]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
431a8d2f23421be92cfcb4261c7903b7f92da320
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19
20 #if defined(CONFIG_TSEC_ENET)
21 #include "tsec.h"
22 #include "miiphy.h"
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 struct tsec_info_struct {
37 unsigned int phyaddr;
38 u32 flags;
39 unsigned int phyregidx;
40 };
41
42 /* The tsec_info structure contains 3 values which the
43 * driver uses to determine how to operate a given ethernet
44 * device. The information needed is:
45 * phyaddr - The address of the PHY which is attached to
46 * the given device.
47 *
48 * flags - This variable indicates whether the device
49 * supports gigabit speed ethernet, and whether it should be
50 * in reduced mode.
51 *
52 * phyregidx - This variable specifies which ethernet device
53 * controls the MII Management registers which are connected
54 * to the PHY. For now, only TSEC1 (index 0) has
55 * access to the PHYs, so all of the entries have "0".
56 *
57 * The values specified in the table are taken from the board's
58 * config file in include/configs/. When implementing a new
59 * board with ethernet capability, it is necessary to define:
60 * TSECn_PHY_ADDR
61 * TSECn_PHYIDX
62 *
63 * for n = 1,2,3, etc. And for FEC:
64 * FEC_PHY_ADDR
65 * FEC_PHYIDX
66 */
67 static struct tsec_info_struct tsec_info[] = {
68 #ifdef CONFIG_TSEC1
69 {TSEC1_PHY_ADDR, TSEC1_FLAGS, TSEC1_PHYIDX},
70 #else
71 {0, 0, 0},
72 #endif
73 #ifdef CONFIG_TSEC2
74 {TSEC2_PHY_ADDR, TSEC2_FLAGS, TSEC2_PHYIDX},
75 #else
76 {0, 0, 0},
77 #endif
78 #ifdef CONFIG_MPC85XX_FEC
79 {FEC_PHY_ADDR, FEC_FLAGS, FEC_PHYIDX},
80 #else
81 #ifdef CONFIG_TSEC3
82 {TSEC3_PHY_ADDR, TSEC3_FLAGS, TSEC3_PHYIDX},
83 #else
84 {0, 0, 0},
85 #endif
86 #ifdef CONFIG_TSEC4
87 {TSEC4_PHY_ADDR, TSEC4_FLAGS, TSEC4_PHYIDX},
88 #else
89 {0, 0, 0},
90 #endif /* CONFIG_TSEC4 */
91 #endif /* CONFIG_MPC85XX_FEC */
92 };
93
94 #define MAXCONTROLLERS (4)
95
96 static int relocated = 0;
97
98 static struct tsec_private *privlist[MAXCONTROLLERS];
99
100 #ifdef __GNUC__
101 static RTXBD rtx __attribute__ ((aligned(8)));
102 #else
103 #error "rtx must be 64-bit aligned"
104 #endif
105
106 static int tsec_send(struct eth_device *dev,
107 volatile void *packet, int length);
108 static int tsec_recv(struct eth_device *dev);
109 static int tsec_init(struct eth_device *dev, bd_t * bd);
110 static void tsec_halt(struct eth_device *dev);
111 static void init_registers(volatile tsec_t * regs);
112 static void startup_tsec(struct eth_device *dev);
113 static int init_phy(struct eth_device *dev);
114 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
115 uint read_phy_reg(struct tsec_private *priv, uint regnum);
116 struct phy_info *get_phy_info(struct eth_device *dev);
117 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
118 static void adjust_link(struct eth_device *dev);
119 static void relocate_cmds(void);
120 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
121 && !defined(BITBANGMII)
122 static int tsec_miiphy_write(char *devname, unsigned char addr,
123 unsigned char reg, unsigned short value);
124 static int tsec_miiphy_read(char *devname, unsigned char addr,
125 unsigned char reg, unsigned short *value);
126 #endif
127 #ifdef CONFIG_MCAST_TFTP
128 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
129 #endif
130
131 /* Initialize device structure. Returns success if PHY
132 * initialization succeeded (i.e. if it recognizes the PHY)
133 */
134 int tsec_initialize(bd_t * bis, int index, char *devname)
135 {
136 struct eth_device *dev;
137 int i;
138 struct tsec_private *priv;
139
140 dev = (struct eth_device *)malloc(sizeof *dev);
141
142 if (NULL == dev)
143 return 0;
144
145 memset(dev, 0, sizeof *dev);
146
147 priv = (struct tsec_private *)malloc(sizeof(*priv));
148
149 if (NULL == priv)
150 return 0;
151
152 privlist[index] = priv;
153 priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE);
154 priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
155 tsec_info[index].phyregidx *
156 TSEC_SIZE);
157
158 priv->phyaddr = tsec_info[index].phyaddr;
159 priv->flags = tsec_info[index].flags;
160
161 sprintf(dev->name, devname);
162 dev->iobase = 0;
163 dev->priv = priv;
164 dev->init = tsec_init;
165 dev->halt = tsec_halt;
166 dev->send = tsec_send;
167 dev->recv = tsec_recv;
168 #ifdef CONFIG_MCAST_TFTP
169 dev->mcast = tsec_mcast_addr;
170 #endif
171
172 /* Tell u-boot to get the addr from the env */
173 for (i = 0; i < 6; i++)
174 dev->enetaddr[i] = 0;
175
176 eth_register(dev);
177
178 /* Reset the MAC */
179 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
180 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
181
182 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
183 && !defined(BITBANGMII)
184 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
185 #endif
186
187 /* Try to initialize PHY here, and return */
188 return init_phy(dev);
189 }
190
191 /* Initializes data structures and registers for the controller,
192 * and brings the interface up. Returns the link status, meaning
193 * that it returns success if the link is up, failure otherwise.
194 * This allows u-boot to find the first active controller.
195 */
196 int tsec_init(struct eth_device *dev, bd_t * bd)
197 {
198 uint tempval;
199 char tmpbuf[MAC_ADDR_LEN];
200 int i;
201 struct tsec_private *priv = (struct tsec_private *)dev->priv;
202 volatile tsec_t *regs = priv->regs;
203
204 /* Make sure the controller is stopped */
205 tsec_halt(dev);
206
207 /* Init MACCFG2. Defaults to GMII */
208 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
209
210 /* Init ECNTRL */
211 regs->ecntrl = ECNTRL_INIT_SETTINGS;
212
213 /* Copy the station address into the address registers.
214 * Backwards, because little endian MACS are dumb */
215 for (i = 0; i < MAC_ADDR_LEN; i++) {
216 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
217 }
218 regs->macstnaddr1 = *((uint *) (tmpbuf));
219
220 tempval = *((uint *) (tmpbuf + 4));
221
222 regs->macstnaddr2 = tempval;
223
224 /* reset the indices to zero */
225 rxIdx = 0;
226 txIdx = 0;
227
228 /* Clear out (for the most part) the other registers */
229 init_registers(regs);
230
231 /* Ready the device for tx/rx */
232 startup_tsec(dev);
233
234 /* If there's no link, fail */
235 return (priv->link ? 0 : -1);
236
237 }
238
239 /* Write value to the device's PHY through the registers
240 * specified in priv, modifying the register specified in regnum.
241 * It will wait for the write to be done (or for a timeout to
242 * expire) before exiting
243 */
244 void write_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum, uint value)
245 {
246 volatile tsec_t *regbase = priv->phyregs;
247 int timeout = 1000000;
248
249 regbase->miimadd = (phyid << 8) | regnum;
250 regbase->miimcon = value;
251 asm("sync");
252
253 timeout = 1000000;
254 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
255 }
256
257 /* #define to provide old write_phy_reg functionality without duplicating code */
258 #define write_phy_reg(priv, regnum, value) write_any_phy_reg(priv,priv->phyaddr,regnum,value)
259
260 /* Reads register regnum on the device's PHY through the
261 * registers specified in priv. It lowers and raises the read
262 * command, and waits for the data to become valid (miimind
263 * notvalid bit cleared), and the bus to cease activity (miimind
264 * busy bit cleared), and then returns the value
265 */
266 uint read_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum)
267 {
268 uint value;
269 volatile tsec_t *regbase = priv->phyregs;
270
271 /* Put the address of the phy, and the register
272 * number into MIIMADD */
273 regbase->miimadd = (phyid << 8) | regnum;
274
275 /* Clear the command register, and wait */
276 regbase->miimcom = 0;
277 asm("sync");
278
279 /* Initiate a read command, and wait */
280 regbase->miimcom = MIIM_READ_COMMAND;
281 asm("sync");
282
283 /* Wait for the the indication that the read is done */
284 while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
285
286 /* Grab the value read from the PHY */
287 value = regbase->miimstat;
288
289 return value;
290 }
291
292 /* #define to provide old read_phy_reg functionality without duplicating code */
293 #define read_phy_reg(priv,regnum) read_any_phy_reg(priv,priv->phyaddr,regnum)
294
295 /* Discover which PHY is attached to the device, and configure it
296 * properly. If the PHY is not recognized, then return 0
297 * (failure). Otherwise, return 1
298 */
299 static int init_phy(struct eth_device *dev)
300 {
301 struct tsec_private *priv = (struct tsec_private *)dev->priv;
302 struct phy_info *curphy;
303 volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
304
305 /* Assign a Physical address to the TBI */
306 regs->tbipa = CFG_TBIPA_VALUE;
307 regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
308 regs->tbipa = CFG_TBIPA_VALUE;
309 asm("sync");
310
311 /* Reset MII (due to new addresses) */
312 priv->phyregs->miimcfg = MIIMCFG_RESET;
313 asm("sync");
314 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
315 asm("sync");
316 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
317
318 if (0 == relocated)
319 relocate_cmds();
320
321 /* Get the cmd structure corresponding to the attached
322 * PHY */
323 curphy = get_phy_info(dev);
324
325 if (curphy == NULL) {
326 priv->phyinfo = NULL;
327 printf("%s: No PHY found\n", dev->name);
328
329 return 0;
330 }
331
332 priv->phyinfo = curphy;
333
334 phy_run_commands(priv, priv->phyinfo->config);
335
336 return 1;
337 }
338
339 /*
340 * Returns which value to write to the control register.
341 * For 10/100, the value is slightly different
342 */
343 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
344 {
345 if (priv->flags & TSEC_GIGABIT)
346 return MIIM_CONTROL_INIT;
347 else
348 return MIIM_CR_INIT;
349 }
350
351 /* Parse the status register for link, and then do
352 * auto-negotiation
353 */
354 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
355 {
356 /*
357 * Wait if the link is up, and autonegotiation is in progress
358 * (ie - we're capable and it's not done)
359 */
360 mii_reg = read_phy_reg(priv, MIIM_STATUS);
361 if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
362 && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
363 int i = 0;
364
365 puts("Waiting for PHY auto negotiation to complete");
366 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
367 /*
368 * Timeout reached ?
369 */
370 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
371 puts(" TIMEOUT !\n");
372 priv->link = 0;
373 return 0;
374 }
375
376 if ((i++ % 1000) == 0) {
377 putc('.');
378 }
379 udelay(1000); /* 1 ms */
380 mii_reg = read_phy_reg(priv, MIIM_STATUS);
381 }
382 puts(" done\n");
383 priv->link = 1;
384 udelay(500000); /* another 500 ms (results in faster booting) */
385 } else {
386 if (mii_reg & MIIM_STATUS_LINK)
387 priv->link = 1;
388 else
389 priv->link = 0;
390 }
391
392 return 0;
393 }
394
395 /* Generic function which updates the speed and duplex. If
396 * autonegotiation is enabled, it uses the AND of the link
397 * partner's advertised capabilities and our advertised
398 * capabilities. If autonegotiation is disabled, we use the
399 * appropriate bits in the control register.
400 *
401 * Stolen from Linux's mii.c and phy_device.c
402 */
403 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
404 {
405 /* We're using autonegotiation */
406 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
407 uint lpa = 0;
408 uint gblpa = 0;
409
410 /* Check for gigabit capability */
411 if (mii_reg & PHY_BMSR_EXT) {
412 /* We want a list of states supported by
413 * both PHYs in the link
414 */
415 gblpa = read_phy_reg(priv, PHY_1000BTSR);
416 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
417 }
418
419 /* Set the baseline so we only have to set them
420 * if they're different
421 */
422 priv->speed = 10;
423 priv->duplexity = 0;
424
425 /* Check the gigabit fields */
426 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
427 priv->speed = 1000;
428
429 if (gblpa & PHY_1000BTSR_1000FD)
430 priv->duplexity = 1;
431
432 /* We're done! */
433 return 0;
434 }
435
436 lpa = read_phy_reg(priv, PHY_ANAR);
437 lpa &= read_phy_reg(priv, PHY_ANLPAR);
438
439 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
440 priv->speed = 100;
441
442 if (lpa & PHY_ANLPAR_TXFD)
443 priv->duplexity = 1;
444
445 } else if (lpa & PHY_ANLPAR_10FD)
446 priv->duplexity = 1;
447 } else {
448 uint bmcr = read_phy_reg(priv, PHY_BMCR);
449
450 priv->speed = 10;
451 priv->duplexity = 0;
452
453 if (bmcr & PHY_BMCR_DPLX)
454 priv->duplexity = 1;
455
456 if (bmcr & PHY_BMCR_1000_MBPS)
457 priv->speed = 1000;
458 else if (bmcr & PHY_BMCR_100_MBPS)
459 priv->speed = 100;
460 }
461
462 return 0;
463 }
464
465 /*
466 * Parse the BCM54xx status register for speed and duplex information.
467 * The linux sungem_phy has this information, but in a table format.
468 */
469 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
470 {
471
472 switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
473
474 case 1:
475 printf("Enet starting in 10BT/HD\n");
476 priv->duplexity = 0;
477 priv->speed = 10;
478 break;
479
480 case 2:
481 printf("Enet starting in 10BT/FD\n");
482 priv->duplexity = 1;
483 priv->speed = 10;
484 break;
485
486 case 3:
487 printf("Enet starting in 100BT/HD\n");
488 priv->duplexity = 0;
489 priv->speed = 100;
490 break;
491
492 case 5:
493 printf("Enet starting in 100BT/FD\n");
494 priv->duplexity = 1;
495 priv->speed = 100;
496 break;
497
498 case 6:
499 printf("Enet starting in 1000BT/HD\n");
500 priv->duplexity = 0;
501 priv->speed = 1000;
502 break;
503
504 case 7:
505 printf("Enet starting in 1000BT/FD\n");
506 priv->duplexity = 1;
507 priv->speed = 1000;
508 break;
509
510 default:
511 printf("Auto-neg error, defaulting to 10BT/HD\n");
512 priv->duplexity = 0;
513 priv->speed = 10;
514 break;
515 }
516
517 return 0;
518
519 }
520 /* Parse the 88E1011's status register for speed and duplex
521 * information
522 */
523 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
524 {
525 uint speed;
526
527 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
528
529 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
530 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
531 int i = 0;
532
533 puts("Waiting for PHY realtime link");
534 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
535 /* Timeout reached ? */
536 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
537 puts(" TIMEOUT !\n");
538 priv->link = 0;
539 break;
540 }
541
542 if ((i++ % 1000) == 0) {
543 putc('.');
544 }
545 udelay(1000); /* 1 ms */
546 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
547 }
548 puts(" done\n");
549 udelay(500000); /* another 500 ms (results in faster booting) */
550 } else {
551 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
552 priv->link = 1;
553 else
554 priv->link = 0;
555 }
556
557 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
558 priv->duplexity = 1;
559 else
560 priv->duplexity = 0;
561
562 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
563
564 switch (speed) {
565 case MIIM_88E1011_PHYSTAT_GBIT:
566 priv->speed = 1000;
567 break;
568 case MIIM_88E1011_PHYSTAT_100:
569 priv->speed = 100;
570 break;
571 default:
572 priv->speed = 10;
573 }
574
575 return 0;
576 }
577
578 /* Parse the RTL8211B's status register for speed and duplex
579 * information
580 */
581 uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
582 {
583 uint speed;
584
585 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
586 if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
587 int i = 0;
588
589 /* in case of timeout ->link is cleared */
590 priv->link = 1;
591 puts("Waiting for PHY realtime link");
592 while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
593 /* Timeout reached ? */
594 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
595 puts(" TIMEOUT !\n");
596 priv->link = 0;
597 break;
598 }
599
600 if ((i++ % 1000) == 0) {
601 putc('.');
602 }
603 udelay(1000); /* 1 ms */
604 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
605 }
606 puts(" done\n");
607 udelay(500000); /* another 500 ms (results in faster booting) */
608 } else {
609 if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
610 priv->link = 1;
611 else
612 priv->link = 0;
613 }
614
615 if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
616 priv->duplexity = 1;
617 else
618 priv->duplexity = 0;
619
620 speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
621
622 switch (speed) {
623 case MIIM_RTL8211B_PHYSTAT_GBIT:
624 priv->speed = 1000;
625 break;
626 case MIIM_RTL8211B_PHYSTAT_100:
627 priv->speed = 100;
628 break;
629 default:
630 priv->speed = 10;
631 }
632
633 return 0;
634 }
635
636 /* Parse the cis8201's status register for speed and duplex
637 * information
638 */
639 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
640 {
641 uint speed;
642
643 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
644 priv->duplexity = 1;
645 else
646 priv->duplexity = 0;
647
648 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
649 switch (speed) {
650 case MIIM_CIS8201_AUXCONSTAT_GBIT:
651 priv->speed = 1000;
652 break;
653 case MIIM_CIS8201_AUXCONSTAT_100:
654 priv->speed = 100;
655 break;
656 default:
657 priv->speed = 10;
658 break;
659 }
660
661 return 0;
662 }
663
664 /* Parse the vsc8244's status register for speed and duplex
665 * information
666 */
667 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
668 {
669 uint speed;
670
671 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
672 priv->duplexity = 1;
673 else
674 priv->duplexity = 0;
675
676 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
677 switch (speed) {
678 case MIIM_VSC8244_AUXCONSTAT_GBIT:
679 priv->speed = 1000;
680 break;
681 case MIIM_VSC8244_AUXCONSTAT_100:
682 priv->speed = 100;
683 break;
684 default:
685 priv->speed = 10;
686 break;
687 }
688
689 return 0;
690 }
691
692 /* Parse the DM9161's status register for speed and duplex
693 * information
694 */
695 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
696 {
697 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
698 priv->speed = 100;
699 else
700 priv->speed = 10;
701
702 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
703 priv->duplexity = 1;
704 else
705 priv->duplexity = 0;
706
707 return 0;
708 }
709
710 /*
711 * Hack to write all 4 PHYs with the LED values
712 */
713 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
714 {
715 uint phyid;
716 volatile tsec_t *regbase = priv->phyregs;
717 int timeout = 1000000;
718
719 for (phyid = 0; phyid < 4; phyid++) {
720 regbase->miimadd = (phyid << 8) | mii_reg;
721 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
722 asm("sync");
723
724 timeout = 1000000;
725 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
726 }
727
728 return MIIM_CIS8204_SLEDCON_INIT;
729 }
730
731 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
732 {
733 if (priv->flags & TSEC_REDUCED)
734 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
735 else
736 return MIIM_CIS8204_EPHYCON_INIT;
737 }
738
739 uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
740 {
741 uint mii_data = read_phy_reg(priv, mii_reg);
742
743 if (priv->flags & TSEC_REDUCED)
744 mii_data = (mii_data & 0xfff0) | 0x000b;
745 return mii_data;
746 }
747
748 /* Initialized required registers to appropriate values, zeroing
749 * those we don't care about (unless zero is bad, in which case,
750 * choose a more appropriate value)
751 */
752 static void init_registers(volatile tsec_t * regs)
753 {
754 /* Clear IEVENT */
755 regs->ievent = IEVENT_INIT_CLEAR;
756
757 regs->imask = IMASK_INIT_CLEAR;
758
759 regs->hash.iaddr0 = 0;
760 regs->hash.iaddr1 = 0;
761 regs->hash.iaddr2 = 0;
762 regs->hash.iaddr3 = 0;
763 regs->hash.iaddr4 = 0;
764 regs->hash.iaddr5 = 0;
765 regs->hash.iaddr6 = 0;
766 regs->hash.iaddr7 = 0;
767
768 regs->hash.gaddr0 = 0;
769 regs->hash.gaddr1 = 0;
770 regs->hash.gaddr2 = 0;
771 regs->hash.gaddr3 = 0;
772 regs->hash.gaddr4 = 0;
773 regs->hash.gaddr5 = 0;
774 regs->hash.gaddr6 = 0;
775 regs->hash.gaddr7 = 0;
776
777 regs->rctrl = 0x00000000;
778
779 /* Init RMON mib registers */
780 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
781
782 regs->rmon.cam1 = 0xffffffff;
783 regs->rmon.cam2 = 0xffffffff;
784
785 regs->mrblr = MRBLR_INIT_SETTINGS;
786
787 regs->minflr = MINFLR_INIT_SETTINGS;
788
789 regs->attr = ATTR_INIT_SETTINGS;
790 regs->attreli = ATTRELI_INIT_SETTINGS;
791
792 }
793
794 /* Configure maccfg2 based on negotiated speed and duplex
795 * reported by PHY handling code
796 */
797 static void adjust_link(struct eth_device *dev)
798 {
799 struct tsec_private *priv = (struct tsec_private *)dev->priv;
800 volatile tsec_t *regs = priv->regs;
801
802 if (priv->link) {
803 if (priv->duplexity != 0)
804 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
805 else
806 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
807
808 switch (priv->speed) {
809 case 1000:
810 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
811 | MACCFG2_GMII);
812 break;
813 case 100:
814 case 10:
815 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
816 | MACCFG2_MII);
817
818 /* Set R100 bit in all modes although
819 * it is only used in RGMII mode
820 */
821 if (priv->speed == 100)
822 regs->ecntrl |= ECNTRL_R100;
823 else
824 regs->ecntrl &= ~(ECNTRL_R100);
825 break;
826 default:
827 printf("%s: Speed was bad\n", dev->name);
828 break;
829 }
830
831 printf("Speed: %d, %s duplex\n", priv->speed,
832 (priv->duplexity) ? "full" : "half");
833
834 } else {
835 printf("%s: No link.\n", dev->name);
836 }
837 }
838
839 /* Set up the buffers and their descriptors, and bring up the
840 * interface
841 */
842 static void startup_tsec(struct eth_device *dev)
843 {
844 int i;
845 struct tsec_private *priv = (struct tsec_private *)dev->priv;
846 volatile tsec_t *regs = priv->regs;
847
848 /* Point to the buffer descriptors */
849 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
850 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
851
852 /* Initialize the Rx Buffer descriptors */
853 for (i = 0; i < PKTBUFSRX; i++) {
854 rtx.rxbd[i].status = RXBD_EMPTY;
855 rtx.rxbd[i].length = 0;
856 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
857 }
858 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
859
860 /* Initialize the TX Buffer Descriptors */
861 for (i = 0; i < TX_BUF_CNT; i++) {
862 rtx.txbd[i].status = 0;
863 rtx.txbd[i].length = 0;
864 rtx.txbd[i].bufPtr = 0;
865 }
866 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
867
868 /* Start up the PHY */
869 if(priv->phyinfo)
870 phy_run_commands(priv, priv->phyinfo->startup);
871
872 adjust_link(dev);
873
874 /* Enable Transmit and Receive */
875 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
876
877 /* Tell the DMA it is clear to go */
878 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
879 regs->tstat = TSTAT_CLEAR_THALT;
880 regs->rstat = RSTAT_CLEAR_RHALT;
881 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
882 }
883
884 /* This returns the status bits of the device. The return value
885 * is never checked, and this is what the 8260 driver did, so we
886 * do the same. Presumably, this would be zero if there were no
887 * errors
888 */
889 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
890 {
891 int i;
892 int result = 0;
893 struct tsec_private *priv = (struct tsec_private *)dev->priv;
894 volatile tsec_t *regs = priv->regs;
895
896 /* Find an empty buffer descriptor */
897 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
898 if (i >= TOUT_LOOP) {
899 debug("%s: tsec: tx buffers full\n", dev->name);
900 return result;
901 }
902 }
903
904 rtx.txbd[txIdx].bufPtr = (uint) packet;
905 rtx.txbd[txIdx].length = length;
906 rtx.txbd[txIdx].status |=
907 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
908
909 /* Tell the DMA to go */
910 regs->tstat = TSTAT_CLEAR_THALT;
911
912 /* Wait for buffer to be transmitted */
913 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
914 if (i >= TOUT_LOOP) {
915 debug("%s: tsec: tx error\n", dev->name);
916 return result;
917 }
918 }
919
920 txIdx = (txIdx + 1) % TX_BUF_CNT;
921 result = rtx.txbd[txIdx].status & TXBD_STATS;
922
923 return result;
924 }
925
926 static int tsec_recv(struct eth_device *dev)
927 {
928 int length;
929 struct tsec_private *priv = (struct tsec_private *)dev->priv;
930 volatile tsec_t *regs = priv->regs;
931
932 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
933
934 length = rtx.rxbd[rxIdx].length;
935
936 /* Send the packet up if there were no errors */
937 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
938 NetReceive(NetRxPackets[rxIdx], length - 4);
939 } else {
940 printf("Got error %x\n",
941 (rtx.rxbd[rxIdx].status & RXBD_STATS));
942 }
943
944 rtx.rxbd[rxIdx].length = 0;
945
946 /* Set the wrap bit if this is the last element in the list */
947 rtx.rxbd[rxIdx].status =
948 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
949
950 rxIdx = (rxIdx + 1) % PKTBUFSRX;
951 }
952
953 if (regs->ievent & IEVENT_BSY) {
954 regs->ievent = IEVENT_BSY;
955 regs->rstat = RSTAT_CLEAR_RHALT;
956 }
957
958 return -1;
959
960 }
961
962 /* Stop the interface */
963 static void tsec_halt(struct eth_device *dev)
964 {
965 struct tsec_private *priv = (struct tsec_private *)dev->priv;
966 volatile tsec_t *regs = priv->regs;
967
968 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
969 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
970
971 while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
972
973 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
974
975 /* Shut down the PHY, as needed */
976 if(priv->phyinfo)
977 phy_run_commands(priv, priv->phyinfo->shutdown);
978 }
979
980 struct phy_info phy_info_M88E1149S = {
981 0x1410ca,
982 "Marvell 88E1149S",
983 4,
984 (struct phy_cmd[]){ /* config */
985 /* Reset and configure the PHY */
986 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
987 {0x1d, 0x1f, NULL},
988 {0x1e, 0x200c, NULL},
989 {0x1d, 0x5, NULL},
990 {0x1e, 0x0, NULL},
991 {0x1e, 0x100, NULL},
992 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
993 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
994 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
995 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
996 {miim_end,}
997 },
998 (struct phy_cmd[]){ /* startup */
999 /* Status is read once to clear old link state */
1000 {MIIM_STATUS, miim_read, NULL},
1001 /* Auto-negotiate */
1002 {MIIM_STATUS, miim_read, &mii_parse_sr},
1003 /* Read the status */
1004 {MIIM_88E1011_PHY_STATUS, miim_read,
1005 &mii_parse_88E1011_psr},
1006 {miim_end,}
1007 },
1008 (struct phy_cmd[]){ /* shutdown */
1009 {miim_end,}
1010 },
1011 };
1012
1013 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1014 struct phy_info phy_info_BCM5461S = {
1015 0x02060c1, /* 5461 ID */
1016 "Broadcom BCM5461S",
1017 0, /* not clear to me what minor revisions we can shift away */
1018 (struct phy_cmd[]) { /* config */
1019 /* Reset and configure the PHY */
1020 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1021 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1022 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1023 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1024 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1025 {miim_end,}
1026 },
1027 (struct phy_cmd[]) { /* startup */
1028 /* Status is read once to clear old link state */
1029 {MIIM_STATUS, miim_read, NULL},
1030 /* Auto-negotiate */
1031 {MIIM_STATUS, miim_read, &mii_parse_sr},
1032 /* Read the status */
1033 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1034 {miim_end,}
1035 },
1036 (struct phy_cmd[]) { /* shutdown */
1037 {miim_end,}
1038 },
1039 };
1040
1041 struct phy_info phy_info_BCM5464S = {
1042 0x02060b1, /* 5464 ID */
1043 "Broadcom BCM5464S",
1044 0, /* not clear to me what minor revisions we can shift away */
1045 (struct phy_cmd[]) { /* config */
1046 /* Reset and configure the PHY */
1047 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1048 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1049 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1050 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1051 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1052 {miim_end,}
1053 },
1054 (struct phy_cmd[]) { /* startup */
1055 /* Status is read once to clear old link state */
1056 {MIIM_STATUS, miim_read, NULL},
1057 /* Auto-negotiate */
1058 {MIIM_STATUS, miim_read, &mii_parse_sr},
1059 /* Read the status */
1060 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1061 {miim_end,}
1062 },
1063 (struct phy_cmd[]) { /* shutdown */
1064 {miim_end,}
1065 },
1066 };
1067
1068 struct phy_info phy_info_M88E1011S = {
1069 0x01410c6,
1070 "Marvell 88E1011S",
1071 4,
1072 (struct phy_cmd[]){ /* config */
1073 /* Reset and configure the PHY */
1074 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1075 {0x1d, 0x1f, NULL},
1076 {0x1e, 0x200c, NULL},
1077 {0x1d, 0x5, NULL},
1078 {0x1e, 0x0, NULL},
1079 {0x1e, 0x100, NULL},
1080 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1081 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1082 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1083 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1084 {miim_end,}
1085 },
1086 (struct phy_cmd[]){ /* startup */
1087 /* Status is read once to clear old link state */
1088 {MIIM_STATUS, miim_read, NULL},
1089 /* Auto-negotiate */
1090 {MIIM_STATUS, miim_read, &mii_parse_sr},
1091 /* Read the status */
1092 {MIIM_88E1011_PHY_STATUS, miim_read,
1093 &mii_parse_88E1011_psr},
1094 {miim_end,}
1095 },
1096 (struct phy_cmd[]){ /* shutdown */
1097 {miim_end,}
1098 },
1099 };
1100
1101 struct phy_info phy_info_M88E1111S = {
1102 0x01410cc,
1103 "Marvell 88E1111S",
1104 4,
1105 (struct phy_cmd[]){ /* config */
1106 /* Reset and configure the PHY */
1107 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1108 {0x1b, 0x848f, &mii_m88e1111s_setmode},
1109 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1110 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1111 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1112 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1113 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1114 {miim_end,}
1115 },
1116 (struct phy_cmd[]){ /* startup */
1117 /* Status is read once to clear old link state */
1118 {MIIM_STATUS, miim_read, NULL},
1119 /* Auto-negotiate */
1120 {MIIM_STATUS, miim_read, &mii_parse_sr},
1121 /* Read the status */
1122 {MIIM_88E1011_PHY_STATUS, miim_read,
1123 &mii_parse_88E1011_psr},
1124 {miim_end,}
1125 },
1126 (struct phy_cmd[]){ /* shutdown */
1127 {miim_end,}
1128 },
1129 };
1130
1131 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1132 {
1133 uint mii_data = read_phy_reg(priv, mii_reg);
1134
1135 /* Setting MIIM_88E1145_PHY_EXT_CR */
1136 if (priv->flags & TSEC_REDUCED)
1137 return mii_data |
1138 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1139 else
1140 return mii_data;
1141 }
1142
1143 static struct phy_info phy_info_M88E1145 = {
1144 0x01410cd,
1145 "Marvell 88E1145",
1146 4,
1147 (struct phy_cmd[]){ /* config */
1148 /* Reset the PHY */
1149 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1150
1151 /* Errata E0, E1 */
1152 {29, 0x001b, NULL},
1153 {30, 0x418f, NULL},
1154 {29, 0x0016, NULL},
1155 {30, 0xa2da, NULL},
1156
1157 /* Configure the PHY */
1158 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1159 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1160 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1161 NULL},
1162 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1163 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1164 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1165 {miim_end,}
1166 },
1167 (struct phy_cmd[]){ /* startup */
1168 /* Status is read once to clear old link state */
1169 {MIIM_STATUS, miim_read, NULL},
1170 /* Auto-negotiate */
1171 {MIIM_STATUS, miim_read, &mii_parse_sr},
1172 {MIIM_88E1111_PHY_LED_CONTROL,
1173 MIIM_88E1111_PHY_LED_DIRECT, NULL},
1174 /* Read the Status */
1175 {MIIM_88E1011_PHY_STATUS, miim_read,
1176 &mii_parse_88E1011_psr},
1177 {miim_end,}
1178 },
1179 (struct phy_cmd[]){ /* shutdown */
1180 {miim_end,}
1181 },
1182 };
1183
1184 struct phy_info phy_info_cis8204 = {
1185 0x3f11,
1186 "Cicada Cis8204",
1187 6,
1188 (struct phy_cmd[]){ /* config */
1189 /* Override PHY config settings */
1190 {MIIM_CIS8201_AUX_CONSTAT,
1191 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1192 /* Configure some basic stuff */
1193 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1194 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1195 &mii_cis8204_fixled},
1196 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1197 &mii_cis8204_setmode},
1198 {miim_end,}
1199 },
1200 (struct phy_cmd[]){ /* startup */
1201 /* Read the Status (2x to make sure link is right) */
1202 {MIIM_STATUS, miim_read, NULL},
1203 /* Auto-negotiate */
1204 {MIIM_STATUS, miim_read, &mii_parse_sr},
1205 /* Read the status */
1206 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1207 &mii_parse_cis8201},
1208 {miim_end,}
1209 },
1210 (struct phy_cmd[]){ /* shutdown */
1211 {miim_end,}
1212 },
1213 };
1214
1215 /* Cicada 8201 */
1216 struct phy_info phy_info_cis8201 = {
1217 0xfc41,
1218 "CIS8201",
1219 4,
1220 (struct phy_cmd[]){ /* config */
1221 /* Override PHY config settings */
1222 {MIIM_CIS8201_AUX_CONSTAT,
1223 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1224 /* Set up the interface mode */
1225 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1226 NULL},
1227 /* Configure some basic stuff */
1228 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1229 {miim_end,}
1230 },
1231 (struct phy_cmd[]){ /* startup */
1232 /* Read the Status (2x to make sure link is right) */
1233 {MIIM_STATUS, miim_read, NULL},
1234 /* Auto-negotiate */
1235 {MIIM_STATUS, miim_read, &mii_parse_sr},
1236 /* Read the status */
1237 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1238 &mii_parse_cis8201},
1239 {miim_end,}
1240 },
1241 (struct phy_cmd[]){ /* shutdown */
1242 {miim_end,}
1243 },
1244 };
1245 struct phy_info phy_info_VSC8244 = {
1246 0x3f1b,
1247 "Vitesse VSC8244",
1248 6,
1249 (struct phy_cmd[]){ /* config */
1250 /* Override PHY config settings */
1251 /* Configure some basic stuff */
1252 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1253 {miim_end,}
1254 },
1255 (struct phy_cmd[]){ /* startup */
1256 /* Read the Status (2x to make sure link is right) */
1257 {MIIM_STATUS, miim_read, NULL},
1258 /* Auto-negotiate */
1259 {MIIM_STATUS, miim_read, &mii_parse_sr},
1260 /* Read the status */
1261 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1262 &mii_parse_vsc8244},
1263 {miim_end,}
1264 },
1265 (struct phy_cmd[]){ /* shutdown */
1266 {miim_end,}
1267 },
1268 };
1269
1270 struct phy_info phy_info_dm9161 = {
1271 0x0181b88,
1272 "Davicom DM9161E",
1273 4,
1274 (struct phy_cmd[]){ /* config */
1275 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1276 /* Do not bypass the scrambler/descrambler */
1277 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1278 /* Clear 10BTCSR to default */
1279 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1280 NULL},
1281 /* Configure some basic stuff */
1282 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1283 /* Restart Auto Negotiation */
1284 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1285 {miim_end,}
1286 },
1287 (struct phy_cmd[]){ /* startup */
1288 /* Status is read once to clear old link state */
1289 {MIIM_STATUS, miim_read, NULL},
1290 /* Auto-negotiate */
1291 {MIIM_STATUS, miim_read, &mii_parse_sr},
1292 /* Read the status */
1293 {MIIM_DM9161_SCSR, miim_read,
1294 &mii_parse_dm9161_scsr},
1295 {miim_end,}
1296 },
1297 (struct phy_cmd[]){ /* shutdown */
1298 {miim_end,}
1299 },
1300 };
1301 /* a generic flavor. */
1302 struct phy_info phy_info_generic = {
1303 0,
1304 "Unknown/Generic PHY",
1305 32,
1306 (struct phy_cmd[]) { /* config */
1307 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1308 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1309 {miim_end,}
1310 },
1311 (struct phy_cmd[]) { /* startup */
1312 {PHY_BMSR, miim_read, NULL},
1313 {PHY_BMSR, miim_read, &mii_parse_sr},
1314 {PHY_BMSR, miim_read, &mii_parse_link},
1315 {miim_end,}
1316 },
1317 (struct phy_cmd[]) { /* shutdown */
1318 {miim_end,}
1319 }
1320 };
1321
1322
1323 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1324 {
1325 unsigned int speed;
1326 if (priv->link) {
1327 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1328
1329 switch (speed) {
1330 case MIIM_LXT971_SR2_10HDX:
1331 priv->speed = 10;
1332 priv->duplexity = 0;
1333 break;
1334 case MIIM_LXT971_SR2_10FDX:
1335 priv->speed = 10;
1336 priv->duplexity = 1;
1337 break;
1338 case MIIM_LXT971_SR2_100HDX:
1339 priv->speed = 100;
1340 priv->duplexity = 0;
1341 break;
1342 default:
1343 priv->speed = 100;
1344 priv->duplexity = 1;
1345 }
1346 } else {
1347 priv->speed = 0;
1348 priv->duplexity = 0;
1349 }
1350
1351 return 0;
1352 }
1353
1354 static struct phy_info phy_info_lxt971 = {
1355 0x0001378e,
1356 "LXT971",
1357 4,
1358 (struct phy_cmd[]){ /* config */
1359 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1360 {miim_end,}
1361 },
1362 (struct phy_cmd[]){ /* startup - enable interrupts */
1363 /* { 0x12, 0x00f2, NULL }, */
1364 {MIIM_STATUS, miim_read, NULL},
1365 {MIIM_STATUS, miim_read, &mii_parse_sr},
1366 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1367 {miim_end,}
1368 },
1369 (struct phy_cmd[]){ /* shutdown - disable interrupts */
1370 {miim_end,}
1371 },
1372 };
1373
1374 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1375 * information
1376 */
1377 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1378 {
1379 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1380
1381 case MIIM_DP83865_SPD_1000:
1382 priv->speed = 1000;
1383 break;
1384
1385 case MIIM_DP83865_SPD_100:
1386 priv->speed = 100;
1387 break;
1388
1389 default:
1390 priv->speed = 10;
1391 break;
1392
1393 }
1394
1395 if (mii_reg & MIIM_DP83865_DPX_FULL)
1396 priv->duplexity = 1;
1397 else
1398 priv->duplexity = 0;
1399
1400 return 0;
1401 }
1402
1403 struct phy_info phy_info_dp83865 = {
1404 0x20005c7,
1405 "NatSemi DP83865",
1406 4,
1407 (struct phy_cmd[]){ /* config */
1408 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1409 {miim_end,}
1410 },
1411 (struct phy_cmd[]){ /* startup */
1412 /* Status is read once to clear old link state */
1413 {MIIM_STATUS, miim_read, NULL},
1414 /* Auto-negotiate */
1415 {MIIM_STATUS, miim_read, &mii_parse_sr},
1416 /* Read the link and auto-neg status */
1417 {MIIM_DP83865_LANR, miim_read,
1418 &mii_parse_dp83865_lanr},
1419 {miim_end,}
1420 },
1421 (struct phy_cmd[]){ /* shutdown */
1422 {miim_end,}
1423 },
1424 };
1425
1426 struct phy_info phy_info_rtl8211b = {
1427 0x001cc91,
1428 "RealTek RTL8211B",
1429 4,
1430 (struct phy_cmd[]){ /* config */
1431 /* Reset and configure the PHY */
1432 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1433 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1434 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1435 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1436 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1437 {miim_end,}
1438 },
1439 (struct phy_cmd[]){ /* startup */
1440 /* Status is read once to clear old link state */
1441 {MIIM_STATUS, miim_read, NULL},
1442 /* Auto-negotiate */
1443 {MIIM_STATUS, miim_read, &mii_parse_sr},
1444 /* Read the status */
1445 {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1446 {miim_end,}
1447 },
1448 (struct phy_cmd[]){ /* shutdown */
1449 {miim_end,}
1450 },
1451 };
1452
1453 struct phy_info *phy_info[] = {
1454 &phy_info_cis8204,
1455 &phy_info_cis8201,
1456 &phy_info_BCM5461S,
1457 &phy_info_BCM5464S,
1458 &phy_info_M88E1011S,
1459 &phy_info_M88E1111S,
1460 &phy_info_M88E1145,
1461 &phy_info_M88E1149S,
1462 &phy_info_dm9161,
1463 &phy_info_lxt971,
1464 &phy_info_VSC8244,
1465 &phy_info_dp83865,
1466 &phy_info_rtl8211b,
1467 &phy_info_generic,
1468 NULL
1469 };
1470
1471 /* Grab the identifier of the device's PHY, and search through
1472 * all of the known PHYs to see if one matches. If so, return
1473 * it, if not, return NULL
1474 */
1475 struct phy_info *get_phy_info(struct eth_device *dev)
1476 {
1477 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1478 uint phy_reg, phy_ID;
1479 int i;
1480 struct phy_info *theInfo = NULL;
1481
1482 /* Grab the bits from PHYIR1, and put them in the upper half */
1483 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1484 phy_ID = (phy_reg & 0xffff) << 16;
1485
1486 /* Grab the bits from PHYIR2, and put them in the lower half */
1487 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1488 phy_ID |= (phy_reg & 0xffff);
1489
1490 /* loop through all the known PHY types, and find one that */
1491 /* matches the ID we read from the PHY. */
1492 for (i = 0; phy_info[i]; i++) {
1493 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1494 theInfo = phy_info[i];
1495 break;
1496 }
1497 }
1498
1499 if (theInfo == NULL) {
1500 printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1501 return NULL;
1502 } else {
1503 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1504 }
1505
1506 return theInfo;
1507 }
1508
1509 /* Execute the given series of commands on the given device's
1510 * PHY, running functions as necessary
1511 */
1512 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1513 {
1514 int i;
1515 uint result;
1516 volatile tsec_t *phyregs = priv->phyregs;
1517
1518 phyregs->miimcfg = MIIMCFG_RESET;
1519
1520 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1521
1522 while (phyregs->miimind & MIIMIND_BUSY) ;
1523
1524 for (i = 0; cmd->mii_reg != miim_end; i++) {
1525 if (cmd->mii_data == miim_read) {
1526 result = read_phy_reg(priv, cmd->mii_reg);
1527
1528 if (cmd->funct != NULL)
1529 (*(cmd->funct)) (result, priv);
1530
1531 } else {
1532 if (cmd->funct != NULL)
1533 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1534 else
1535 result = cmd->mii_data;
1536
1537 write_phy_reg(priv, cmd->mii_reg, result);
1538
1539 }
1540 cmd++;
1541 }
1542 }
1543
1544 /* Relocate the function pointers in the phy cmd lists */
1545 static void relocate_cmds(void)
1546 {
1547 struct phy_cmd **cmdlistptr;
1548 struct phy_cmd *cmd;
1549 int i, j, k;
1550
1551 for (i = 0; phy_info[i]; i++) {
1552 /* First thing's first: relocate the pointers to the
1553 * PHY command structures (the structs were done) */
1554 phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1555 + gd->reloc_off);
1556 phy_info[i]->name += gd->reloc_off;
1557 phy_info[i]->config =
1558 (struct phy_cmd *)((uint) phy_info[i]->config
1559 + gd->reloc_off);
1560 phy_info[i]->startup =
1561 (struct phy_cmd *)((uint) phy_info[i]->startup
1562 + gd->reloc_off);
1563 phy_info[i]->shutdown =
1564 (struct phy_cmd *)((uint) phy_info[i]->shutdown
1565 + gd->reloc_off);
1566
1567 cmdlistptr = &phy_info[i]->config;
1568 j = 0;
1569 for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1570 k = 0;
1571 for (cmd = *cmdlistptr;
1572 cmd->mii_reg != miim_end;
1573 cmd++) {
1574 /* Only relocate non-NULL pointers */
1575 if (cmd->funct)
1576 cmd->funct += gd->reloc_off;
1577
1578 k++;
1579 }
1580 j++;
1581 }
1582 }
1583
1584 relocated = 1;
1585 }
1586
1587 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1588 && !defined(BITBANGMII)
1589
1590 /*
1591 * Read a MII PHY register.
1592 *
1593 * Returns:
1594 * 0 on success
1595 */
1596 static int tsec_miiphy_read(char *devname, unsigned char addr,
1597 unsigned char reg, unsigned short *value)
1598 {
1599 unsigned short ret;
1600 struct tsec_private *priv = privlist[0];
1601
1602 if (NULL == priv) {
1603 printf("Can't read PHY at address %d\n", addr);
1604 return -1;
1605 }
1606
1607 ret = (unsigned short)read_any_phy_reg(priv, addr, reg);
1608 *value = ret;
1609
1610 return 0;
1611 }
1612
1613 /*
1614 * Write a MII PHY register.
1615 *
1616 * Returns:
1617 * 0 on success
1618 */
1619 static int tsec_miiphy_write(char *devname, unsigned char addr,
1620 unsigned char reg, unsigned short value)
1621 {
1622 struct tsec_private *priv = privlist[0];
1623
1624 if (NULL == priv) {
1625 printf("Can't write PHY at address %d\n", addr);
1626 return -1;
1627 }
1628
1629 write_any_phy_reg(priv, addr, reg, value);
1630
1631 return 0;
1632 }
1633
1634 #endif
1635
1636 #ifdef CONFIG_MCAST_TFTP
1637
1638 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1639
1640 /* Set the appropriate hash bit for the given addr */
1641
1642 /* The algorithm works like so:
1643 * 1) Take the Destination Address (ie the multicast address), and
1644 * do a CRC on it (little endian), and reverse the bits of the
1645 * result.
1646 * 2) Use the 8 most significant bits as a hash into a 256-entry
1647 * table. The table is controlled through 8 32-bit registers:
1648 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1649 * gaddr7. This means that the 3 most significant bits in the
1650 * hash index which gaddr register to use, and the 5 other bits
1651 * indicate which bit (assuming an IBM numbering scheme, which
1652 * for PowerPC (tm) is usually the case) in the tregister holds
1653 * the entry. */
1654 static int
1655 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1656 {
1657 struct tsec_private *priv = privlist[1];
1658 volatile tsec_t *regs = priv->regs;
1659 volatile u32 *reg_array, value;
1660 u8 result, whichbit, whichreg;
1661
1662 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1663 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1664 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1665 value = (1 << (31-whichbit));
1666
1667 reg_array = &(regs->hash.gaddr0);
1668
1669 if (set) {
1670 reg_array[whichreg] |= value;
1671 } else {
1672 reg_array[whichreg] &= ~value;
1673 }
1674 return 0;
1675 }
1676 #endif /* Multicast TFTP ? */
1677
1678 #endif /* CONFIG_TSEC_ENET */