]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
Remove warnings re CONFIG_EXTRA_ENV_SETTINGS
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19
20 #if defined(CONFIG_TSEC_ENET)
21 #include "tsec.h"
22 #include "miiphy.h"
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 struct tsec_info_struct {
37 unsigned int phyaddr;
38 u32 flags;
39 unsigned int phyregidx;
40 };
41
42 /* The tsec_info structure contains 3 values which the
43 * driver uses to determine how to operate a given ethernet
44 * device. The information needed is:
45 * phyaddr - The address of the PHY which is attached to
46 * the given device.
47 *
48 * flags - This variable indicates whether the device
49 * supports gigabit speed ethernet, and whether it should be
50 * in reduced mode.
51 *
52 * phyregidx - This variable specifies which ethernet device
53 * controls the MII Management registers which are connected
54 * to the PHY. For now, only TSEC1 (index 0) has
55 * access to the PHYs, so all of the entries have "0".
56 *
57 * The values specified in the table are taken from the board's
58 * config file in include/configs/. When implementing a new
59 * board with ethernet capability, it is necessary to define:
60 * TSECn_PHY_ADDR
61 * TSECn_PHYIDX
62 *
63 * for n = 1,2,3, etc. And for FEC:
64 * FEC_PHY_ADDR
65 * FEC_PHYIDX
66 */
67 static struct tsec_info_struct tsec_info[] = {
68 #ifdef CONFIG_TSEC1
69 {TSEC1_PHY_ADDR, TSEC1_FLAGS, TSEC1_PHYIDX},
70 #else
71 {0, 0, 0},
72 #endif
73 #ifdef CONFIG_TSEC2
74 {TSEC2_PHY_ADDR, TSEC2_FLAGS, TSEC2_PHYIDX},
75 #else
76 {0, 0, 0},
77 #endif
78 #ifdef CONFIG_MPC85XX_FEC
79 {FEC_PHY_ADDR, FEC_FLAGS, FEC_PHYIDX},
80 #else
81 #ifdef CONFIG_TSEC3
82 {TSEC3_PHY_ADDR, TSEC3_FLAGS, TSEC3_PHYIDX},
83 #else
84 {0, 0, 0},
85 #endif
86 #ifdef CONFIG_TSEC4
87 {TSEC4_PHY_ADDR, TSEC4_FLAGS, TSEC4_PHYIDX},
88 #else
89 {0, 0, 0},
90 #endif /* CONFIG_TSEC4 */
91 #endif /* CONFIG_MPC85XX_FEC */
92 };
93
94 #define MAXCONTROLLERS (4)
95
96 static int relocated = 0;
97
98 static struct tsec_private *privlist[MAXCONTROLLERS];
99
100 #ifdef __GNUC__
101 static RTXBD rtx __attribute__ ((aligned(8)));
102 #else
103 #error "rtx must be 64-bit aligned"
104 #endif
105
106 static int tsec_send(struct eth_device *dev,
107 volatile void *packet, int length);
108 static int tsec_recv(struct eth_device *dev);
109 static int tsec_init(struct eth_device *dev, bd_t * bd);
110 static void tsec_halt(struct eth_device *dev);
111 static void init_registers(volatile tsec_t * regs);
112 static void startup_tsec(struct eth_device *dev);
113 static int init_phy(struct eth_device *dev);
114 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
115 uint read_phy_reg(struct tsec_private *priv, uint regnum);
116 struct phy_info *get_phy_info(struct eth_device *dev);
117 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
118 static void adjust_link(struct eth_device *dev);
119 static void relocate_cmds(void);
120 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
121 && !defined(BITBANGMII)
122 static int tsec_miiphy_write(char *devname, unsigned char addr,
123 unsigned char reg, unsigned short value);
124 static int tsec_miiphy_read(char *devname, unsigned char addr,
125 unsigned char reg, unsigned short *value);
126 #endif
127 #ifdef CONFIG_MCAST_TFTP
128 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
129 #endif
130
131 /* Initialize device structure. Returns success if PHY
132 * initialization succeeded (i.e. if it recognizes the PHY)
133 */
134 int tsec_initialize(bd_t * bis, int index, char *devname)
135 {
136 struct eth_device *dev;
137 int i;
138 struct tsec_private *priv;
139
140 dev = (struct eth_device *)malloc(sizeof *dev);
141
142 if (NULL == dev)
143 return 0;
144
145 memset(dev, 0, sizeof *dev);
146
147 priv = (struct tsec_private *)malloc(sizeof(*priv));
148
149 if (NULL == priv)
150 return 0;
151
152 privlist[index] = priv;
153 priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE);
154 priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
155 tsec_info[index].phyregidx *
156 TSEC_SIZE);
157
158 priv->phyaddr = tsec_info[index].phyaddr;
159 priv->flags = tsec_info[index].flags;
160
161 sprintf(dev->name, devname);
162 dev->iobase = 0;
163 dev->priv = priv;
164 dev->init = tsec_init;
165 dev->halt = tsec_halt;
166 dev->send = tsec_send;
167 dev->recv = tsec_recv;
168 #ifdef CONFIG_MCAST_TFTP
169 dev->mcast = tsec_mcast_addr;
170 #endif
171
172 /* Tell u-boot to get the addr from the env */
173 for (i = 0; i < 6; i++)
174 dev->enetaddr[i] = 0;
175
176 eth_register(dev);
177
178 /* Reset the MAC */
179 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
180 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
181
182 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
183 && !defined(BITBANGMII)
184 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
185 #endif
186
187 /* Try to initialize PHY here, and return */
188 return init_phy(dev);
189 }
190
191 /* Initializes data structures and registers for the controller,
192 * and brings the interface up. Returns the link status, meaning
193 * that it returns success if the link is up, failure otherwise.
194 * This allows u-boot to find the first active controller.
195 */
196 int tsec_init(struct eth_device *dev, bd_t * bd)
197 {
198 uint tempval;
199 char tmpbuf[MAC_ADDR_LEN];
200 int i;
201 struct tsec_private *priv = (struct tsec_private *)dev->priv;
202 volatile tsec_t *regs = priv->regs;
203
204 /* Make sure the controller is stopped */
205 tsec_halt(dev);
206
207 /* Init MACCFG2. Defaults to GMII */
208 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
209
210 /* Init ECNTRL */
211 regs->ecntrl = ECNTRL_INIT_SETTINGS;
212
213 /* Copy the station address into the address registers.
214 * Backwards, because little endian MACS are dumb */
215 for (i = 0; i < MAC_ADDR_LEN; i++) {
216 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
217 }
218 regs->macstnaddr1 = *((uint *) (tmpbuf));
219
220 tempval = *((uint *) (tmpbuf + 4));
221
222 regs->macstnaddr2 = tempval;
223
224 /* reset the indices to zero */
225 rxIdx = 0;
226 txIdx = 0;
227
228 /* Clear out (for the most part) the other registers */
229 init_registers(regs);
230
231 /* Ready the device for tx/rx */
232 startup_tsec(dev);
233
234 /* If there's no link, fail */
235 return priv->link;
236
237 }
238
239 /* Write value to the device's PHY through the registers
240 * specified in priv, modifying the register specified in regnum.
241 * It will wait for the write to be done (or for a timeout to
242 * expire) before exiting
243 */
244 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value)
245 {
246 volatile tsec_t *regbase = priv->phyregs;
247 uint phyid = priv->phyaddr;
248 int timeout = 1000000;
249
250 regbase->miimadd = (phyid << 8) | regnum;
251 regbase->miimcon = value;
252 asm("sync");
253
254 timeout = 1000000;
255 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
256 }
257
258 /* Reads register regnum on the device's PHY through the
259 * registers specified in priv. It lowers and raises the read
260 * command, and waits for the data to become valid (miimind
261 * notvalid bit cleared), and the bus to cease activity (miimind
262 * busy bit cleared), and then returns the value
263 */
264 uint read_phy_reg(struct tsec_private *priv, uint regnum)
265 {
266 uint value;
267 volatile tsec_t *regbase = priv->phyregs;
268 uint phyid = priv->phyaddr;
269
270 /* Put the address of the phy, and the register
271 * number into MIIMADD */
272 regbase->miimadd = (phyid << 8) | regnum;
273
274 /* Clear the command register, and wait */
275 regbase->miimcom = 0;
276 asm("sync");
277
278 /* Initiate a read command, and wait */
279 regbase->miimcom = MIIM_READ_COMMAND;
280 asm("sync");
281
282 /* Wait for the the indication that the read is done */
283 while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
284
285 /* Grab the value read from the PHY */
286 value = regbase->miimstat;
287
288 return value;
289 }
290
291 /* Discover which PHY is attached to the device, and configure it
292 * properly. If the PHY is not recognized, then return 0
293 * (failure). Otherwise, return 1
294 */
295 static int init_phy(struct eth_device *dev)
296 {
297 struct tsec_private *priv = (struct tsec_private *)dev->priv;
298 struct phy_info *curphy;
299 volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
300
301 /* Assign a Physical address to the TBI */
302 regs->tbipa = CFG_TBIPA_VALUE;
303 regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
304 regs->tbipa = CFG_TBIPA_VALUE;
305 asm("sync");
306
307 /* Reset MII (due to new addresses) */
308 priv->phyregs->miimcfg = MIIMCFG_RESET;
309 asm("sync");
310 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
311 asm("sync");
312 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
313
314 if (0 == relocated)
315 relocate_cmds();
316
317 /* Get the cmd structure corresponding to the attached
318 * PHY */
319 curphy = get_phy_info(dev);
320
321 if (curphy == NULL) {
322 priv->phyinfo = NULL;
323 printf("%s: No PHY found\n", dev->name);
324
325 return 0;
326 }
327
328 priv->phyinfo = curphy;
329
330 phy_run_commands(priv, priv->phyinfo->config);
331
332 return 1;
333 }
334
335 /*
336 * Returns which value to write to the control register.
337 * For 10/100, the value is slightly different
338 */
339 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
340 {
341 if (priv->flags & TSEC_GIGABIT)
342 return MIIM_CONTROL_INIT;
343 else
344 return MIIM_CR_INIT;
345 }
346
347 /* Parse the status register for link, and then do
348 * auto-negotiation
349 */
350 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
351 {
352 /*
353 * Wait if the link is up, and autonegotiation is in progress
354 * (ie - we're capable and it's not done)
355 */
356 mii_reg = read_phy_reg(priv, MIIM_STATUS);
357 if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
358 && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
359 int i = 0;
360
361 puts("Waiting for PHY auto negotiation to complete");
362 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
363 /*
364 * Timeout reached ?
365 */
366 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
367 puts(" TIMEOUT !\n");
368 priv->link = 0;
369 return 0;
370 }
371
372 if ((i++ % 1000) == 0) {
373 putc('.');
374 }
375 udelay(1000); /* 1 ms */
376 mii_reg = read_phy_reg(priv, MIIM_STATUS);
377 }
378 puts(" done\n");
379 priv->link = 1;
380 udelay(500000); /* another 500 ms (results in faster booting) */
381 } else {
382 if (mii_reg & MIIM_STATUS_LINK)
383 priv->link = 1;
384 else
385 priv->link = 0;
386 }
387
388 return 0;
389 }
390
391 /* Generic function which updates the speed and duplex. If
392 * autonegotiation is enabled, it uses the AND of the link
393 * partner's advertised capabilities and our advertised
394 * capabilities. If autonegotiation is disabled, we use the
395 * appropriate bits in the control register.
396 *
397 * Stolen from Linux's mii.c and phy_device.c
398 */
399 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
400 {
401 /* We're using autonegotiation */
402 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
403 uint lpa = 0;
404 uint gblpa = 0;
405
406 /* Check for gigabit capability */
407 if (mii_reg & PHY_BMSR_EXT) {
408 /* We want a list of states supported by
409 * both PHYs in the link
410 */
411 gblpa = read_phy_reg(priv, PHY_1000BTSR);
412 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
413 }
414
415 /* Set the baseline so we only have to set them
416 * if they're different
417 */
418 priv->speed = 10;
419 priv->duplexity = 0;
420
421 /* Check the gigabit fields */
422 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
423 priv->speed = 1000;
424
425 if (gblpa & PHY_1000BTSR_1000FD)
426 priv->duplexity = 1;
427
428 /* We're done! */
429 return 0;
430 }
431
432 lpa = read_phy_reg(priv, PHY_ANAR);
433 lpa &= read_phy_reg(priv, PHY_ANLPAR);
434
435 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
436 priv->speed = 100;
437
438 if (lpa & PHY_ANLPAR_TXFD)
439 priv->duplexity = 1;
440
441 } else if (lpa & PHY_ANLPAR_10FD)
442 priv->duplexity = 1;
443 } else {
444 uint bmcr = read_phy_reg(priv, PHY_BMCR);
445
446 priv->speed = 10;
447 priv->duplexity = 0;
448
449 if (bmcr & PHY_BMCR_DPLX)
450 priv->duplexity = 1;
451
452 if (bmcr & PHY_BMCR_1000_MBPS)
453 priv->speed = 1000;
454 else if (bmcr & PHY_BMCR_100_MBPS)
455 priv->speed = 100;
456 }
457
458 return 0;
459 }
460
461 /*
462 * Parse the BCM54xx status register for speed and duplex information.
463 * The linux sungem_phy has this information, but in a table format.
464 */
465 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
466 {
467
468 switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
469
470 case 1:
471 printf("Enet starting in 10BT/HD\n");
472 priv->duplexity = 0;
473 priv->speed = 10;
474 break;
475
476 case 2:
477 printf("Enet starting in 10BT/FD\n");
478 priv->duplexity = 1;
479 priv->speed = 10;
480 break;
481
482 case 3:
483 printf("Enet starting in 100BT/HD\n");
484 priv->duplexity = 0;
485 priv->speed = 100;
486 break;
487
488 case 5:
489 printf("Enet starting in 100BT/FD\n");
490 priv->duplexity = 1;
491 priv->speed = 100;
492 break;
493
494 case 6:
495 printf("Enet starting in 1000BT/HD\n");
496 priv->duplexity = 0;
497 priv->speed = 1000;
498 break;
499
500 case 7:
501 printf("Enet starting in 1000BT/FD\n");
502 priv->duplexity = 1;
503 priv->speed = 1000;
504 break;
505
506 default:
507 printf("Auto-neg error, defaulting to 10BT/HD\n");
508 priv->duplexity = 0;
509 priv->speed = 10;
510 break;
511 }
512
513 return 0;
514
515 }
516 /* Parse the 88E1011's status register for speed and duplex
517 * information
518 */
519 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
520 {
521 uint speed;
522
523 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
524
525 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
526 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
527 int i = 0;
528
529 puts("Waiting for PHY realtime link");
530 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
531 /* Timeout reached ? */
532 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
533 puts(" TIMEOUT !\n");
534 priv->link = 0;
535 break;
536 }
537
538 if ((i++ % 1000) == 0) {
539 putc('.');
540 }
541 udelay(1000); /* 1 ms */
542 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
543 }
544 puts(" done\n");
545 udelay(500000); /* another 500 ms (results in faster booting) */
546 } else {
547 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
548 priv->link = 1;
549 else
550 priv->link = 0;
551 }
552
553 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
554 priv->duplexity = 1;
555 else
556 priv->duplexity = 0;
557
558 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
559
560 switch (speed) {
561 case MIIM_88E1011_PHYSTAT_GBIT:
562 priv->speed = 1000;
563 break;
564 case MIIM_88E1011_PHYSTAT_100:
565 priv->speed = 100;
566 break;
567 default:
568 priv->speed = 10;
569 }
570
571 return 0;
572 }
573
574 /* Parse the cis8201's status register for speed and duplex
575 * information
576 */
577 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
578 {
579 uint speed;
580
581 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
582 priv->duplexity = 1;
583 else
584 priv->duplexity = 0;
585
586 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
587 switch (speed) {
588 case MIIM_CIS8201_AUXCONSTAT_GBIT:
589 priv->speed = 1000;
590 break;
591 case MIIM_CIS8201_AUXCONSTAT_100:
592 priv->speed = 100;
593 break;
594 default:
595 priv->speed = 10;
596 break;
597 }
598
599 return 0;
600 }
601
602 /* Parse the vsc8244's status register for speed and duplex
603 * information
604 */
605 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
606 {
607 uint speed;
608
609 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
610 priv->duplexity = 1;
611 else
612 priv->duplexity = 0;
613
614 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
615 switch (speed) {
616 case MIIM_VSC8244_AUXCONSTAT_GBIT:
617 priv->speed = 1000;
618 break;
619 case MIIM_VSC8244_AUXCONSTAT_100:
620 priv->speed = 100;
621 break;
622 default:
623 priv->speed = 10;
624 break;
625 }
626
627 return 0;
628 }
629
630 /* Parse the DM9161's status register for speed and duplex
631 * information
632 */
633 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
634 {
635 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
636 priv->speed = 100;
637 else
638 priv->speed = 10;
639
640 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
641 priv->duplexity = 1;
642 else
643 priv->duplexity = 0;
644
645 return 0;
646 }
647
648 /*
649 * Hack to write all 4 PHYs with the LED values
650 */
651 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
652 {
653 uint phyid;
654 volatile tsec_t *regbase = priv->phyregs;
655 int timeout = 1000000;
656
657 for (phyid = 0; phyid < 4; phyid++) {
658 regbase->miimadd = (phyid << 8) | mii_reg;
659 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
660 asm("sync");
661
662 timeout = 1000000;
663 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
664 }
665
666 return MIIM_CIS8204_SLEDCON_INIT;
667 }
668
669 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
670 {
671 if (priv->flags & TSEC_REDUCED)
672 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
673 else
674 return MIIM_CIS8204_EPHYCON_INIT;
675 }
676
677 /* Initialized required registers to appropriate values, zeroing
678 * those we don't care about (unless zero is bad, in which case,
679 * choose a more appropriate value)
680 */
681 static void init_registers(volatile tsec_t * regs)
682 {
683 /* Clear IEVENT */
684 regs->ievent = IEVENT_INIT_CLEAR;
685
686 regs->imask = IMASK_INIT_CLEAR;
687
688 regs->hash.iaddr0 = 0;
689 regs->hash.iaddr1 = 0;
690 regs->hash.iaddr2 = 0;
691 regs->hash.iaddr3 = 0;
692 regs->hash.iaddr4 = 0;
693 regs->hash.iaddr5 = 0;
694 regs->hash.iaddr6 = 0;
695 regs->hash.iaddr7 = 0;
696
697 regs->hash.gaddr0 = 0;
698 regs->hash.gaddr1 = 0;
699 regs->hash.gaddr2 = 0;
700 regs->hash.gaddr3 = 0;
701 regs->hash.gaddr4 = 0;
702 regs->hash.gaddr5 = 0;
703 regs->hash.gaddr6 = 0;
704 regs->hash.gaddr7 = 0;
705
706 regs->rctrl = 0x00000000;
707
708 /* Init RMON mib registers */
709 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
710
711 regs->rmon.cam1 = 0xffffffff;
712 regs->rmon.cam2 = 0xffffffff;
713
714 regs->mrblr = MRBLR_INIT_SETTINGS;
715
716 regs->minflr = MINFLR_INIT_SETTINGS;
717
718 regs->attr = ATTR_INIT_SETTINGS;
719 regs->attreli = ATTRELI_INIT_SETTINGS;
720
721 }
722
723 /* Configure maccfg2 based on negotiated speed and duplex
724 * reported by PHY handling code
725 */
726 static void adjust_link(struct eth_device *dev)
727 {
728 struct tsec_private *priv = (struct tsec_private *)dev->priv;
729 volatile tsec_t *regs = priv->regs;
730
731 if (priv->link) {
732 if (priv->duplexity != 0)
733 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
734 else
735 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
736
737 switch (priv->speed) {
738 case 1000:
739 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
740 | MACCFG2_GMII);
741 break;
742 case 100:
743 case 10:
744 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
745 | MACCFG2_MII);
746
747 /* Set R100 bit in all modes although
748 * it is only used in RGMII mode
749 */
750 if (priv->speed == 100)
751 regs->ecntrl |= ECNTRL_R100;
752 else
753 regs->ecntrl &= ~(ECNTRL_R100);
754 break;
755 default:
756 printf("%s: Speed was bad\n", dev->name);
757 break;
758 }
759
760 printf("Speed: %d, %s duplex\n", priv->speed,
761 (priv->duplexity) ? "full" : "half");
762
763 } else {
764 printf("%s: No link.\n", dev->name);
765 }
766 }
767
768 /* Set up the buffers and their descriptors, and bring up the
769 * interface
770 */
771 static void startup_tsec(struct eth_device *dev)
772 {
773 int i;
774 struct tsec_private *priv = (struct tsec_private *)dev->priv;
775 volatile tsec_t *regs = priv->regs;
776
777 /* Point to the buffer descriptors */
778 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
779 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
780
781 /* Initialize the Rx Buffer descriptors */
782 for (i = 0; i < PKTBUFSRX; i++) {
783 rtx.rxbd[i].status = RXBD_EMPTY;
784 rtx.rxbd[i].length = 0;
785 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
786 }
787 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
788
789 /* Initialize the TX Buffer Descriptors */
790 for (i = 0; i < TX_BUF_CNT; i++) {
791 rtx.txbd[i].status = 0;
792 rtx.txbd[i].length = 0;
793 rtx.txbd[i].bufPtr = 0;
794 }
795 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
796
797 /* Start up the PHY */
798 if(priv->phyinfo)
799 phy_run_commands(priv, priv->phyinfo->startup);
800
801 adjust_link(dev);
802
803 /* Enable Transmit and Receive */
804 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
805
806 /* Tell the DMA it is clear to go */
807 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
808 regs->tstat = TSTAT_CLEAR_THALT;
809 regs->rstat = RSTAT_CLEAR_RHALT;
810 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
811 }
812
813 /* This returns the status bits of the device. The return value
814 * is never checked, and this is what the 8260 driver did, so we
815 * do the same. Presumably, this would be zero if there were no
816 * errors
817 */
818 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
819 {
820 int i;
821 int result = 0;
822 struct tsec_private *priv = (struct tsec_private *)dev->priv;
823 volatile tsec_t *regs = priv->regs;
824
825 /* Find an empty buffer descriptor */
826 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
827 if (i >= TOUT_LOOP) {
828 debug("%s: tsec: tx buffers full\n", dev->name);
829 return result;
830 }
831 }
832
833 rtx.txbd[txIdx].bufPtr = (uint) packet;
834 rtx.txbd[txIdx].length = length;
835 rtx.txbd[txIdx].status |=
836 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
837
838 /* Tell the DMA to go */
839 regs->tstat = TSTAT_CLEAR_THALT;
840
841 /* Wait for buffer to be transmitted */
842 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
843 if (i >= TOUT_LOOP) {
844 debug("%s: tsec: tx error\n", dev->name);
845 return result;
846 }
847 }
848
849 txIdx = (txIdx + 1) % TX_BUF_CNT;
850 result = rtx.txbd[txIdx].status & TXBD_STATS;
851
852 return result;
853 }
854
855 static int tsec_recv(struct eth_device *dev)
856 {
857 int length;
858 struct tsec_private *priv = (struct tsec_private *)dev->priv;
859 volatile tsec_t *regs = priv->regs;
860
861 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
862
863 length = rtx.rxbd[rxIdx].length;
864
865 /* Send the packet up if there were no errors */
866 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
867 NetReceive(NetRxPackets[rxIdx], length - 4);
868 } else {
869 printf("Got error %x\n",
870 (rtx.rxbd[rxIdx].status & RXBD_STATS));
871 }
872
873 rtx.rxbd[rxIdx].length = 0;
874
875 /* Set the wrap bit if this is the last element in the list */
876 rtx.rxbd[rxIdx].status =
877 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
878
879 rxIdx = (rxIdx + 1) % PKTBUFSRX;
880 }
881
882 if (regs->ievent & IEVENT_BSY) {
883 regs->ievent = IEVENT_BSY;
884 regs->rstat = RSTAT_CLEAR_RHALT;
885 }
886
887 return -1;
888
889 }
890
891 /* Stop the interface */
892 static void tsec_halt(struct eth_device *dev)
893 {
894 struct tsec_private *priv = (struct tsec_private *)dev->priv;
895 volatile tsec_t *regs = priv->regs;
896
897 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
898 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
899
900 while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
901
902 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
903
904 /* Shut down the PHY, as needed */
905 if(priv->phyinfo)
906 phy_run_commands(priv, priv->phyinfo->shutdown);
907 }
908
909 struct phy_info phy_info_M88E1149S = {
910 0x1410ca,
911 "Marvell 88E1149S",
912 4,
913 (struct phy_cmd[]){ /* config */
914 /* Reset and configure the PHY */
915 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
916 {0x1d, 0x1f, NULL},
917 {0x1e, 0x200c, NULL},
918 {0x1d, 0x5, NULL},
919 {0x1e, 0x0, NULL},
920 {0x1e, 0x100, NULL},
921 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
922 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
923 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
924 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
925 {miim_end,}
926 },
927 (struct phy_cmd[]){ /* startup */
928 /* Status is read once to clear old link state */
929 {MIIM_STATUS, miim_read, NULL},
930 /* Auto-negotiate */
931 {MIIM_STATUS, miim_read, &mii_parse_sr},
932 /* Read the status */
933 {MIIM_88E1011_PHY_STATUS, miim_read,
934 &mii_parse_88E1011_psr},
935 {miim_end,}
936 },
937 (struct phy_cmd[]){ /* shutdown */
938 {miim_end,}
939 },
940 };
941
942 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
943 struct phy_info phy_info_BCM5461S = {
944 0x02060c1, /* 5461 ID */
945 "Broadcom BCM5461S",
946 0, /* not clear to me what minor revisions we can shift away */
947 (struct phy_cmd[]) { /* config */
948 /* Reset and configure the PHY */
949 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
950 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
951 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
952 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
953 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
954 {miim_end,}
955 },
956 (struct phy_cmd[]) { /* startup */
957 /* Status is read once to clear old link state */
958 {MIIM_STATUS, miim_read, NULL},
959 /* Auto-negotiate */
960 {MIIM_STATUS, miim_read, &mii_parse_sr},
961 /* Read the status */
962 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
963 {miim_end,}
964 },
965 (struct phy_cmd[]) { /* shutdown */
966 {miim_end,}
967 },
968 };
969
970 struct phy_info phy_info_BCM5464S = {
971 0x02060b1, /* 5464 ID */
972 "Broadcom BCM5464S",
973 0, /* not clear to me what minor revisions we can shift away */
974 (struct phy_cmd[]) { /* config */
975 /* Reset and configure the PHY */
976 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
977 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
978 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
979 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
980 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
981 {miim_end,}
982 },
983 (struct phy_cmd[]) { /* startup */
984 /* Status is read once to clear old link state */
985 {MIIM_STATUS, miim_read, NULL},
986 /* Auto-negotiate */
987 {MIIM_STATUS, miim_read, &mii_parse_sr},
988 /* Read the status */
989 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
990 {miim_end,}
991 },
992 (struct phy_cmd[]) { /* shutdown */
993 {miim_end,}
994 },
995 };
996
997 struct phy_info phy_info_M88E1011S = {
998 0x01410c6,
999 "Marvell 88E1011S",
1000 4,
1001 (struct phy_cmd[]){ /* config */
1002 /* Reset and configure the PHY */
1003 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1004 {0x1d, 0x1f, NULL},
1005 {0x1e, 0x200c, NULL},
1006 {0x1d, 0x5, NULL},
1007 {0x1e, 0x0, NULL},
1008 {0x1e, 0x100, NULL},
1009 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1010 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1011 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1012 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1013 {miim_end,}
1014 },
1015 (struct phy_cmd[]){ /* startup */
1016 /* Status is read once to clear old link state */
1017 {MIIM_STATUS, miim_read, NULL},
1018 /* Auto-negotiate */
1019 {MIIM_STATUS, miim_read, &mii_parse_sr},
1020 /* Read the status */
1021 {MIIM_88E1011_PHY_STATUS, miim_read,
1022 &mii_parse_88E1011_psr},
1023 {miim_end,}
1024 },
1025 (struct phy_cmd[]){ /* shutdown */
1026 {miim_end,}
1027 },
1028 };
1029
1030 struct phy_info phy_info_M88E1111S = {
1031 0x01410cc,
1032 "Marvell 88E1111S",
1033 4,
1034 (struct phy_cmd[]){ /* config */
1035 /* Reset and configure the PHY */
1036 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1037 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1038 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1039 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1040 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1041 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1042 {miim_end,}
1043 },
1044 (struct phy_cmd[]){ /* startup */
1045 /* Status is read once to clear old link state */
1046 {MIIM_STATUS, miim_read, NULL},
1047 /* Auto-negotiate */
1048 {MIIM_STATUS, miim_read, &mii_parse_sr},
1049 /* Read the status */
1050 {MIIM_88E1011_PHY_STATUS, miim_read,
1051 &mii_parse_88E1011_psr},
1052 {miim_end,}
1053 },
1054 (struct phy_cmd[]){ /* shutdown */
1055 {miim_end,}
1056 },
1057 };
1058
1059 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1060 {
1061 uint mii_data = read_phy_reg(priv, mii_reg);
1062
1063 /* Setting MIIM_88E1145_PHY_EXT_CR */
1064 if (priv->flags & TSEC_REDUCED)
1065 return mii_data |
1066 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1067 else
1068 return mii_data;
1069 }
1070
1071 static struct phy_info phy_info_M88E1145 = {
1072 0x01410cd,
1073 "Marvell 88E1145",
1074 4,
1075 (struct phy_cmd[]){ /* config */
1076 /* Reset the PHY */
1077 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1078
1079 /* Errata E0, E1 */
1080 {29, 0x001b, NULL},
1081 {30, 0x418f, NULL},
1082 {29, 0x0016, NULL},
1083 {30, 0xa2da, NULL},
1084
1085 /* Configure the PHY */
1086 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1087 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1088 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1089 NULL},
1090 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1091 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1092 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1093 {miim_end,}
1094 },
1095 (struct phy_cmd[]){ /* startup */
1096 /* Status is read once to clear old link state */
1097 {MIIM_STATUS, miim_read, NULL},
1098 /* Auto-negotiate */
1099 {MIIM_STATUS, miim_read, &mii_parse_sr},
1100 {MIIM_88E1111_PHY_LED_CONTROL,
1101 MIIM_88E1111_PHY_LED_DIRECT, NULL},
1102 /* Read the Status */
1103 {MIIM_88E1011_PHY_STATUS, miim_read,
1104 &mii_parse_88E1011_psr},
1105 {miim_end,}
1106 },
1107 (struct phy_cmd[]){ /* shutdown */
1108 {miim_end,}
1109 },
1110 };
1111
1112 struct phy_info phy_info_cis8204 = {
1113 0x3f11,
1114 "Cicada Cis8204",
1115 6,
1116 (struct phy_cmd[]){ /* config */
1117 /* Override PHY config settings */
1118 {MIIM_CIS8201_AUX_CONSTAT,
1119 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1120 /* Configure some basic stuff */
1121 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1122 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1123 &mii_cis8204_fixled},
1124 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1125 &mii_cis8204_setmode},
1126 {miim_end,}
1127 },
1128 (struct phy_cmd[]){ /* startup */
1129 /* Read the Status (2x to make sure link is right) */
1130 {MIIM_STATUS, miim_read, NULL},
1131 /* Auto-negotiate */
1132 {MIIM_STATUS, miim_read, &mii_parse_sr},
1133 /* Read the status */
1134 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1135 &mii_parse_cis8201},
1136 {miim_end,}
1137 },
1138 (struct phy_cmd[]){ /* shutdown */
1139 {miim_end,}
1140 },
1141 };
1142
1143 /* Cicada 8201 */
1144 struct phy_info phy_info_cis8201 = {
1145 0xfc41,
1146 "CIS8201",
1147 4,
1148 (struct phy_cmd[]){ /* config */
1149 /* Override PHY config settings */
1150 {MIIM_CIS8201_AUX_CONSTAT,
1151 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1152 /* Set up the interface mode */
1153 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1154 NULL},
1155 /* Configure some basic stuff */
1156 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1157 {miim_end,}
1158 },
1159 (struct phy_cmd[]){ /* startup */
1160 /* Read the Status (2x to make sure link is right) */
1161 {MIIM_STATUS, miim_read, NULL},
1162 /* Auto-negotiate */
1163 {MIIM_STATUS, miim_read, &mii_parse_sr},
1164 /* Read the status */
1165 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1166 &mii_parse_cis8201},
1167 {miim_end,}
1168 },
1169 (struct phy_cmd[]){ /* shutdown */
1170 {miim_end,}
1171 },
1172 };
1173 struct phy_info phy_info_VSC8244 = {
1174 0x3f1b,
1175 "Vitesse VSC8244",
1176 6,
1177 (struct phy_cmd[]){ /* config */
1178 /* Override PHY config settings */
1179 /* Configure some basic stuff */
1180 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1181 {miim_end,}
1182 },
1183 (struct phy_cmd[]){ /* startup */
1184 /* Read the Status (2x to make sure link is right) */
1185 {MIIM_STATUS, miim_read, NULL},
1186 /* Auto-negotiate */
1187 {MIIM_STATUS, miim_read, &mii_parse_sr},
1188 /* Read the status */
1189 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1190 &mii_parse_vsc8244},
1191 {miim_end,}
1192 },
1193 (struct phy_cmd[]){ /* shutdown */
1194 {miim_end,}
1195 },
1196 };
1197
1198 struct phy_info phy_info_dm9161 = {
1199 0x0181b88,
1200 "Davicom DM9161E",
1201 4,
1202 (struct phy_cmd[]){ /* config */
1203 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1204 /* Do not bypass the scrambler/descrambler */
1205 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1206 /* Clear 10BTCSR to default */
1207 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1208 NULL},
1209 /* Configure some basic stuff */
1210 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1211 /* Restart Auto Negotiation */
1212 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1213 {miim_end,}
1214 },
1215 (struct phy_cmd[]){ /* startup */
1216 /* Status is read once to clear old link state */
1217 {MIIM_STATUS, miim_read, NULL},
1218 /* Auto-negotiate */
1219 {MIIM_STATUS, miim_read, &mii_parse_sr},
1220 /* Read the status */
1221 {MIIM_DM9161_SCSR, miim_read,
1222 &mii_parse_dm9161_scsr},
1223 {miim_end,}
1224 },
1225 (struct phy_cmd[]){ /* shutdown */
1226 {miim_end,}
1227 },
1228 };
1229 /* a generic flavor. */
1230 struct phy_info phy_info_generic = {
1231 0,
1232 "Unknown/Generic PHY",
1233 32,
1234 (struct phy_cmd[]) { /* config */
1235 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1236 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1237 {miim_end,}
1238 },
1239 (struct phy_cmd[]) { /* startup */
1240 {PHY_BMSR, miim_read, NULL},
1241 {PHY_BMSR, miim_read, &mii_parse_sr},
1242 {PHY_BMSR, miim_read, &mii_parse_link},
1243 {miim_end,}
1244 },
1245 (struct phy_cmd[]) { /* shutdown */
1246 {miim_end,}
1247 }
1248 };
1249
1250
1251 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1252 {
1253 unsigned int speed;
1254 if (priv->link) {
1255 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1256
1257 switch (speed) {
1258 case MIIM_LXT971_SR2_10HDX:
1259 priv->speed = 10;
1260 priv->duplexity = 0;
1261 break;
1262 case MIIM_LXT971_SR2_10FDX:
1263 priv->speed = 10;
1264 priv->duplexity = 1;
1265 break;
1266 case MIIM_LXT971_SR2_100HDX:
1267 priv->speed = 100;
1268 priv->duplexity = 0;
1269 break;
1270 default:
1271 priv->speed = 100;
1272 priv->duplexity = 1;
1273 }
1274 } else {
1275 priv->speed = 0;
1276 priv->duplexity = 0;
1277 }
1278
1279 return 0;
1280 }
1281
1282 static struct phy_info phy_info_lxt971 = {
1283 0x0001378e,
1284 "LXT971",
1285 4,
1286 (struct phy_cmd[]){ /* config */
1287 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1288 {miim_end,}
1289 },
1290 (struct phy_cmd[]){ /* startup - enable interrupts */
1291 /* { 0x12, 0x00f2, NULL }, */
1292 {MIIM_STATUS, miim_read, NULL},
1293 {MIIM_STATUS, miim_read, &mii_parse_sr},
1294 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1295 {miim_end,}
1296 },
1297 (struct phy_cmd[]){ /* shutdown - disable interrupts */
1298 {miim_end,}
1299 },
1300 };
1301
1302 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1303 * information
1304 */
1305 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1306 {
1307 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1308
1309 case MIIM_DP83865_SPD_1000:
1310 priv->speed = 1000;
1311 break;
1312
1313 case MIIM_DP83865_SPD_100:
1314 priv->speed = 100;
1315 break;
1316
1317 default:
1318 priv->speed = 10;
1319 break;
1320
1321 }
1322
1323 if (mii_reg & MIIM_DP83865_DPX_FULL)
1324 priv->duplexity = 1;
1325 else
1326 priv->duplexity = 0;
1327
1328 return 0;
1329 }
1330
1331 struct phy_info phy_info_dp83865 = {
1332 0x20005c7,
1333 "NatSemi DP83865",
1334 4,
1335 (struct phy_cmd[]){ /* config */
1336 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1337 {miim_end,}
1338 },
1339 (struct phy_cmd[]){ /* startup */
1340 /* Status is read once to clear old link state */
1341 {MIIM_STATUS, miim_read, NULL},
1342 /* Auto-negotiate */
1343 {MIIM_STATUS, miim_read, &mii_parse_sr},
1344 /* Read the link and auto-neg status */
1345 {MIIM_DP83865_LANR, miim_read,
1346 &mii_parse_dp83865_lanr},
1347 {miim_end,}
1348 },
1349 (struct phy_cmd[]){ /* shutdown */
1350 {miim_end,}
1351 },
1352 };
1353
1354 struct phy_info *phy_info[] = {
1355 &phy_info_cis8204,
1356 &phy_info_cis8201,
1357 &phy_info_BCM5461S,
1358 &phy_info_BCM5464S,
1359 &phy_info_M88E1011S,
1360 &phy_info_M88E1111S,
1361 &phy_info_M88E1145,
1362 &phy_info_M88E1149S,
1363 &phy_info_dm9161,
1364 &phy_info_lxt971,
1365 &phy_info_VSC8244,
1366 &phy_info_dp83865,
1367 &phy_info_generic,
1368 NULL
1369 };
1370
1371 /* Grab the identifier of the device's PHY, and search through
1372 * all of the known PHYs to see if one matches. If so, return
1373 * it, if not, return NULL
1374 */
1375 struct phy_info *get_phy_info(struct eth_device *dev)
1376 {
1377 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1378 uint phy_reg, phy_ID;
1379 int i;
1380 struct phy_info *theInfo = NULL;
1381
1382 /* Grab the bits from PHYIR1, and put them in the upper half */
1383 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1384 phy_ID = (phy_reg & 0xffff) << 16;
1385
1386 /* Grab the bits from PHYIR2, and put them in the lower half */
1387 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1388 phy_ID |= (phy_reg & 0xffff);
1389
1390 /* loop through all the known PHY types, and find one that */
1391 /* matches the ID we read from the PHY. */
1392 for (i = 0; phy_info[i]; i++) {
1393 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1394 theInfo = phy_info[i];
1395 break;
1396 }
1397 }
1398
1399 if (theInfo == NULL) {
1400 printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1401 return NULL;
1402 } else {
1403 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1404 }
1405
1406 return theInfo;
1407 }
1408
1409 /* Execute the given series of commands on the given device's
1410 * PHY, running functions as necessary
1411 */
1412 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1413 {
1414 int i;
1415 uint result;
1416 volatile tsec_t *phyregs = priv->phyregs;
1417
1418 phyregs->miimcfg = MIIMCFG_RESET;
1419
1420 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1421
1422 while (phyregs->miimind & MIIMIND_BUSY) ;
1423
1424 for (i = 0; cmd->mii_reg != miim_end; i++) {
1425 if (cmd->mii_data == miim_read) {
1426 result = read_phy_reg(priv, cmd->mii_reg);
1427
1428 if (cmd->funct != NULL)
1429 (*(cmd->funct)) (result, priv);
1430
1431 } else {
1432 if (cmd->funct != NULL)
1433 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1434 else
1435 result = cmd->mii_data;
1436
1437 write_phy_reg(priv, cmd->mii_reg, result);
1438
1439 }
1440 cmd++;
1441 }
1442 }
1443
1444 /* Relocate the function pointers in the phy cmd lists */
1445 static void relocate_cmds(void)
1446 {
1447 struct phy_cmd **cmdlistptr;
1448 struct phy_cmd *cmd;
1449 int i, j, k;
1450
1451 for (i = 0; phy_info[i]; i++) {
1452 /* First thing's first: relocate the pointers to the
1453 * PHY command structures (the structs were done) */
1454 phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1455 + gd->reloc_off);
1456 phy_info[i]->name += gd->reloc_off;
1457 phy_info[i]->config =
1458 (struct phy_cmd *)((uint) phy_info[i]->config
1459 + gd->reloc_off);
1460 phy_info[i]->startup =
1461 (struct phy_cmd *)((uint) phy_info[i]->startup
1462 + gd->reloc_off);
1463 phy_info[i]->shutdown =
1464 (struct phy_cmd *)((uint) phy_info[i]->shutdown
1465 + gd->reloc_off);
1466
1467 cmdlistptr = &phy_info[i]->config;
1468 j = 0;
1469 for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1470 k = 0;
1471 for (cmd = *cmdlistptr;
1472 cmd->mii_reg != miim_end;
1473 cmd++) {
1474 /* Only relocate non-NULL pointers */
1475 if (cmd->funct)
1476 cmd->funct += gd->reloc_off;
1477
1478 k++;
1479 }
1480 j++;
1481 }
1482 }
1483
1484 relocated = 1;
1485 }
1486
1487 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1488 && !defined(BITBANGMII)
1489
1490 struct tsec_private *get_priv_for_phy(unsigned char phyaddr)
1491 {
1492 int i;
1493
1494 for (i = 0; i < MAXCONTROLLERS; i++) {
1495 if (privlist[i]->phyaddr == phyaddr)
1496 return privlist[i];
1497 }
1498
1499 return NULL;
1500 }
1501
1502 /*
1503 * Read a MII PHY register.
1504 *
1505 * Returns:
1506 * 0 on success
1507 */
1508 static int tsec_miiphy_read(char *devname, unsigned char addr,
1509 unsigned char reg, unsigned short *value)
1510 {
1511 unsigned short ret;
1512 struct tsec_private *priv = get_priv_for_phy(addr);
1513
1514 if (NULL == priv) {
1515 printf("Can't read PHY at address %d\n", addr);
1516 return -1;
1517 }
1518
1519 ret = (unsigned short)read_phy_reg(priv, reg);
1520 *value = ret;
1521
1522 return 0;
1523 }
1524
1525 /*
1526 * Write a MII PHY register.
1527 *
1528 * Returns:
1529 * 0 on success
1530 */
1531 static int tsec_miiphy_write(char *devname, unsigned char addr,
1532 unsigned char reg, unsigned short value)
1533 {
1534 struct tsec_private *priv = get_priv_for_phy(addr);
1535
1536 if (NULL == priv) {
1537 printf("Can't write PHY at address %d\n", addr);
1538 return -1;
1539 }
1540
1541 write_phy_reg(priv, reg, value);
1542
1543 return 0;
1544 }
1545
1546 #endif
1547
1548 #ifdef CONFIG_MCAST_TFTP
1549
1550 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1551
1552 /* Set the appropriate hash bit for the given addr */
1553
1554 /* The algorithm works like so:
1555 * 1) Take the Destination Address (ie the multicast address), and
1556 * do a CRC on it (little endian), and reverse the bits of the
1557 * result.
1558 * 2) Use the 8 most significant bits as a hash into a 256-entry
1559 * table. The table is controlled through 8 32-bit registers:
1560 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1561 * gaddr7. This means that the 3 most significant bits in the
1562 * hash index which gaddr register to use, and the 5 other bits
1563 * indicate which bit (assuming an IBM numbering scheme, which
1564 * for PowerPC (tm) is usually the case) in the tregister holds
1565 * the entry. */
1566 static int
1567 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1568 {
1569 struct tsec_private *priv = privlist[1];
1570 volatile tsec_t *regs = priv->regs;
1571 volatile u32 *reg_array, value;
1572 u8 result, whichbit, whichreg;
1573
1574 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1575 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1576 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1577 value = (1 << (31-whichbit));
1578
1579 reg_array = &(regs->hash.gaddr0);
1580
1581 if (set) {
1582 reg_array[whichreg] |= value;
1583 } else {
1584 reg_array[whichreg] &= ~value;
1585 }
1586 return 0;
1587 }
1588 #endif /* Multicast TFTP ? */
1589
1590 #endif /* CONFIG_TSEC_ENET */