]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
TSEC driver: Change MDIO support to allow access to any PHYs on the MDIO bus
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19
20 #if defined(CONFIG_TSEC_ENET)
21 #include "tsec.h"
22 #include "miiphy.h"
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 struct tsec_info_struct {
37 unsigned int phyaddr;
38 u32 flags;
39 unsigned int phyregidx;
40 };
41
42 /* The tsec_info structure contains 3 values which the
43 * driver uses to determine how to operate a given ethernet
44 * device. The information needed is:
45 * phyaddr - The address of the PHY which is attached to
46 * the given device.
47 *
48 * flags - This variable indicates whether the device
49 * supports gigabit speed ethernet, and whether it should be
50 * in reduced mode.
51 *
52 * phyregidx - This variable specifies which ethernet device
53 * controls the MII Management registers which are connected
54 * to the PHY. For now, only TSEC1 (index 0) has
55 * access to the PHYs, so all of the entries have "0".
56 *
57 * The values specified in the table are taken from the board's
58 * config file in include/configs/. When implementing a new
59 * board with ethernet capability, it is necessary to define:
60 * TSECn_PHY_ADDR
61 * TSECn_PHYIDX
62 *
63 * for n = 1,2,3, etc. And for FEC:
64 * FEC_PHY_ADDR
65 * FEC_PHYIDX
66 */
67 static struct tsec_info_struct tsec_info[] = {
68 #ifdef CONFIG_TSEC1
69 {TSEC1_PHY_ADDR, TSEC1_FLAGS, TSEC1_PHYIDX},
70 #else
71 {0, 0, 0},
72 #endif
73 #ifdef CONFIG_TSEC2
74 {TSEC2_PHY_ADDR, TSEC2_FLAGS, TSEC2_PHYIDX},
75 #else
76 {0, 0, 0},
77 #endif
78 #ifdef CONFIG_MPC85XX_FEC
79 {FEC_PHY_ADDR, FEC_FLAGS, FEC_PHYIDX},
80 #else
81 #ifdef CONFIG_TSEC3
82 {TSEC3_PHY_ADDR, TSEC3_FLAGS, TSEC3_PHYIDX},
83 #else
84 {0, 0, 0},
85 #endif
86 #ifdef CONFIG_TSEC4
87 {TSEC4_PHY_ADDR, TSEC4_FLAGS, TSEC4_PHYIDX},
88 #else
89 {0, 0, 0},
90 #endif /* CONFIG_TSEC4 */
91 #endif /* CONFIG_MPC85XX_FEC */
92 };
93
94 #define MAXCONTROLLERS (4)
95
96 static int relocated = 0;
97
98 static struct tsec_private *privlist[MAXCONTROLLERS];
99
100 #ifdef __GNUC__
101 static RTXBD rtx __attribute__ ((aligned(8)));
102 #else
103 #error "rtx must be 64-bit aligned"
104 #endif
105
106 static int tsec_send(struct eth_device *dev,
107 volatile void *packet, int length);
108 static int tsec_recv(struct eth_device *dev);
109 static int tsec_init(struct eth_device *dev, bd_t * bd);
110 static void tsec_halt(struct eth_device *dev);
111 static void init_registers(volatile tsec_t * regs);
112 static void startup_tsec(struct eth_device *dev);
113 static int init_phy(struct eth_device *dev);
114 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
115 uint read_phy_reg(struct tsec_private *priv, uint regnum);
116 struct phy_info *get_phy_info(struct eth_device *dev);
117 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
118 static void adjust_link(struct eth_device *dev);
119 static void relocate_cmds(void);
120 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
121 && !defined(BITBANGMII)
122 static int tsec_miiphy_write(char *devname, unsigned char addr,
123 unsigned char reg, unsigned short value);
124 static int tsec_miiphy_read(char *devname, unsigned char addr,
125 unsigned char reg, unsigned short *value);
126 #endif
127 #ifdef CONFIG_MCAST_TFTP
128 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
129 #endif
130
131 /* Initialize device structure. Returns success if PHY
132 * initialization succeeded (i.e. if it recognizes the PHY)
133 */
134 int tsec_initialize(bd_t * bis, int index, char *devname)
135 {
136 struct eth_device *dev;
137 int i;
138 struct tsec_private *priv;
139
140 dev = (struct eth_device *)malloc(sizeof *dev);
141
142 if (NULL == dev)
143 return 0;
144
145 memset(dev, 0, sizeof *dev);
146
147 priv = (struct tsec_private *)malloc(sizeof(*priv));
148
149 if (NULL == priv)
150 return 0;
151
152 privlist[index] = priv;
153 priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE);
154 priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
155 tsec_info[index].phyregidx *
156 TSEC_SIZE);
157
158 priv->phyaddr = tsec_info[index].phyaddr;
159 priv->flags = tsec_info[index].flags;
160
161 sprintf(dev->name, devname);
162 dev->iobase = 0;
163 dev->priv = priv;
164 dev->init = tsec_init;
165 dev->halt = tsec_halt;
166 dev->send = tsec_send;
167 dev->recv = tsec_recv;
168 #ifdef CONFIG_MCAST_TFTP
169 dev->mcast = tsec_mcast_addr;
170 #endif
171
172 /* Tell u-boot to get the addr from the env */
173 for (i = 0; i < 6; i++)
174 dev->enetaddr[i] = 0;
175
176 eth_register(dev);
177
178 /* Reset the MAC */
179 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
180 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
181
182 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
183 && !defined(BITBANGMII)
184 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
185 #endif
186
187 /* Try to initialize PHY here, and return */
188 return init_phy(dev);
189 }
190
191 /* Initializes data structures and registers for the controller,
192 * and brings the interface up. Returns the link status, meaning
193 * that it returns success if the link is up, failure otherwise.
194 * This allows u-boot to find the first active controller.
195 */
196 int tsec_init(struct eth_device *dev, bd_t * bd)
197 {
198 uint tempval;
199 char tmpbuf[MAC_ADDR_LEN];
200 int i;
201 struct tsec_private *priv = (struct tsec_private *)dev->priv;
202 volatile tsec_t *regs = priv->regs;
203
204 /* Make sure the controller is stopped */
205 tsec_halt(dev);
206
207 /* Init MACCFG2. Defaults to GMII */
208 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
209
210 /* Init ECNTRL */
211 regs->ecntrl = ECNTRL_INIT_SETTINGS;
212
213 /* Copy the station address into the address registers.
214 * Backwards, because little endian MACS are dumb */
215 for (i = 0; i < MAC_ADDR_LEN; i++) {
216 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
217 }
218 regs->macstnaddr1 = *((uint *) (tmpbuf));
219
220 tempval = *((uint *) (tmpbuf + 4));
221
222 regs->macstnaddr2 = tempval;
223
224 /* reset the indices to zero */
225 rxIdx = 0;
226 txIdx = 0;
227
228 /* Clear out (for the most part) the other registers */
229 init_registers(regs);
230
231 /* Ready the device for tx/rx */
232 startup_tsec(dev);
233
234 /* If there's no link, fail */
235 return (priv->link ? 0 : -1);
236
237 }
238
239 /* Write value to the device's PHY through the registers
240 * specified in priv, modifying the register specified in regnum.
241 * It will wait for the write to be done (or for a timeout to
242 * expire) before exiting
243 */
244 void write_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum, uint value)
245 {
246 volatile tsec_t *regbase = priv->phyregs;
247 int timeout = 1000000;
248
249 regbase->miimadd = (phyid << 8) | regnum;
250 regbase->miimcon = value;
251 asm("sync");
252
253 timeout = 1000000;
254 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
255 }
256
257 /* #define to provide old write_phy_reg functionality without duplicating code */
258 #define write_phy_reg(priv, regnum, value) write_any_phy_reg(priv,priv->phyaddr,regnum,value)
259
260 /* Reads register regnum on the device's PHY through the
261 * registers specified in priv. It lowers and raises the read
262 * command, and waits for the data to become valid (miimind
263 * notvalid bit cleared), and the bus to cease activity (miimind
264 * busy bit cleared), and then returns the value
265 */
266 uint read_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum)
267 {
268 uint value;
269 volatile tsec_t *regbase = priv->phyregs;
270
271 /* Put the address of the phy, and the register
272 * number into MIIMADD */
273 regbase->miimadd = (phyid << 8) | regnum;
274
275 /* Clear the command register, and wait */
276 regbase->miimcom = 0;
277 asm("sync");
278
279 /* Initiate a read command, and wait */
280 regbase->miimcom = MIIM_READ_COMMAND;
281 asm("sync");
282
283 /* Wait for the the indication that the read is done */
284 while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
285
286 /* Grab the value read from the PHY */
287 value = regbase->miimstat;
288
289 return value;
290 }
291
292 /* #define to provide old read_phy_reg functionality without duplicating code */
293 #define read_phy_reg(priv,regnum) read_any_phy_reg(priv,priv->phyaddr,regnum)
294
295 /* Discover which PHY is attached to the device, and configure it
296 * properly. If the PHY is not recognized, then return 0
297 * (failure). Otherwise, return 1
298 */
299 static int init_phy(struct eth_device *dev)
300 {
301 struct tsec_private *priv = (struct tsec_private *)dev->priv;
302 struct phy_info *curphy;
303 volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
304
305 /* Assign a Physical address to the TBI */
306 regs->tbipa = CFG_TBIPA_VALUE;
307 regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
308 regs->tbipa = CFG_TBIPA_VALUE;
309 asm("sync");
310
311 /* Reset MII (due to new addresses) */
312 priv->phyregs->miimcfg = MIIMCFG_RESET;
313 asm("sync");
314 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
315 asm("sync");
316 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
317
318 if (0 == relocated)
319 relocate_cmds();
320
321 /* Get the cmd structure corresponding to the attached
322 * PHY */
323 curphy = get_phy_info(dev);
324
325 if (curphy == NULL) {
326 priv->phyinfo = NULL;
327 printf("%s: No PHY found\n", dev->name);
328
329 return 0;
330 }
331
332 priv->phyinfo = curphy;
333
334 phy_run_commands(priv, priv->phyinfo->config);
335
336 return 1;
337 }
338
339 /*
340 * Returns which value to write to the control register.
341 * For 10/100, the value is slightly different
342 */
343 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
344 {
345 if (priv->flags & TSEC_GIGABIT)
346 return MIIM_CONTROL_INIT;
347 else
348 return MIIM_CR_INIT;
349 }
350
351 /* Parse the status register for link, and then do
352 * auto-negotiation
353 */
354 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
355 {
356 /*
357 * Wait if the link is up, and autonegotiation is in progress
358 * (ie - we're capable and it's not done)
359 */
360 mii_reg = read_phy_reg(priv, MIIM_STATUS);
361 if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
362 && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
363 int i = 0;
364
365 puts("Waiting for PHY auto negotiation to complete");
366 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
367 /*
368 * Timeout reached ?
369 */
370 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
371 puts(" TIMEOUT !\n");
372 priv->link = 0;
373 return 0;
374 }
375
376 if ((i++ % 1000) == 0) {
377 putc('.');
378 }
379 udelay(1000); /* 1 ms */
380 mii_reg = read_phy_reg(priv, MIIM_STATUS);
381 }
382 puts(" done\n");
383 priv->link = 1;
384 udelay(500000); /* another 500 ms (results in faster booting) */
385 } else {
386 if (mii_reg & MIIM_STATUS_LINK)
387 priv->link = 1;
388 else
389 priv->link = 0;
390 }
391
392 return 0;
393 }
394
395 /* Generic function which updates the speed and duplex. If
396 * autonegotiation is enabled, it uses the AND of the link
397 * partner's advertised capabilities and our advertised
398 * capabilities. If autonegotiation is disabled, we use the
399 * appropriate bits in the control register.
400 *
401 * Stolen from Linux's mii.c and phy_device.c
402 */
403 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
404 {
405 /* We're using autonegotiation */
406 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
407 uint lpa = 0;
408 uint gblpa = 0;
409
410 /* Check for gigabit capability */
411 if (mii_reg & PHY_BMSR_EXT) {
412 /* We want a list of states supported by
413 * both PHYs in the link
414 */
415 gblpa = read_phy_reg(priv, PHY_1000BTSR);
416 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
417 }
418
419 /* Set the baseline so we only have to set them
420 * if they're different
421 */
422 priv->speed = 10;
423 priv->duplexity = 0;
424
425 /* Check the gigabit fields */
426 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
427 priv->speed = 1000;
428
429 if (gblpa & PHY_1000BTSR_1000FD)
430 priv->duplexity = 1;
431
432 /* We're done! */
433 return 0;
434 }
435
436 lpa = read_phy_reg(priv, PHY_ANAR);
437 lpa &= read_phy_reg(priv, PHY_ANLPAR);
438
439 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
440 priv->speed = 100;
441
442 if (lpa & PHY_ANLPAR_TXFD)
443 priv->duplexity = 1;
444
445 } else if (lpa & PHY_ANLPAR_10FD)
446 priv->duplexity = 1;
447 } else {
448 uint bmcr = read_phy_reg(priv, PHY_BMCR);
449
450 priv->speed = 10;
451 priv->duplexity = 0;
452
453 if (bmcr & PHY_BMCR_DPLX)
454 priv->duplexity = 1;
455
456 if (bmcr & PHY_BMCR_1000_MBPS)
457 priv->speed = 1000;
458 else if (bmcr & PHY_BMCR_100_MBPS)
459 priv->speed = 100;
460 }
461
462 return 0;
463 }
464
465 /*
466 * Parse the BCM54xx status register for speed and duplex information.
467 * The linux sungem_phy has this information, but in a table format.
468 */
469 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
470 {
471
472 switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
473
474 case 1:
475 printf("Enet starting in 10BT/HD\n");
476 priv->duplexity = 0;
477 priv->speed = 10;
478 break;
479
480 case 2:
481 printf("Enet starting in 10BT/FD\n");
482 priv->duplexity = 1;
483 priv->speed = 10;
484 break;
485
486 case 3:
487 printf("Enet starting in 100BT/HD\n");
488 priv->duplexity = 0;
489 priv->speed = 100;
490 break;
491
492 case 5:
493 printf("Enet starting in 100BT/FD\n");
494 priv->duplexity = 1;
495 priv->speed = 100;
496 break;
497
498 case 6:
499 printf("Enet starting in 1000BT/HD\n");
500 priv->duplexity = 0;
501 priv->speed = 1000;
502 break;
503
504 case 7:
505 printf("Enet starting in 1000BT/FD\n");
506 priv->duplexity = 1;
507 priv->speed = 1000;
508 break;
509
510 default:
511 printf("Auto-neg error, defaulting to 10BT/HD\n");
512 priv->duplexity = 0;
513 priv->speed = 10;
514 break;
515 }
516
517 return 0;
518
519 }
520 /* Parse the 88E1011's status register for speed and duplex
521 * information
522 */
523 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
524 {
525 uint speed;
526
527 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
528
529 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
530 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
531 int i = 0;
532
533 puts("Waiting for PHY realtime link");
534 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
535 /* Timeout reached ? */
536 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
537 puts(" TIMEOUT !\n");
538 priv->link = 0;
539 break;
540 }
541
542 if ((i++ % 1000) == 0) {
543 putc('.');
544 }
545 udelay(1000); /* 1 ms */
546 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
547 }
548 puts(" done\n");
549 udelay(500000); /* another 500 ms (results in faster booting) */
550 } else {
551 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
552 priv->link = 1;
553 else
554 priv->link = 0;
555 }
556
557 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
558 priv->duplexity = 1;
559 else
560 priv->duplexity = 0;
561
562 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
563
564 switch (speed) {
565 case MIIM_88E1011_PHYSTAT_GBIT:
566 priv->speed = 1000;
567 break;
568 case MIIM_88E1011_PHYSTAT_100:
569 priv->speed = 100;
570 break;
571 default:
572 priv->speed = 10;
573 }
574
575 return 0;
576 }
577
578 /* Parse the cis8201's status register for speed and duplex
579 * information
580 */
581 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
582 {
583 uint speed;
584
585 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
586 priv->duplexity = 1;
587 else
588 priv->duplexity = 0;
589
590 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
591 switch (speed) {
592 case MIIM_CIS8201_AUXCONSTAT_GBIT:
593 priv->speed = 1000;
594 break;
595 case MIIM_CIS8201_AUXCONSTAT_100:
596 priv->speed = 100;
597 break;
598 default:
599 priv->speed = 10;
600 break;
601 }
602
603 return 0;
604 }
605
606 /* Parse the vsc8244's status register for speed and duplex
607 * information
608 */
609 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
610 {
611 uint speed;
612
613 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
614 priv->duplexity = 1;
615 else
616 priv->duplexity = 0;
617
618 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
619 switch (speed) {
620 case MIIM_VSC8244_AUXCONSTAT_GBIT:
621 priv->speed = 1000;
622 break;
623 case MIIM_VSC8244_AUXCONSTAT_100:
624 priv->speed = 100;
625 break;
626 default:
627 priv->speed = 10;
628 break;
629 }
630
631 return 0;
632 }
633
634 /* Parse the DM9161's status register for speed and duplex
635 * information
636 */
637 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
638 {
639 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
640 priv->speed = 100;
641 else
642 priv->speed = 10;
643
644 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
645 priv->duplexity = 1;
646 else
647 priv->duplexity = 0;
648
649 return 0;
650 }
651
652 /*
653 * Hack to write all 4 PHYs with the LED values
654 */
655 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
656 {
657 uint phyid;
658 volatile tsec_t *regbase = priv->phyregs;
659 int timeout = 1000000;
660
661 for (phyid = 0; phyid < 4; phyid++) {
662 regbase->miimadd = (phyid << 8) | mii_reg;
663 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
664 asm("sync");
665
666 timeout = 1000000;
667 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
668 }
669
670 return MIIM_CIS8204_SLEDCON_INIT;
671 }
672
673 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
674 {
675 if (priv->flags & TSEC_REDUCED)
676 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
677 else
678 return MIIM_CIS8204_EPHYCON_INIT;
679 }
680
681 uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
682 {
683 uint mii_data = read_phy_reg(priv, mii_reg);
684
685 if (priv->flags & TSEC_REDUCED)
686 mii_data = (mii_data & 0xfff0) | 0x000b;
687 return mii_data;
688 }
689
690 /* Initialized required registers to appropriate values, zeroing
691 * those we don't care about (unless zero is bad, in which case,
692 * choose a more appropriate value)
693 */
694 static void init_registers(volatile tsec_t * regs)
695 {
696 /* Clear IEVENT */
697 regs->ievent = IEVENT_INIT_CLEAR;
698
699 regs->imask = IMASK_INIT_CLEAR;
700
701 regs->hash.iaddr0 = 0;
702 regs->hash.iaddr1 = 0;
703 regs->hash.iaddr2 = 0;
704 regs->hash.iaddr3 = 0;
705 regs->hash.iaddr4 = 0;
706 regs->hash.iaddr5 = 0;
707 regs->hash.iaddr6 = 0;
708 regs->hash.iaddr7 = 0;
709
710 regs->hash.gaddr0 = 0;
711 regs->hash.gaddr1 = 0;
712 regs->hash.gaddr2 = 0;
713 regs->hash.gaddr3 = 0;
714 regs->hash.gaddr4 = 0;
715 regs->hash.gaddr5 = 0;
716 regs->hash.gaddr6 = 0;
717 regs->hash.gaddr7 = 0;
718
719 regs->rctrl = 0x00000000;
720
721 /* Init RMON mib registers */
722 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
723
724 regs->rmon.cam1 = 0xffffffff;
725 regs->rmon.cam2 = 0xffffffff;
726
727 regs->mrblr = MRBLR_INIT_SETTINGS;
728
729 regs->minflr = MINFLR_INIT_SETTINGS;
730
731 regs->attr = ATTR_INIT_SETTINGS;
732 regs->attreli = ATTRELI_INIT_SETTINGS;
733
734 }
735
736 /* Configure maccfg2 based on negotiated speed and duplex
737 * reported by PHY handling code
738 */
739 static void adjust_link(struct eth_device *dev)
740 {
741 struct tsec_private *priv = (struct tsec_private *)dev->priv;
742 volatile tsec_t *regs = priv->regs;
743
744 if (priv->link) {
745 if (priv->duplexity != 0)
746 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
747 else
748 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
749
750 switch (priv->speed) {
751 case 1000:
752 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
753 | MACCFG2_GMII);
754 break;
755 case 100:
756 case 10:
757 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
758 | MACCFG2_MII);
759
760 /* Set R100 bit in all modes although
761 * it is only used in RGMII mode
762 */
763 if (priv->speed == 100)
764 regs->ecntrl |= ECNTRL_R100;
765 else
766 regs->ecntrl &= ~(ECNTRL_R100);
767 break;
768 default:
769 printf("%s: Speed was bad\n", dev->name);
770 break;
771 }
772
773 printf("Speed: %d, %s duplex\n", priv->speed,
774 (priv->duplexity) ? "full" : "half");
775
776 } else {
777 printf("%s: No link.\n", dev->name);
778 }
779 }
780
781 /* Set up the buffers and their descriptors, and bring up the
782 * interface
783 */
784 static void startup_tsec(struct eth_device *dev)
785 {
786 int i;
787 struct tsec_private *priv = (struct tsec_private *)dev->priv;
788 volatile tsec_t *regs = priv->regs;
789
790 /* Point to the buffer descriptors */
791 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
792 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
793
794 /* Initialize the Rx Buffer descriptors */
795 for (i = 0; i < PKTBUFSRX; i++) {
796 rtx.rxbd[i].status = RXBD_EMPTY;
797 rtx.rxbd[i].length = 0;
798 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
799 }
800 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
801
802 /* Initialize the TX Buffer Descriptors */
803 for (i = 0; i < TX_BUF_CNT; i++) {
804 rtx.txbd[i].status = 0;
805 rtx.txbd[i].length = 0;
806 rtx.txbd[i].bufPtr = 0;
807 }
808 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
809
810 /* Start up the PHY */
811 if(priv->phyinfo)
812 phy_run_commands(priv, priv->phyinfo->startup);
813
814 adjust_link(dev);
815
816 /* Enable Transmit and Receive */
817 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
818
819 /* Tell the DMA it is clear to go */
820 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
821 regs->tstat = TSTAT_CLEAR_THALT;
822 regs->rstat = RSTAT_CLEAR_RHALT;
823 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
824 }
825
826 /* This returns the status bits of the device. The return value
827 * is never checked, and this is what the 8260 driver did, so we
828 * do the same. Presumably, this would be zero if there were no
829 * errors
830 */
831 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
832 {
833 int i;
834 int result = 0;
835 struct tsec_private *priv = (struct tsec_private *)dev->priv;
836 volatile tsec_t *regs = priv->regs;
837
838 /* Find an empty buffer descriptor */
839 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
840 if (i >= TOUT_LOOP) {
841 debug("%s: tsec: tx buffers full\n", dev->name);
842 return result;
843 }
844 }
845
846 rtx.txbd[txIdx].bufPtr = (uint) packet;
847 rtx.txbd[txIdx].length = length;
848 rtx.txbd[txIdx].status |=
849 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
850
851 /* Tell the DMA to go */
852 regs->tstat = TSTAT_CLEAR_THALT;
853
854 /* Wait for buffer to be transmitted */
855 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
856 if (i >= TOUT_LOOP) {
857 debug("%s: tsec: tx error\n", dev->name);
858 return result;
859 }
860 }
861
862 txIdx = (txIdx + 1) % TX_BUF_CNT;
863 result = rtx.txbd[txIdx].status & TXBD_STATS;
864
865 return result;
866 }
867
868 static int tsec_recv(struct eth_device *dev)
869 {
870 int length;
871 struct tsec_private *priv = (struct tsec_private *)dev->priv;
872 volatile tsec_t *regs = priv->regs;
873
874 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
875
876 length = rtx.rxbd[rxIdx].length;
877
878 /* Send the packet up if there were no errors */
879 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
880 NetReceive(NetRxPackets[rxIdx], length - 4);
881 } else {
882 printf("Got error %x\n",
883 (rtx.rxbd[rxIdx].status & RXBD_STATS));
884 }
885
886 rtx.rxbd[rxIdx].length = 0;
887
888 /* Set the wrap bit if this is the last element in the list */
889 rtx.rxbd[rxIdx].status =
890 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
891
892 rxIdx = (rxIdx + 1) % PKTBUFSRX;
893 }
894
895 if (regs->ievent & IEVENT_BSY) {
896 regs->ievent = IEVENT_BSY;
897 regs->rstat = RSTAT_CLEAR_RHALT;
898 }
899
900 return -1;
901
902 }
903
904 /* Stop the interface */
905 static void tsec_halt(struct eth_device *dev)
906 {
907 struct tsec_private *priv = (struct tsec_private *)dev->priv;
908 volatile tsec_t *regs = priv->regs;
909
910 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
911 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
912
913 while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
914
915 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
916
917 /* Shut down the PHY, as needed */
918 if(priv->phyinfo)
919 phy_run_commands(priv, priv->phyinfo->shutdown);
920 }
921
922 struct phy_info phy_info_M88E1149S = {
923 0x1410ca,
924 "Marvell 88E1149S",
925 4,
926 (struct phy_cmd[]){ /* config */
927 /* Reset and configure the PHY */
928 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
929 {0x1d, 0x1f, NULL},
930 {0x1e, 0x200c, NULL},
931 {0x1d, 0x5, NULL},
932 {0x1e, 0x0, NULL},
933 {0x1e, 0x100, NULL},
934 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
935 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
936 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
937 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
938 {miim_end,}
939 },
940 (struct phy_cmd[]){ /* startup */
941 /* Status is read once to clear old link state */
942 {MIIM_STATUS, miim_read, NULL},
943 /* Auto-negotiate */
944 {MIIM_STATUS, miim_read, &mii_parse_sr},
945 /* Read the status */
946 {MIIM_88E1011_PHY_STATUS, miim_read,
947 &mii_parse_88E1011_psr},
948 {miim_end,}
949 },
950 (struct phy_cmd[]){ /* shutdown */
951 {miim_end,}
952 },
953 };
954
955 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
956 struct phy_info phy_info_BCM5461S = {
957 0x02060c1, /* 5461 ID */
958 "Broadcom BCM5461S",
959 0, /* not clear to me what minor revisions we can shift away */
960 (struct phy_cmd[]) { /* config */
961 /* Reset and configure the PHY */
962 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
963 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
964 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
965 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
966 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
967 {miim_end,}
968 },
969 (struct phy_cmd[]) { /* startup */
970 /* Status is read once to clear old link state */
971 {MIIM_STATUS, miim_read, NULL},
972 /* Auto-negotiate */
973 {MIIM_STATUS, miim_read, &mii_parse_sr},
974 /* Read the status */
975 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
976 {miim_end,}
977 },
978 (struct phy_cmd[]) { /* shutdown */
979 {miim_end,}
980 },
981 };
982
983 struct phy_info phy_info_BCM5464S = {
984 0x02060b1, /* 5464 ID */
985 "Broadcom BCM5464S",
986 0, /* not clear to me what minor revisions we can shift away */
987 (struct phy_cmd[]) { /* config */
988 /* Reset and configure the PHY */
989 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
990 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
991 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
992 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
993 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
994 {miim_end,}
995 },
996 (struct phy_cmd[]) { /* startup */
997 /* Status is read once to clear old link state */
998 {MIIM_STATUS, miim_read, NULL},
999 /* Auto-negotiate */
1000 {MIIM_STATUS, miim_read, &mii_parse_sr},
1001 /* Read the status */
1002 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1003 {miim_end,}
1004 },
1005 (struct phy_cmd[]) { /* shutdown */
1006 {miim_end,}
1007 },
1008 };
1009
1010 struct phy_info phy_info_M88E1011S = {
1011 0x01410c6,
1012 "Marvell 88E1011S",
1013 4,
1014 (struct phy_cmd[]){ /* config */
1015 /* Reset and configure the PHY */
1016 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1017 {0x1d, 0x1f, NULL},
1018 {0x1e, 0x200c, NULL},
1019 {0x1d, 0x5, NULL},
1020 {0x1e, 0x0, NULL},
1021 {0x1e, 0x100, NULL},
1022 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1023 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1024 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1025 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1026 {miim_end,}
1027 },
1028 (struct phy_cmd[]){ /* startup */
1029 /* Status is read once to clear old link state */
1030 {MIIM_STATUS, miim_read, NULL},
1031 /* Auto-negotiate */
1032 {MIIM_STATUS, miim_read, &mii_parse_sr},
1033 /* Read the status */
1034 {MIIM_88E1011_PHY_STATUS, miim_read,
1035 &mii_parse_88E1011_psr},
1036 {miim_end,}
1037 },
1038 (struct phy_cmd[]){ /* shutdown */
1039 {miim_end,}
1040 },
1041 };
1042
1043 struct phy_info phy_info_M88E1111S = {
1044 0x01410cc,
1045 "Marvell 88E1111S",
1046 4,
1047 (struct phy_cmd[]){ /* config */
1048 /* Reset and configure the PHY */
1049 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1050 {0x1b, 0x848f, &mii_m88e1111s_setmode},
1051 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1052 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1053 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1054 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1055 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1056 {miim_end,}
1057 },
1058 (struct phy_cmd[]){ /* startup */
1059 /* Status is read once to clear old link state */
1060 {MIIM_STATUS, miim_read, NULL},
1061 /* Auto-negotiate */
1062 {MIIM_STATUS, miim_read, &mii_parse_sr},
1063 /* Read the status */
1064 {MIIM_88E1011_PHY_STATUS, miim_read,
1065 &mii_parse_88E1011_psr},
1066 {miim_end,}
1067 },
1068 (struct phy_cmd[]){ /* shutdown */
1069 {miim_end,}
1070 },
1071 };
1072
1073 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1074 {
1075 uint mii_data = read_phy_reg(priv, mii_reg);
1076
1077 /* Setting MIIM_88E1145_PHY_EXT_CR */
1078 if (priv->flags & TSEC_REDUCED)
1079 return mii_data |
1080 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1081 else
1082 return mii_data;
1083 }
1084
1085 static struct phy_info phy_info_M88E1145 = {
1086 0x01410cd,
1087 "Marvell 88E1145",
1088 4,
1089 (struct phy_cmd[]){ /* config */
1090 /* Reset the PHY */
1091 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1092
1093 /* Errata E0, E1 */
1094 {29, 0x001b, NULL},
1095 {30, 0x418f, NULL},
1096 {29, 0x0016, NULL},
1097 {30, 0xa2da, NULL},
1098
1099 /* Configure the PHY */
1100 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1101 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1102 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1103 NULL},
1104 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1105 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1106 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1107 {miim_end,}
1108 },
1109 (struct phy_cmd[]){ /* startup */
1110 /* Status is read once to clear old link state */
1111 {MIIM_STATUS, miim_read, NULL},
1112 /* Auto-negotiate */
1113 {MIIM_STATUS, miim_read, &mii_parse_sr},
1114 {MIIM_88E1111_PHY_LED_CONTROL,
1115 MIIM_88E1111_PHY_LED_DIRECT, NULL},
1116 /* Read the Status */
1117 {MIIM_88E1011_PHY_STATUS, miim_read,
1118 &mii_parse_88E1011_psr},
1119 {miim_end,}
1120 },
1121 (struct phy_cmd[]){ /* shutdown */
1122 {miim_end,}
1123 },
1124 };
1125
1126 struct phy_info phy_info_cis8204 = {
1127 0x3f11,
1128 "Cicada Cis8204",
1129 6,
1130 (struct phy_cmd[]){ /* config */
1131 /* Override PHY config settings */
1132 {MIIM_CIS8201_AUX_CONSTAT,
1133 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1134 /* Configure some basic stuff */
1135 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1136 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1137 &mii_cis8204_fixled},
1138 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1139 &mii_cis8204_setmode},
1140 {miim_end,}
1141 },
1142 (struct phy_cmd[]){ /* startup */
1143 /* Read the Status (2x to make sure link is right) */
1144 {MIIM_STATUS, miim_read, NULL},
1145 /* Auto-negotiate */
1146 {MIIM_STATUS, miim_read, &mii_parse_sr},
1147 /* Read the status */
1148 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1149 &mii_parse_cis8201},
1150 {miim_end,}
1151 },
1152 (struct phy_cmd[]){ /* shutdown */
1153 {miim_end,}
1154 },
1155 };
1156
1157 /* Cicada 8201 */
1158 struct phy_info phy_info_cis8201 = {
1159 0xfc41,
1160 "CIS8201",
1161 4,
1162 (struct phy_cmd[]){ /* config */
1163 /* Override PHY config settings */
1164 {MIIM_CIS8201_AUX_CONSTAT,
1165 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1166 /* Set up the interface mode */
1167 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1168 NULL},
1169 /* Configure some basic stuff */
1170 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1171 {miim_end,}
1172 },
1173 (struct phy_cmd[]){ /* startup */
1174 /* Read the Status (2x to make sure link is right) */
1175 {MIIM_STATUS, miim_read, NULL},
1176 /* Auto-negotiate */
1177 {MIIM_STATUS, miim_read, &mii_parse_sr},
1178 /* Read the status */
1179 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1180 &mii_parse_cis8201},
1181 {miim_end,}
1182 },
1183 (struct phy_cmd[]){ /* shutdown */
1184 {miim_end,}
1185 },
1186 };
1187 struct phy_info phy_info_VSC8244 = {
1188 0x3f1b,
1189 "Vitesse VSC8244",
1190 6,
1191 (struct phy_cmd[]){ /* config */
1192 /* Override PHY config settings */
1193 /* Configure some basic stuff */
1194 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1195 {miim_end,}
1196 },
1197 (struct phy_cmd[]){ /* startup */
1198 /* Read the Status (2x to make sure link is right) */
1199 {MIIM_STATUS, miim_read, NULL},
1200 /* Auto-negotiate */
1201 {MIIM_STATUS, miim_read, &mii_parse_sr},
1202 /* Read the status */
1203 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1204 &mii_parse_vsc8244},
1205 {miim_end,}
1206 },
1207 (struct phy_cmd[]){ /* shutdown */
1208 {miim_end,}
1209 },
1210 };
1211
1212 struct phy_info phy_info_dm9161 = {
1213 0x0181b88,
1214 "Davicom DM9161E",
1215 4,
1216 (struct phy_cmd[]){ /* config */
1217 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1218 /* Do not bypass the scrambler/descrambler */
1219 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1220 /* Clear 10BTCSR to default */
1221 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1222 NULL},
1223 /* Configure some basic stuff */
1224 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1225 /* Restart Auto Negotiation */
1226 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1227 {miim_end,}
1228 },
1229 (struct phy_cmd[]){ /* startup */
1230 /* Status is read once to clear old link state */
1231 {MIIM_STATUS, miim_read, NULL},
1232 /* Auto-negotiate */
1233 {MIIM_STATUS, miim_read, &mii_parse_sr},
1234 /* Read the status */
1235 {MIIM_DM9161_SCSR, miim_read,
1236 &mii_parse_dm9161_scsr},
1237 {miim_end,}
1238 },
1239 (struct phy_cmd[]){ /* shutdown */
1240 {miim_end,}
1241 },
1242 };
1243 /* a generic flavor. */
1244 struct phy_info phy_info_generic = {
1245 0,
1246 "Unknown/Generic PHY",
1247 32,
1248 (struct phy_cmd[]) { /* config */
1249 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1250 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1251 {miim_end,}
1252 },
1253 (struct phy_cmd[]) { /* startup */
1254 {PHY_BMSR, miim_read, NULL},
1255 {PHY_BMSR, miim_read, &mii_parse_sr},
1256 {PHY_BMSR, miim_read, &mii_parse_link},
1257 {miim_end,}
1258 },
1259 (struct phy_cmd[]) { /* shutdown */
1260 {miim_end,}
1261 }
1262 };
1263
1264
1265 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1266 {
1267 unsigned int speed;
1268 if (priv->link) {
1269 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1270
1271 switch (speed) {
1272 case MIIM_LXT971_SR2_10HDX:
1273 priv->speed = 10;
1274 priv->duplexity = 0;
1275 break;
1276 case MIIM_LXT971_SR2_10FDX:
1277 priv->speed = 10;
1278 priv->duplexity = 1;
1279 break;
1280 case MIIM_LXT971_SR2_100HDX:
1281 priv->speed = 100;
1282 priv->duplexity = 0;
1283 break;
1284 default:
1285 priv->speed = 100;
1286 priv->duplexity = 1;
1287 }
1288 } else {
1289 priv->speed = 0;
1290 priv->duplexity = 0;
1291 }
1292
1293 return 0;
1294 }
1295
1296 static struct phy_info phy_info_lxt971 = {
1297 0x0001378e,
1298 "LXT971",
1299 4,
1300 (struct phy_cmd[]){ /* config */
1301 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1302 {miim_end,}
1303 },
1304 (struct phy_cmd[]){ /* startup - enable interrupts */
1305 /* { 0x12, 0x00f2, NULL }, */
1306 {MIIM_STATUS, miim_read, NULL},
1307 {MIIM_STATUS, miim_read, &mii_parse_sr},
1308 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1309 {miim_end,}
1310 },
1311 (struct phy_cmd[]){ /* shutdown - disable interrupts */
1312 {miim_end,}
1313 },
1314 };
1315
1316 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1317 * information
1318 */
1319 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1320 {
1321 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1322
1323 case MIIM_DP83865_SPD_1000:
1324 priv->speed = 1000;
1325 break;
1326
1327 case MIIM_DP83865_SPD_100:
1328 priv->speed = 100;
1329 break;
1330
1331 default:
1332 priv->speed = 10;
1333 break;
1334
1335 }
1336
1337 if (mii_reg & MIIM_DP83865_DPX_FULL)
1338 priv->duplexity = 1;
1339 else
1340 priv->duplexity = 0;
1341
1342 return 0;
1343 }
1344
1345 struct phy_info phy_info_dp83865 = {
1346 0x20005c7,
1347 "NatSemi DP83865",
1348 4,
1349 (struct phy_cmd[]){ /* config */
1350 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1351 {miim_end,}
1352 },
1353 (struct phy_cmd[]){ /* startup */
1354 /* Status is read once to clear old link state */
1355 {MIIM_STATUS, miim_read, NULL},
1356 /* Auto-negotiate */
1357 {MIIM_STATUS, miim_read, &mii_parse_sr},
1358 /* Read the link and auto-neg status */
1359 {MIIM_DP83865_LANR, miim_read,
1360 &mii_parse_dp83865_lanr},
1361 {miim_end,}
1362 },
1363 (struct phy_cmd[]){ /* shutdown */
1364 {miim_end,}
1365 },
1366 };
1367
1368 struct phy_info *phy_info[] = {
1369 &phy_info_cis8204,
1370 &phy_info_cis8201,
1371 &phy_info_BCM5461S,
1372 &phy_info_BCM5464S,
1373 &phy_info_M88E1011S,
1374 &phy_info_M88E1111S,
1375 &phy_info_M88E1145,
1376 &phy_info_M88E1149S,
1377 &phy_info_dm9161,
1378 &phy_info_lxt971,
1379 &phy_info_VSC8244,
1380 &phy_info_dp83865,
1381 &phy_info_generic,
1382 NULL
1383 };
1384
1385 /* Grab the identifier of the device's PHY, and search through
1386 * all of the known PHYs to see if one matches. If so, return
1387 * it, if not, return NULL
1388 */
1389 struct phy_info *get_phy_info(struct eth_device *dev)
1390 {
1391 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1392 uint phy_reg, phy_ID;
1393 int i;
1394 struct phy_info *theInfo = NULL;
1395
1396 /* Grab the bits from PHYIR1, and put them in the upper half */
1397 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1398 phy_ID = (phy_reg & 0xffff) << 16;
1399
1400 /* Grab the bits from PHYIR2, and put them in the lower half */
1401 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1402 phy_ID |= (phy_reg & 0xffff);
1403
1404 /* loop through all the known PHY types, and find one that */
1405 /* matches the ID we read from the PHY. */
1406 for (i = 0; phy_info[i]; i++) {
1407 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1408 theInfo = phy_info[i];
1409 break;
1410 }
1411 }
1412
1413 if (theInfo == NULL) {
1414 printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1415 return NULL;
1416 } else {
1417 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1418 }
1419
1420 return theInfo;
1421 }
1422
1423 /* Execute the given series of commands on the given device's
1424 * PHY, running functions as necessary
1425 */
1426 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1427 {
1428 int i;
1429 uint result;
1430 volatile tsec_t *phyregs = priv->phyregs;
1431
1432 phyregs->miimcfg = MIIMCFG_RESET;
1433
1434 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1435
1436 while (phyregs->miimind & MIIMIND_BUSY) ;
1437
1438 for (i = 0; cmd->mii_reg != miim_end; i++) {
1439 if (cmd->mii_data == miim_read) {
1440 result = read_phy_reg(priv, cmd->mii_reg);
1441
1442 if (cmd->funct != NULL)
1443 (*(cmd->funct)) (result, priv);
1444
1445 } else {
1446 if (cmd->funct != NULL)
1447 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1448 else
1449 result = cmd->mii_data;
1450
1451 write_phy_reg(priv, cmd->mii_reg, result);
1452
1453 }
1454 cmd++;
1455 }
1456 }
1457
1458 /* Relocate the function pointers in the phy cmd lists */
1459 static void relocate_cmds(void)
1460 {
1461 struct phy_cmd **cmdlistptr;
1462 struct phy_cmd *cmd;
1463 int i, j, k;
1464
1465 for (i = 0; phy_info[i]; i++) {
1466 /* First thing's first: relocate the pointers to the
1467 * PHY command structures (the structs were done) */
1468 phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1469 + gd->reloc_off);
1470 phy_info[i]->name += gd->reloc_off;
1471 phy_info[i]->config =
1472 (struct phy_cmd *)((uint) phy_info[i]->config
1473 + gd->reloc_off);
1474 phy_info[i]->startup =
1475 (struct phy_cmd *)((uint) phy_info[i]->startup
1476 + gd->reloc_off);
1477 phy_info[i]->shutdown =
1478 (struct phy_cmd *)((uint) phy_info[i]->shutdown
1479 + gd->reloc_off);
1480
1481 cmdlistptr = &phy_info[i]->config;
1482 j = 0;
1483 for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1484 k = 0;
1485 for (cmd = *cmdlistptr;
1486 cmd->mii_reg != miim_end;
1487 cmd++) {
1488 /* Only relocate non-NULL pointers */
1489 if (cmd->funct)
1490 cmd->funct += gd->reloc_off;
1491
1492 k++;
1493 }
1494 j++;
1495 }
1496 }
1497
1498 relocated = 1;
1499 }
1500
1501 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1502 && !defined(BITBANGMII)
1503
1504 /*
1505 * Read a MII PHY register.
1506 *
1507 * Returns:
1508 * 0 on success
1509 */
1510 static int tsec_miiphy_read(char *devname, unsigned char addr,
1511 unsigned char reg, unsigned short *value)
1512 {
1513 unsigned short ret;
1514 struct tsec_private *priv = privlist[0];
1515
1516 if (NULL == priv) {
1517 printf("Can't read PHY at address %d\n", addr);
1518 return -1;
1519 }
1520
1521 ret = (unsigned short)read_any_phy_reg(priv, addr, reg);
1522 *value = ret;
1523
1524 return 0;
1525 }
1526
1527 /*
1528 * Write a MII PHY register.
1529 *
1530 * Returns:
1531 * 0 on success
1532 */
1533 static int tsec_miiphy_write(char *devname, unsigned char addr,
1534 unsigned char reg, unsigned short value)
1535 {
1536 struct tsec_private *priv = privlist[0];
1537
1538 if (NULL == priv) {
1539 printf("Can't write PHY at address %d\n", addr);
1540 return -1;
1541 }
1542
1543 write_any_phy_reg(priv, addr, reg, value);
1544
1545 return 0;
1546 }
1547
1548 #endif
1549
1550 #ifdef CONFIG_MCAST_TFTP
1551
1552 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1553
1554 /* Set the appropriate hash bit for the given addr */
1555
1556 /* The algorithm works like so:
1557 * 1) Take the Destination Address (ie the multicast address), and
1558 * do a CRC on it (little endian), and reverse the bits of the
1559 * result.
1560 * 2) Use the 8 most significant bits as a hash into a 256-entry
1561 * table. The table is controlled through 8 32-bit registers:
1562 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1563 * gaddr7. This means that the 3 most significant bits in the
1564 * hash index which gaddr register to use, and the 5 other bits
1565 * indicate which bit (assuming an IBM numbering scheme, which
1566 * for PowerPC (tm) is usually the case) in the tregister holds
1567 * the entry. */
1568 static int
1569 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1570 {
1571 struct tsec_private *priv = privlist[1];
1572 volatile tsec_t *regs = priv->regs;
1573 volatile u32 *reg_array, value;
1574 u8 result, whichbit, whichreg;
1575
1576 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1577 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1578 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1579 value = (1 << (31-whichbit));
1580
1581 reg_array = &(regs->hash.gaddr0);
1582
1583 if (set) {
1584 reg_array[whichreg] |= value;
1585 } else {
1586 reg_array[whichreg] &= ~value;
1587 }
1588 return 0;
1589 }
1590 #endif /* Multicast TFTP ? */
1591
1592 #endif /* CONFIG_TSEC_ENET */