]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/rtl8169.c
Merge git://git.denx.de/u-boot-rockchip
[people/ms/u-boot.git] / drivers / net / rtl8169.c
1 /*
2 * rtl8169.c : U-Boot driver for the RealTek RTL8169
3 *
4 * Masami Komiya (mkomiya@sonare.it)
5 *
6 * Most part is taken from r8169.c of etherboot
7 *
8 */
9
10 /**************************************************************************
11 * r8169.c: Etherboot device driver for the RealTek RTL-8169 Gigabit
12 * Written 2003 by Timothy Legge <tlegge@rogers.com>
13 *
14 * SPDX-License-Identifier: GPL-2.0+
15 *
16 * Portions of this code based on:
17 * r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver
18 * for Linux kernel 2.4.x.
19 *
20 * Written 2002 ShuChen <shuchen@realtek.com.tw>
21 * See Linux Driver for full information
22 *
23 * Linux Driver Version 1.27a, 10.02.2002
24 *
25 * Thanks to:
26 * Jean Chen of RealTek Semiconductor Corp. for
27 * providing the evaluation NIC used to develop
28 * this driver. RealTek's support for Etherboot
29 * is appreciated.
30 *
31 * REVISION HISTORY:
32 * ================
33 *
34 * v1.0 11-26-2003 timlegge Initial port of Linux driver
35 * v1.5 01-17-2004 timlegge Initial driver output cleanup
36 *
37 * Indent Options: indent -kr -i8
38 ***************************************************************************/
39 /*
40 * 26 August 2006 Mihai Georgian <u-boot@linuxnotincluded.org.uk>
41 * Modified to use le32_to_cpu and cpu_to_le32 properly
42 */
43 #include <common.h>
44 #include <dm.h>
45 #include <errno.h>
46 #include <malloc.h>
47 #include <memalign.h>
48 #include <net.h>
49 #ifndef CONFIG_DM_ETH
50 #include <netdev.h>
51 #endif
52 #include <asm/io.h>
53 #include <pci.h>
54
55 #undef DEBUG_RTL8169
56 #undef DEBUG_RTL8169_TX
57 #undef DEBUG_RTL8169_RX
58
59 #define drv_version "v1.5"
60 #define drv_date "01-17-2004"
61
62 static unsigned long ioaddr;
63
64 /* Condensed operations for readability. */
65 #define currticks() get_timer(0)
66
67 /* media options */
68 #define MAX_UNITS 8
69 static int media[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
70
71 /* MAC address length*/
72 #define MAC_ADDR_LEN 6
73
74 /* max supported gigabit ethernet frame size -- must be at least (dev->mtu+14+4).*/
75 #define MAX_ETH_FRAME_SIZE 1536
76
77 #define TX_FIFO_THRESH 256 /* In bytes */
78
79 #define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */
80 #define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
81 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
82 #define EarlyTxThld 0x3F /* 0x3F means NO early transmit */
83 #define RxPacketMaxSize 0x0800 /* Maximum size supported is 16K-1 */
84 #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
85
86 #define NUM_TX_DESC 1 /* Number of Tx descriptor registers */
87 #ifdef CONFIG_SYS_RX_ETH_BUFFER
88 #define NUM_RX_DESC CONFIG_SYS_RX_ETH_BUFFER
89 #else
90 #define NUM_RX_DESC 4 /* Number of Rx descriptor registers */
91 #endif
92 #define RX_BUF_SIZE 1536 /* Rx Buffer size */
93 #define RX_BUF_LEN 8192
94
95 #define RTL_MIN_IO_SIZE 0x80
96 #define TX_TIMEOUT (6*HZ)
97
98 /* write/read MMIO register. Notice: {read,write}[wl] do the necessary swapping */
99 #define RTL_W8(reg, val8) writeb((val8), ioaddr + (reg))
100 #define RTL_W16(reg, val16) writew((val16), ioaddr + (reg))
101 #define RTL_W32(reg, val32) writel((val32), ioaddr + (reg))
102 #define RTL_R8(reg) readb(ioaddr + (reg))
103 #define RTL_R16(reg) readw(ioaddr + (reg))
104 #define RTL_R32(reg) readl(ioaddr + (reg))
105
106 #define ETH_FRAME_LEN MAX_ETH_FRAME_SIZE
107 #define ETH_ALEN MAC_ADDR_LEN
108 #define ETH_ZLEN 60
109
110 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)(unsigned long)dev->priv, \
111 (pci_addr_t)(unsigned long)a)
112 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)(unsigned long)dev->priv, \
113 (phys_addr_t)a)
114
115 enum RTL8169_registers {
116 MAC0 = 0, /* Ethernet hardware address. */
117 MAR0 = 8, /* Multicast filter. */
118 TxDescStartAddrLow = 0x20,
119 TxDescStartAddrHigh = 0x24,
120 TxHDescStartAddrLow = 0x28,
121 TxHDescStartAddrHigh = 0x2c,
122 FLASH = 0x30,
123 ERSR = 0x36,
124 ChipCmd = 0x37,
125 TxPoll = 0x38,
126 IntrMask = 0x3C,
127 IntrStatus = 0x3E,
128 TxConfig = 0x40,
129 RxConfig = 0x44,
130 RxMissed = 0x4C,
131 Cfg9346 = 0x50,
132 Config0 = 0x51,
133 Config1 = 0x52,
134 Config2 = 0x53,
135 Config3 = 0x54,
136 Config4 = 0x55,
137 Config5 = 0x56,
138 MultiIntr = 0x5C,
139 PHYAR = 0x60,
140 TBICSR = 0x64,
141 TBI_ANAR = 0x68,
142 TBI_LPAR = 0x6A,
143 PHYstatus = 0x6C,
144 RxMaxSize = 0xDA,
145 CPlusCmd = 0xE0,
146 RxDescStartAddrLow = 0xE4,
147 RxDescStartAddrHigh = 0xE8,
148 EarlyTxThres = 0xEC,
149 FuncEvent = 0xF0,
150 FuncEventMask = 0xF4,
151 FuncPresetState = 0xF8,
152 FuncForceEvent = 0xFC,
153 };
154
155 enum RTL8169_register_content {
156 /*InterruptStatusBits */
157 SYSErr = 0x8000,
158 PCSTimeout = 0x4000,
159 SWInt = 0x0100,
160 TxDescUnavail = 0x80,
161 RxFIFOOver = 0x40,
162 RxUnderrun = 0x20,
163 RxOverflow = 0x10,
164 TxErr = 0x08,
165 TxOK = 0x04,
166 RxErr = 0x02,
167 RxOK = 0x01,
168
169 /*RxStatusDesc */
170 RxRES = 0x00200000,
171 RxCRC = 0x00080000,
172 RxRUNT = 0x00100000,
173 RxRWT = 0x00400000,
174
175 /*ChipCmdBits */
176 CmdReset = 0x10,
177 CmdRxEnb = 0x08,
178 CmdTxEnb = 0x04,
179 RxBufEmpty = 0x01,
180
181 /*Cfg9346Bits */
182 Cfg9346_Lock = 0x00,
183 Cfg9346_Unlock = 0xC0,
184
185 /*rx_mode_bits */
186 AcceptErr = 0x20,
187 AcceptRunt = 0x10,
188 AcceptBroadcast = 0x08,
189 AcceptMulticast = 0x04,
190 AcceptMyPhys = 0x02,
191 AcceptAllPhys = 0x01,
192
193 /*RxConfigBits */
194 RxCfgFIFOShift = 13,
195 RxCfgDMAShift = 8,
196
197 /*TxConfigBits */
198 TxInterFrameGapShift = 24,
199 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
200
201 /*rtl8169_PHYstatus */
202 TBI_Enable = 0x80,
203 TxFlowCtrl = 0x40,
204 RxFlowCtrl = 0x20,
205 _1000bpsF = 0x10,
206 _100bps = 0x08,
207 _10bps = 0x04,
208 LinkStatus = 0x02,
209 FullDup = 0x01,
210
211 /*GIGABIT_PHY_registers */
212 PHY_CTRL_REG = 0,
213 PHY_STAT_REG = 1,
214 PHY_AUTO_NEGO_REG = 4,
215 PHY_1000_CTRL_REG = 9,
216
217 /*GIGABIT_PHY_REG_BIT */
218 PHY_Restart_Auto_Nego = 0x0200,
219 PHY_Enable_Auto_Nego = 0x1000,
220
221 /* PHY_STAT_REG = 1; */
222 PHY_Auto_Nego_Comp = 0x0020,
223
224 /* PHY_AUTO_NEGO_REG = 4; */
225 PHY_Cap_10_Half = 0x0020,
226 PHY_Cap_10_Full = 0x0040,
227 PHY_Cap_100_Half = 0x0080,
228 PHY_Cap_100_Full = 0x0100,
229
230 /* PHY_1000_CTRL_REG = 9; */
231 PHY_Cap_1000_Full = 0x0200,
232
233 PHY_Cap_Null = 0x0,
234
235 /*_MediaType*/
236 _10_Half = 0x01,
237 _10_Full = 0x02,
238 _100_Half = 0x04,
239 _100_Full = 0x08,
240 _1000_Full = 0x10,
241
242 /*_TBICSRBit*/
243 TBILinkOK = 0x02000000,
244 };
245
246 static struct {
247 const char *name;
248 u8 version; /* depend on RTL8169 docs */
249 u32 RxConfigMask; /* should clear the bits supported by this chip */
250 } rtl_chip_info[] = {
251 {"RTL-8169", 0x00, 0xff7e1880,},
252 {"RTL-8169", 0x04, 0xff7e1880,},
253 {"RTL-8169", 0x00, 0xff7e1880,},
254 {"RTL-8169s/8110s", 0x02, 0xff7e1880,},
255 {"RTL-8169s/8110s", 0x04, 0xff7e1880,},
256 {"RTL-8169sb/8110sb", 0x10, 0xff7e1880,},
257 {"RTL-8169sc/8110sc", 0x18, 0xff7e1880,},
258 {"RTL-8168b/8111sb", 0x30, 0xff7e1880,},
259 {"RTL-8168b/8111sb", 0x38, 0xff7e1880,},
260 {"RTL-8168d/8111d", 0x28, 0xff7e1880,},
261 {"RTL-8168evl/8111evl", 0x2e, 0xff7e1880,},
262 {"RTL-8168/8111g", 0x4c, 0xff7e1880,},
263 {"RTL-8101e", 0x34, 0xff7e1880,},
264 {"RTL-8100e", 0x32, 0xff7e1880,},
265 };
266
267 enum _DescStatusBit {
268 OWNbit = 0x80000000,
269 EORbit = 0x40000000,
270 FSbit = 0x20000000,
271 LSbit = 0x10000000,
272 };
273
274 struct TxDesc {
275 u32 status;
276 u32 vlan_tag;
277 u32 buf_addr;
278 u32 buf_Haddr;
279 };
280
281 struct RxDesc {
282 u32 status;
283 u32 vlan_tag;
284 u32 buf_addr;
285 u32 buf_Haddr;
286 };
287
288 static unsigned char rxdata[RX_BUF_LEN];
289
290 #define RTL8169_DESC_SIZE 16
291
292 #if ARCH_DMA_MINALIGN > 256
293 # define RTL8169_ALIGN ARCH_DMA_MINALIGN
294 #else
295 # define RTL8169_ALIGN 256
296 #endif
297
298 /*
299 * Warn if the cache-line size is larger than the descriptor size. In such
300 * cases the driver will likely fail because the CPU needs to flush the cache
301 * when requeuing RX buffers, therefore descriptors written by the hardware
302 * may be discarded.
303 *
304 * This can be fixed by defining CONFIG_SYS_NONCACHED_MEMORY which will cause
305 * the driver to allocate descriptors from a pool of non-cached memory.
306 */
307 #if RTL8169_DESC_SIZE < ARCH_DMA_MINALIGN
308 #if !defined(CONFIG_SYS_NONCACHED_MEMORY) && \
309 !defined(CONFIG_SYS_DCACHE_OFF) && !defined(CONFIG_X86)
310 #warning cache-line size is larger than descriptor size
311 #endif
312 #endif
313
314 /*
315 * Create a static buffer of size RX_BUF_SZ for each TX Descriptor. All
316 * descriptors point to a part of this buffer.
317 */
318 DEFINE_ALIGN_BUFFER(u8, txb, NUM_TX_DESC * RX_BUF_SIZE, RTL8169_ALIGN);
319
320 /*
321 * Create a static buffer of size RX_BUF_SZ for each RX Descriptor. All
322 * descriptors point to a part of this buffer.
323 */
324 DEFINE_ALIGN_BUFFER(u8, rxb, NUM_RX_DESC * RX_BUF_SIZE, RTL8169_ALIGN);
325
326 struct rtl8169_private {
327 ulong iobase;
328 void *mmio_addr; /* memory map physical address */
329 int chipset;
330 unsigned long cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
331 unsigned long cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
332 unsigned long dirty_tx;
333 struct TxDesc *TxDescArray; /* Index of 256-alignment Tx Descriptor buffer */
334 struct RxDesc *RxDescArray; /* Index of 256-alignment Rx Descriptor buffer */
335 unsigned char *RxBufferRings; /* Index of Rx Buffer */
336 unsigned char *RxBufferRing[NUM_RX_DESC]; /* Index of Rx Buffer array */
337 unsigned char *Tx_skbuff[NUM_TX_DESC];
338 } tpx;
339
340 static struct rtl8169_private *tpc;
341
342 static const unsigned int rtl8169_rx_config =
343 (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift);
344
345 static struct pci_device_id supported[] = {
346 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8167) },
347 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8168) },
348 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169) },
349 {}
350 };
351
352 void mdio_write(int RegAddr, int value)
353 {
354 int i;
355
356 RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value);
357 udelay(1000);
358
359 for (i = 2000; i > 0; i--) {
360 /* Check if the RTL8169 has completed writing to the specified MII register */
361 if (!(RTL_R32(PHYAR) & 0x80000000)) {
362 break;
363 } else {
364 udelay(100);
365 }
366 }
367 }
368
369 int mdio_read(int RegAddr)
370 {
371 int i, value = -1;
372
373 RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16);
374 udelay(1000);
375
376 for (i = 2000; i > 0; i--) {
377 /* Check if the RTL8169 has completed retrieving data from the specified MII register */
378 if (RTL_R32(PHYAR) & 0x80000000) {
379 value = (int) (RTL_R32(PHYAR) & 0xFFFF);
380 break;
381 } else {
382 udelay(100);
383 }
384 }
385 return value;
386 }
387
388 static int rtl8169_init_board(unsigned long dev_iobase, const char *name)
389 {
390 int i;
391 u32 tmp;
392
393 #ifdef DEBUG_RTL8169
394 printf ("%s\n", __FUNCTION__);
395 #endif
396 ioaddr = dev_iobase;
397
398 /* Soft reset the chip. */
399 RTL_W8(ChipCmd, CmdReset);
400
401 /* Check that the chip has finished the reset. */
402 for (i = 1000; i > 0; i--)
403 if ((RTL_R8(ChipCmd) & CmdReset) == 0)
404 break;
405 else
406 udelay(10);
407
408 /* identify chip attached to board */
409 tmp = RTL_R32(TxConfig);
410 tmp = ((tmp & 0x7c000000) + ((tmp & 0x00800000) << 2)) >> 24;
411
412 for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--){
413 if (tmp == rtl_chip_info[i].version) {
414 tpc->chipset = i;
415 goto match;
416 }
417 }
418
419 /* if unknown chip, assume array element #0, original RTL-8169 in this case */
420 printf("PCI device %s: unknown chip version, assuming RTL-8169\n",
421 name);
422 printf("PCI device: TxConfig = 0x%lX\n", (unsigned long) RTL_R32(TxConfig));
423 tpc->chipset = 0;
424
425 match:
426 return 0;
427 }
428
429 /*
430 * TX and RX descriptors are 16 bytes. This causes problems with the cache
431 * maintenance on CPUs where the cache-line size exceeds the size of these
432 * descriptors. What will happen is that when the driver receives a packet
433 * it will be immediately requeued for the hardware to reuse. The CPU will
434 * therefore need to flush the cache-line containing the descriptor, which
435 * will cause all other descriptors in the same cache-line to be flushed
436 * along with it. If one of those descriptors had been written to by the
437 * device those changes (and the associated packet) will be lost.
438 *
439 * To work around this, we make use of non-cached memory if available. If
440 * descriptors are mapped uncached there's no need to manually flush them
441 * or invalidate them.
442 *
443 * Note that this only applies to descriptors. The packet data buffers do
444 * not have the same constraints since they are 1536 bytes large, so they
445 * are unlikely to share cache-lines.
446 */
447 static void *rtl_alloc_descs(unsigned int num)
448 {
449 size_t size = num * RTL8169_DESC_SIZE;
450
451 #ifdef CONFIG_SYS_NONCACHED_MEMORY
452 return (void *)noncached_alloc(size, RTL8169_ALIGN);
453 #else
454 return memalign(RTL8169_ALIGN, size);
455 #endif
456 }
457
458 /*
459 * Cache maintenance functions. These are simple wrappers around the more
460 * general purpose flush_cache() and invalidate_dcache_range() functions.
461 */
462
463 static void rtl_inval_rx_desc(struct RxDesc *desc)
464 {
465 #ifndef CONFIG_SYS_NONCACHED_MEMORY
466 unsigned long start = (unsigned long)desc & ~(ARCH_DMA_MINALIGN - 1);
467 unsigned long end = ALIGN(start + sizeof(*desc), ARCH_DMA_MINALIGN);
468
469 invalidate_dcache_range(start, end);
470 #endif
471 }
472
473 static void rtl_flush_rx_desc(struct RxDesc *desc)
474 {
475 #ifndef CONFIG_SYS_NONCACHED_MEMORY
476 flush_cache((unsigned long)desc, sizeof(*desc));
477 #endif
478 }
479
480 static void rtl_inval_tx_desc(struct TxDesc *desc)
481 {
482 #ifndef CONFIG_SYS_NONCACHED_MEMORY
483 unsigned long start = (unsigned long)desc & ~(ARCH_DMA_MINALIGN - 1);
484 unsigned long end = ALIGN(start + sizeof(*desc), ARCH_DMA_MINALIGN);
485
486 invalidate_dcache_range(start, end);
487 #endif
488 }
489
490 static void rtl_flush_tx_desc(struct TxDesc *desc)
491 {
492 #ifndef CONFIG_SYS_NONCACHED_MEMORY
493 flush_cache((unsigned long)desc, sizeof(*desc));
494 #endif
495 }
496
497 static void rtl_inval_buffer(void *buf, size_t size)
498 {
499 unsigned long start = (unsigned long)buf & ~(ARCH_DMA_MINALIGN - 1);
500 unsigned long end = ALIGN(start + size, ARCH_DMA_MINALIGN);
501
502 invalidate_dcache_range(start, end);
503 }
504
505 static void rtl_flush_buffer(void *buf, size_t size)
506 {
507 flush_cache((unsigned long)buf, size);
508 }
509
510 /**************************************************************************
511 RECV - Receive a frame
512 ***************************************************************************/
513 #ifdef CONFIG_DM_ETH
514 static int rtl_recv_common(struct udevice *dev, unsigned long dev_iobase,
515 uchar **packetp)
516 #else
517 static int rtl_recv_common(pci_dev_t dev, unsigned long dev_iobase,
518 uchar **packetp)
519 #endif
520 {
521 /* return true if there's an ethernet packet ready to read */
522 /* nic->packet should contain data on return */
523 /* nic->packetlen should contain length of data */
524 int cur_rx;
525 int length = 0;
526
527 #ifdef DEBUG_RTL8169_RX
528 printf ("%s\n", __FUNCTION__);
529 #endif
530 ioaddr = dev_iobase;
531
532 cur_rx = tpc->cur_rx;
533
534 rtl_inval_rx_desc(&tpc->RxDescArray[cur_rx]);
535
536 if ((le32_to_cpu(tpc->RxDescArray[cur_rx].status) & OWNbit) == 0) {
537 if (!(le32_to_cpu(tpc->RxDescArray[cur_rx].status) & RxRES)) {
538 length = (int) (le32_to_cpu(tpc->RxDescArray[cur_rx].
539 status) & 0x00001FFF) - 4;
540
541 rtl_inval_buffer(tpc->RxBufferRing[cur_rx], length);
542 memcpy(rxdata, tpc->RxBufferRing[cur_rx], length);
543
544 if (cur_rx == NUM_RX_DESC - 1)
545 tpc->RxDescArray[cur_rx].status =
546 cpu_to_le32((OWNbit | EORbit) + RX_BUF_SIZE);
547 else
548 tpc->RxDescArray[cur_rx].status =
549 cpu_to_le32(OWNbit + RX_BUF_SIZE);
550 #ifdef CONFIG_DM_ETH
551 tpc->RxDescArray[cur_rx].buf_addr = cpu_to_le32(
552 dm_pci_mem_to_phys(dev,
553 (pci_addr_t)(unsigned long)
554 tpc->RxBufferRing[cur_rx]));
555 #else
556 tpc->RxDescArray[cur_rx].buf_addr = cpu_to_le32(
557 pci_mem_to_phys(dev, (pci_addr_t)(unsigned long)
558 tpc->RxBufferRing[cur_rx]));
559 #endif
560 rtl_flush_rx_desc(&tpc->RxDescArray[cur_rx]);
561 #ifdef CONFIG_DM_ETH
562 *packetp = rxdata;
563 #else
564 net_process_received_packet(rxdata, length);
565 #endif
566 } else {
567 puts("Error Rx");
568 length = -EIO;
569 }
570 cur_rx = (cur_rx + 1) % NUM_RX_DESC;
571 tpc->cur_rx = cur_rx;
572 return length;
573
574 } else {
575 ushort sts = RTL_R8(IntrStatus);
576 RTL_W8(IntrStatus, sts & ~(TxErr | RxErr | SYSErr));
577 udelay(100); /* wait */
578 }
579 tpc->cur_rx = cur_rx;
580 return (0); /* initially as this is called to flush the input */
581 }
582
583 #ifdef CONFIG_DM_ETH
584 int rtl8169_eth_recv(struct udevice *dev, int flags, uchar **packetp)
585 {
586 struct rtl8169_private *priv = dev_get_priv(dev);
587
588 return rtl_recv_common(dev, priv->iobase, packetp);
589 }
590 #else
591 static int rtl_recv(struct eth_device *dev)
592 {
593 return rtl_recv_common((pci_dev_t)(unsigned long)dev->priv,
594 dev->iobase, NULL);
595 }
596 #endif /* nCONFIG_DM_ETH */
597
598 #define HZ 1000
599 /**************************************************************************
600 SEND - Transmit a frame
601 ***************************************************************************/
602 #ifdef CONFIG_DM_ETH
603 static int rtl_send_common(struct udevice *dev, unsigned long dev_iobase,
604 void *packet, int length)
605 #else
606 static int rtl_send_common(pci_dev_t dev, unsigned long dev_iobase,
607 void *packet, int length)
608 #endif
609 {
610 /* send the packet to destination */
611
612 u32 to;
613 u8 *ptxb;
614 int entry = tpc->cur_tx % NUM_TX_DESC;
615 u32 len = length;
616 int ret;
617
618 #ifdef DEBUG_RTL8169_TX
619 int stime = currticks();
620 printf ("%s\n", __FUNCTION__);
621 printf("sending %d bytes\n", len);
622 #endif
623
624 ioaddr = dev_iobase;
625
626 /* point to the current txb incase multiple tx_rings are used */
627 ptxb = tpc->Tx_skbuff[entry * MAX_ETH_FRAME_SIZE];
628 memcpy(ptxb, (char *)packet, (int)length);
629
630 while (len < ETH_ZLEN)
631 ptxb[len++] = '\0';
632
633 rtl_flush_buffer(ptxb, ALIGN(len, RTL8169_ALIGN));
634
635 tpc->TxDescArray[entry].buf_Haddr = 0;
636 #ifdef CONFIG_DM_ETH
637 tpc->TxDescArray[entry].buf_addr = cpu_to_le32(
638 dm_pci_mem_to_phys(dev, (pci_addr_t)(unsigned long)ptxb));
639 #else
640 tpc->TxDescArray[entry].buf_addr = cpu_to_le32(
641 pci_mem_to_phys(dev, (pci_addr_t)(unsigned long)ptxb));
642 #endif
643 if (entry != (NUM_TX_DESC - 1)) {
644 tpc->TxDescArray[entry].status =
645 cpu_to_le32((OWNbit | FSbit | LSbit) |
646 ((len > ETH_ZLEN) ? len : ETH_ZLEN));
647 } else {
648 tpc->TxDescArray[entry].status =
649 cpu_to_le32((OWNbit | EORbit | FSbit | LSbit) |
650 ((len > ETH_ZLEN) ? len : ETH_ZLEN));
651 }
652 rtl_flush_tx_desc(&tpc->TxDescArray[entry]);
653 RTL_W8(TxPoll, 0x40); /* set polling bit */
654
655 tpc->cur_tx++;
656 to = currticks() + TX_TIMEOUT;
657 do {
658 rtl_inval_tx_desc(&tpc->TxDescArray[entry]);
659 } while ((le32_to_cpu(tpc->TxDescArray[entry].status) & OWNbit)
660 && (currticks() < to)); /* wait */
661
662 if (currticks() >= to) {
663 #ifdef DEBUG_RTL8169_TX
664 puts("tx timeout/error\n");
665 printf("%s elapsed time : %lu\n", __func__, currticks()-stime);
666 #endif
667 ret = -ETIMEDOUT;
668 } else {
669 #ifdef DEBUG_RTL8169_TX
670 puts("tx done\n");
671 #endif
672 ret = 0;
673 }
674 /* Delay to make net console (nc) work properly */
675 udelay(20);
676 return ret;
677 }
678
679 #ifdef CONFIG_DM_ETH
680 int rtl8169_eth_send(struct udevice *dev, void *packet, int length)
681 {
682 struct rtl8169_private *priv = dev_get_priv(dev);
683
684 return rtl_send_common(dev, priv->iobase, packet, length);
685 }
686
687 #else
688 static int rtl_send(struct eth_device *dev, void *packet, int length)
689 {
690 return rtl_send_common((pci_dev_t)(unsigned long)dev->priv,
691 dev->iobase, packet, length);
692 }
693 #endif
694
695 static void rtl8169_set_rx_mode(void)
696 {
697 u32 mc_filter[2]; /* Multicast hash filter */
698 int rx_mode;
699 u32 tmp = 0;
700
701 #ifdef DEBUG_RTL8169
702 printf ("%s\n", __FUNCTION__);
703 #endif
704
705 /* IFF_ALLMULTI */
706 /* Too many to filter perfectly -- accept all multicasts. */
707 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
708 mc_filter[1] = mc_filter[0] = 0xffffffff;
709
710 tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) &
711 rtl_chip_info[tpc->chipset].RxConfigMask);
712
713 RTL_W32(RxConfig, tmp);
714 RTL_W32(MAR0 + 0, mc_filter[0]);
715 RTL_W32(MAR0 + 4, mc_filter[1]);
716 }
717
718 #ifdef CONFIG_DM_ETH
719 static void rtl8169_hw_start(struct udevice *dev)
720 #else
721 static void rtl8169_hw_start(pci_dev_t dev)
722 #endif
723 {
724 u32 i;
725
726 #ifdef DEBUG_RTL8169
727 int stime = currticks();
728 printf ("%s\n", __FUNCTION__);
729 #endif
730
731 #if 0
732 /* Soft reset the chip. */
733 RTL_W8(ChipCmd, CmdReset);
734
735 /* Check that the chip has finished the reset. */
736 for (i = 1000; i > 0; i--) {
737 if ((RTL_R8(ChipCmd) & CmdReset) == 0)
738 break;
739 else
740 udelay(10);
741 }
742 #endif
743
744 RTL_W8(Cfg9346, Cfg9346_Unlock);
745
746 /* RTL-8169sb/8110sb or previous version */
747 if (tpc->chipset <= 5)
748 RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
749
750 RTL_W8(EarlyTxThres, EarlyTxThld);
751
752 /* For gigabit rtl8169 */
753 RTL_W16(RxMaxSize, RxPacketMaxSize);
754
755 /* Set Rx Config register */
756 i = rtl8169_rx_config | (RTL_R32(RxConfig) &
757 rtl_chip_info[tpc->chipset].RxConfigMask);
758 RTL_W32(RxConfig, i);
759
760 /* Set DMA burst size and Interframe Gap Time */
761 RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
762 (InterFrameGap << TxInterFrameGapShift));
763
764
765 tpc->cur_rx = 0;
766
767 #ifdef CONFIG_DM_ETH
768 RTL_W32(TxDescStartAddrLow, dm_pci_mem_to_phys(dev,
769 (pci_addr_t)(unsigned long)tpc->TxDescArray));
770 #else
771 RTL_W32(TxDescStartAddrLow, pci_mem_to_phys(dev,
772 (pci_addr_t)(unsigned long)tpc->TxDescArray));
773 #endif
774 RTL_W32(TxDescStartAddrHigh, (unsigned long)0);
775 #ifdef CONFIG_DM_ETH
776 RTL_W32(RxDescStartAddrLow, dm_pci_mem_to_phys(
777 dev, (pci_addr_t)(unsigned long)tpc->RxDescArray));
778 #else
779 RTL_W32(RxDescStartAddrLow, pci_mem_to_phys(
780 dev, (pci_addr_t)(unsigned long)tpc->RxDescArray));
781 #endif
782 RTL_W32(RxDescStartAddrHigh, (unsigned long)0);
783
784 /* RTL-8169sc/8110sc or later version */
785 if (tpc->chipset > 5)
786 RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
787
788 RTL_W8(Cfg9346, Cfg9346_Lock);
789 udelay(10);
790
791 RTL_W32(RxMissed, 0);
792
793 rtl8169_set_rx_mode();
794
795 /* no early-rx interrupts */
796 RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
797
798 #ifdef DEBUG_RTL8169
799 printf("%s elapsed time : %lu\n", __func__, currticks()-stime);
800 #endif
801 }
802
803 #ifdef CONFIG_DM_ETH
804 static void rtl8169_init_ring(struct udevice *dev)
805 #else
806 static void rtl8169_init_ring(pci_dev_t dev)
807 #endif
808 {
809 int i;
810
811 #ifdef DEBUG_RTL8169
812 int stime = currticks();
813 printf ("%s\n", __FUNCTION__);
814 #endif
815
816 tpc->cur_rx = 0;
817 tpc->cur_tx = 0;
818 tpc->dirty_tx = 0;
819 memset(tpc->TxDescArray, 0x0, NUM_TX_DESC * sizeof(struct TxDesc));
820 memset(tpc->RxDescArray, 0x0, NUM_RX_DESC * sizeof(struct RxDesc));
821
822 for (i = 0; i < NUM_TX_DESC; i++) {
823 tpc->Tx_skbuff[i] = &txb[i];
824 }
825
826 for (i = 0; i < NUM_RX_DESC; i++) {
827 if (i == (NUM_RX_DESC - 1))
828 tpc->RxDescArray[i].status =
829 cpu_to_le32((OWNbit | EORbit) + RX_BUF_SIZE);
830 else
831 tpc->RxDescArray[i].status =
832 cpu_to_le32(OWNbit + RX_BUF_SIZE);
833
834 tpc->RxBufferRing[i] = &rxb[i * RX_BUF_SIZE];
835 #ifdef CONFIG_DM_ETH
836 tpc->RxDescArray[i].buf_addr = cpu_to_le32(dm_pci_mem_to_phys(
837 dev, (pci_addr_t)(unsigned long)tpc->RxBufferRing[i]));
838 #else
839 tpc->RxDescArray[i].buf_addr = cpu_to_le32(pci_mem_to_phys(
840 dev, (pci_addr_t)(unsigned long)tpc->RxBufferRing[i]));
841 #endif
842 rtl_flush_rx_desc(&tpc->RxDescArray[i]);
843 }
844
845 #ifdef DEBUG_RTL8169
846 printf("%s elapsed time : %lu\n", __func__, currticks()-stime);
847 #endif
848 }
849
850 #ifdef CONFIG_DM_ETH
851 static void rtl8169_common_start(struct udevice *dev, unsigned char *enetaddr,
852 unsigned long dev_iobase)
853 #else
854 static void rtl8169_common_start(pci_dev_t dev, unsigned char *enetaddr,
855 unsigned long dev_iobase)
856 #endif
857 {
858 int i;
859
860 #ifdef DEBUG_RTL8169
861 int stime = currticks();
862 printf ("%s\n", __FUNCTION__);
863 #endif
864
865 ioaddr = dev_iobase;
866
867 rtl8169_init_ring(dev);
868 rtl8169_hw_start(dev);
869 /* Construct a perfect filter frame with the mac address as first match
870 * and broadcast for all others */
871 for (i = 0; i < 192; i++)
872 txb[i] = 0xFF;
873
874 txb[0] = enetaddr[0];
875 txb[1] = enetaddr[1];
876 txb[2] = enetaddr[2];
877 txb[3] = enetaddr[3];
878 txb[4] = enetaddr[4];
879 txb[5] = enetaddr[5];
880
881 #ifdef DEBUG_RTL8169
882 printf("%s elapsed time : %lu\n", __func__, currticks()-stime);
883 #endif
884 }
885
886 #ifdef CONFIG_DM_ETH
887 static int rtl8169_eth_start(struct udevice *dev)
888 {
889 struct eth_pdata *plat = dev_get_platdata(dev);
890 struct rtl8169_private *priv = dev_get_priv(dev);
891
892 rtl8169_common_start(dev, plat->enetaddr, priv->iobase);
893
894 return 0;
895 }
896 #else
897 /**************************************************************************
898 RESET - Finish setting up the ethernet interface
899 ***************************************************************************/
900 static int rtl_reset(struct eth_device *dev, bd_t *bis)
901 {
902 rtl8169_common_start((pci_dev_t)(unsigned long)dev->priv,
903 dev->enetaddr, dev->iobase);
904
905 return 0;
906 }
907 #endif /* nCONFIG_DM_ETH */
908
909 static void rtl_halt_common(unsigned long dev_iobase)
910 {
911 int i;
912
913 #ifdef DEBUG_RTL8169
914 printf ("%s\n", __FUNCTION__);
915 #endif
916
917 ioaddr = dev_iobase;
918
919 /* Stop the chip's Tx and Rx DMA processes. */
920 RTL_W8(ChipCmd, 0x00);
921
922 /* Disable interrupts by clearing the interrupt mask. */
923 RTL_W16(IntrMask, 0x0000);
924
925 RTL_W32(RxMissed, 0);
926
927 for (i = 0; i < NUM_RX_DESC; i++) {
928 tpc->RxBufferRing[i] = NULL;
929 }
930 }
931
932 #ifdef CONFIG_DM_ETH
933 void rtl8169_eth_stop(struct udevice *dev)
934 {
935 struct rtl8169_private *priv = dev_get_priv(dev);
936
937 rtl_halt_common(priv->iobase);
938 }
939 #else
940 /**************************************************************************
941 HALT - Turn off ethernet interface
942 ***************************************************************************/
943 static void rtl_halt(struct eth_device *dev)
944 {
945 rtl_halt_common(dev->iobase);
946 }
947 #endif
948
949 /**************************************************************************
950 INIT - Look for an adapter, this routine's visible to the outside
951 ***************************************************************************/
952
953 #define board_found 1
954 #define valid_link 0
955 static int rtl_init(unsigned long dev_ioaddr, const char *name,
956 unsigned char *enetaddr)
957 {
958 static int board_idx = -1;
959 int i, rc;
960 int option = -1, Cap10_100 = 0, Cap1000 = 0;
961
962 #ifdef DEBUG_RTL8169
963 printf ("%s\n", __FUNCTION__);
964 #endif
965 ioaddr = dev_ioaddr;
966
967 board_idx++;
968
969 /* point to private storage */
970 tpc = &tpx;
971
972 rc = rtl8169_init_board(ioaddr, name);
973 if (rc)
974 return rc;
975
976 /* Get MAC address. FIXME: read EEPROM */
977 for (i = 0; i < MAC_ADDR_LEN; i++)
978 enetaddr[i] = RTL_R8(MAC0 + i);
979
980 #ifdef DEBUG_RTL8169
981 printf("chipset = %d\n", tpc->chipset);
982 printf("MAC Address");
983 for (i = 0; i < MAC_ADDR_LEN; i++)
984 printf(":%02x", enetaddr[i]);
985 putc('\n');
986 #endif
987
988 #ifdef DEBUG_RTL8169
989 /* Print out some hardware info */
990 printf("%s: at ioaddr 0x%lx\n", name, ioaddr);
991 #endif
992
993 /* if TBI is not endbled */
994 if (!(RTL_R8(PHYstatus) & TBI_Enable)) {
995 int val = mdio_read(PHY_AUTO_NEGO_REG);
996
997 option = (board_idx >= MAX_UNITS) ? 0 : media[board_idx];
998 /* Force RTL8169 in 10/100/1000 Full/Half mode. */
999 if (option > 0) {
1000 #ifdef DEBUG_RTL8169
1001 printf("%s: Force-mode Enabled.\n", name);
1002 #endif
1003 Cap10_100 = 0, Cap1000 = 0;
1004 switch (option) {
1005 case _10_Half:
1006 Cap10_100 = PHY_Cap_10_Half;
1007 Cap1000 = PHY_Cap_Null;
1008 break;
1009 case _10_Full:
1010 Cap10_100 = PHY_Cap_10_Full;
1011 Cap1000 = PHY_Cap_Null;
1012 break;
1013 case _100_Half:
1014 Cap10_100 = PHY_Cap_100_Half;
1015 Cap1000 = PHY_Cap_Null;
1016 break;
1017 case _100_Full:
1018 Cap10_100 = PHY_Cap_100_Full;
1019 Cap1000 = PHY_Cap_Null;
1020 break;
1021 case _1000_Full:
1022 Cap10_100 = PHY_Cap_Null;
1023 Cap1000 = PHY_Cap_1000_Full;
1024 break;
1025 default:
1026 break;
1027 }
1028 mdio_write(PHY_AUTO_NEGO_REG, Cap10_100 | (val & 0x1F)); /* leave PHY_AUTO_NEGO_REG bit4:0 unchanged */
1029 mdio_write(PHY_1000_CTRL_REG, Cap1000);
1030 } else {
1031 #ifdef DEBUG_RTL8169
1032 printf("%s: Auto-negotiation Enabled.\n",
1033 name);
1034 #endif
1035 /* enable 10/100 Full/Half Mode, leave PHY_AUTO_NEGO_REG bit4:0 unchanged */
1036 mdio_write(PHY_AUTO_NEGO_REG,
1037 PHY_Cap_10_Half | PHY_Cap_10_Full |
1038 PHY_Cap_100_Half | PHY_Cap_100_Full |
1039 (val & 0x1F));
1040
1041 /* enable 1000 Full Mode */
1042 mdio_write(PHY_1000_CTRL_REG, PHY_Cap_1000_Full);
1043
1044 }
1045
1046 /* Enable auto-negotiation and restart auto-nigotiation */
1047 mdio_write(PHY_CTRL_REG,
1048 PHY_Enable_Auto_Nego | PHY_Restart_Auto_Nego);
1049 udelay(100);
1050
1051 /* wait for auto-negotiation process */
1052 for (i = 10000; i > 0; i--) {
1053 /* check if auto-negotiation complete */
1054 if (mdio_read(PHY_STAT_REG) & PHY_Auto_Nego_Comp) {
1055 udelay(100);
1056 option = RTL_R8(PHYstatus);
1057 if (option & _1000bpsF) {
1058 #ifdef DEBUG_RTL8169
1059 printf("%s: 1000Mbps Full-duplex operation.\n",
1060 name);
1061 #endif
1062 } else {
1063 #ifdef DEBUG_RTL8169
1064 printf("%s: %sMbps %s-duplex operation.\n",
1065 name,
1066 (option & _100bps) ? "100" :
1067 "10",
1068 (option & FullDup) ? "Full" :
1069 "Half");
1070 #endif
1071 }
1072 break;
1073 } else {
1074 udelay(100);
1075 }
1076 } /* end for-loop to wait for auto-negotiation process */
1077
1078 } else {
1079 udelay(100);
1080 #ifdef DEBUG_RTL8169
1081 printf
1082 ("%s: 1000Mbps Full-duplex operation, TBI Link %s!\n",
1083 name,
1084 (RTL_R32(TBICSR) & TBILinkOK) ? "OK" : "Failed");
1085 #endif
1086 }
1087
1088
1089 tpc->RxDescArray = rtl_alloc_descs(NUM_RX_DESC);
1090 if (!tpc->RxDescArray)
1091 return -ENOMEM;
1092
1093 tpc->TxDescArray = rtl_alloc_descs(NUM_TX_DESC);
1094 if (!tpc->TxDescArray)
1095 return -ENOMEM;
1096
1097 return 0;
1098 }
1099
1100 #ifndef CONFIG_DM_ETH
1101 int rtl8169_initialize(bd_t *bis)
1102 {
1103 pci_dev_t devno;
1104 int card_number = 0;
1105 struct eth_device *dev;
1106 u32 iobase;
1107 int idx=0;
1108
1109 while(1){
1110 unsigned int region;
1111 u16 device;
1112 int err;
1113
1114 /* Find RTL8169 */
1115 if ((devno = pci_find_devices(supported, idx++)) < 0)
1116 break;
1117
1118 pci_read_config_word(devno, PCI_DEVICE_ID, &device);
1119 switch (device) {
1120 case 0x8168:
1121 region = 2;
1122 break;
1123
1124 default:
1125 region = 1;
1126 break;
1127 }
1128
1129 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0 + (region * 4), &iobase);
1130 iobase &= ~0xf;
1131
1132 debug ("rtl8169: REALTEK RTL8169 @0x%x\n", iobase);
1133
1134 dev = (struct eth_device *)malloc(sizeof *dev);
1135 if (!dev) {
1136 printf("Can not allocate memory of rtl8169\n");
1137 break;
1138 }
1139
1140 memset(dev, 0, sizeof(*dev));
1141 sprintf (dev->name, "RTL8169#%d", card_number);
1142
1143 dev->priv = (void *)(unsigned long)devno;
1144 dev->iobase = (int)pci_mem_to_phys(devno, iobase);
1145
1146 dev->init = rtl_reset;
1147 dev->halt = rtl_halt;
1148 dev->send = rtl_send;
1149 dev->recv = rtl_recv;
1150
1151 err = rtl_init(dev->iobase, dev->name, dev->enetaddr);
1152 if (err < 0) {
1153 printf(pr_fmt("failed to initialize card: %d\n"), err);
1154 free(dev);
1155 continue;
1156 }
1157
1158 eth_register (dev);
1159
1160 card_number++;
1161 }
1162 return card_number;
1163 }
1164 #endif
1165
1166 #ifdef CONFIG_DM_ETH
1167 static int rtl8169_eth_probe(struct udevice *dev)
1168 {
1169 struct pci_child_platdata *pplat = dev_get_parent_platdata(dev);
1170 struct rtl8169_private *priv = dev_get_priv(dev);
1171 struct eth_pdata *plat = dev_get_platdata(dev);
1172 u32 iobase;
1173 int region;
1174 int ret;
1175
1176 debug("rtl8169: REALTEK RTL8169 @0x%x\n", iobase);
1177 switch (pplat->device) {
1178 case 0x8168:
1179 region = 2;
1180 break;
1181 default:
1182 region = 1;
1183 break;
1184 }
1185 dm_pci_read_config32(dev, PCI_BASE_ADDRESS_0 + region * 4, &iobase);
1186 iobase &= ~0xf;
1187 priv->iobase = (int)dm_pci_mem_to_phys(dev, iobase);
1188
1189 ret = rtl_init(priv->iobase, dev->name, plat->enetaddr);
1190 if (ret < 0) {
1191 printf(pr_fmt("failed to initialize card: %d\n"), ret);
1192 return ret;
1193 }
1194
1195 return 0;
1196 }
1197
1198 static const struct eth_ops rtl8169_eth_ops = {
1199 .start = rtl8169_eth_start,
1200 .send = rtl8169_eth_send,
1201 .recv = rtl8169_eth_recv,
1202 .stop = rtl8169_eth_stop,
1203 };
1204
1205 static const struct udevice_id rtl8169_eth_ids[] = {
1206 { .compatible = "realtek,rtl8169" },
1207 { }
1208 };
1209
1210 U_BOOT_DRIVER(eth_rtl8169) = {
1211 .name = "eth_rtl8169",
1212 .id = UCLASS_ETH,
1213 .of_match = rtl8169_eth_ids,
1214 .probe = rtl8169_eth_probe,
1215 .ops = &rtl8169_eth_ops,
1216 .priv_auto_alloc_size = sizeof(struct rtl8169_private),
1217 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1218 };
1219
1220 U_BOOT_PCI_DEVICE(eth_rtl8169, supported);
1221 #endif