]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
UBI: Ensure that "background thread" operations are really executed
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004-2009 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20 #include <asm/errno.h>
21
22 #include "miiphy.h"
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 #define MAXCONTROLLERS (8)
37
38 static struct tsec_private *privlist[MAXCONTROLLERS];
39 static int num_tsecs = 0;
40
41 #ifdef __GNUC__
42 static RTXBD rtx __attribute__ ((aligned(8)));
43 #else
44 #error "rtx must be 64-bit aligned"
45 #endif
46
47 static int tsec_send(struct eth_device *dev,
48 volatile void *packet, int length);
49 static int tsec_recv(struct eth_device *dev);
50 static int tsec_init(struct eth_device *dev, bd_t * bd);
51 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info);
52 static void tsec_halt(struct eth_device *dev);
53 static void init_registers(volatile tsec_t * regs);
54 static void startup_tsec(struct eth_device *dev);
55 static int init_phy(struct eth_device *dev);
56 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
57 uint read_phy_reg(struct tsec_private *priv, uint regnum);
58 static struct phy_info *get_phy_info(struct eth_device *dev);
59 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
60 static void adjust_link(struct eth_device *dev);
61 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
62 && !defined(BITBANGMII)
63 static int tsec_miiphy_write(char *devname, unsigned char addr,
64 unsigned char reg, unsigned short value);
65 static int tsec_miiphy_read(char *devname, unsigned char addr,
66 unsigned char reg, unsigned short *value);
67 #endif
68 #ifdef CONFIG_MCAST_TFTP
69 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
70 #endif
71
72 /* Default initializations for TSEC controllers. */
73
74 static struct tsec_info_struct tsec_info[] = {
75 #ifdef CONFIG_TSEC1
76 STD_TSEC_INFO(1), /* TSEC1 */
77 #endif
78 #ifdef CONFIG_TSEC2
79 STD_TSEC_INFO(2), /* TSEC2 */
80 #endif
81 #ifdef CONFIG_MPC85XX_FEC
82 {
83 .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
84 .miiregs = (tsec_mdio_t *)(MDIO_BASE_ADDR),
85 .devname = CONFIG_MPC85XX_FEC_NAME,
86 .phyaddr = FEC_PHY_ADDR,
87 .flags = FEC_FLAGS
88 }, /* FEC */
89 #endif
90 #ifdef CONFIG_TSEC3
91 STD_TSEC_INFO(3), /* TSEC3 */
92 #endif
93 #ifdef CONFIG_TSEC4
94 STD_TSEC_INFO(4), /* TSEC4 */
95 #endif
96 };
97
98 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
99 {
100 int i;
101
102 for (i = 0; i < num; i++)
103 tsec_initialize(bis, &tsecs[i]);
104
105 return 0;
106 }
107
108 int tsec_standard_init(bd_t *bis)
109 {
110 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
111 }
112
113 /* Initialize device structure. Returns success if PHY
114 * initialization succeeded (i.e. if it recognizes the PHY)
115 */
116 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info)
117 {
118 struct eth_device *dev;
119 int i;
120 struct tsec_private *priv;
121
122 dev = (struct eth_device *)malloc(sizeof *dev);
123
124 if (NULL == dev)
125 return 0;
126
127 memset(dev, 0, sizeof *dev);
128
129 priv = (struct tsec_private *)malloc(sizeof(*priv));
130
131 if (NULL == priv)
132 return 0;
133
134 privlist[num_tsecs++] = priv;
135 priv->regs = tsec_info->regs;
136 priv->phyregs = tsec_info->miiregs;
137 priv->phyregs_sgmii = tsec_info->miiregs_sgmii;
138
139 priv->phyaddr = tsec_info->phyaddr;
140 priv->flags = tsec_info->flags;
141
142 sprintf(dev->name, tsec_info->devname);
143 dev->iobase = 0;
144 dev->priv = priv;
145 dev->init = tsec_init;
146 dev->halt = tsec_halt;
147 dev->send = tsec_send;
148 dev->recv = tsec_recv;
149 #ifdef CONFIG_MCAST_TFTP
150 dev->mcast = tsec_mcast_addr;
151 #endif
152
153 /* Tell u-boot to get the addr from the env */
154 for (i = 0; i < 6; i++)
155 dev->enetaddr[i] = 0;
156
157 eth_register(dev);
158
159 /* Reset the MAC */
160 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
161 udelay(2); /* Soft Reset must be asserted for 3 TX clocks */
162 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
163
164 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
165 && !defined(BITBANGMII)
166 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
167 #endif
168
169 /* Try to initialize PHY here, and return */
170 return init_phy(dev);
171 }
172
173 /* Initializes data structures and registers for the controller,
174 * and brings the interface up. Returns the link status, meaning
175 * that it returns success if the link is up, failure otherwise.
176 * This allows u-boot to find the first active controller.
177 */
178 static int tsec_init(struct eth_device *dev, bd_t * bd)
179 {
180 uint tempval;
181 char tmpbuf[MAC_ADDR_LEN];
182 int i;
183 struct tsec_private *priv = (struct tsec_private *)dev->priv;
184 volatile tsec_t *regs = priv->regs;
185
186 /* Make sure the controller is stopped */
187 tsec_halt(dev);
188
189 /* Init MACCFG2. Defaults to GMII */
190 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
191
192 /* Init ECNTRL */
193 regs->ecntrl = ECNTRL_INIT_SETTINGS;
194
195 /* Copy the station address into the address registers.
196 * Backwards, because little endian MACS are dumb */
197 for (i = 0; i < MAC_ADDR_LEN; i++) {
198 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
199 }
200 tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) |
201 tmpbuf[3];
202
203 regs->macstnaddr1 = tempval;
204
205 tempval = *((uint *) (tmpbuf + 4));
206
207 regs->macstnaddr2 = tempval;
208
209 /* reset the indices to zero */
210 rxIdx = 0;
211 txIdx = 0;
212
213 /* Clear out (for the most part) the other registers */
214 init_registers(regs);
215
216 /* Ready the device for tx/rx */
217 startup_tsec(dev);
218
219 /* If there's no link, fail */
220 return (priv->link ? 0 : -1);
221 }
222
223 /* Writes the given phy's reg with value, using the specified MDIO regs */
224 static void tsec_local_mdio_write(volatile tsec_mdio_t *phyregs, uint addr,
225 uint reg, uint value)
226 {
227 int timeout = 1000000;
228
229 phyregs->miimadd = (addr << 8) | reg;
230 phyregs->miimcon = value;
231 asm("sync");
232
233 timeout = 1000000;
234 while ((phyregs->miimind & MIIMIND_BUSY) && timeout--) ;
235 }
236
237
238 /* Provide the default behavior of writing the PHY of this ethernet device */
239 #define write_phy_reg(priv, regnum, value) \
240 tsec_local_mdio_write(priv->phyregs,priv->phyaddr,regnum,value)
241
242 /* Reads register regnum on the device's PHY through the
243 * specified registers. It lowers and raises the read
244 * command, and waits for the data to become valid (miimind
245 * notvalid bit cleared), and the bus to cease activity (miimind
246 * busy bit cleared), and then returns the value
247 */
248 static uint tsec_local_mdio_read(volatile tsec_mdio_t *phyregs,
249 uint phyid, uint regnum)
250 {
251 uint value;
252
253 /* Put the address of the phy, and the register
254 * number into MIIMADD */
255 phyregs->miimadd = (phyid << 8) | regnum;
256
257 /* Clear the command register, and wait */
258 phyregs->miimcom = 0;
259 asm("sync");
260
261 /* Initiate a read command, and wait */
262 phyregs->miimcom = MIIM_READ_COMMAND;
263 asm("sync");
264
265 /* Wait for the the indication that the read is done */
266 while ((phyregs->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
267
268 /* Grab the value read from the PHY */
269 value = phyregs->miimstat;
270
271 return value;
272 }
273
274 /* #define to provide old read_phy_reg functionality without duplicating code */
275 #define read_phy_reg(priv,regnum) \
276 tsec_local_mdio_read(priv->phyregs,priv->phyaddr,regnum)
277
278 #define TBIANA_SETTINGS ( \
279 TBIANA_ASYMMETRIC_PAUSE \
280 | TBIANA_SYMMETRIC_PAUSE \
281 | TBIANA_FULL_DUPLEX \
282 )
283
284 /* Force the TBI PHY into 1000Mbps full duplex when in SGMII mode */
285 #define TBICR_SETTINGS ( \
286 TBICR_PHY_RESET \
287 | TBICR_FULL_DUPLEX \
288 | TBICR_SPEED1_SET \
289 )
290
291 /* Configure the TBI for SGMII operation */
292 static void tsec_configure_serdes(struct tsec_private *priv)
293 {
294 /* Access TBI PHY registers at given TSEC register offset as opposed
295 * to the register offset used for external PHY accesses */
296 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_ANA,
297 TBIANA_SETTINGS);
298 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_TBICON,
299 TBICON_CLK_SELECT);
300 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_CR,
301 TBICR_SETTINGS);
302 }
303
304 /* Discover which PHY is attached to the device, and configure it
305 * properly. If the PHY is not recognized, then return 0
306 * (failure). Otherwise, return 1
307 */
308 static int init_phy(struct eth_device *dev)
309 {
310 struct tsec_private *priv = (struct tsec_private *)dev->priv;
311 struct phy_info *curphy;
312 volatile tsec_t *regs = priv->regs;
313
314 /* Assign a Physical address to the TBI */
315 regs->tbipa = CONFIG_SYS_TBIPA_VALUE;
316 asm("sync");
317
318 /* Reset MII (due to new addresses) */
319 priv->phyregs->miimcfg = MIIMCFG_RESET;
320 asm("sync");
321 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
322 asm("sync");
323 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
324
325 /* Get the cmd structure corresponding to the attached
326 * PHY */
327 curphy = get_phy_info(dev);
328
329 if (curphy == NULL) {
330 priv->phyinfo = NULL;
331 printf("%s: No PHY found\n", dev->name);
332
333 return 0;
334 }
335
336 if (regs->ecntrl & ECNTRL_SGMII_MODE)
337 tsec_configure_serdes(priv);
338
339 priv->phyinfo = curphy;
340
341 phy_run_commands(priv, priv->phyinfo->config);
342
343 return 1;
344 }
345
346 /*
347 * Returns which value to write to the control register.
348 * For 10/100, the value is slightly different
349 */
350 static uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
351 {
352 if (priv->flags & TSEC_GIGABIT)
353 return MIIM_CONTROL_INIT;
354 else
355 return MIIM_CR_INIT;
356 }
357
358 /*
359 * Wait for auto-negotiation to complete, then determine link
360 */
361 static uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
362 {
363 /*
364 * Wait if the link is up, and autonegotiation is in progress
365 * (ie - we're capable and it's not done)
366 */
367 mii_reg = read_phy_reg(priv, MIIM_STATUS);
368 if ((mii_reg & PHY_BMSR_AUTN_ABLE) && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
369 int i = 0;
370
371 puts("Waiting for PHY auto negotiation to complete");
372 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
373 /*
374 * Timeout reached ?
375 */
376 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
377 puts(" TIMEOUT !\n");
378 priv->link = 0;
379 return 0;
380 }
381
382 if (ctrlc()) {
383 puts("user interrupt!\n");
384 priv->link = 0;
385 return -EINTR;
386 }
387
388 if ((i++ % 1000) == 0) {
389 putc('.');
390 }
391 udelay(1000); /* 1 ms */
392 mii_reg = read_phy_reg(priv, MIIM_STATUS);
393 }
394 puts(" done\n");
395
396 /* Link status bit is latched low, read it again */
397 mii_reg = read_phy_reg(priv, MIIM_STATUS);
398
399 udelay(500000); /* another 500 ms (results in faster booting) */
400 }
401
402 priv->link = mii_reg & MIIM_STATUS_LINK ? 1 : 0;
403
404 return 0;
405 }
406
407 /* Generic function which updates the speed and duplex. If
408 * autonegotiation is enabled, it uses the AND of the link
409 * partner's advertised capabilities and our advertised
410 * capabilities. If autonegotiation is disabled, we use the
411 * appropriate bits in the control register.
412 *
413 * Stolen from Linux's mii.c and phy_device.c
414 */
415 static uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
416 {
417 /* We're using autonegotiation */
418 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
419 uint lpa = 0;
420 uint gblpa = 0;
421
422 /* Check for gigabit capability */
423 if (mii_reg & PHY_BMSR_EXT) {
424 /* We want a list of states supported by
425 * both PHYs in the link
426 */
427 gblpa = read_phy_reg(priv, PHY_1000BTSR);
428 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
429 }
430
431 /* Set the baseline so we only have to set them
432 * if they're different
433 */
434 priv->speed = 10;
435 priv->duplexity = 0;
436
437 /* Check the gigabit fields */
438 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
439 priv->speed = 1000;
440
441 if (gblpa & PHY_1000BTSR_1000FD)
442 priv->duplexity = 1;
443
444 /* We're done! */
445 return 0;
446 }
447
448 lpa = read_phy_reg(priv, PHY_ANAR);
449 lpa &= read_phy_reg(priv, PHY_ANLPAR);
450
451 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
452 priv->speed = 100;
453
454 if (lpa & PHY_ANLPAR_TXFD)
455 priv->duplexity = 1;
456
457 } else if (lpa & PHY_ANLPAR_10FD)
458 priv->duplexity = 1;
459 } else {
460 uint bmcr = read_phy_reg(priv, PHY_BMCR);
461
462 priv->speed = 10;
463 priv->duplexity = 0;
464
465 if (bmcr & PHY_BMCR_DPLX)
466 priv->duplexity = 1;
467
468 if (bmcr & PHY_BMCR_1000_MBPS)
469 priv->speed = 1000;
470 else if (bmcr & PHY_BMCR_100_MBPS)
471 priv->speed = 100;
472 }
473
474 return 0;
475 }
476
477 /*
478 * "Ethernet@Wirespeed" needs to be enabled to achieve link in certain
479 * circumstances. eg a gigabit TSEC connected to a gigabit switch with
480 * a 4-wire ethernet cable. Both ends advertise gigabit, but can't
481 * link. "Ethernet@Wirespeed" reduces advertised speed until link
482 * can be achieved.
483 */
484 static uint mii_BCM54xx_wirespeed(uint mii_reg, struct tsec_private *priv)
485 {
486 return (read_phy_reg(priv, mii_reg) & 0x8FFF) | 0x8010;
487 }
488
489 /*
490 * Parse the BCM54xx status register for speed and duplex information.
491 * The linux sungem_phy has this information, but in a table format.
492 */
493 static uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
494 {
495 /* If there is no link, speed and duplex don't matter */
496 if (!priv->link)
497 return 0;
498
499 switch ((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >>
500 MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT) {
501 case 1:
502 priv->duplexity = 0;
503 priv->speed = 10;
504 break;
505 case 2:
506 priv->duplexity = 1;
507 priv->speed = 10;
508 break;
509 case 3:
510 priv->duplexity = 0;
511 priv->speed = 100;
512 break;
513 case 5:
514 priv->duplexity = 1;
515 priv->speed = 100;
516 break;
517 case 6:
518 priv->duplexity = 0;
519 priv->speed = 1000;
520 break;
521 case 7:
522 priv->duplexity = 1;
523 priv->speed = 1000;
524 break;
525 default:
526 printf("Auto-neg error, defaulting to 10BT/HD\n");
527 priv->duplexity = 0;
528 priv->speed = 10;
529 break;
530 }
531
532 return 0;
533 }
534
535 /*
536 * Find out if PHY is in copper or serdes mode by looking at Expansion Reg
537 * 0x42 - "Operating Mode Status Register"
538 */
539 static int BCM8482_is_serdes(struct tsec_private *priv)
540 {
541 u16 val;
542 int serdes = 0;
543
544 write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_ER | 0x42);
545 val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
546
547 switch (val & 0x1f) {
548 case 0x0d: /* RGMII-to-100Base-FX */
549 case 0x0e: /* RGMII-to-SGMII */
550 case 0x0f: /* RGMII-to-SerDes */
551 case 0x12: /* SGMII-to-SerDes */
552 case 0x13: /* SGMII-to-100Base-FX */
553 case 0x16: /* SerDes-to-Serdes */
554 serdes = 1;
555 break;
556 case 0x6: /* RGMII-to-Copper */
557 case 0x14: /* SGMII-to-Copper */
558 case 0x17: /* SerDes-to-Copper */
559 break;
560 default:
561 printf("ERROR, invalid PHY mode (0x%x\n)", val);
562 break;
563 }
564
565 return serdes;
566 }
567
568 /*
569 * Determine SerDes link speed and duplex from Expansion reg 0x42 "Operating
570 * Mode Status Register"
571 */
572 uint mii_parse_BCM5482_serdes_sr(struct tsec_private *priv)
573 {
574 u16 val;
575 int i = 0;
576
577 /* Wait 1s for link - Clause 37 autonegotiation happens very fast */
578 while (1) {
579 write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL,
580 MIIM_BCM54XX_EXP_SEL_ER | 0x42);
581 val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
582
583 if (val & 0x8000)
584 break;
585
586 if (i++ > 1000) {
587 priv->link = 0;
588 return 1;
589 }
590
591 udelay(1000); /* 1 ms */
592 }
593
594 priv->link = 1;
595 switch ((val >> 13) & 0x3) {
596 case (0x00):
597 priv->speed = 10;
598 break;
599 case (0x01):
600 priv->speed = 100;
601 break;
602 case (0x02):
603 priv->speed = 1000;
604 break;
605 }
606
607 priv->duplexity = (val & 0x1000) == 0x1000;
608
609 return 0;
610 }
611
612 /*
613 * Figure out if BCM5482 is in serdes or copper mode and determine link
614 * configuration accordingly
615 */
616 static uint mii_parse_BCM5482_sr(uint mii_reg, struct tsec_private *priv)
617 {
618 if (BCM8482_is_serdes(priv)) {
619 mii_parse_BCM5482_serdes_sr(priv);
620 priv->flags |= TSEC_FIBER;
621 } else {
622 /* Wait for auto-negotiation to complete or fail */
623 mii_parse_sr(mii_reg, priv);
624
625 /* Parse BCM54xx copper aux status register */
626 mii_reg = read_phy_reg(priv, MIIM_BCM54xx_AUXSTATUS);
627 mii_parse_BCM54xx_sr(mii_reg, priv);
628 }
629
630 return 0;
631 }
632
633 /* Parse the 88E1011's status register for speed and duplex
634 * information
635 */
636 static uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
637 {
638 uint speed;
639
640 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
641
642 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
643 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
644 int i = 0;
645
646 puts("Waiting for PHY realtime link");
647 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
648 /* Timeout reached ? */
649 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
650 puts(" TIMEOUT !\n");
651 priv->link = 0;
652 break;
653 }
654
655 if ((i++ % 1000) == 0) {
656 putc('.');
657 }
658 udelay(1000); /* 1 ms */
659 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
660 }
661 puts(" done\n");
662 udelay(500000); /* another 500 ms (results in faster booting) */
663 } else {
664 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
665 priv->link = 1;
666 else
667 priv->link = 0;
668 }
669
670 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
671 priv->duplexity = 1;
672 else
673 priv->duplexity = 0;
674
675 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
676
677 switch (speed) {
678 case MIIM_88E1011_PHYSTAT_GBIT:
679 priv->speed = 1000;
680 break;
681 case MIIM_88E1011_PHYSTAT_100:
682 priv->speed = 100;
683 break;
684 default:
685 priv->speed = 10;
686 }
687
688 return 0;
689 }
690
691 /* Parse the RTL8211B's status register for speed and duplex
692 * information
693 */
694 static uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
695 {
696 uint speed;
697
698 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
699 if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
700 int i = 0;
701
702 /* in case of timeout ->link is cleared */
703 priv->link = 1;
704 puts("Waiting for PHY realtime link");
705 while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
706 /* Timeout reached ? */
707 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
708 puts(" TIMEOUT !\n");
709 priv->link = 0;
710 break;
711 }
712
713 if ((i++ % 1000) == 0) {
714 putc('.');
715 }
716 udelay(1000); /* 1 ms */
717 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
718 }
719 puts(" done\n");
720 udelay(500000); /* another 500 ms (results in faster booting) */
721 } else {
722 if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
723 priv->link = 1;
724 else
725 priv->link = 0;
726 }
727
728 if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
729 priv->duplexity = 1;
730 else
731 priv->duplexity = 0;
732
733 speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
734
735 switch (speed) {
736 case MIIM_RTL8211B_PHYSTAT_GBIT:
737 priv->speed = 1000;
738 break;
739 case MIIM_RTL8211B_PHYSTAT_100:
740 priv->speed = 100;
741 break;
742 default:
743 priv->speed = 10;
744 }
745
746 return 0;
747 }
748
749 /* Parse the cis8201's status register for speed and duplex
750 * information
751 */
752 static uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
753 {
754 uint speed;
755
756 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
757 priv->duplexity = 1;
758 else
759 priv->duplexity = 0;
760
761 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
762 switch (speed) {
763 case MIIM_CIS8201_AUXCONSTAT_GBIT:
764 priv->speed = 1000;
765 break;
766 case MIIM_CIS8201_AUXCONSTAT_100:
767 priv->speed = 100;
768 break;
769 default:
770 priv->speed = 10;
771 break;
772 }
773
774 return 0;
775 }
776
777 /* Parse the vsc8244's status register for speed and duplex
778 * information
779 */
780 static uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
781 {
782 uint speed;
783
784 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
785 priv->duplexity = 1;
786 else
787 priv->duplexity = 0;
788
789 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
790 switch (speed) {
791 case MIIM_VSC8244_AUXCONSTAT_GBIT:
792 priv->speed = 1000;
793 break;
794 case MIIM_VSC8244_AUXCONSTAT_100:
795 priv->speed = 100;
796 break;
797 default:
798 priv->speed = 10;
799 break;
800 }
801
802 return 0;
803 }
804
805 /* Parse the DM9161's status register for speed and duplex
806 * information
807 */
808 static uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
809 {
810 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
811 priv->speed = 100;
812 else
813 priv->speed = 10;
814
815 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
816 priv->duplexity = 1;
817 else
818 priv->duplexity = 0;
819
820 return 0;
821 }
822
823 /*
824 * Hack to write all 4 PHYs with the LED values
825 */
826 static uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
827 {
828 uint phyid;
829 volatile tsec_mdio_t *regbase = priv->phyregs;
830 int timeout = 1000000;
831
832 for (phyid = 0; phyid < 4; phyid++) {
833 regbase->miimadd = (phyid << 8) | mii_reg;
834 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
835 asm("sync");
836
837 timeout = 1000000;
838 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
839 }
840
841 return MIIM_CIS8204_SLEDCON_INIT;
842 }
843
844 static uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
845 {
846 if (priv->flags & TSEC_REDUCED)
847 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
848 else
849 return MIIM_CIS8204_EPHYCON_INIT;
850 }
851
852 static uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
853 {
854 uint mii_data = read_phy_reg(priv, mii_reg);
855
856 if (priv->flags & TSEC_REDUCED)
857 mii_data = (mii_data & 0xfff0) | 0x000b;
858 return mii_data;
859 }
860
861 /* Initialized required registers to appropriate values, zeroing
862 * those we don't care about (unless zero is bad, in which case,
863 * choose a more appropriate value)
864 */
865 static void init_registers(volatile tsec_t * regs)
866 {
867 /* Clear IEVENT */
868 regs->ievent = IEVENT_INIT_CLEAR;
869
870 regs->imask = IMASK_INIT_CLEAR;
871
872 regs->hash.iaddr0 = 0;
873 regs->hash.iaddr1 = 0;
874 regs->hash.iaddr2 = 0;
875 regs->hash.iaddr3 = 0;
876 regs->hash.iaddr4 = 0;
877 regs->hash.iaddr5 = 0;
878 regs->hash.iaddr6 = 0;
879 regs->hash.iaddr7 = 0;
880
881 regs->hash.gaddr0 = 0;
882 regs->hash.gaddr1 = 0;
883 regs->hash.gaddr2 = 0;
884 regs->hash.gaddr3 = 0;
885 regs->hash.gaddr4 = 0;
886 regs->hash.gaddr5 = 0;
887 regs->hash.gaddr6 = 0;
888 regs->hash.gaddr7 = 0;
889
890 regs->rctrl = 0x00000000;
891
892 /* Init RMON mib registers */
893 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
894
895 regs->rmon.cam1 = 0xffffffff;
896 regs->rmon.cam2 = 0xffffffff;
897
898 regs->mrblr = MRBLR_INIT_SETTINGS;
899
900 regs->minflr = MINFLR_INIT_SETTINGS;
901
902 regs->attr = ATTR_INIT_SETTINGS;
903 regs->attreli = ATTRELI_INIT_SETTINGS;
904
905 }
906
907 /* Configure maccfg2 based on negotiated speed and duplex
908 * reported by PHY handling code
909 */
910 static void adjust_link(struct eth_device *dev)
911 {
912 struct tsec_private *priv = (struct tsec_private *)dev->priv;
913 volatile tsec_t *regs = priv->regs;
914
915 if (priv->link) {
916 if (priv->duplexity != 0)
917 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
918 else
919 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
920
921 switch (priv->speed) {
922 case 1000:
923 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
924 | MACCFG2_GMII);
925 break;
926 case 100:
927 case 10:
928 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
929 | MACCFG2_MII);
930
931 /* Set R100 bit in all modes although
932 * it is only used in RGMII mode
933 */
934 if (priv->speed == 100)
935 regs->ecntrl |= ECNTRL_R100;
936 else
937 regs->ecntrl &= ~(ECNTRL_R100);
938 break;
939 default:
940 printf("%s: Speed was bad\n", dev->name);
941 break;
942 }
943
944 printf("Speed: %d, %s duplex%s\n", priv->speed,
945 (priv->duplexity) ? "full" : "half",
946 (priv->flags & TSEC_FIBER) ? ", fiber mode" : "");
947
948 } else {
949 printf("%s: No link.\n", dev->name);
950 }
951 }
952
953 /* Set up the buffers and their descriptors, and bring up the
954 * interface
955 */
956 static void startup_tsec(struct eth_device *dev)
957 {
958 int i;
959 struct tsec_private *priv = (struct tsec_private *)dev->priv;
960 volatile tsec_t *regs = priv->regs;
961
962 /* Point to the buffer descriptors */
963 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
964 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
965
966 /* Initialize the Rx Buffer descriptors */
967 for (i = 0; i < PKTBUFSRX; i++) {
968 rtx.rxbd[i].status = RXBD_EMPTY;
969 rtx.rxbd[i].length = 0;
970 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
971 }
972 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
973
974 /* Initialize the TX Buffer Descriptors */
975 for (i = 0; i < TX_BUF_CNT; i++) {
976 rtx.txbd[i].status = 0;
977 rtx.txbd[i].length = 0;
978 rtx.txbd[i].bufPtr = 0;
979 }
980 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
981
982 /* Start up the PHY */
983 if(priv->phyinfo)
984 phy_run_commands(priv, priv->phyinfo->startup);
985
986 adjust_link(dev);
987
988 /* Enable Transmit and Receive */
989 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
990
991 /* Tell the DMA it is clear to go */
992 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
993 regs->tstat = TSTAT_CLEAR_THALT;
994 regs->rstat = RSTAT_CLEAR_RHALT;
995 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
996 }
997
998 /* This returns the status bits of the device. The return value
999 * is never checked, and this is what the 8260 driver did, so we
1000 * do the same. Presumably, this would be zero if there were no
1001 * errors
1002 */
1003 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
1004 {
1005 int i;
1006 int result = 0;
1007 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1008 volatile tsec_t *regs = priv->regs;
1009
1010 /* Find an empty buffer descriptor */
1011 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1012 if (i >= TOUT_LOOP) {
1013 debug("%s: tsec: tx buffers full\n", dev->name);
1014 return result;
1015 }
1016 }
1017
1018 rtx.txbd[txIdx].bufPtr = (uint) packet;
1019 rtx.txbd[txIdx].length = length;
1020 rtx.txbd[txIdx].status |=
1021 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
1022
1023 /* Tell the DMA to go */
1024 regs->tstat = TSTAT_CLEAR_THALT;
1025
1026 /* Wait for buffer to be transmitted */
1027 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1028 if (i >= TOUT_LOOP) {
1029 debug("%s: tsec: tx error\n", dev->name);
1030 return result;
1031 }
1032 }
1033
1034 txIdx = (txIdx + 1) % TX_BUF_CNT;
1035 result = rtx.txbd[txIdx].status & TXBD_STATS;
1036
1037 return result;
1038 }
1039
1040 static int tsec_recv(struct eth_device *dev)
1041 {
1042 int length;
1043 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1044 volatile tsec_t *regs = priv->regs;
1045
1046 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
1047
1048 length = rtx.rxbd[rxIdx].length;
1049
1050 /* Send the packet up if there were no errors */
1051 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
1052 NetReceive(NetRxPackets[rxIdx], length - 4);
1053 } else {
1054 printf("Got error %x\n",
1055 (rtx.rxbd[rxIdx].status & RXBD_STATS));
1056 }
1057
1058 rtx.rxbd[rxIdx].length = 0;
1059
1060 /* Set the wrap bit if this is the last element in the list */
1061 rtx.rxbd[rxIdx].status =
1062 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
1063
1064 rxIdx = (rxIdx + 1) % PKTBUFSRX;
1065 }
1066
1067 if (regs->ievent & IEVENT_BSY) {
1068 regs->ievent = IEVENT_BSY;
1069 regs->rstat = RSTAT_CLEAR_RHALT;
1070 }
1071
1072 return -1;
1073
1074 }
1075
1076 /* Stop the interface */
1077 static void tsec_halt(struct eth_device *dev)
1078 {
1079 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1080 volatile tsec_t *regs = priv->regs;
1081
1082 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1083 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
1084
1085 while ((regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))
1086 != (IEVENT_GRSC | IEVENT_GTSC)) ;
1087
1088 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
1089
1090 /* Shut down the PHY, as needed */
1091 if(priv->phyinfo)
1092 phy_run_commands(priv, priv->phyinfo->shutdown);
1093 }
1094
1095 static struct phy_info phy_info_M88E1149S = {
1096 0x1410ca,
1097 "Marvell 88E1149S",
1098 4,
1099 (struct phy_cmd[]) { /* config */
1100 /* Reset and configure the PHY */
1101 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1102 {0x1d, 0x1f, NULL},
1103 {0x1e, 0x200c, NULL},
1104 {0x1d, 0x5, NULL},
1105 {0x1e, 0x0, NULL},
1106 {0x1e, 0x100, NULL},
1107 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1108 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1109 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1110 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1111 {miim_end,}
1112 },
1113 (struct phy_cmd[]) { /* startup */
1114 /* Status is read once to clear old link state */
1115 {MIIM_STATUS, miim_read, NULL},
1116 /* Auto-negotiate */
1117 {MIIM_STATUS, miim_read, &mii_parse_sr},
1118 /* Read the status */
1119 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1120 {miim_end,}
1121 },
1122 (struct phy_cmd[]) { /* shutdown */
1123 {miim_end,}
1124 },
1125 };
1126
1127 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1128 static struct phy_info phy_info_BCM5461S = {
1129 0x02060c1, /* 5461 ID */
1130 "Broadcom BCM5461S",
1131 0, /* not clear to me what minor revisions we can shift away */
1132 (struct phy_cmd[]) { /* config */
1133 /* Reset and configure the PHY */
1134 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1135 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1136 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1137 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1138 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1139 {miim_end,}
1140 },
1141 (struct phy_cmd[]) { /* startup */
1142 /* Status is read once to clear old link state */
1143 {MIIM_STATUS, miim_read, NULL},
1144 /* Auto-negotiate */
1145 {MIIM_STATUS, miim_read, &mii_parse_sr},
1146 /* Read the status */
1147 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1148 {miim_end,}
1149 },
1150 (struct phy_cmd[]) { /* shutdown */
1151 {miim_end,}
1152 },
1153 };
1154
1155 static struct phy_info phy_info_BCM5464S = {
1156 0x02060b1, /* 5464 ID */
1157 "Broadcom BCM5464S",
1158 0, /* not clear to me what minor revisions we can shift away */
1159 (struct phy_cmd[]) { /* config */
1160 /* Reset and configure the PHY */
1161 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1162 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1163 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1164 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1165 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1166 {miim_end,}
1167 },
1168 (struct phy_cmd[]) { /* startup */
1169 /* Status is read once to clear old link state */
1170 {MIIM_STATUS, miim_read, NULL},
1171 /* Auto-negotiate */
1172 {MIIM_STATUS, miim_read, &mii_parse_sr},
1173 /* Read the status */
1174 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1175 {miim_end,}
1176 },
1177 (struct phy_cmd[]) { /* shutdown */
1178 {miim_end,}
1179 },
1180 };
1181
1182 static struct phy_info phy_info_BCM5482S = {
1183 0x0143bcb,
1184 "Broadcom BCM5482S",
1185 4,
1186 (struct phy_cmd[]) { /* config */
1187 /* Reset and configure the PHY */
1188 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1189 /* Setup read from auxilary control shadow register 7 */
1190 {MIIM_BCM54xx_AUXCNTL, MIIM_BCM54xx_AUXCNTL_ENCODE(7), NULL},
1191 /* Read Misc Control register and or in Ethernet@Wirespeed */
1192 {MIIM_BCM54xx_AUXCNTL, 0, &mii_BCM54xx_wirespeed},
1193 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1194 /* Initial config/enable of secondary SerDes interface */
1195 {MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x14, 0xf), NULL},
1196 /* Write intial value to secondary SerDes Contol */
1197 {MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_SSD | 0, NULL},
1198 {MIIM_BCM54XX_EXP_DATA, MIIM_CONTROL_RESTART, NULL},
1199 /* Enable copper/fiber auto-detect */
1200 {MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x1e, 0x201)},
1201 {miim_end,}
1202 },
1203 (struct phy_cmd[]) { /* startup */
1204 /* Status is read once to clear old link state */
1205 {MIIM_STATUS, miim_read, NULL},
1206 /* Determine copper/fiber, auto-negotiate, and read the result */
1207 {MIIM_STATUS, miim_read, &mii_parse_BCM5482_sr},
1208 {miim_end,}
1209 },
1210 (struct phy_cmd[]) { /* shutdown */
1211 {miim_end,}
1212 },
1213 };
1214
1215 static struct phy_info phy_info_M88E1011S = {
1216 0x01410c6,
1217 "Marvell 88E1011S",
1218 4,
1219 (struct phy_cmd[]) { /* config */
1220 /* Reset and configure the PHY */
1221 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1222 {0x1d, 0x1f, NULL},
1223 {0x1e, 0x200c, NULL},
1224 {0x1d, 0x5, NULL},
1225 {0x1e, 0x0, NULL},
1226 {0x1e, 0x100, NULL},
1227 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1228 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1229 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1230 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1231 {miim_end,}
1232 },
1233 (struct phy_cmd[]) { /* startup */
1234 /* Status is read once to clear old link state */
1235 {MIIM_STATUS, miim_read, NULL},
1236 /* Auto-negotiate */
1237 {MIIM_STATUS, miim_read, &mii_parse_sr},
1238 /* Read the status */
1239 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1240 {miim_end,}
1241 },
1242 (struct phy_cmd[]) { /* shutdown */
1243 {miim_end,}
1244 },
1245 };
1246
1247 static struct phy_info phy_info_M88E1111S = {
1248 0x01410cc,
1249 "Marvell 88E1111S",
1250 4,
1251 (struct phy_cmd[]) { /* config */
1252 /* Reset and configure the PHY */
1253 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1254 {0x1b, 0x848f, &mii_m88e1111s_setmode},
1255 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1256 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1257 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1258 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1259 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1260 {miim_end,}
1261 },
1262 (struct phy_cmd[]) { /* startup */
1263 /* Status is read once to clear old link state */
1264 {MIIM_STATUS, miim_read, NULL},
1265 /* Auto-negotiate */
1266 {MIIM_STATUS, miim_read, &mii_parse_sr},
1267 /* Read the status */
1268 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1269 {miim_end,}
1270 },
1271 (struct phy_cmd[]) { /* shutdown */
1272 {miim_end,}
1273 },
1274 };
1275
1276 static struct phy_info phy_info_M88E1118 = {
1277 0x01410e1,
1278 "Marvell 88E1118",
1279 4,
1280 (struct phy_cmd[]) { /* config */
1281 /* Reset and configure the PHY */
1282 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1283 {0x16, 0x0002, NULL}, /* Change Page Number */
1284 {0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1285 {0x16, 0x0003, NULL}, /* Change Page Number */
1286 {0x10, 0x021e, NULL}, /* Adjust LED control */
1287 {0x16, 0x0000, NULL}, /* Change Page Number */
1288 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1289 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1290 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1291 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1292 {miim_end,}
1293 },
1294 (struct phy_cmd[]) { /* startup */
1295 {0x16, 0x0000, NULL}, /* Change Page Number */
1296 /* Status is read once to clear old link state */
1297 {MIIM_STATUS, miim_read, NULL},
1298 /* Auto-negotiate */
1299 {MIIM_STATUS, miim_read, &mii_parse_sr},
1300 /* Read the status */
1301 {MIIM_88E1011_PHY_STATUS, miim_read,
1302 &mii_parse_88E1011_psr},
1303 {miim_end,}
1304 },
1305 (struct phy_cmd[]) { /* shutdown */
1306 {miim_end,}
1307 },
1308 };
1309
1310 /*
1311 * Since to access LED register we need do switch the page, we
1312 * do LED configuring in the miim_read-like function as follows
1313 */
1314 static uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv)
1315 {
1316 uint pg;
1317
1318 /* Switch the page to access the led register */
1319 pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE);
1320 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE);
1321
1322 /* Configure leds */
1323 write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL,
1324 MIIM_88E1121_PHY_LED_DEF);
1325
1326 /* Restore the page pointer */
1327 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg);
1328 return 0;
1329 }
1330
1331 static struct phy_info phy_info_M88E1121R = {
1332 0x01410cb,
1333 "Marvell 88E1121R",
1334 4,
1335 (struct phy_cmd[]) { /* config */
1336 /* Reset and configure the PHY */
1337 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1338 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1339 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1340 /* Configure leds */
1341 {MIIM_88E1121_PHY_LED_CTRL, miim_read, &mii_88E1121_set_led},
1342 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1343 /* Disable IRQs and de-assert interrupt */
1344 {MIIM_88E1121_PHY_IRQ_EN, 0, NULL},
1345 {MIIM_88E1121_PHY_IRQ_STATUS, miim_read, NULL},
1346 {miim_end,}
1347 },
1348 (struct phy_cmd[]) { /* startup */
1349 /* Status is read once to clear old link state */
1350 {MIIM_STATUS, miim_read, NULL},
1351 {MIIM_STATUS, miim_read, &mii_parse_sr},
1352 {MIIM_STATUS, miim_read, &mii_parse_link},
1353 {miim_end,}
1354 },
1355 (struct phy_cmd[]) { /* shutdown */
1356 {miim_end,}
1357 },
1358 };
1359
1360 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1361 {
1362 uint mii_data = read_phy_reg(priv, mii_reg);
1363
1364 /* Setting MIIM_88E1145_PHY_EXT_CR */
1365 if (priv->flags & TSEC_REDUCED)
1366 return mii_data |
1367 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1368 else
1369 return mii_data;
1370 }
1371
1372 static struct phy_info phy_info_M88E1145 = {
1373 0x01410cd,
1374 "Marvell 88E1145",
1375 4,
1376 (struct phy_cmd[]) { /* config */
1377 /* Reset the PHY */
1378 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1379
1380 /* Errata E0, E1 */
1381 {29, 0x001b, NULL},
1382 {30, 0x418f, NULL},
1383 {29, 0x0016, NULL},
1384 {30, 0xa2da, NULL},
1385
1386 /* Configure the PHY */
1387 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1388 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1389 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO, NULL},
1390 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1391 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1392 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1393 {miim_end,}
1394 },
1395 (struct phy_cmd[]) { /* startup */
1396 /* Status is read once to clear old link state */
1397 {MIIM_STATUS, miim_read, NULL},
1398 /* Auto-negotiate */
1399 {MIIM_STATUS, miim_read, &mii_parse_sr},
1400 {MIIM_88E1111_PHY_LED_CONTROL, MIIM_88E1111_PHY_LED_DIRECT, NULL},
1401 /* Read the Status */
1402 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1403 {miim_end,}
1404 },
1405 (struct phy_cmd[]) { /* shutdown */
1406 {miim_end,}
1407 },
1408 };
1409
1410 static struct phy_info phy_info_cis8204 = {
1411 0x3f11,
1412 "Cicada Cis8204",
1413 6,
1414 (struct phy_cmd[]) { /* config */
1415 /* Override PHY config settings */
1416 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1417 /* Configure some basic stuff */
1418 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1419 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1420 &mii_cis8204_fixled},
1421 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1422 &mii_cis8204_setmode},
1423 {miim_end,}
1424 },
1425 (struct phy_cmd[]) { /* startup */
1426 /* Read the Status (2x to make sure link is right) */
1427 {MIIM_STATUS, miim_read, NULL},
1428 /* Auto-negotiate */
1429 {MIIM_STATUS, miim_read, &mii_parse_sr},
1430 /* Read the status */
1431 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1432 {miim_end,}
1433 },
1434 (struct phy_cmd[]) { /* shutdown */
1435 {miim_end,}
1436 },
1437 };
1438
1439 /* Cicada 8201 */
1440 static struct phy_info phy_info_cis8201 = {
1441 0xfc41,
1442 "CIS8201",
1443 4,
1444 (struct phy_cmd[]) { /* config */
1445 /* Override PHY config settings */
1446 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1447 /* Set up the interface mode */
1448 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1449 /* Configure some basic stuff */
1450 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1451 {miim_end,}
1452 },
1453 (struct phy_cmd[]) { /* startup */
1454 /* Read the Status (2x to make sure link is right) */
1455 {MIIM_STATUS, miim_read, NULL},
1456 /* Auto-negotiate */
1457 {MIIM_STATUS, miim_read, &mii_parse_sr},
1458 /* Read the status */
1459 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1460 {miim_end,}
1461 },
1462 (struct phy_cmd[]) { /* shutdown */
1463 {miim_end,}
1464 },
1465 };
1466
1467 static struct phy_info phy_info_VSC8211 = {
1468 0xfc4b,
1469 "Vitesse VSC8211",
1470 4,
1471 (struct phy_cmd[]) { /* config */
1472 /* Override PHY config settings */
1473 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1474 /* Set up the interface mode */
1475 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1476 /* Configure some basic stuff */
1477 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1478 {miim_end,}
1479 },
1480 (struct phy_cmd[]) { /* startup */
1481 /* Read the Status (2x to make sure link is right) */
1482 {MIIM_STATUS, miim_read, NULL},
1483 /* Auto-negotiate */
1484 {MIIM_STATUS, miim_read, &mii_parse_sr},
1485 /* Read the status */
1486 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1487 {miim_end,}
1488 },
1489 (struct phy_cmd[]) { /* shutdown */
1490 {miim_end,}
1491 },
1492 };
1493
1494 static struct phy_info phy_info_VSC8244 = {
1495 0x3f1b,
1496 "Vitesse VSC8244",
1497 6,
1498 (struct phy_cmd[]) { /* config */
1499 /* Override PHY config settings */
1500 /* Configure some basic stuff */
1501 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1502 {miim_end,}
1503 },
1504 (struct phy_cmd[]) { /* startup */
1505 /* Read the Status (2x to make sure link is right) */
1506 {MIIM_STATUS, miim_read, NULL},
1507 /* Auto-negotiate */
1508 {MIIM_STATUS, miim_read, &mii_parse_sr},
1509 /* Read the status */
1510 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1511 {miim_end,}
1512 },
1513 (struct phy_cmd[]) { /* shutdown */
1514 {miim_end,}
1515 },
1516 };
1517
1518 static struct phy_info phy_info_VSC8641 = {
1519 0x7043,
1520 "Vitesse VSC8641",
1521 4,
1522 (struct phy_cmd[]) { /* config */
1523 /* Configure some basic stuff */
1524 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1525 {miim_end,}
1526 },
1527 (struct phy_cmd[]) { /* startup */
1528 /* Read the Status (2x to make sure link is right) */
1529 {MIIM_STATUS, miim_read, NULL},
1530 /* Auto-negotiate */
1531 {MIIM_STATUS, miim_read, &mii_parse_sr},
1532 /* Read the status */
1533 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1534 {miim_end,}
1535 },
1536 (struct phy_cmd[]) { /* shutdown */
1537 {miim_end,}
1538 },
1539 };
1540
1541 static struct phy_info phy_info_VSC8221 = {
1542 0xfc55,
1543 "Vitesse VSC8221",
1544 4,
1545 (struct phy_cmd[]) { /* config */
1546 /* Configure some basic stuff */
1547 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1548 {miim_end,}
1549 },
1550 (struct phy_cmd[]) { /* startup */
1551 /* Read the Status (2x to make sure link is right) */
1552 {MIIM_STATUS, miim_read, NULL},
1553 /* Auto-negotiate */
1554 {MIIM_STATUS, miim_read, &mii_parse_sr},
1555 /* Read the status */
1556 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1557 {miim_end,}
1558 },
1559 (struct phy_cmd[]) { /* shutdown */
1560 {miim_end,}
1561 },
1562 };
1563
1564 static struct phy_info phy_info_VSC8601 = {
1565 0x00007042,
1566 "Vitesse VSC8601",
1567 4,
1568 (struct phy_cmd[]) { /* config */
1569 /* Override PHY config settings */
1570 /* Configure some basic stuff */
1571 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1572 #ifdef CONFIG_SYS_VSC8601_SKEWFIX
1573 {MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1574 #if defined(CONFIG_SYS_VSC8601_SKEW_TX) && defined(CONFIG_SYS_VSC8601_SKEW_RX)
1575 {MIIM_EXT_PAGE_ACCESS,1,NULL},
1576 #define VSC8101_SKEW \
1577 (CONFIG_SYS_VSC8601_SKEW_TX << 14) | (CONFIG_SYS_VSC8601_SKEW_RX << 12)
1578 {MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1579 {MIIM_EXT_PAGE_ACCESS,0,NULL},
1580 #endif
1581 #endif
1582 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1583 {MIIM_CONTROL, MIIM_CONTROL_RESTART, &mii_cr_init},
1584 {miim_end,}
1585 },
1586 (struct phy_cmd[]) { /* startup */
1587 /* Read the Status (2x to make sure link is right) */
1588 {MIIM_STATUS, miim_read, NULL},
1589 /* Auto-negotiate */
1590 {MIIM_STATUS, miim_read, &mii_parse_sr},
1591 /* Read the status */
1592 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1593 {miim_end,}
1594 },
1595 (struct phy_cmd[]) { /* shutdown */
1596 {miim_end,}
1597 },
1598 };
1599
1600 static struct phy_info phy_info_dm9161 = {
1601 0x0181b88,
1602 "Davicom DM9161E",
1603 4,
1604 (struct phy_cmd[]) { /* config */
1605 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1606 /* Do not bypass the scrambler/descrambler */
1607 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1608 /* Clear 10BTCSR to default */
1609 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL},
1610 /* Configure some basic stuff */
1611 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1612 /* Restart Auto Negotiation */
1613 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1614 {miim_end,}
1615 },
1616 (struct phy_cmd[]) { /* startup */
1617 /* Status is read once to clear old link state */
1618 {MIIM_STATUS, miim_read, NULL},
1619 /* Auto-negotiate */
1620 {MIIM_STATUS, miim_read, &mii_parse_sr},
1621 /* Read the status */
1622 {MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr},
1623 {miim_end,}
1624 },
1625 (struct phy_cmd[]) { /* shutdown */
1626 {miim_end,}
1627 },
1628 };
1629
1630 /* a generic flavor. */
1631 static struct phy_info phy_info_generic = {
1632 0,
1633 "Unknown/Generic PHY",
1634 32,
1635 (struct phy_cmd[]) { /* config */
1636 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1637 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1638 {miim_end,}
1639 },
1640 (struct phy_cmd[]) { /* startup */
1641 {PHY_BMSR, miim_read, NULL},
1642 {PHY_BMSR, miim_read, &mii_parse_sr},
1643 {PHY_BMSR, miim_read, &mii_parse_link},
1644 {miim_end,}
1645 },
1646 (struct phy_cmd[]) { /* shutdown */
1647 {miim_end,}
1648 }
1649 };
1650
1651 static uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1652 {
1653 unsigned int speed;
1654 if (priv->link) {
1655 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1656
1657 switch (speed) {
1658 case MIIM_LXT971_SR2_10HDX:
1659 priv->speed = 10;
1660 priv->duplexity = 0;
1661 break;
1662 case MIIM_LXT971_SR2_10FDX:
1663 priv->speed = 10;
1664 priv->duplexity = 1;
1665 break;
1666 case MIIM_LXT971_SR2_100HDX:
1667 priv->speed = 100;
1668 priv->duplexity = 0;
1669 break;
1670 default:
1671 priv->speed = 100;
1672 priv->duplexity = 1;
1673 }
1674 } else {
1675 priv->speed = 0;
1676 priv->duplexity = 0;
1677 }
1678
1679 return 0;
1680 }
1681
1682 static struct phy_info phy_info_lxt971 = {
1683 0x0001378e,
1684 "LXT971",
1685 4,
1686 (struct phy_cmd[]) { /* config */
1687 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1688 {miim_end,}
1689 },
1690 (struct phy_cmd[]) { /* startup - enable interrupts */
1691 /* { 0x12, 0x00f2, NULL }, */
1692 {MIIM_STATUS, miim_read, NULL},
1693 {MIIM_STATUS, miim_read, &mii_parse_sr},
1694 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1695 {miim_end,}
1696 },
1697 (struct phy_cmd[]) { /* shutdown - disable interrupts */
1698 {miim_end,}
1699 },
1700 };
1701
1702 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1703 * information
1704 */
1705 static uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1706 {
1707 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1708
1709 case MIIM_DP83865_SPD_1000:
1710 priv->speed = 1000;
1711 break;
1712
1713 case MIIM_DP83865_SPD_100:
1714 priv->speed = 100;
1715 break;
1716
1717 default:
1718 priv->speed = 10;
1719 break;
1720
1721 }
1722
1723 if (mii_reg & MIIM_DP83865_DPX_FULL)
1724 priv->duplexity = 1;
1725 else
1726 priv->duplexity = 0;
1727
1728 return 0;
1729 }
1730
1731 static struct phy_info phy_info_dp83865 = {
1732 0x20005c7,
1733 "NatSemi DP83865",
1734 4,
1735 (struct phy_cmd[]) { /* config */
1736 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1737 {miim_end,}
1738 },
1739 (struct phy_cmd[]) { /* startup */
1740 /* Status is read once to clear old link state */
1741 {MIIM_STATUS, miim_read, NULL},
1742 /* Auto-negotiate */
1743 {MIIM_STATUS, miim_read, &mii_parse_sr},
1744 /* Read the link and auto-neg status */
1745 {MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr},
1746 {miim_end,}
1747 },
1748 (struct phy_cmd[]) { /* shutdown */
1749 {miim_end,}
1750 },
1751 };
1752
1753 static struct phy_info phy_info_rtl8211b = {
1754 0x001cc91,
1755 "RealTek RTL8211B",
1756 4,
1757 (struct phy_cmd[]) { /* config */
1758 /* Reset and configure the PHY */
1759 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1760 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1761 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1762 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1763 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1764 {miim_end,}
1765 },
1766 (struct phy_cmd[]) { /* startup */
1767 /* Status is read once to clear old link state */
1768 {MIIM_STATUS, miim_read, NULL},
1769 /* Auto-negotiate */
1770 {MIIM_STATUS, miim_read, &mii_parse_sr},
1771 /* Read the status */
1772 {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1773 {miim_end,}
1774 },
1775 (struct phy_cmd[]) { /* shutdown */
1776 {miim_end,}
1777 },
1778 };
1779
1780 static struct phy_info *phy_info[] = {
1781 &phy_info_cis8204,
1782 &phy_info_cis8201,
1783 &phy_info_BCM5461S,
1784 &phy_info_BCM5464S,
1785 &phy_info_BCM5482S,
1786 &phy_info_M88E1011S,
1787 &phy_info_M88E1111S,
1788 &phy_info_M88E1118,
1789 &phy_info_M88E1121R,
1790 &phy_info_M88E1145,
1791 &phy_info_M88E1149S,
1792 &phy_info_dm9161,
1793 &phy_info_lxt971,
1794 &phy_info_VSC8211,
1795 &phy_info_VSC8244,
1796 &phy_info_VSC8601,
1797 &phy_info_VSC8641,
1798 &phy_info_VSC8221,
1799 &phy_info_dp83865,
1800 &phy_info_rtl8211b,
1801 &phy_info_generic, /* must be last; has ID 0 and 32 bit mask */
1802 NULL
1803 };
1804
1805 /* Grab the identifier of the device's PHY, and search through
1806 * all of the known PHYs to see if one matches. If so, return
1807 * it, if not, return NULL
1808 */
1809 static struct phy_info *get_phy_info(struct eth_device *dev)
1810 {
1811 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1812 uint phy_reg, phy_ID;
1813 int i;
1814 struct phy_info *theInfo = NULL;
1815
1816 /* Grab the bits from PHYIR1, and put them in the upper half */
1817 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1818 phy_ID = (phy_reg & 0xffff) << 16;
1819
1820 /* Grab the bits from PHYIR2, and put them in the lower half */
1821 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1822 phy_ID |= (phy_reg & 0xffff);
1823
1824 /* loop through all the known PHY types, and find one that */
1825 /* matches the ID we read from the PHY. */
1826 for (i = 0; phy_info[i]; i++) {
1827 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1828 theInfo = phy_info[i];
1829 break;
1830 }
1831 }
1832
1833 if (theInfo == &phy_info_generic) {
1834 printf("%s: No support for PHY id %x; assuming generic\n",
1835 dev->name, phy_ID);
1836 } else {
1837 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1838 }
1839
1840 return theInfo;
1841 }
1842
1843 /* Execute the given series of commands on the given device's
1844 * PHY, running functions as necessary
1845 */
1846 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1847 {
1848 int i;
1849 uint result;
1850 volatile tsec_mdio_t *phyregs = priv->phyregs;
1851
1852 phyregs->miimcfg = MIIMCFG_RESET;
1853
1854 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1855
1856 while (phyregs->miimind & MIIMIND_BUSY) ;
1857
1858 for (i = 0; cmd->mii_reg != miim_end; i++) {
1859 if (cmd->mii_data == miim_read) {
1860 result = read_phy_reg(priv, cmd->mii_reg);
1861
1862 if (cmd->funct != NULL)
1863 (*(cmd->funct)) (result, priv);
1864
1865 } else {
1866 if (cmd->funct != NULL)
1867 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1868 else
1869 result = cmd->mii_data;
1870
1871 write_phy_reg(priv, cmd->mii_reg, result);
1872
1873 }
1874 cmd++;
1875 }
1876 }
1877
1878 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1879 && !defined(BITBANGMII)
1880
1881 /*
1882 * Read a MII PHY register.
1883 *
1884 * Returns:
1885 * 0 on success
1886 */
1887 static int tsec_miiphy_read(char *devname, unsigned char addr,
1888 unsigned char reg, unsigned short *value)
1889 {
1890 unsigned short ret;
1891 struct tsec_private *priv = privlist[0];
1892
1893 if (NULL == priv) {
1894 printf("Can't read PHY at address %d\n", addr);
1895 return -1;
1896 }
1897
1898 ret = (unsigned short)tsec_local_mdio_read(priv->phyregs, addr, reg);
1899 *value = ret;
1900
1901 return 0;
1902 }
1903
1904 /*
1905 * Write a MII PHY register.
1906 *
1907 * Returns:
1908 * 0 on success
1909 */
1910 static int tsec_miiphy_write(char *devname, unsigned char addr,
1911 unsigned char reg, unsigned short value)
1912 {
1913 struct tsec_private *priv = privlist[0];
1914
1915 if (NULL == priv) {
1916 printf("Can't write PHY at address %d\n", addr);
1917 return -1;
1918 }
1919
1920 tsec_local_mdio_write(priv->phyregs, addr, reg, value);
1921
1922 return 0;
1923 }
1924
1925 #endif
1926
1927 #ifdef CONFIG_MCAST_TFTP
1928
1929 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1930
1931 /* Set the appropriate hash bit for the given addr */
1932
1933 /* The algorithm works like so:
1934 * 1) Take the Destination Address (ie the multicast address), and
1935 * do a CRC on it (little endian), and reverse the bits of the
1936 * result.
1937 * 2) Use the 8 most significant bits as a hash into a 256-entry
1938 * table. The table is controlled through 8 32-bit registers:
1939 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1940 * gaddr7. This means that the 3 most significant bits in the
1941 * hash index which gaddr register to use, and the 5 other bits
1942 * indicate which bit (assuming an IBM numbering scheme, which
1943 * for PowerPC (tm) is usually the case) in the tregister holds
1944 * the entry. */
1945 static int
1946 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1947 {
1948 struct tsec_private *priv = privlist[1];
1949 volatile tsec_t *regs = priv->regs;
1950 volatile u32 *reg_array, value;
1951 u8 result, whichbit, whichreg;
1952
1953 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1954 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1955 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1956 value = (1 << (31-whichbit));
1957
1958 reg_array = &(regs->hash.gaddr0);
1959
1960 if (set) {
1961 reg_array[whichreg] |= value;
1962 } else {
1963 reg_array[whichreg] &= ~value;
1964 }
1965 return 0;
1966 }
1967 #endif /* Multicast TFTP ? */