]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
rename CFG_ macros to CONFIG_SYS
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20
21 #include "miiphy.h"
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 #define TX_BUF_CNT 2
26
27 static uint rxIdx; /* index of the current RX buffer */
28 static uint txIdx; /* index of the current TX buffer */
29
30 typedef volatile struct rtxbd {
31 txbd8_t txbd[TX_BUF_CNT];
32 rxbd8_t rxbd[PKTBUFSRX];
33 } RTXBD;
34
35 #define MAXCONTROLLERS (8)
36
37 static int relocated = 0;
38
39 static struct tsec_private *privlist[MAXCONTROLLERS];
40 static int num_tsecs = 0;
41
42 #ifdef __GNUC__
43 static RTXBD rtx __attribute__ ((aligned(8)));
44 #else
45 #error "rtx must be 64-bit aligned"
46 #endif
47
48 static int tsec_send(struct eth_device *dev,
49 volatile void *packet, int length);
50 static int tsec_recv(struct eth_device *dev);
51 static int tsec_init(struct eth_device *dev, bd_t * bd);
52 static void tsec_halt(struct eth_device *dev);
53 static void init_registers(volatile tsec_t * regs);
54 static void startup_tsec(struct eth_device *dev);
55 static int init_phy(struct eth_device *dev);
56 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
57 uint read_phy_reg(struct tsec_private *priv, uint regnum);
58 struct phy_info *get_phy_info(struct eth_device *dev);
59 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
60 static void adjust_link(struct eth_device *dev);
61 static void relocate_cmds(void);
62 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
63 && !defined(BITBANGMII)
64 static int tsec_miiphy_write(char *devname, unsigned char addr,
65 unsigned char reg, unsigned short value);
66 static int tsec_miiphy_read(char *devname, unsigned char addr,
67 unsigned char reg, unsigned short *value);
68 #endif
69 #ifdef CONFIG_MCAST_TFTP
70 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
71 #endif
72
73 /* Default initializations for TSEC controllers. */
74
75 static struct tsec_info_struct tsec_info[] = {
76 #ifdef CONFIG_TSEC1
77 STD_TSEC_INFO(1), /* TSEC1 */
78 #endif
79 #ifdef CONFIG_TSEC2
80 STD_TSEC_INFO(2), /* TSEC2 */
81 #endif
82 #ifdef CONFIG_MPC85XX_FEC
83 {
84 .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
85 .miiregs = (tsec_t *)(TSEC_BASE_ADDR),
86 .devname = CONFIG_MPC85XX_FEC_NAME,
87 .phyaddr = FEC_PHY_ADDR,
88 .flags = FEC_FLAGS
89 }, /* FEC */
90 #endif
91 #ifdef CONFIG_TSEC3
92 STD_TSEC_INFO(3), /* TSEC3 */
93 #endif
94 #ifdef CONFIG_TSEC4
95 STD_TSEC_INFO(4), /* TSEC4 */
96 #endif
97 };
98
99 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
100 {
101 int i;
102
103 for (i = 0; i < num; i++)
104 tsec_initialize(bis, &tsecs[i]);
105
106 return 0;
107 }
108
109 int tsec_standard_init(bd_t *bis)
110 {
111 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
112 }
113
114 /* Initialize device structure. Returns success if PHY
115 * initialization succeeded (i.e. if it recognizes the PHY)
116 */
117 int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info)
118 {
119 struct eth_device *dev;
120 int i;
121 struct tsec_private *priv;
122
123 dev = (struct eth_device *)malloc(sizeof *dev);
124
125 if (NULL == dev)
126 return 0;
127
128 memset(dev, 0, sizeof *dev);
129
130 priv = (struct tsec_private *)malloc(sizeof(*priv));
131
132 if (NULL == priv)
133 return 0;
134
135 privlist[num_tsecs++] = priv;
136 priv->regs = tsec_info->regs;
137 priv->phyregs = tsec_info->miiregs;
138
139 priv->phyaddr = tsec_info->phyaddr;
140 priv->flags = tsec_info->flags;
141
142 sprintf(dev->name, tsec_info->devname);
143 dev->iobase = 0;
144 dev->priv = priv;
145 dev->init = tsec_init;
146 dev->halt = tsec_halt;
147 dev->send = tsec_send;
148 dev->recv = tsec_recv;
149 #ifdef CONFIG_MCAST_TFTP
150 dev->mcast = tsec_mcast_addr;
151 #endif
152
153 /* Tell u-boot to get the addr from the env */
154 for (i = 0; i < 6; i++)
155 dev->enetaddr[i] = 0;
156
157 eth_register(dev);
158
159 /* Reset the MAC */
160 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
161 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
162
163 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
164 && !defined(BITBANGMII)
165 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
166 #endif
167
168 /* Try to initialize PHY here, and return */
169 return init_phy(dev);
170 }
171
172 /* Initializes data structures and registers for the controller,
173 * and brings the interface up. Returns the link status, meaning
174 * that it returns success if the link is up, failure otherwise.
175 * This allows u-boot to find the first active controller.
176 */
177 int tsec_init(struct eth_device *dev, bd_t * bd)
178 {
179 uint tempval;
180 char tmpbuf[MAC_ADDR_LEN];
181 int i;
182 struct tsec_private *priv = (struct tsec_private *)dev->priv;
183 volatile tsec_t *regs = priv->regs;
184
185 /* Make sure the controller is stopped */
186 tsec_halt(dev);
187
188 /* Init MACCFG2. Defaults to GMII */
189 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
190
191 /* Init ECNTRL */
192 regs->ecntrl = ECNTRL_INIT_SETTINGS;
193
194 /* Copy the station address into the address registers.
195 * Backwards, because little endian MACS are dumb */
196 for (i = 0; i < MAC_ADDR_LEN; i++) {
197 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
198 }
199 regs->macstnaddr1 = *((uint *) (tmpbuf));
200
201 tempval = *((uint *) (tmpbuf + 4));
202
203 regs->macstnaddr2 = tempval;
204
205 /* reset the indices to zero */
206 rxIdx = 0;
207 txIdx = 0;
208
209 /* Clear out (for the most part) the other registers */
210 init_registers(regs);
211
212 /* Ready the device for tx/rx */
213 startup_tsec(dev);
214
215 /* If there's no link, fail */
216 return (priv->link ? 0 : -1);
217 }
218
219 /* Writes the given phy's reg with value, using the specified MDIO regs */
220 static void tsec_local_mdio_write(volatile tsec_t *phyregs, uint addr,
221 uint reg, uint value)
222 {
223 int timeout = 1000000;
224
225 phyregs->miimadd = (addr << 8) | reg;
226 phyregs->miimcon = value;
227 asm("sync");
228
229 timeout = 1000000;
230 while ((phyregs->miimind & MIIMIND_BUSY) && timeout--) ;
231 }
232
233
234 /* Provide the default behavior of writing the PHY of this ethernet device */
235 #define write_phy_reg(priv, regnum, value) tsec_local_mdio_write(priv->phyregs,priv->phyaddr,regnum,value)
236
237 /* Reads register regnum on the device's PHY through the
238 * specified registers. It lowers and raises the read
239 * command, and waits for the data to become valid (miimind
240 * notvalid bit cleared), and the bus to cease activity (miimind
241 * busy bit cleared), and then returns the value
242 */
243 uint tsec_local_mdio_read(volatile tsec_t *phyregs, uint phyid, uint regnum)
244 {
245 uint value;
246
247 /* Put the address of the phy, and the register
248 * number into MIIMADD */
249 phyregs->miimadd = (phyid << 8) | regnum;
250
251 /* Clear the command register, and wait */
252 phyregs->miimcom = 0;
253 asm("sync");
254
255 /* Initiate a read command, and wait */
256 phyregs->miimcom = MIIM_READ_COMMAND;
257 asm("sync");
258
259 /* Wait for the the indication that the read is done */
260 while ((phyregs->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
261
262 /* Grab the value read from the PHY */
263 value = phyregs->miimstat;
264
265 return value;
266 }
267
268 /* #define to provide old read_phy_reg functionality without duplicating code */
269 #define read_phy_reg(priv,regnum) tsec_local_mdio_read(priv->phyregs,priv->phyaddr,regnum)
270
271 #define TBIANA_SETTINGS ( \
272 TBIANA_ASYMMETRIC_PAUSE \
273 | TBIANA_SYMMETRIC_PAUSE \
274 | TBIANA_FULL_DUPLEX \
275 )
276
277 #define TBICR_SETTINGS ( \
278 TBICR_PHY_RESET \
279 | TBICR_ANEG_ENABLE \
280 | TBICR_FULL_DUPLEX \
281 | TBICR_SPEED1_SET \
282 )
283 /* Configure the TBI for SGMII operation */
284 static void tsec_configure_serdes(struct tsec_private *priv)
285 {
286 /* Access TBI PHY registers at given TSEC register offset as opposed to the
287 * register offset used for external PHY accesses */
288 tsec_local_mdio_write(priv->regs, priv->regs->tbipa, TBI_ANA,
289 TBIANA_SETTINGS);
290 tsec_local_mdio_write(priv->regs, priv->regs->tbipa, TBI_TBICON,
291 TBICON_CLK_SELECT);
292 tsec_local_mdio_write(priv->regs, priv->regs->tbipa, TBI_CR,
293 TBICR_SETTINGS);
294 }
295
296 /* Discover which PHY is attached to the device, and configure it
297 * properly. If the PHY is not recognized, then return 0
298 * (failure). Otherwise, return 1
299 */
300 static int init_phy(struct eth_device *dev)
301 {
302 struct tsec_private *priv = (struct tsec_private *)dev->priv;
303 struct phy_info *curphy;
304 volatile tsec_t *phyregs = priv->phyregs;
305 volatile tsec_t *regs = priv->regs;
306
307 /* Assign a Physical address to the TBI */
308 regs->tbipa = CONFIG_SYS_TBIPA_VALUE;
309 phyregs->tbipa = CONFIG_SYS_TBIPA_VALUE;
310 asm("sync");
311
312 /* Reset MII (due to new addresses) */
313 priv->phyregs->miimcfg = MIIMCFG_RESET;
314 asm("sync");
315 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
316 asm("sync");
317 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
318
319 if (0 == relocated)
320 relocate_cmds();
321
322 /* Get the cmd structure corresponding to the attached
323 * PHY */
324 curphy = get_phy_info(dev);
325
326 if (curphy == NULL) {
327 priv->phyinfo = NULL;
328 printf("%s: No PHY found\n", dev->name);
329
330 return 0;
331 }
332
333 if (regs->ecntrl & ECNTRL_SGMII_MODE)
334 tsec_configure_serdes(priv);
335
336 priv->phyinfo = curphy;
337
338 phy_run_commands(priv, priv->phyinfo->config);
339
340 return 1;
341 }
342
343 /*
344 * Returns which value to write to the control register.
345 * For 10/100, the value is slightly different
346 */
347 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
348 {
349 if (priv->flags & TSEC_GIGABIT)
350 return MIIM_CONTROL_INIT;
351 else
352 return MIIM_CR_INIT;
353 }
354
355 /* Parse the status register for link, and then do
356 * auto-negotiation
357 */
358 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
359 {
360 /*
361 * Wait if the link is up, and autonegotiation is in progress
362 * (ie - we're capable and it's not done)
363 */
364 mii_reg = read_phy_reg(priv, MIIM_STATUS);
365 if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
366 && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
367 int i = 0;
368
369 puts("Waiting for PHY auto negotiation to complete");
370 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
371 /*
372 * Timeout reached ?
373 */
374 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
375 puts(" TIMEOUT !\n");
376 priv->link = 0;
377 return 0;
378 }
379
380 if ((i++ % 1000) == 0) {
381 putc('.');
382 }
383 udelay(1000); /* 1 ms */
384 mii_reg = read_phy_reg(priv, MIIM_STATUS);
385 }
386 puts(" done\n");
387 priv->link = 1;
388 udelay(500000); /* another 500 ms (results in faster booting) */
389 } else {
390 if (mii_reg & MIIM_STATUS_LINK)
391 priv->link = 1;
392 else
393 priv->link = 0;
394 }
395
396 return 0;
397 }
398
399 /* Generic function which updates the speed and duplex. If
400 * autonegotiation is enabled, it uses the AND of the link
401 * partner's advertised capabilities and our advertised
402 * capabilities. If autonegotiation is disabled, we use the
403 * appropriate bits in the control register.
404 *
405 * Stolen from Linux's mii.c and phy_device.c
406 */
407 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
408 {
409 /* We're using autonegotiation */
410 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
411 uint lpa = 0;
412 uint gblpa = 0;
413
414 /* Check for gigabit capability */
415 if (mii_reg & PHY_BMSR_EXT) {
416 /* We want a list of states supported by
417 * both PHYs in the link
418 */
419 gblpa = read_phy_reg(priv, PHY_1000BTSR);
420 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
421 }
422
423 /* Set the baseline so we only have to set them
424 * if they're different
425 */
426 priv->speed = 10;
427 priv->duplexity = 0;
428
429 /* Check the gigabit fields */
430 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
431 priv->speed = 1000;
432
433 if (gblpa & PHY_1000BTSR_1000FD)
434 priv->duplexity = 1;
435
436 /* We're done! */
437 return 0;
438 }
439
440 lpa = read_phy_reg(priv, PHY_ANAR);
441 lpa &= read_phy_reg(priv, PHY_ANLPAR);
442
443 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
444 priv->speed = 100;
445
446 if (lpa & PHY_ANLPAR_TXFD)
447 priv->duplexity = 1;
448
449 } else if (lpa & PHY_ANLPAR_10FD)
450 priv->duplexity = 1;
451 } else {
452 uint bmcr = read_phy_reg(priv, PHY_BMCR);
453
454 priv->speed = 10;
455 priv->duplexity = 0;
456
457 if (bmcr & PHY_BMCR_DPLX)
458 priv->duplexity = 1;
459
460 if (bmcr & PHY_BMCR_1000_MBPS)
461 priv->speed = 1000;
462 else if (bmcr & PHY_BMCR_100_MBPS)
463 priv->speed = 100;
464 }
465
466 return 0;
467 }
468
469 /*
470 * Parse the BCM54xx status register for speed and duplex information.
471 * The linux sungem_phy has this information, but in a table format.
472 */
473 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
474 {
475
476 switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
477
478 case 1:
479 printf("Enet starting in 10BT/HD\n");
480 priv->duplexity = 0;
481 priv->speed = 10;
482 break;
483
484 case 2:
485 printf("Enet starting in 10BT/FD\n");
486 priv->duplexity = 1;
487 priv->speed = 10;
488 break;
489
490 case 3:
491 printf("Enet starting in 100BT/HD\n");
492 priv->duplexity = 0;
493 priv->speed = 100;
494 break;
495
496 case 5:
497 printf("Enet starting in 100BT/FD\n");
498 priv->duplexity = 1;
499 priv->speed = 100;
500 break;
501
502 case 6:
503 printf("Enet starting in 1000BT/HD\n");
504 priv->duplexity = 0;
505 priv->speed = 1000;
506 break;
507
508 case 7:
509 printf("Enet starting in 1000BT/FD\n");
510 priv->duplexity = 1;
511 priv->speed = 1000;
512 break;
513
514 default:
515 printf("Auto-neg error, defaulting to 10BT/HD\n");
516 priv->duplexity = 0;
517 priv->speed = 10;
518 break;
519 }
520
521 return 0;
522
523 }
524 /* Parse the 88E1011's status register for speed and duplex
525 * information
526 */
527 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
528 {
529 uint speed;
530
531 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
532
533 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
534 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
535 int i = 0;
536
537 puts("Waiting for PHY realtime link");
538 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
539 /* Timeout reached ? */
540 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
541 puts(" TIMEOUT !\n");
542 priv->link = 0;
543 break;
544 }
545
546 if ((i++ % 1000) == 0) {
547 putc('.');
548 }
549 udelay(1000); /* 1 ms */
550 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
551 }
552 puts(" done\n");
553 udelay(500000); /* another 500 ms (results in faster booting) */
554 } else {
555 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
556 priv->link = 1;
557 else
558 priv->link = 0;
559 }
560
561 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
562 priv->duplexity = 1;
563 else
564 priv->duplexity = 0;
565
566 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
567
568 switch (speed) {
569 case MIIM_88E1011_PHYSTAT_GBIT:
570 priv->speed = 1000;
571 break;
572 case MIIM_88E1011_PHYSTAT_100:
573 priv->speed = 100;
574 break;
575 default:
576 priv->speed = 10;
577 }
578
579 return 0;
580 }
581
582 /* Parse the RTL8211B's status register for speed and duplex
583 * information
584 */
585 uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
586 {
587 uint speed;
588
589 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
590 if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
591 int i = 0;
592
593 /* in case of timeout ->link is cleared */
594 priv->link = 1;
595 puts("Waiting for PHY realtime link");
596 while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
597 /* Timeout reached ? */
598 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
599 puts(" TIMEOUT !\n");
600 priv->link = 0;
601 break;
602 }
603
604 if ((i++ % 1000) == 0) {
605 putc('.');
606 }
607 udelay(1000); /* 1 ms */
608 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
609 }
610 puts(" done\n");
611 udelay(500000); /* another 500 ms (results in faster booting) */
612 } else {
613 if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
614 priv->link = 1;
615 else
616 priv->link = 0;
617 }
618
619 if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
620 priv->duplexity = 1;
621 else
622 priv->duplexity = 0;
623
624 speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
625
626 switch (speed) {
627 case MIIM_RTL8211B_PHYSTAT_GBIT:
628 priv->speed = 1000;
629 break;
630 case MIIM_RTL8211B_PHYSTAT_100:
631 priv->speed = 100;
632 break;
633 default:
634 priv->speed = 10;
635 }
636
637 return 0;
638 }
639
640 /* Parse the cis8201's status register for speed and duplex
641 * information
642 */
643 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
644 {
645 uint speed;
646
647 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
648 priv->duplexity = 1;
649 else
650 priv->duplexity = 0;
651
652 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
653 switch (speed) {
654 case MIIM_CIS8201_AUXCONSTAT_GBIT:
655 priv->speed = 1000;
656 break;
657 case MIIM_CIS8201_AUXCONSTAT_100:
658 priv->speed = 100;
659 break;
660 default:
661 priv->speed = 10;
662 break;
663 }
664
665 return 0;
666 }
667
668 /* Parse the vsc8244's status register for speed and duplex
669 * information
670 */
671 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
672 {
673 uint speed;
674
675 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
676 priv->duplexity = 1;
677 else
678 priv->duplexity = 0;
679
680 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
681 switch (speed) {
682 case MIIM_VSC8244_AUXCONSTAT_GBIT:
683 priv->speed = 1000;
684 break;
685 case MIIM_VSC8244_AUXCONSTAT_100:
686 priv->speed = 100;
687 break;
688 default:
689 priv->speed = 10;
690 break;
691 }
692
693 return 0;
694 }
695
696 /* Parse the DM9161's status register for speed and duplex
697 * information
698 */
699 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
700 {
701 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
702 priv->speed = 100;
703 else
704 priv->speed = 10;
705
706 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
707 priv->duplexity = 1;
708 else
709 priv->duplexity = 0;
710
711 return 0;
712 }
713
714 /*
715 * Hack to write all 4 PHYs with the LED values
716 */
717 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
718 {
719 uint phyid;
720 volatile tsec_t *regbase = priv->phyregs;
721 int timeout = 1000000;
722
723 for (phyid = 0; phyid < 4; phyid++) {
724 regbase->miimadd = (phyid << 8) | mii_reg;
725 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
726 asm("sync");
727
728 timeout = 1000000;
729 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
730 }
731
732 return MIIM_CIS8204_SLEDCON_INIT;
733 }
734
735 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
736 {
737 if (priv->flags & TSEC_REDUCED)
738 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
739 else
740 return MIIM_CIS8204_EPHYCON_INIT;
741 }
742
743 uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
744 {
745 uint mii_data = read_phy_reg(priv, mii_reg);
746
747 if (priv->flags & TSEC_REDUCED)
748 mii_data = (mii_data & 0xfff0) | 0x000b;
749 return mii_data;
750 }
751
752 /* Initialized required registers to appropriate values, zeroing
753 * those we don't care about (unless zero is bad, in which case,
754 * choose a more appropriate value)
755 */
756 static void init_registers(volatile tsec_t * regs)
757 {
758 /* Clear IEVENT */
759 regs->ievent = IEVENT_INIT_CLEAR;
760
761 regs->imask = IMASK_INIT_CLEAR;
762
763 regs->hash.iaddr0 = 0;
764 regs->hash.iaddr1 = 0;
765 regs->hash.iaddr2 = 0;
766 regs->hash.iaddr3 = 0;
767 regs->hash.iaddr4 = 0;
768 regs->hash.iaddr5 = 0;
769 regs->hash.iaddr6 = 0;
770 regs->hash.iaddr7 = 0;
771
772 regs->hash.gaddr0 = 0;
773 regs->hash.gaddr1 = 0;
774 regs->hash.gaddr2 = 0;
775 regs->hash.gaddr3 = 0;
776 regs->hash.gaddr4 = 0;
777 regs->hash.gaddr5 = 0;
778 regs->hash.gaddr6 = 0;
779 regs->hash.gaddr7 = 0;
780
781 regs->rctrl = 0x00000000;
782
783 /* Init RMON mib registers */
784 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
785
786 regs->rmon.cam1 = 0xffffffff;
787 regs->rmon.cam2 = 0xffffffff;
788
789 regs->mrblr = MRBLR_INIT_SETTINGS;
790
791 regs->minflr = MINFLR_INIT_SETTINGS;
792
793 regs->attr = ATTR_INIT_SETTINGS;
794 regs->attreli = ATTRELI_INIT_SETTINGS;
795
796 }
797
798 /* Configure maccfg2 based on negotiated speed and duplex
799 * reported by PHY handling code
800 */
801 static void adjust_link(struct eth_device *dev)
802 {
803 struct tsec_private *priv = (struct tsec_private *)dev->priv;
804 volatile tsec_t *regs = priv->regs;
805
806 if (priv->link) {
807 if (priv->duplexity != 0)
808 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
809 else
810 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
811
812 switch (priv->speed) {
813 case 1000:
814 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
815 | MACCFG2_GMII);
816 break;
817 case 100:
818 case 10:
819 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
820 | MACCFG2_MII);
821
822 /* Set R100 bit in all modes although
823 * it is only used in RGMII mode
824 */
825 if (priv->speed == 100)
826 regs->ecntrl |= ECNTRL_R100;
827 else
828 regs->ecntrl &= ~(ECNTRL_R100);
829 break;
830 default:
831 printf("%s: Speed was bad\n", dev->name);
832 break;
833 }
834
835 printf("Speed: %d, %s duplex\n", priv->speed,
836 (priv->duplexity) ? "full" : "half");
837
838 } else {
839 printf("%s: No link.\n", dev->name);
840 }
841 }
842
843 /* Set up the buffers and their descriptors, and bring up the
844 * interface
845 */
846 static void startup_tsec(struct eth_device *dev)
847 {
848 int i;
849 struct tsec_private *priv = (struct tsec_private *)dev->priv;
850 volatile tsec_t *regs = priv->regs;
851
852 /* Point to the buffer descriptors */
853 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
854 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
855
856 /* Initialize the Rx Buffer descriptors */
857 for (i = 0; i < PKTBUFSRX; i++) {
858 rtx.rxbd[i].status = RXBD_EMPTY;
859 rtx.rxbd[i].length = 0;
860 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
861 }
862 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
863
864 /* Initialize the TX Buffer Descriptors */
865 for (i = 0; i < TX_BUF_CNT; i++) {
866 rtx.txbd[i].status = 0;
867 rtx.txbd[i].length = 0;
868 rtx.txbd[i].bufPtr = 0;
869 }
870 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
871
872 /* Start up the PHY */
873 if(priv->phyinfo)
874 phy_run_commands(priv, priv->phyinfo->startup);
875
876 adjust_link(dev);
877
878 /* Enable Transmit and Receive */
879 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
880
881 /* Tell the DMA it is clear to go */
882 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
883 regs->tstat = TSTAT_CLEAR_THALT;
884 regs->rstat = RSTAT_CLEAR_RHALT;
885 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
886 }
887
888 /* This returns the status bits of the device. The return value
889 * is never checked, and this is what the 8260 driver did, so we
890 * do the same. Presumably, this would be zero if there were no
891 * errors
892 */
893 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
894 {
895 int i;
896 int result = 0;
897 struct tsec_private *priv = (struct tsec_private *)dev->priv;
898 volatile tsec_t *regs = priv->regs;
899
900 /* Find an empty buffer descriptor */
901 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
902 if (i >= TOUT_LOOP) {
903 debug("%s: tsec: tx buffers full\n", dev->name);
904 return result;
905 }
906 }
907
908 rtx.txbd[txIdx].bufPtr = (uint) packet;
909 rtx.txbd[txIdx].length = length;
910 rtx.txbd[txIdx].status |=
911 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
912
913 /* Tell the DMA to go */
914 regs->tstat = TSTAT_CLEAR_THALT;
915
916 /* Wait for buffer to be transmitted */
917 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
918 if (i >= TOUT_LOOP) {
919 debug("%s: tsec: tx error\n", dev->name);
920 return result;
921 }
922 }
923
924 txIdx = (txIdx + 1) % TX_BUF_CNT;
925 result = rtx.txbd[txIdx].status & TXBD_STATS;
926
927 return result;
928 }
929
930 static int tsec_recv(struct eth_device *dev)
931 {
932 int length;
933 struct tsec_private *priv = (struct tsec_private *)dev->priv;
934 volatile tsec_t *regs = priv->regs;
935
936 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
937
938 length = rtx.rxbd[rxIdx].length;
939
940 /* Send the packet up if there were no errors */
941 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
942 NetReceive(NetRxPackets[rxIdx], length - 4);
943 } else {
944 printf("Got error %x\n",
945 (rtx.rxbd[rxIdx].status & RXBD_STATS));
946 }
947
948 rtx.rxbd[rxIdx].length = 0;
949
950 /* Set the wrap bit if this is the last element in the list */
951 rtx.rxbd[rxIdx].status =
952 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
953
954 rxIdx = (rxIdx + 1) % PKTBUFSRX;
955 }
956
957 if (regs->ievent & IEVENT_BSY) {
958 regs->ievent = IEVENT_BSY;
959 regs->rstat = RSTAT_CLEAR_RHALT;
960 }
961
962 return -1;
963
964 }
965
966 /* Stop the interface */
967 static void tsec_halt(struct eth_device *dev)
968 {
969 struct tsec_private *priv = (struct tsec_private *)dev->priv;
970 volatile tsec_t *regs = priv->regs;
971
972 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
973 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
974
975 while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
976
977 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
978
979 /* Shut down the PHY, as needed */
980 if(priv->phyinfo)
981 phy_run_commands(priv, priv->phyinfo->shutdown);
982 }
983
984 struct phy_info phy_info_M88E1149S = {
985 0x1410ca,
986 "Marvell 88E1149S",
987 4,
988 (struct phy_cmd[]){ /* config */
989 /* Reset and configure the PHY */
990 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
991 {0x1d, 0x1f, NULL},
992 {0x1e, 0x200c, NULL},
993 {0x1d, 0x5, NULL},
994 {0x1e, 0x0, NULL},
995 {0x1e, 0x100, NULL},
996 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
997 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
998 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
999 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1000 {miim_end,}
1001 },
1002 (struct phy_cmd[]){ /* startup */
1003 /* Status is read once to clear old link state */
1004 {MIIM_STATUS, miim_read, NULL},
1005 /* Auto-negotiate */
1006 {MIIM_STATUS, miim_read, &mii_parse_sr},
1007 /* Read the status */
1008 {MIIM_88E1011_PHY_STATUS, miim_read,
1009 &mii_parse_88E1011_psr},
1010 {miim_end,}
1011 },
1012 (struct phy_cmd[]){ /* shutdown */
1013 {miim_end,}
1014 },
1015 };
1016
1017 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1018 struct phy_info phy_info_BCM5461S = {
1019 0x02060c1, /* 5461 ID */
1020 "Broadcom BCM5461S",
1021 0, /* not clear to me what minor revisions we can shift away */
1022 (struct phy_cmd[]) { /* config */
1023 /* Reset and configure the PHY */
1024 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1025 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1026 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1027 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1028 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1029 {miim_end,}
1030 },
1031 (struct phy_cmd[]) { /* startup */
1032 /* Status is read once to clear old link state */
1033 {MIIM_STATUS, miim_read, NULL},
1034 /* Auto-negotiate */
1035 {MIIM_STATUS, miim_read, &mii_parse_sr},
1036 /* Read the status */
1037 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1038 {miim_end,}
1039 },
1040 (struct phy_cmd[]) { /* shutdown */
1041 {miim_end,}
1042 },
1043 };
1044
1045 struct phy_info phy_info_BCM5464S = {
1046 0x02060b1, /* 5464 ID */
1047 "Broadcom BCM5464S",
1048 0, /* not clear to me what minor revisions we can shift away */
1049 (struct phy_cmd[]) { /* config */
1050 /* Reset and configure the PHY */
1051 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1052 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1053 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1054 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1055 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1056 {miim_end,}
1057 },
1058 (struct phy_cmd[]) { /* startup */
1059 /* Status is read once to clear old link state */
1060 {MIIM_STATUS, miim_read, NULL},
1061 /* Auto-negotiate */
1062 {MIIM_STATUS, miim_read, &mii_parse_sr},
1063 /* Read the status */
1064 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1065 {miim_end,}
1066 },
1067 (struct phy_cmd[]) { /* shutdown */
1068 {miim_end,}
1069 },
1070 };
1071
1072 struct phy_info phy_info_M88E1011S = {
1073 0x01410c6,
1074 "Marvell 88E1011S",
1075 4,
1076 (struct phy_cmd[]){ /* config */
1077 /* Reset and configure the PHY */
1078 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1079 {0x1d, 0x1f, NULL},
1080 {0x1e, 0x200c, NULL},
1081 {0x1d, 0x5, NULL},
1082 {0x1e, 0x0, NULL},
1083 {0x1e, 0x100, NULL},
1084 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1085 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1086 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1087 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1088 {miim_end,}
1089 },
1090 (struct phy_cmd[]){ /* startup */
1091 /* Status is read once to clear old link state */
1092 {MIIM_STATUS, miim_read, NULL},
1093 /* Auto-negotiate */
1094 {MIIM_STATUS, miim_read, &mii_parse_sr},
1095 /* Read the status */
1096 {MIIM_88E1011_PHY_STATUS, miim_read,
1097 &mii_parse_88E1011_psr},
1098 {miim_end,}
1099 },
1100 (struct phy_cmd[]){ /* shutdown */
1101 {miim_end,}
1102 },
1103 };
1104
1105 struct phy_info phy_info_M88E1111S = {
1106 0x01410cc,
1107 "Marvell 88E1111S",
1108 4,
1109 (struct phy_cmd[]){ /* config */
1110 /* Reset and configure the PHY */
1111 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1112 {0x1b, 0x848f, &mii_m88e1111s_setmode},
1113 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1114 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1115 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1116 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1117 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1118 {miim_end,}
1119 },
1120 (struct phy_cmd[]){ /* startup */
1121 /* Status is read once to clear old link state */
1122 {MIIM_STATUS, miim_read, NULL},
1123 /* Auto-negotiate */
1124 {MIIM_STATUS, miim_read, &mii_parse_sr},
1125 /* Read the status */
1126 {MIIM_88E1011_PHY_STATUS, miim_read,
1127 &mii_parse_88E1011_psr},
1128 {miim_end,}
1129 },
1130 (struct phy_cmd[]){ /* shutdown */
1131 {miim_end,}
1132 },
1133 };
1134
1135 struct phy_info phy_info_M88E1118 = {
1136 0x01410e1,
1137 "Marvell 88E1118",
1138 4,
1139 (struct phy_cmd[]){ /* config */
1140 /* Reset and configure the PHY */
1141 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1142 {0x16, 0x0002, NULL}, /* Change Page Number */
1143 {0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1144 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1145 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1146 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1147 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1148 {miim_end,}
1149 },
1150 (struct phy_cmd[]){ /* startup */
1151 {0x16, 0x0000, NULL}, /* Change Page Number */
1152 /* Status is read once to clear old link state */
1153 {MIIM_STATUS, miim_read, NULL},
1154 /* Auto-negotiate */
1155 /* Read the status */
1156 {MIIM_88E1011_PHY_STATUS, miim_read,
1157 &mii_parse_88E1011_psr},
1158 {miim_end,}
1159 },
1160 (struct phy_cmd[]){ /* shutdown */
1161 {miim_end,}
1162 },
1163 };
1164
1165 /*
1166 * Since to access LED register we need do switch the page, we
1167 * do LED configuring in the miim_read-like function as follows
1168 */
1169 uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv)
1170 {
1171 uint pg;
1172
1173 /* Switch the page to access the led register */
1174 pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE);
1175 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE);
1176
1177 /* Configure leds */
1178 write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL,
1179 MIIM_88E1121_PHY_LED_DEF);
1180
1181 /* Restore the page pointer */
1182 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg);
1183 return 0;
1184 }
1185
1186 struct phy_info phy_info_M88E1121R = {
1187 0x01410cb,
1188 "Marvell 88E1121R",
1189 4,
1190 (struct phy_cmd[]){ /* config */
1191 /* Reset and configure the PHY */
1192 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1193 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1194 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1195 /* Configure leds */
1196 {MIIM_88E1121_PHY_LED_CTRL, miim_read,
1197 &mii_88E1121_set_led},
1198 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1199 {miim_end,}
1200 },
1201 (struct phy_cmd[]){ /* startup */
1202 /* Status is read once to clear old link state */
1203 {MIIM_STATUS, miim_read, NULL},
1204 {MIIM_STATUS, miim_read, &mii_parse_sr},
1205 {MIIM_STATUS, miim_read, &mii_parse_link},
1206 {miim_end,}
1207 },
1208 (struct phy_cmd[]){ /* shutdown */
1209 {miim_end,}
1210 },
1211 };
1212
1213 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1214 {
1215 uint mii_data = read_phy_reg(priv, mii_reg);
1216
1217 /* Setting MIIM_88E1145_PHY_EXT_CR */
1218 if (priv->flags & TSEC_REDUCED)
1219 return mii_data |
1220 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1221 else
1222 return mii_data;
1223 }
1224
1225 static struct phy_info phy_info_M88E1145 = {
1226 0x01410cd,
1227 "Marvell 88E1145",
1228 4,
1229 (struct phy_cmd[]){ /* config */
1230 /* Reset the PHY */
1231 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1232
1233 /* Errata E0, E1 */
1234 {29, 0x001b, NULL},
1235 {30, 0x418f, NULL},
1236 {29, 0x0016, NULL},
1237 {30, 0xa2da, NULL},
1238
1239 /* Configure the PHY */
1240 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1241 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1242 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1243 NULL},
1244 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1245 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1246 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1247 {miim_end,}
1248 },
1249 (struct phy_cmd[]){ /* startup */
1250 /* Status is read once to clear old link state */
1251 {MIIM_STATUS, miim_read, NULL},
1252 /* Auto-negotiate */
1253 {MIIM_STATUS, miim_read, &mii_parse_sr},
1254 {MIIM_88E1111_PHY_LED_CONTROL,
1255 MIIM_88E1111_PHY_LED_DIRECT, NULL},
1256 /* Read the Status */
1257 {MIIM_88E1011_PHY_STATUS, miim_read,
1258 &mii_parse_88E1011_psr},
1259 {miim_end,}
1260 },
1261 (struct phy_cmd[]){ /* shutdown */
1262 {miim_end,}
1263 },
1264 };
1265
1266 struct phy_info phy_info_cis8204 = {
1267 0x3f11,
1268 "Cicada Cis8204",
1269 6,
1270 (struct phy_cmd[]){ /* config */
1271 /* Override PHY config settings */
1272 {MIIM_CIS8201_AUX_CONSTAT,
1273 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1274 /* Configure some basic stuff */
1275 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1276 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1277 &mii_cis8204_fixled},
1278 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1279 &mii_cis8204_setmode},
1280 {miim_end,}
1281 },
1282 (struct phy_cmd[]){ /* startup */
1283 /* Read the Status (2x to make sure link is right) */
1284 {MIIM_STATUS, miim_read, NULL},
1285 /* Auto-negotiate */
1286 {MIIM_STATUS, miim_read, &mii_parse_sr},
1287 /* Read the status */
1288 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1289 &mii_parse_cis8201},
1290 {miim_end,}
1291 },
1292 (struct phy_cmd[]){ /* shutdown */
1293 {miim_end,}
1294 },
1295 };
1296
1297 /* Cicada 8201 */
1298 struct phy_info phy_info_cis8201 = {
1299 0xfc41,
1300 "CIS8201",
1301 4,
1302 (struct phy_cmd[]){ /* config */
1303 /* Override PHY config settings */
1304 {MIIM_CIS8201_AUX_CONSTAT,
1305 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1306 /* Set up the interface mode */
1307 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1308 NULL},
1309 /* Configure some basic stuff */
1310 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1311 {miim_end,}
1312 },
1313 (struct phy_cmd[]){ /* startup */
1314 /* Read the Status (2x to make sure link is right) */
1315 {MIIM_STATUS, miim_read, NULL},
1316 /* Auto-negotiate */
1317 {MIIM_STATUS, miim_read, &mii_parse_sr},
1318 /* Read the status */
1319 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1320 &mii_parse_cis8201},
1321 {miim_end,}
1322 },
1323 (struct phy_cmd[]){ /* shutdown */
1324 {miim_end,}
1325 },
1326 };
1327 struct phy_info phy_info_VSC8244 = {
1328 0x3f1b,
1329 "Vitesse VSC8244",
1330 6,
1331 (struct phy_cmd[]){ /* config */
1332 /* Override PHY config settings */
1333 /* Configure some basic stuff */
1334 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1335 {miim_end,}
1336 },
1337 (struct phy_cmd[]){ /* startup */
1338 /* Read the Status (2x to make sure link is right) */
1339 {MIIM_STATUS, miim_read, NULL},
1340 /* Auto-negotiate */
1341 {MIIM_STATUS, miim_read, &mii_parse_sr},
1342 /* Read the status */
1343 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1344 &mii_parse_vsc8244},
1345 {miim_end,}
1346 },
1347 (struct phy_cmd[]){ /* shutdown */
1348 {miim_end,}
1349 },
1350 };
1351
1352 struct phy_info phy_info_VSC8601 = {
1353 0x00007042,
1354 "Vitesse VSC8601",
1355 4,
1356 (struct phy_cmd[]){ /* config */
1357 /* Override PHY config settings */
1358 /* Configure some basic stuff */
1359 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1360 #ifdef CONFIG_SYS_VSC8601_SKEWFIX
1361 {MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1362 #if defined(CONFIG_SYS_VSC8601_SKEW_TX) && defined(CONFIG_SYS_VSC8601_SKEW_RX)
1363 {MIIM_EXT_PAGE_ACCESS,1,NULL},
1364 #define VSC8101_SKEW (CONFIG_SYS_VSC8601_SKEW_TX<<14)|(CONFIG_SYS_VSC8601_SKEW_RX<<12)
1365 {MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1366 {MIIM_EXT_PAGE_ACCESS,0,NULL},
1367 #endif
1368 #endif
1369 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1370 {MIIM_CONTROL, MIIM_CONTROL_RESTART, &mii_cr_init},
1371 {miim_end,}
1372 },
1373 (struct phy_cmd[]){ /* startup */
1374 /* Read the Status (2x to make sure link is right) */
1375 {MIIM_STATUS, miim_read, NULL},
1376 /* Auto-negotiate */
1377 {MIIM_STATUS, miim_read, &mii_parse_sr},
1378 /* Read the status */
1379 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1380 &mii_parse_vsc8244},
1381 {miim_end,}
1382 },
1383 (struct phy_cmd[]){ /* shutdown */
1384 {miim_end,}
1385 },
1386 };
1387
1388
1389 struct phy_info phy_info_dm9161 = {
1390 0x0181b88,
1391 "Davicom DM9161E",
1392 4,
1393 (struct phy_cmd[]){ /* config */
1394 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1395 /* Do not bypass the scrambler/descrambler */
1396 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1397 /* Clear 10BTCSR to default */
1398 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1399 NULL},
1400 /* Configure some basic stuff */
1401 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1402 /* Restart Auto Negotiation */
1403 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1404 {miim_end,}
1405 },
1406 (struct phy_cmd[]){ /* startup */
1407 /* Status is read once to clear old link state */
1408 {MIIM_STATUS, miim_read, NULL},
1409 /* Auto-negotiate */
1410 {MIIM_STATUS, miim_read, &mii_parse_sr},
1411 /* Read the status */
1412 {MIIM_DM9161_SCSR, miim_read,
1413 &mii_parse_dm9161_scsr},
1414 {miim_end,}
1415 },
1416 (struct phy_cmd[]){ /* shutdown */
1417 {miim_end,}
1418 },
1419 };
1420 /* a generic flavor. */
1421 struct phy_info phy_info_generic = {
1422 0,
1423 "Unknown/Generic PHY",
1424 32,
1425 (struct phy_cmd[]) { /* config */
1426 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1427 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1428 {miim_end,}
1429 },
1430 (struct phy_cmd[]) { /* startup */
1431 {PHY_BMSR, miim_read, NULL},
1432 {PHY_BMSR, miim_read, &mii_parse_sr},
1433 {PHY_BMSR, miim_read, &mii_parse_link},
1434 {miim_end,}
1435 },
1436 (struct phy_cmd[]) { /* shutdown */
1437 {miim_end,}
1438 }
1439 };
1440
1441
1442 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1443 {
1444 unsigned int speed;
1445 if (priv->link) {
1446 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1447
1448 switch (speed) {
1449 case MIIM_LXT971_SR2_10HDX:
1450 priv->speed = 10;
1451 priv->duplexity = 0;
1452 break;
1453 case MIIM_LXT971_SR2_10FDX:
1454 priv->speed = 10;
1455 priv->duplexity = 1;
1456 break;
1457 case MIIM_LXT971_SR2_100HDX:
1458 priv->speed = 100;
1459 priv->duplexity = 0;
1460 break;
1461 default:
1462 priv->speed = 100;
1463 priv->duplexity = 1;
1464 }
1465 } else {
1466 priv->speed = 0;
1467 priv->duplexity = 0;
1468 }
1469
1470 return 0;
1471 }
1472
1473 static struct phy_info phy_info_lxt971 = {
1474 0x0001378e,
1475 "LXT971",
1476 4,
1477 (struct phy_cmd[]){ /* config */
1478 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1479 {miim_end,}
1480 },
1481 (struct phy_cmd[]){ /* startup - enable interrupts */
1482 /* { 0x12, 0x00f2, NULL }, */
1483 {MIIM_STATUS, miim_read, NULL},
1484 {MIIM_STATUS, miim_read, &mii_parse_sr},
1485 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1486 {miim_end,}
1487 },
1488 (struct phy_cmd[]){ /* shutdown - disable interrupts */
1489 {miim_end,}
1490 },
1491 };
1492
1493 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1494 * information
1495 */
1496 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1497 {
1498 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1499
1500 case MIIM_DP83865_SPD_1000:
1501 priv->speed = 1000;
1502 break;
1503
1504 case MIIM_DP83865_SPD_100:
1505 priv->speed = 100;
1506 break;
1507
1508 default:
1509 priv->speed = 10;
1510 break;
1511
1512 }
1513
1514 if (mii_reg & MIIM_DP83865_DPX_FULL)
1515 priv->duplexity = 1;
1516 else
1517 priv->duplexity = 0;
1518
1519 return 0;
1520 }
1521
1522 struct phy_info phy_info_dp83865 = {
1523 0x20005c7,
1524 "NatSemi DP83865",
1525 4,
1526 (struct phy_cmd[]){ /* config */
1527 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1528 {miim_end,}
1529 },
1530 (struct phy_cmd[]){ /* startup */
1531 /* Status is read once to clear old link state */
1532 {MIIM_STATUS, miim_read, NULL},
1533 /* Auto-negotiate */
1534 {MIIM_STATUS, miim_read, &mii_parse_sr},
1535 /* Read the link and auto-neg status */
1536 {MIIM_DP83865_LANR, miim_read,
1537 &mii_parse_dp83865_lanr},
1538 {miim_end,}
1539 },
1540 (struct phy_cmd[]){ /* shutdown */
1541 {miim_end,}
1542 },
1543 };
1544
1545 struct phy_info phy_info_rtl8211b = {
1546 0x001cc91,
1547 "RealTek RTL8211B",
1548 4,
1549 (struct phy_cmd[]){ /* config */
1550 /* Reset and configure the PHY */
1551 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1552 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1553 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1554 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1555 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1556 {miim_end,}
1557 },
1558 (struct phy_cmd[]){ /* startup */
1559 /* Status is read once to clear old link state */
1560 {MIIM_STATUS, miim_read, NULL},
1561 /* Auto-negotiate */
1562 {MIIM_STATUS, miim_read, &mii_parse_sr},
1563 /* Read the status */
1564 {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1565 {miim_end,}
1566 },
1567 (struct phy_cmd[]){ /* shutdown */
1568 {miim_end,}
1569 },
1570 };
1571
1572 struct phy_info *phy_info[] = {
1573 &phy_info_cis8204,
1574 &phy_info_cis8201,
1575 &phy_info_BCM5461S,
1576 &phy_info_BCM5464S,
1577 &phy_info_M88E1011S,
1578 &phy_info_M88E1111S,
1579 &phy_info_M88E1118,
1580 &phy_info_M88E1121R,
1581 &phy_info_M88E1145,
1582 &phy_info_M88E1149S,
1583 &phy_info_dm9161,
1584 &phy_info_lxt971,
1585 &phy_info_VSC8244,
1586 &phy_info_VSC8601,
1587 &phy_info_dp83865,
1588 &phy_info_rtl8211b,
1589 &phy_info_generic,
1590 NULL
1591 };
1592
1593 /* Grab the identifier of the device's PHY, and search through
1594 * all of the known PHYs to see if one matches. If so, return
1595 * it, if not, return NULL
1596 */
1597 struct phy_info *get_phy_info(struct eth_device *dev)
1598 {
1599 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1600 uint phy_reg, phy_ID;
1601 int i;
1602 struct phy_info *theInfo = NULL;
1603
1604 /* Grab the bits from PHYIR1, and put them in the upper half */
1605 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1606 phy_ID = (phy_reg & 0xffff) << 16;
1607
1608 /* Grab the bits from PHYIR2, and put them in the lower half */
1609 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1610 phy_ID |= (phy_reg & 0xffff);
1611
1612 /* loop through all the known PHY types, and find one that */
1613 /* matches the ID we read from the PHY. */
1614 for (i = 0; phy_info[i]; i++) {
1615 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1616 theInfo = phy_info[i];
1617 break;
1618 }
1619 }
1620
1621 if (theInfo == NULL) {
1622 printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1623 return NULL;
1624 } else {
1625 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1626 }
1627
1628 return theInfo;
1629 }
1630
1631 /* Execute the given series of commands on the given device's
1632 * PHY, running functions as necessary
1633 */
1634 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1635 {
1636 int i;
1637 uint result;
1638 volatile tsec_t *phyregs = priv->phyregs;
1639
1640 phyregs->miimcfg = MIIMCFG_RESET;
1641
1642 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1643
1644 while (phyregs->miimind & MIIMIND_BUSY) ;
1645
1646 for (i = 0; cmd->mii_reg != miim_end; i++) {
1647 if (cmd->mii_data == miim_read) {
1648 result = read_phy_reg(priv, cmd->mii_reg);
1649
1650 if (cmd->funct != NULL)
1651 (*(cmd->funct)) (result, priv);
1652
1653 } else {
1654 if (cmd->funct != NULL)
1655 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1656 else
1657 result = cmd->mii_data;
1658
1659 write_phy_reg(priv, cmd->mii_reg, result);
1660
1661 }
1662 cmd++;
1663 }
1664 }
1665
1666 /* Relocate the function pointers in the phy cmd lists */
1667 static void relocate_cmds(void)
1668 {
1669 struct phy_cmd **cmdlistptr;
1670 struct phy_cmd *cmd;
1671 int i, j, k;
1672
1673 for (i = 0; phy_info[i]; i++) {
1674 /* First thing's first: relocate the pointers to the
1675 * PHY command structures (the structs were done) */
1676 phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1677 + gd->reloc_off);
1678 phy_info[i]->name += gd->reloc_off;
1679 phy_info[i]->config =
1680 (struct phy_cmd *)((uint) phy_info[i]->config
1681 + gd->reloc_off);
1682 phy_info[i]->startup =
1683 (struct phy_cmd *)((uint) phy_info[i]->startup
1684 + gd->reloc_off);
1685 phy_info[i]->shutdown =
1686 (struct phy_cmd *)((uint) phy_info[i]->shutdown
1687 + gd->reloc_off);
1688
1689 cmdlistptr = &phy_info[i]->config;
1690 j = 0;
1691 for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1692 k = 0;
1693 for (cmd = *cmdlistptr;
1694 cmd->mii_reg != miim_end;
1695 cmd++) {
1696 /* Only relocate non-NULL pointers */
1697 if (cmd->funct)
1698 cmd->funct += gd->reloc_off;
1699
1700 k++;
1701 }
1702 j++;
1703 }
1704 }
1705
1706 relocated = 1;
1707 }
1708
1709 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1710 && !defined(BITBANGMII)
1711
1712 /*
1713 * Read a MII PHY register.
1714 *
1715 * Returns:
1716 * 0 on success
1717 */
1718 static int tsec_miiphy_read(char *devname, unsigned char addr,
1719 unsigned char reg, unsigned short *value)
1720 {
1721 unsigned short ret;
1722 struct tsec_private *priv = privlist[0];
1723
1724 if (NULL == priv) {
1725 printf("Can't read PHY at address %d\n", addr);
1726 return -1;
1727 }
1728
1729 ret = (unsigned short)tsec_local_mdio_read(priv->phyregs, addr, reg);
1730 *value = ret;
1731
1732 return 0;
1733 }
1734
1735 /*
1736 * Write a MII PHY register.
1737 *
1738 * Returns:
1739 * 0 on success
1740 */
1741 static int tsec_miiphy_write(char *devname, unsigned char addr,
1742 unsigned char reg, unsigned short value)
1743 {
1744 struct tsec_private *priv = privlist[0];
1745
1746 if (NULL == priv) {
1747 printf("Can't write PHY at address %d\n", addr);
1748 return -1;
1749 }
1750
1751 tsec_local_mdio_write(priv->phyregs, addr, reg, value);
1752
1753 return 0;
1754 }
1755
1756 #endif
1757
1758 #ifdef CONFIG_MCAST_TFTP
1759
1760 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1761
1762 /* Set the appropriate hash bit for the given addr */
1763
1764 /* The algorithm works like so:
1765 * 1) Take the Destination Address (ie the multicast address), and
1766 * do a CRC on it (little endian), and reverse the bits of the
1767 * result.
1768 * 2) Use the 8 most significant bits as a hash into a 256-entry
1769 * table. The table is controlled through 8 32-bit registers:
1770 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1771 * gaddr7. This means that the 3 most significant bits in the
1772 * hash index which gaddr register to use, and the 5 other bits
1773 * indicate which bit (assuming an IBM numbering scheme, which
1774 * for PowerPC (tm) is usually the case) in the tregister holds
1775 * the entry. */
1776 static int
1777 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1778 {
1779 struct tsec_private *priv = privlist[1];
1780 volatile tsec_t *regs = priv->regs;
1781 volatile u32 *reg_array, value;
1782 u8 result, whichbit, whichreg;
1783
1784 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1785 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1786 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1787 value = (1 << (31-whichbit));
1788
1789 reg_array = &(regs->hash.gaddr0);
1790
1791 if (set) {
1792 reg_array[whichreg] |= value;
1793 } else {
1794 reg_array[whichreg] &= ~value;
1795 }
1796 return 0;
1797 }
1798 #endif /* Multicast TFTP ? */