixed-link node
831 *
832 * Description: Creates a struct phy_device based on a fixed-link of_node
833 * description. Can be used without phy_connect by drivers which do not expose
834 * a UCLASS_ETH udevice.
835 */
836 struct phy_device *fixed_phy_create(ofnode node)
837 {
838 struct phy_device *phydev;
839 ofnode subnode;
840
841 subnode = ofnode_find_subnode(node, "fixed-link");
842 if (!ofnode_valid(subnode)) {
843 return NULL;
844 }
845
846 phydev = phy_device_create(NULL, 0, PHY_FIXED_ID, false);
847 if (phydev) {
848 phydev->node = subnode;
849 phydev->interface = ofnode_read_phy_mode(node);
850 }
851
852 return phydev;
853 }
854
855 static struct phy_device *phy_connect_fixed(struct mii_dev *bus,
856 struct udevice *dev)
857 {
858 ofnode node = dev_ofnode(dev), subnode;
859 struct phy_device *phydev = NULL;
860
861 if (ofnode_phy_is_fixed_link(node, &subnode)) {
862 phydev = phy_device_create(bus, 0, PHY_FIXED_ID, false);
863 if (phydev)
864 phydev->node = subnode;
865 }
866
867 return phydev;
868 }
869 #endif
870
871 struct phy_device *phy_connect(struct mii_dev *bus, int addr,
872 struct udevice *dev,
873 phy_interface_t interface)
874 {
875 struct phy_device *phydev = NULL;
876 uint mask = (addr >= 0) ? (1 << addr) : 0xffffffff;
877
878 #ifdef CONFIG_PHY_FIXED
879 phydev = phy_connect_fixed(bus, dev);
880 #endif
881
882 #ifdef CONFIG_PHY_NCSI
883 if (!phydev && interface == PHY_INTERFACE_MODE_NCSI)
884 phydev = phy_device_create(bus, 0, PHY_NCSI_ID, false);
885 #endif
886
887 #ifdef CONFIG_PHY_ETHERNET_ID
888 if (!phydev)
889 phydev = phy_connect_phy_id(bus, dev, addr);
890 #endif
891
892 #ifdef CONFIG_PHY_XILINX_GMII2RGMII
893 if (!phydev)
894 phydev = phy_connect_gmii2rgmii(bus, dev);
895 #endif
896
897 if (!phydev)
898 phydev = phy_find_by_mask(bus, mask);
899
900 if (phydev)
901 phy_connect_dev(phydev, dev, interface);
902 else
903 printf("Could not get PHY for %s: addr %d\n", bus->name, addr);
904 return phydev;
905 }
906
907 /*
908 * Start the PHY. Returns 0 on success, or a negative error code.
909 */
910 int phy_startup(struct phy_device *phydev)
911 {
912 if (phydev->drv->startup)
913 return phydev->drv->startup(phydev);
914
915 return 0;
916 }
917
918 __weak int board_phy_config(struct phy_device *phydev)
919 {
920 if (phydev->drv->config)
921 return phydev->drv->config(phydev);
922 return 0;
923 }
924
925 int phy_config(struct phy_device *phydev)
926 {
927 /* Invoke an optional board-specific helper */
928 return board_phy_config(phydev);
929 }
930
931 int phy_shutdown(struct phy_device *phydev)
932 {
933 if (phydev->drv->shutdown)
934 phydev->drv->shutdown(phydev);
935
936 return 0;
937 }
938
939 /**
940 * phy_modify - Convenience function for modifying a given PHY register
941 * @phydev: the phy_device struct
942 * @devad: The MMD to read from
943 * @regnum: register number to write
944 * @mask: bit mask of bits to clear
945 * @set: new value of bits set in mask to write to @regnum
946 */
947 int phy_modify(struct phy_device *phydev, int devad, int regnum, u16 mask,
948 u16 set)
949 {
950 int ret;
951
952 ret = phy_read(phydev, devad, regnum);
953 if (ret < 0)
954 return ret;
955
956 return phy_write(phydev, devad, regnum, (ret & ~mask) | set);
957 }
958
959 /**
960 * phy_read - Convenience function for reading a given PHY register
961 * @phydev: the phy_device struct
962 * @devad: The MMD to read from
963 * @regnum: register number to read
964 * @return: value for success or negative errno for failure
965 */
966 int phy_read(struct phy_device *phydev, int devad, int regnum)
967 {
968 struct mii_dev *bus = phydev->bus;
969
970 if (!bus || !bus->read) {
971 debug("%s: No bus configured\n", __func__);
972 return -1;
973 }
974
975 return bus->read(bus, phydev->addr, devad, regnum);
976 }
977
978 /**
979 * phy_write - Convenience function for writing a given PHY register
980 * @phydev: the phy_device struct
981 * @devad: The MMD to read from
982 * @regnum: register number to write
983 * @val: value to write to @regnum
984 * @return: 0 for success or negative errno for failure
985 */
986 int phy_write(struct phy_device *phydev, int devad, int regnum, u16 val)
987 {
988 struct mii_dev *bus = phydev->bus;
989
990 if (!bus || !bus->write) {
991 debug("%s: No bus configured\n", __func__);
992 return -1;
993 }
994
995 return bus->write(bus, phydev->addr, devad, regnum, val);
996 }
997
998 /**
999 * phy_mmd_start_indirect - Convenience function for writing MMD registers
1000 * @phydev: the phy_device struct
1001 * @devad: The MMD to read from
1002 * @regnum: register number to write
1003 * @return: None
1004 */
1005 void phy_mmd_start_indirect(struct phy_device *phydev, int devad, int regnum)
1006 {
1007 /* Write the desired MMD Devad */
1008 phy_write(phydev, MDIO_DEVAD_NONE, MII_MMD_CTRL, devad);
1009
1010 /* Write the desired MMD register address */
1011 phy_write(phydev, MDIO_DEVAD_NONE, MII_MMD_DATA, regnum);
1012
1013 /* Select the Function : DATA with no post increment */
1014 phy_write(phydev, MDIO_DEVAD_NONE, MII_MMD_CTRL,
1015 (devad | MII_MMD_CTRL_NOINCR));
1016 }
1017
1018 /**
1019 * phy_read_mmd - Convenience function for reading a register
1020 * from an MMD on a given PHY.
1021 * @phydev: The phy_device struct
1022 * @devad: The MMD to read from
1023 * @regnum: The register on the MMD to read
1024 * @return: Value for success or negative errno for failure
1025 */
1026 int phy_read_mmd(struct phy_device *phydev, int devad, int regnum)
1027 {
1028 struct phy_driver *drv = phydev->drv;
1029
1030 if (regnum > (u16)~0 || devad > 32)
1031 return -EINVAL;
1032
1033 /* driver-specific access */
1034 if (drv->read_mmd)
1035 return drv->read_mmd(phydev, devad, regnum);
1036
1037 /* direct C45 / C22 access */
1038 if ((drv->features & PHY_10G_FEATURES) == PHY_10G_FEATURES ||
1039 devad == MDIO_DEVAD_NONE || !devad)
1040 return phy_read(phydev, devad, regnum);
1041
1042 /* indirect C22 access */
1043 phy_mmd_start_indirect(phydev, devad, regnum);
1044
1045 /* Read the content of the MMD's selected register */
1046 return phy_read(phydev, MDIO_DEVAD_NONE, MII_MMD_DATA);
1047 }
1048
1049 /**
1050 * phy_write_mmd - Convenience function for writing a register
1051 * on an MMD on a given PHY.
1052 * @phydev: The phy_device struct
1053 * @devad: The MMD to read from
1054 * @regnum: The register on the MMD to read
1055 * @val: value to write to @regnum
1056 * @return: 0 for success or negative errno for failure
1057 */
1058 int phy_write_mmd(struct phy_device *phydev, int devad, int regnum, u16 val)
1059 {
1060 struct phy_driver *drv = phydev->drv;
1061
1062 if (regnum > (u16)~0 || devad > 32)
1063 return -EINVAL;
1064
1065 /* driver-specific access */
1066 if (drv->write_mmd)
1067 return drv->write_mmd(phydev, devad, regnum, val);
1068
1069 /* direct C45 / C22 access */
1070 if ((drv->features & PHY_10G_FEATURES) == PHY_10G_FEATURES ||
1071 devad == MDIO_DEVAD_NONE || !devad)
1072 return phy_write(phydev, devad, regnum, val);
1073
1074 /* indirect C22 access */
1075 phy_mmd_start_indirect(phydev, devad, regnum);
1076
1077 /* Write the data into MMD's selected register */
1078 return phy_write(phydev, MDIO_DEVAD_NONE, MII_MMD_DATA, val);
1079 }
1080
1081 /**
1082 * phy_set_bits_mmd - Convenience function for setting bits in a register
1083 * on MMD
1084 * @phydev: the phy_device struct
1085 * @devad: the MMD containing register to modify
1086 * @regnum: register number to modify
1087 * @val: bits to set
1088 * @return: 0 for success or negative errno for failure
1089 */
1090 int phy_set_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val)
1091 {
1092 int value, ret;
1093
1094 value = phy_read_mmd(phydev, devad, regnum);
1095 if (value < 0)
1096 return value;
1097
1098 value |= val;
1099
1100 ret = phy_write_mmd(phydev, devad, regnum, value);
1101 if (ret < 0)
1102 return ret;
1103
1104 return 0;
1105 }
1106
1107 /**
1108 * phy_clear_bits_mmd - Convenience function for clearing bits in a register
1109 * on MMD
1110 * @phydev: the phy_device struct
1111 * @devad: the MMD containing register to modify
1112 * @regnum: register number to modify
1113 * @val: bits to clear
1114 * @return: 0 for success or negative errno for failure
1115 */
1116 int phy_clear_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val)
1117 {
1118 int value, ret;
1119
1120 value = phy_read_mmd(phydev, devad, regnum);
1121 if (value < 0)
1122 return value;
1123
1124 value &= ~val;
1125
1126 ret = phy_write_mmd(phydev, devad, regnum, value);
1127 if (ret < 0)
1128 return ret;
1129
1130 return 0;
1131 }
1132
1133 /**
1134 * phy_modify_mmd_changed - Function for modifying a register on MMD
1135 * @phydev: the phy_device struct
1136 * @devad: the MMD containing register to modify
1137 * @regnum: register number to modify
1138 * @mask: bit mask of bits to clear
1139 * @set: new value of bits set in mask to write to @regnum
1140 *
1141 * NOTE: MUST NOT be called from interrupt context,
1142 * because the bus read/write functions may wait for an interrupt
1143 * to conclude the operation.
1144 *
1145 * Returns negative errno, 0 if there was no change, and 1 in case of change
1146 */
1147 int phy_modify_mmd_changed(struct phy_device *phydev, int devad, u32 regnum,
1148 u16 mask, u16 set)
1149 {
1150 int new, ret;
1151
1152 ret = phy_read_mmd(phydev, devad, regnum);
1153 if (ret < 0)
1154 return ret;
1155
1156 new = (ret & ~mask) | set;
1157 if (new == ret)
1158 return 0;
1159
1160 ret = phy_write_mmd(phydev, devad, regnum, new);
1161
1162 return ret < 0 ? ret : 1;
1163 }
1164
1165 /**
1166 * phy_modify_mmd - Convenience function for modifying a register on MMD
1167 * @phydev: the phy_device struct
1168 * @devad: the MMD containing register to modify
1169 * @regnum: register number to modify
1170 * @mask: bit mask of bits to clear
1171 * @set: new value of bits set in mask to write to @regnum
1172 *
1173 * NOTE: MUST NOT be called from interrupt context,
1174 * because the bus read/write functions may wait for an interrupt
1175 * to conclude the operation.
1176 */
1177 int phy_modify_mmd(struct phy_device *phydev, int devad, u32 regnum,
1178 u16 mask, u16 set)
1179 {
1180 int ret;
1181
1182 ret = phy_modify_mmd_changed(phydev, devad, regnum, mask, set);
1183
1184 return ret < 0 ? ret : 0;
1185 }
1186
1187 bool phy_interface_is_ncsi(void)
1188 {
1189 #ifdef CONFIG_PHY_NCSI
1190 struct eth_pdata *pdata = dev_get_plat(eth_get_dev());
1191
1192 return pdata->phy_interface == PHY_INTERFACE_MODE_NCSI;
1193 #else
1194 return 0;
1195 #endif
1196 }