]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
Pass in tsec_info struct through tsec_initialize
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20
21 #include "miiphy.h"
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 #define TX_BUF_CNT 2
26
27 static uint rxIdx; /* index of the current RX buffer */
28 static uint txIdx; /* index of the current TX buffer */
29
30 typedef volatile struct rtxbd {
31 txbd8_t txbd[TX_BUF_CNT];
32 rxbd8_t rxbd[PKTBUFSRX];
33 } RTXBD;
34
35 #define MAXCONTROLLERS (8)
36
37 static int relocated = 0;
38
39 static struct tsec_private *privlist[MAXCONTROLLERS];
40 static int num_tsecs = 0;
41
42 #ifdef __GNUC__
43 static RTXBD rtx __attribute__ ((aligned(8)));
44 #else
45 #error "rtx must be 64-bit aligned"
46 #endif
47
48 static int tsec_send(struct eth_device *dev,
49 volatile void *packet, int length);
50 static int tsec_recv(struct eth_device *dev);
51 static int tsec_init(struct eth_device *dev, bd_t * bd);
52 static void tsec_halt(struct eth_device *dev);
53 static void init_registers(volatile tsec_t * regs);
54 static void startup_tsec(struct eth_device *dev);
55 static int init_phy(struct eth_device *dev);
56 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
57 uint read_phy_reg(struct tsec_private *priv, uint regnum);
58 struct phy_info *get_phy_info(struct eth_device *dev);
59 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
60 static void adjust_link(struct eth_device *dev);
61 static void relocate_cmds(void);
62 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
63 && !defined(BITBANGMII)
64 static int tsec_miiphy_write(char *devname, unsigned char addr,
65 unsigned char reg, unsigned short value);
66 static int tsec_miiphy_read(char *devname, unsigned char addr,
67 unsigned char reg, unsigned short *value);
68 #endif
69 #ifdef CONFIG_MCAST_TFTP
70 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
71 #endif
72
73 /* Default initializations for TSEC controllers. */
74
75 static struct tsec_info_struct tsec_info[] = {
76 #ifdef CONFIG_TSEC1
77 STD_TSEC_INFO(1), /* TSEC1 */
78 #endif
79 #ifdef CONFIG_TSEC2
80 STD_TSEC_INFO(2), /* TSEC2 */
81 #endif
82 #ifdef CONFIG_MPC85XX_FEC
83 {
84 .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
85 .miiregs = (tsec_t *)(TSEC_BASE_ADDR),
86 .devname = CONFIG_MPC85XX_FEC_NAME,
87 .phyaddr = FEC_PHY_ADDR,
88 .flags = FEC_FLAGS
89 }, /* FEC */
90 #endif
91 #ifdef CONFIG_TSEC3
92 STD_TSEC_INFO(3), /* TSEC3 */
93 #endif
94 #ifdef CONFIG_TSEC4
95 STD_TSEC_INFO(4), /* TSEC4 */
96 #endif
97 };
98
99 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
100 {
101 int i;
102
103 for (i = 0; i < num; i++)
104 tsec_initialize(bis, &tsecs[i]);
105
106 return 0;
107 }
108
109 int tsec_standard_init(bd_t *bis)
110 {
111 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
112 }
113
114 /* Initialize device structure. Returns success if PHY
115 * initialization succeeded (i.e. if it recognizes the PHY)
116 */
117 int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info)
118 {
119 struct eth_device *dev;
120 int i;
121 struct tsec_private *priv;
122
123 dev = (struct eth_device *)malloc(sizeof *dev);
124
125 if (NULL == dev)
126 return 0;
127
128 memset(dev, 0, sizeof *dev);
129
130 priv = (struct tsec_private *)malloc(sizeof(*priv));
131
132 if (NULL == priv)
133 return 0;
134
135 privlist[num_tsecs++] = priv;
136 priv->regs = tsec_info->regs;
137 priv->phyregs = tsec_info->miiregs;
138
139 priv->phyaddr = tsec_info->phyaddr;
140 priv->flags = tsec_info->flags;
141
142 sprintf(dev->name, tsec_info->devname);
143 dev->iobase = 0;
144 dev->priv = priv;
145 dev->init = tsec_init;
146 dev->halt = tsec_halt;
147 dev->send = tsec_send;
148 dev->recv = tsec_recv;
149 #ifdef CONFIG_MCAST_TFTP
150 dev->mcast = tsec_mcast_addr;
151 #endif
152
153 /* Tell u-boot to get the addr from the env */
154 for (i = 0; i < 6; i++)
155 dev->enetaddr[i] = 0;
156
157 eth_register(dev);
158
159 /* Reset the MAC */
160 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
161 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
162
163 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
164 && !defined(BITBANGMII)
165 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
166 #endif
167
168 /* Try to initialize PHY here, and return */
169 return init_phy(dev);
170 }
171
172 /* Initializes data structures and registers for the controller,
173 * and brings the interface up. Returns the link status, meaning
174 * that it returns success if the link is up, failure otherwise.
175 * This allows u-boot to find the first active controller.
176 */
177 int tsec_init(struct eth_device *dev, bd_t * bd)
178 {
179 uint tempval;
180 char tmpbuf[MAC_ADDR_LEN];
181 int i;
182 struct tsec_private *priv = (struct tsec_private *)dev->priv;
183 volatile tsec_t *regs = priv->regs;
184
185 /* Make sure the controller is stopped */
186 tsec_halt(dev);
187
188 /* Init MACCFG2. Defaults to GMII */
189 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
190
191 /* Init ECNTRL */
192 regs->ecntrl = ECNTRL_INIT_SETTINGS;
193
194 /* Copy the station address into the address registers.
195 * Backwards, because little endian MACS are dumb */
196 for (i = 0; i < MAC_ADDR_LEN; i++) {
197 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
198 }
199 regs->macstnaddr1 = *((uint *) (tmpbuf));
200
201 tempval = *((uint *) (tmpbuf + 4));
202
203 regs->macstnaddr2 = tempval;
204
205 /* reset the indices to zero */
206 rxIdx = 0;
207 txIdx = 0;
208
209 /* Clear out (for the most part) the other registers */
210 init_registers(regs);
211
212 /* Ready the device for tx/rx */
213 startup_tsec(dev);
214
215 /* If there's no link, fail */
216 return (priv->link ? 0 : -1);
217 }
218
219 /* Write value to the device's PHY through the registers
220 * specified in priv, modifying the register specified in regnum.
221 * It will wait for the write to be done (or for a timeout to
222 * expire) before exiting
223 */
224 void write_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum, uint value)
225 {
226 volatile tsec_t *regbase = priv->phyregs;
227 int timeout = 1000000;
228
229 regbase->miimadd = (phyid << 8) | regnum;
230 regbase->miimcon = value;
231 asm("sync");
232
233 timeout = 1000000;
234 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
235 }
236
237 /* #define to provide old write_phy_reg functionality without duplicating code */
238 #define write_phy_reg(priv, regnum, value) write_any_phy_reg(priv,priv->phyaddr,regnum,value)
239
240 /* Reads register regnum on the device's PHY through the
241 * registers specified in priv. It lowers and raises the read
242 * command, and waits for the data to become valid (miimind
243 * notvalid bit cleared), and the bus to cease activity (miimind
244 * busy bit cleared), and then returns the value
245 */
246 uint read_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum)
247 {
248 uint value;
249 volatile tsec_t *regbase = priv->phyregs;
250
251 /* Put the address of the phy, and the register
252 * number into MIIMADD */
253 regbase->miimadd = (phyid << 8) | regnum;
254
255 /* Clear the command register, and wait */
256 regbase->miimcom = 0;
257 asm("sync");
258
259 /* Initiate a read command, and wait */
260 regbase->miimcom = MIIM_READ_COMMAND;
261 asm("sync");
262
263 /* Wait for the the indication that the read is done */
264 while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
265
266 /* Grab the value read from the PHY */
267 value = regbase->miimstat;
268
269 return value;
270 }
271
272 /* #define to provide old read_phy_reg functionality without duplicating code */
273 #define read_phy_reg(priv,regnum) read_any_phy_reg(priv,priv->phyaddr,regnum)
274
275 /* Discover which PHY is attached to the device, and configure it
276 * properly. If the PHY is not recognized, then return 0
277 * (failure). Otherwise, return 1
278 */
279 static int init_phy(struct eth_device *dev)
280 {
281 struct tsec_private *priv = (struct tsec_private *)dev->priv;
282 struct phy_info *curphy;
283 volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
284
285 /* Assign a Physical address to the TBI */
286 regs->tbipa = CFG_TBIPA_VALUE;
287 regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
288 regs->tbipa = CFG_TBIPA_VALUE;
289 asm("sync");
290
291 /* Reset MII (due to new addresses) */
292 priv->phyregs->miimcfg = MIIMCFG_RESET;
293 asm("sync");
294 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
295 asm("sync");
296 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
297
298 if (0 == relocated)
299 relocate_cmds();
300
301 /* Get the cmd structure corresponding to the attached
302 * PHY */
303 curphy = get_phy_info(dev);
304
305 if (curphy == NULL) {
306 priv->phyinfo = NULL;
307 printf("%s: No PHY found\n", dev->name);
308
309 return 0;
310 }
311
312 priv->phyinfo = curphy;
313
314 phy_run_commands(priv, priv->phyinfo->config);
315
316 return 1;
317 }
318
319 /*
320 * Returns which value to write to the control register.
321 * For 10/100, the value is slightly different
322 */
323 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
324 {
325 if (priv->flags & TSEC_GIGABIT)
326 return MIIM_CONTROL_INIT;
327 else
328 return MIIM_CR_INIT;
329 }
330
331 /* Parse the status register for link, and then do
332 * auto-negotiation
333 */
334 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
335 {
336 /*
337 * Wait if the link is up, and autonegotiation is in progress
338 * (ie - we're capable and it's not done)
339 */
340 mii_reg = read_phy_reg(priv, MIIM_STATUS);
341 if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
342 && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
343 int i = 0;
344
345 puts("Waiting for PHY auto negotiation to complete");
346 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
347 /*
348 * Timeout reached ?
349 */
350 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
351 puts(" TIMEOUT !\n");
352 priv->link = 0;
353 return 0;
354 }
355
356 if ((i++ % 1000) == 0) {
357 putc('.');
358 }
359 udelay(1000); /* 1 ms */
360 mii_reg = read_phy_reg(priv, MIIM_STATUS);
361 }
362 puts(" done\n");
363 priv->link = 1;
364 udelay(500000); /* another 500 ms (results in faster booting) */
365 } else {
366 if (mii_reg & MIIM_STATUS_LINK)
367 priv->link = 1;
368 else
369 priv->link = 0;
370 }
371
372 return 0;
373 }
374
375 /* Generic function which updates the speed and duplex. If
376 * autonegotiation is enabled, it uses the AND of the link
377 * partner's advertised capabilities and our advertised
378 * capabilities. If autonegotiation is disabled, we use the
379 * appropriate bits in the control register.
380 *
381 * Stolen from Linux's mii.c and phy_device.c
382 */
383 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
384 {
385 /* We're using autonegotiation */
386 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
387 uint lpa = 0;
388 uint gblpa = 0;
389
390 /* Check for gigabit capability */
391 if (mii_reg & PHY_BMSR_EXT) {
392 /* We want a list of states supported by
393 * both PHYs in the link
394 */
395 gblpa = read_phy_reg(priv, PHY_1000BTSR);
396 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
397 }
398
399 /* Set the baseline so we only have to set them
400 * if they're different
401 */
402 priv->speed = 10;
403 priv->duplexity = 0;
404
405 /* Check the gigabit fields */
406 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
407 priv->speed = 1000;
408
409 if (gblpa & PHY_1000BTSR_1000FD)
410 priv->duplexity = 1;
411
412 /* We're done! */
413 return 0;
414 }
415
416 lpa = read_phy_reg(priv, PHY_ANAR);
417 lpa &= read_phy_reg(priv, PHY_ANLPAR);
418
419 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
420 priv->speed = 100;
421
422 if (lpa & PHY_ANLPAR_TXFD)
423 priv->duplexity = 1;
424
425 } else if (lpa & PHY_ANLPAR_10FD)
426 priv->duplexity = 1;
427 } else {
428 uint bmcr = read_phy_reg(priv, PHY_BMCR);
429
430 priv->speed = 10;
431 priv->duplexity = 0;
432
433 if (bmcr & PHY_BMCR_DPLX)
434 priv->duplexity = 1;
435
436 if (bmcr & PHY_BMCR_1000_MBPS)
437 priv->speed = 1000;
438 else if (bmcr & PHY_BMCR_100_MBPS)
439 priv->speed = 100;
440 }
441
442 return 0;
443 }
444
445 /*
446 * Parse the BCM54xx status register for speed and duplex information.
447 * The linux sungem_phy has this information, but in a table format.
448 */
449 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
450 {
451
452 switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
453
454 case 1:
455 printf("Enet starting in 10BT/HD\n");
456 priv->duplexity = 0;
457 priv->speed = 10;
458 break;
459
460 case 2:
461 printf("Enet starting in 10BT/FD\n");
462 priv->duplexity = 1;
463 priv->speed = 10;
464 break;
465
466 case 3:
467 printf("Enet starting in 100BT/HD\n");
468 priv->duplexity = 0;
469 priv->speed = 100;
470 break;
471
472 case 5:
473 printf("Enet starting in 100BT/FD\n");
474 priv->duplexity = 1;
475 priv->speed = 100;
476 break;
477
478 case 6:
479 printf("Enet starting in 1000BT/HD\n");
480 priv->duplexity = 0;
481 priv->speed = 1000;
482 break;
483
484 case 7:
485 printf("Enet starting in 1000BT/FD\n");
486 priv->duplexity = 1;
487 priv->speed = 1000;
488 break;
489
490 default:
491 printf("Auto-neg error, defaulting to 10BT/HD\n");
492 priv->duplexity = 0;
493 priv->speed = 10;
494 break;
495 }
496
497 return 0;
498
499 }
500 /* Parse the 88E1011's status register for speed and duplex
501 * information
502 */
503 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
504 {
505 uint speed;
506
507 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
508
509 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
510 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
511 int i = 0;
512
513 puts("Waiting for PHY realtime link");
514 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
515 /* Timeout reached ? */
516 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
517 puts(" TIMEOUT !\n");
518 priv->link = 0;
519 break;
520 }
521
522 if ((i++ % 1000) == 0) {
523 putc('.');
524 }
525 udelay(1000); /* 1 ms */
526 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
527 }
528 puts(" done\n");
529 udelay(500000); /* another 500 ms (results in faster booting) */
530 } else {
531 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
532 priv->link = 1;
533 else
534 priv->link = 0;
535 }
536
537 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
538 priv->duplexity = 1;
539 else
540 priv->duplexity = 0;
541
542 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
543
544 switch (speed) {
545 case MIIM_88E1011_PHYSTAT_GBIT:
546 priv->speed = 1000;
547 break;
548 case MIIM_88E1011_PHYSTAT_100:
549 priv->speed = 100;
550 break;
551 default:
552 priv->speed = 10;
553 }
554
555 return 0;
556 }
557
558 /* Parse the RTL8211B's status register for speed and duplex
559 * information
560 */
561 uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
562 {
563 uint speed;
564
565 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
566 if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
567 int i = 0;
568
569 /* in case of timeout ->link is cleared */
570 priv->link = 1;
571 puts("Waiting for PHY realtime link");
572 while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
573 /* Timeout reached ? */
574 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
575 puts(" TIMEOUT !\n");
576 priv->link = 0;
577 break;
578 }
579
580 if ((i++ % 1000) == 0) {
581 putc('.');
582 }
583 udelay(1000); /* 1 ms */
584 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
585 }
586 puts(" done\n");
587 udelay(500000); /* another 500 ms (results in faster booting) */
588 } else {
589 if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
590 priv->link = 1;
591 else
592 priv->link = 0;
593 }
594
595 if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
596 priv->duplexity = 1;
597 else
598 priv->duplexity = 0;
599
600 speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
601
602 switch (speed) {
603 case MIIM_RTL8211B_PHYSTAT_GBIT:
604 priv->speed = 1000;
605 break;
606 case MIIM_RTL8211B_PHYSTAT_100:
607 priv->speed = 100;
608 break;
609 default:
610 priv->speed = 10;
611 }
612
613 return 0;
614 }
615
616 /* Parse the cis8201's status register for speed and duplex
617 * information
618 */
619 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
620 {
621 uint speed;
622
623 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
624 priv->duplexity = 1;
625 else
626 priv->duplexity = 0;
627
628 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
629 switch (speed) {
630 case MIIM_CIS8201_AUXCONSTAT_GBIT:
631 priv->speed = 1000;
632 break;
633 case MIIM_CIS8201_AUXCONSTAT_100:
634 priv->speed = 100;
635 break;
636 default:
637 priv->speed = 10;
638 break;
639 }
640
641 return 0;
642 }
643
644 /* Parse the vsc8244's status register for speed and duplex
645 * information
646 */
647 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
648 {
649 uint speed;
650
651 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
652 priv->duplexity = 1;
653 else
654 priv->duplexity = 0;
655
656 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
657 switch (speed) {
658 case MIIM_VSC8244_AUXCONSTAT_GBIT:
659 priv->speed = 1000;
660 break;
661 case MIIM_VSC8244_AUXCONSTAT_100:
662 priv->speed = 100;
663 break;
664 default:
665 priv->speed = 10;
666 break;
667 }
668
669 return 0;
670 }
671
672 /* Parse the DM9161's status register for speed and duplex
673 * information
674 */
675 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
676 {
677 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
678 priv->speed = 100;
679 else
680 priv->speed = 10;
681
682 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
683 priv->duplexity = 1;
684 else
685 priv->duplexity = 0;
686
687 return 0;
688 }
689
690 /*
691 * Hack to write all 4 PHYs with the LED values
692 */
693 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
694 {
695 uint phyid;
696 volatile tsec_t *regbase = priv->phyregs;
697 int timeout = 1000000;
698
699 for (phyid = 0; phyid < 4; phyid++) {
700 regbase->miimadd = (phyid << 8) | mii_reg;
701 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
702 asm("sync");
703
704 timeout = 1000000;
705 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
706 }
707
708 return MIIM_CIS8204_SLEDCON_INIT;
709 }
710
711 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
712 {
713 if (priv->flags & TSEC_REDUCED)
714 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
715 else
716 return MIIM_CIS8204_EPHYCON_INIT;
717 }
718
719 uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
720 {
721 uint mii_data = read_phy_reg(priv, mii_reg);
722
723 if (priv->flags & TSEC_REDUCED)
724 mii_data = (mii_data & 0xfff0) | 0x000b;
725 return mii_data;
726 }
727
728 /* Initialized required registers to appropriate values, zeroing
729 * those we don't care about (unless zero is bad, in which case,
730 * choose a more appropriate value)
731 */
732 static void init_registers(volatile tsec_t * regs)
733 {
734 /* Clear IEVENT */
735 regs->ievent = IEVENT_INIT_CLEAR;
736
737 regs->imask = IMASK_INIT_CLEAR;
738
739 regs->hash.iaddr0 = 0;
740 regs->hash.iaddr1 = 0;
741 regs->hash.iaddr2 = 0;
742 regs->hash.iaddr3 = 0;
743 regs->hash.iaddr4 = 0;
744 regs->hash.iaddr5 = 0;
745 regs->hash.iaddr6 = 0;
746 regs->hash.iaddr7 = 0;
747
748 regs->hash.gaddr0 = 0;
749 regs->hash.gaddr1 = 0;
750 regs->hash.gaddr2 = 0;
751 regs->hash.gaddr3 = 0;
752 regs->hash.gaddr4 = 0;
753 regs->hash.gaddr5 = 0;
754 regs->hash.gaddr6 = 0;
755 regs->hash.gaddr7 = 0;
756
757 regs->rctrl = 0x00000000;
758
759 /* Init RMON mib registers */
760 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
761
762 regs->rmon.cam1 = 0xffffffff;
763 regs->rmon.cam2 = 0xffffffff;
764
765 regs->mrblr = MRBLR_INIT_SETTINGS;
766
767 regs->minflr = MINFLR_INIT_SETTINGS;
768
769 regs->attr = ATTR_INIT_SETTINGS;
770 regs->attreli = ATTRELI_INIT_SETTINGS;
771
772 }
773
774 /* Configure maccfg2 based on negotiated speed and duplex
775 * reported by PHY handling code
776 */
777 static void adjust_link(struct eth_device *dev)
778 {
779 struct tsec_private *priv = (struct tsec_private *)dev->priv;
780 volatile tsec_t *regs = priv->regs;
781
782 if (priv->link) {
783 if (priv->duplexity != 0)
784 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
785 else
786 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
787
788 switch (priv->speed) {
789 case 1000:
790 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
791 | MACCFG2_GMII);
792 break;
793 case 100:
794 case 10:
795 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
796 | MACCFG2_MII);
797
798 /* Set R100 bit in all modes although
799 * it is only used in RGMII mode
800 */
801 if (priv->speed == 100)
802 regs->ecntrl |= ECNTRL_R100;
803 else
804 regs->ecntrl &= ~(ECNTRL_R100);
805 break;
806 default:
807 printf("%s: Speed was bad\n", dev->name);
808 break;
809 }
810
811 printf("Speed: %d, %s duplex\n", priv->speed,
812 (priv->duplexity) ? "full" : "half");
813
814 } else {
815 printf("%s: No link.\n", dev->name);
816 }
817 }
818
819 /* Set up the buffers and their descriptors, and bring up the
820 * interface
821 */
822 static void startup_tsec(struct eth_device *dev)
823 {
824 int i;
825 struct tsec_private *priv = (struct tsec_private *)dev->priv;
826 volatile tsec_t *regs = priv->regs;
827
828 /* Point to the buffer descriptors */
829 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
830 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
831
832 /* Initialize the Rx Buffer descriptors */
833 for (i = 0; i < PKTBUFSRX; i++) {
834 rtx.rxbd[i].status = RXBD_EMPTY;
835 rtx.rxbd[i].length = 0;
836 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
837 }
838 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
839
840 /* Initialize the TX Buffer Descriptors */
841 for (i = 0; i < TX_BUF_CNT; i++) {
842 rtx.txbd[i].status = 0;
843 rtx.txbd[i].length = 0;
844 rtx.txbd[i].bufPtr = 0;
845 }
846 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
847
848 /* Start up the PHY */
849 if(priv->phyinfo)
850 phy_run_commands(priv, priv->phyinfo->startup);
851
852 adjust_link(dev);
853
854 /* Enable Transmit and Receive */
855 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
856
857 /* Tell the DMA it is clear to go */
858 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
859 regs->tstat = TSTAT_CLEAR_THALT;
860 regs->rstat = RSTAT_CLEAR_RHALT;
861 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
862 }
863
864 /* This returns the status bits of the device. The return value
865 * is never checked, and this is what the 8260 driver did, so we
866 * do the same. Presumably, this would be zero if there were no
867 * errors
868 */
869 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
870 {
871 int i;
872 int result = 0;
873 struct tsec_private *priv = (struct tsec_private *)dev->priv;
874 volatile tsec_t *regs = priv->regs;
875
876 /* Find an empty buffer descriptor */
877 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
878 if (i >= TOUT_LOOP) {
879 debug("%s: tsec: tx buffers full\n", dev->name);
880 return result;
881 }
882 }
883
884 rtx.txbd[txIdx].bufPtr = (uint) packet;
885 rtx.txbd[txIdx].length = length;
886 rtx.txbd[txIdx].status |=
887 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
888
889 /* Tell the DMA to go */
890 regs->tstat = TSTAT_CLEAR_THALT;
891
892 /* Wait for buffer to be transmitted */
893 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
894 if (i >= TOUT_LOOP) {
895 debug("%s: tsec: tx error\n", dev->name);
896 return result;
897 }
898 }
899
900 txIdx = (txIdx + 1) % TX_BUF_CNT;
901 result = rtx.txbd[txIdx].status & TXBD_STATS;
902
903 return result;
904 }
905
906 static int tsec_recv(struct eth_device *dev)
907 {
908 int length;
909 struct tsec_private *priv = (struct tsec_private *)dev->priv;
910 volatile tsec_t *regs = priv->regs;
911
912 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
913
914 length = rtx.rxbd[rxIdx].length;
915
916 /* Send the packet up if there were no errors */
917 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
918 NetReceive(NetRxPackets[rxIdx], length - 4);
919 } else {
920 printf("Got error %x\n",
921 (rtx.rxbd[rxIdx].status & RXBD_STATS));
922 }
923
924 rtx.rxbd[rxIdx].length = 0;
925
926 /* Set the wrap bit if this is the last element in the list */
927 rtx.rxbd[rxIdx].status =
928 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
929
930 rxIdx = (rxIdx + 1) % PKTBUFSRX;
931 }
932
933 if (regs->ievent & IEVENT_BSY) {
934 regs->ievent = IEVENT_BSY;
935 regs->rstat = RSTAT_CLEAR_RHALT;
936 }
937
938 return -1;
939
940 }
941
942 /* Stop the interface */
943 static void tsec_halt(struct eth_device *dev)
944 {
945 struct tsec_private *priv = (struct tsec_private *)dev->priv;
946 volatile tsec_t *regs = priv->regs;
947
948 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
949 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
950
951 while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
952
953 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
954
955 /* Shut down the PHY, as needed */
956 if(priv->phyinfo)
957 phy_run_commands(priv, priv->phyinfo->shutdown);
958 }
959
960 struct phy_info phy_info_M88E1149S = {
961 0x1410ca,
962 "Marvell 88E1149S",
963 4,
964 (struct phy_cmd[]){ /* config */
965 /* Reset and configure the PHY */
966 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
967 {0x1d, 0x1f, NULL},
968 {0x1e, 0x200c, NULL},
969 {0x1d, 0x5, NULL},
970 {0x1e, 0x0, NULL},
971 {0x1e, 0x100, NULL},
972 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
973 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
974 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
975 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
976 {miim_end,}
977 },
978 (struct phy_cmd[]){ /* startup */
979 /* Status is read once to clear old link state */
980 {MIIM_STATUS, miim_read, NULL},
981 /* Auto-negotiate */
982 {MIIM_STATUS, miim_read, &mii_parse_sr},
983 /* Read the status */
984 {MIIM_88E1011_PHY_STATUS, miim_read,
985 &mii_parse_88E1011_psr},
986 {miim_end,}
987 },
988 (struct phy_cmd[]){ /* shutdown */
989 {miim_end,}
990 },
991 };
992
993 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
994 struct phy_info phy_info_BCM5461S = {
995 0x02060c1, /* 5461 ID */
996 "Broadcom BCM5461S",
997 0, /* not clear to me what minor revisions we can shift away */
998 (struct phy_cmd[]) { /* config */
999 /* Reset and configure the PHY */
1000 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1001 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1002 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1003 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1004 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1005 {miim_end,}
1006 },
1007 (struct phy_cmd[]) { /* startup */
1008 /* Status is read once to clear old link state */
1009 {MIIM_STATUS, miim_read, NULL},
1010 /* Auto-negotiate */
1011 {MIIM_STATUS, miim_read, &mii_parse_sr},
1012 /* Read the status */
1013 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1014 {miim_end,}
1015 },
1016 (struct phy_cmd[]) { /* shutdown */
1017 {miim_end,}
1018 },
1019 };
1020
1021 struct phy_info phy_info_BCM5464S = {
1022 0x02060b1, /* 5464 ID */
1023 "Broadcom BCM5464S",
1024 0, /* not clear to me what minor revisions we can shift away */
1025 (struct phy_cmd[]) { /* config */
1026 /* Reset and configure the PHY */
1027 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1028 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1029 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1030 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1031 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1032 {miim_end,}
1033 },
1034 (struct phy_cmd[]) { /* startup */
1035 /* Status is read once to clear old link state */
1036 {MIIM_STATUS, miim_read, NULL},
1037 /* Auto-negotiate */
1038 {MIIM_STATUS, miim_read, &mii_parse_sr},
1039 /* Read the status */
1040 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1041 {miim_end,}
1042 },
1043 (struct phy_cmd[]) { /* shutdown */
1044 {miim_end,}
1045 },
1046 };
1047
1048 struct phy_info phy_info_M88E1011S = {
1049 0x01410c6,
1050 "Marvell 88E1011S",
1051 4,
1052 (struct phy_cmd[]){ /* config */
1053 /* Reset and configure the PHY */
1054 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1055 {0x1d, 0x1f, NULL},
1056 {0x1e, 0x200c, NULL},
1057 {0x1d, 0x5, NULL},
1058 {0x1e, 0x0, NULL},
1059 {0x1e, 0x100, NULL},
1060 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1061 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1062 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1063 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1064 {miim_end,}
1065 },
1066 (struct phy_cmd[]){ /* startup */
1067 /* Status is read once to clear old link state */
1068 {MIIM_STATUS, miim_read, NULL},
1069 /* Auto-negotiate */
1070 {MIIM_STATUS, miim_read, &mii_parse_sr},
1071 /* Read the status */
1072 {MIIM_88E1011_PHY_STATUS, miim_read,
1073 &mii_parse_88E1011_psr},
1074 {miim_end,}
1075 },
1076 (struct phy_cmd[]){ /* shutdown */
1077 {miim_end,}
1078 },
1079 };
1080
1081 struct phy_info phy_info_M88E1111S = {
1082 0x01410cc,
1083 "Marvell 88E1111S",
1084 4,
1085 (struct phy_cmd[]){ /* config */
1086 /* Reset and configure the PHY */
1087 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1088 {0x1b, 0x848f, &mii_m88e1111s_setmode},
1089 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1090 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1091 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1092 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1093 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1094 {miim_end,}
1095 },
1096 (struct phy_cmd[]){ /* startup */
1097 /* Status is read once to clear old link state */
1098 {MIIM_STATUS, miim_read, NULL},
1099 /* Auto-negotiate */
1100 {MIIM_STATUS, miim_read, &mii_parse_sr},
1101 /* Read the status */
1102 {MIIM_88E1011_PHY_STATUS, miim_read,
1103 &mii_parse_88E1011_psr},
1104 {miim_end,}
1105 },
1106 (struct phy_cmd[]){ /* shutdown */
1107 {miim_end,}
1108 },
1109 };
1110
1111 struct phy_info phy_info_M88E1118 = {
1112 0x01410e1,
1113 "Marvell 88E1118",
1114 4,
1115 (struct phy_cmd[]){ /* config */
1116 /* Reset and configure the PHY */
1117 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1118 {0x16, 0x0002, NULL}, /* Change Page Number */
1119 {0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1120 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1121 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1122 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1123 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1124 {miim_end,}
1125 },
1126 (struct phy_cmd[]){ /* startup */
1127 {0x16, 0x0000, NULL}, /* Change Page Number */
1128 /* Status is read once to clear old link state */
1129 {MIIM_STATUS, miim_read, NULL},
1130 /* Auto-negotiate */
1131 /* Read the status */
1132 {MIIM_88E1011_PHY_STATUS, miim_read,
1133 &mii_parse_88E1011_psr},
1134 {miim_end,}
1135 },
1136 (struct phy_cmd[]){ /* shutdown */
1137 {miim_end,}
1138 },
1139 };
1140
1141 /*
1142 * Since to access LED register we need do switch the page, we
1143 * do LED configuring in the miim_read-like function as follows
1144 */
1145 uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv)
1146 {
1147 uint pg;
1148
1149 /* Switch the page to access the led register */
1150 pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE);
1151 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE);
1152
1153 /* Configure leds */
1154 write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL,
1155 MIIM_88E1121_PHY_LED_DEF);
1156
1157 /* Restore the page pointer */
1158 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg);
1159 return 0;
1160 }
1161
1162 struct phy_info phy_info_M88E1121R = {
1163 0x01410cb,
1164 "Marvell 88E1121R",
1165 4,
1166 (struct phy_cmd[]){ /* config */
1167 /* Reset and configure the PHY */
1168 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1169 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1170 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1171 /* Configure leds */
1172 {MIIM_88E1121_PHY_LED_CTRL, miim_read,
1173 &mii_88E1121_set_led},
1174 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1175 {miim_end,}
1176 },
1177 (struct phy_cmd[]){ /* startup */
1178 /* Status is read once to clear old link state */
1179 {MIIM_STATUS, miim_read, NULL},
1180 {MIIM_STATUS, miim_read, &mii_parse_sr},
1181 {MIIM_STATUS, miim_read, &mii_parse_link},
1182 {miim_end,}
1183 },
1184 (struct phy_cmd[]){ /* shutdown */
1185 {miim_end,}
1186 },
1187 };
1188
1189 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1190 {
1191 uint mii_data = read_phy_reg(priv, mii_reg);
1192
1193 /* Setting MIIM_88E1145_PHY_EXT_CR */
1194 if (priv->flags & TSEC_REDUCED)
1195 return mii_data |
1196 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1197 else
1198 return mii_data;
1199 }
1200
1201 static struct phy_info phy_info_M88E1145 = {
1202 0x01410cd,
1203 "Marvell 88E1145",
1204 4,
1205 (struct phy_cmd[]){ /* config */
1206 /* Reset the PHY */
1207 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1208
1209 /* Errata E0, E1 */
1210 {29, 0x001b, NULL},
1211 {30, 0x418f, NULL},
1212 {29, 0x0016, NULL},
1213 {30, 0xa2da, NULL},
1214
1215 /* Configure the PHY */
1216 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1217 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1218 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1219 NULL},
1220 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1221 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1222 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1223 {miim_end,}
1224 },
1225 (struct phy_cmd[]){ /* startup */
1226 /* Status is read once to clear old link state */
1227 {MIIM_STATUS, miim_read, NULL},
1228 /* Auto-negotiate */
1229 {MIIM_STATUS, miim_read, &mii_parse_sr},
1230 {MIIM_88E1111_PHY_LED_CONTROL,
1231 MIIM_88E1111_PHY_LED_DIRECT, NULL},
1232 /* Read the Status */
1233 {MIIM_88E1011_PHY_STATUS, miim_read,
1234 &mii_parse_88E1011_psr},
1235 {miim_end,}
1236 },
1237 (struct phy_cmd[]){ /* shutdown */
1238 {miim_end,}
1239 },
1240 };
1241
1242 struct phy_info phy_info_cis8204 = {
1243 0x3f11,
1244 "Cicada Cis8204",
1245 6,
1246 (struct phy_cmd[]){ /* config */
1247 /* Override PHY config settings */
1248 {MIIM_CIS8201_AUX_CONSTAT,
1249 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1250 /* Configure some basic stuff */
1251 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1252 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1253 &mii_cis8204_fixled},
1254 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1255 &mii_cis8204_setmode},
1256 {miim_end,}
1257 },
1258 (struct phy_cmd[]){ /* startup */
1259 /* Read the Status (2x to make sure link is right) */
1260 {MIIM_STATUS, miim_read, NULL},
1261 /* Auto-negotiate */
1262 {MIIM_STATUS, miim_read, &mii_parse_sr},
1263 /* Read the status */
1264 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1265 &mii_parse_cis8201},
1266 {miim_end,}
1267 },
1268 (struct phy_cmd[]){ /* shutdown */
1269 {miim_end,}
1270 },
1271 };
1272
1273 /* Cicada 8201 */
1274 struct phy_info phy_info_cis8201 = {
1275 0xfc41,
1276 "CIS8201",
1277 4,
1278 (struct phy_cmd[]){ /* config */
1279 /* Override PHY config settings */
1280 {MIIM_CIS8201_AUX_CONSTAT,
1281 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1282 /* Set up the interface mode */
1283 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1284 NULL},
1285 /* Configure some basic stuff */
1286 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1287 {miim_end,}
1288 },
1289 (struct phy_cmd[]){ /* startup */
1290 /* Read the Status (2x to make sure link is right) */
1291 {MIIM_STATUS, miim_read, NULL},
1292 /* Auto-negotiate */
1293 {MIIM_STATUS, miim_read, &mii_parse_sr},
1294 /* Read the status */
1295 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1296 &mii_parse_cis8201},
1297 {miim_end,}
1298 },
1299 (struct phy_cmd[]){ /* shutdown */
1300 {miim_end,}
1301 },
1302 };
1303 struct phy_info phy_info_VSC8244 = {
1304 0x3f1b,
1305 "Vitesse VSC8244",
1306 6,
1307 (struct phy_cmd[]){ /* config */
1308 /* Override PHY config settings */
1309 /* Configure some basic stuff */
1310 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1311 {miim_end,}
1312 },
1313 (struct phy_cmd[]){ /* startup */
1314 /* Read the Status (2x to make sure link is right) */
1315 {MIIM_STATUS, miim_read, NULL},
1316 /* Auto-negotiate */
1317 {MIIM_STATUS, miim_read, &mii_parse_sr},
1318 /* Read the status */
1319 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1320 &mii_parse_vsc8244},
1321 {miim_end,}
1322 },
1323 (struct phy_cmd[]){ /* shutdown */
1324 {miim_end,}
1325 },
1326 };
1327
1328 struct phy_info phy_info_VSC8601 = {
1329 0x00007042,
1330 "Vitesse VSC8601",
1331 4,
1332 (struct phy_cmd[]){ /* config */
1333 /* Override PHY config settings */
1334 /* Configure some basic stuff */
1335 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1336 #ifdef CFG_VSC8601_SKEWFIX
1337 {MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1338 #if defined(CFG_VSC8601_SKEW_TX) && defined(CFG_VSC8601_SKEW_RX)
1339 {MIIM_EXT_PAGE_ACCESS,1,NULL},
1340 #define VSC8101_SKEW (CFG_VSC8601_SKEW_TX<<14)|(CFG_VSC8601_SKEW_RX<<12)
1341 {MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1342 {MIIM_EXT_PAGE_ACCESS,0,NULL},
1343 #endif
1344 #endif
1345 {miim_end,}
1346 },
1347 (struct phy_cmd[]){ /* startup */
1348 /* Read the Status (2x to make sure link is right) */
1349 {MIIM_STATUS, miim_read, NULL},
1350 /* Auto-negotiate */
1351 {MIIM_STATUS, miim_read, &mii_parse_sr},
1352 /* Read the status */
1353 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1354 &mii_parse_vsc8244},
1355 {miim_end,}
1356 },
1357 (struct phy_cmd[]){ /* shutdown */
1358 {miim_end,}
1359 },
1360 };
1361
1362
1363 struct phy_info phy_info_dm9161 = {
1364 0x0181b88,
1365 "Davicom DM9161E",
1366 4,
1367 (struct phy_cmd[]){ /* config */
1368 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1369 /* Do not bypass the scrambler/descrambler */
1370 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1371 /* Clear 10BTCSR to default */
1372 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1373 NULL},
1374 /* Configure some basic stuff */
1375 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1376 /* Restart Auto Negotiation */
1377 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1378 {miim_end,}
1379 },
1380 (struct phy_cmd[]){ /* startup */
1381 /* Status is read once to clear old link state */
1382 {MIIM_STATUS, miim_read, NULL},
1383 /* Auto-negotiate */
1384 {MIIM_STATUS, miim_read, &mii_parse_sr},
1385 /* Read the status */
1386 {MIIM_DM9161_SCSR, miim_read,
1387 &mii_parse_dm9161_scsr},
1388 {miim_end,}
1389 },
1390 (struct phy_cmd[]){ /* shutdown */
1391 {miim_end,}
1392 },
1393 };
1394 /* a generic flavor. */
1395 struct phy_info phy_info_generic = {
1396 0,
1397 "Unknown/Generic PHY",
1398 32,
1399 (struct phy_cmd[]) { /* config */
1400 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1401 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1402 {miim_end,}
1403 },
1404 (struct phy_cmd[]) { /* startup */
1405 {PHY_BMSR, miim_read, NULL},
1406 {PHY_BMSR, miim_read, &mii_parse_sr},
1407 {PHY_BMSR, miim_read, &mii_parse_link},
1408 {miim_end,}
1409 },
1410 (struct phy_cmd[]) { /* shutdown */
1411 {miim_end,}
1412 }
1413 };
1414
1415
1416 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1417 {
1418 unsigned int speed;
1419 if (priv->link) {
1420 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1421
1422 switch (speed) {
1423 case MIIM_LXT971_SR2_10HDX:
1424 priv->speed = 10;
1425 priv->duplexity = 0;
1426 break;
1427 case MIIM_LXT971_SR2_10FDX:
1428 priv->speed = 10;
1429 priv->duplexity = 1;
1430 break;
1431 case MIIM_LXT971_SR2_100HDX:
1432 priv->speed = 100;
1433 priv->duplexity = 0;
1434 break;
1435 default:
1436 priv->speed = 100;
1437 priv->duplexity = 1;
1438 }
1439 } else {
1440 priv->speed = 0;
1441 priv->duplexity = 0;
1442 }
1443
1444 return 0;
1445 }
1446
1447 static struct phy_info phy_info_lxt971 = {
1448 0x0001378e,
1449 "LXT971",
1450 4,
1451 (struct phy_cmd[]){ /* config */
1452 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1453 {miim_end,}
1454 },
1455 (struct phy_cmd[]){ /* startup - enable interrupts */
1456 /* { 0x12, 0x00f2, NULL }, */
1457 {MIIM_STATUS, miim_read, NULL},
1458 {MIIM_STATUS, miim_read, &mii_parse_sr},
1459 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1460 {miim_end,}
1461 },
1462 (struct phy_cmd[]){ /* shutdown - disable interrupts */
1463 {miim_end,}
1464 },
1465 };
1466
1467 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1468 * information
1469 */
1470 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1471 {
1472 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1473
1474 case MIIM_DP83865_SPD_1000:
1475 priv->speed = 1000;
1476 break;
1477
1478 case MIIM_DP83865_SPD_100:
1479 priv->speed = 100;
1480 break;
1481
1482 default:
1483 priv->speed = 10;
1484 break;
1485
1486 }
1487
1488 if (mii_reg & MIIM_DP83865_DPX_FULL)
1489 priv->duplexity = 1;
1490 else
1491 priv->duplexity = 0;
1492
1493 return 0;
1494 }
1495
1496 struct phy_info phy_info_dp83865 = {
1497 0x20005c7,
1498 "NatSemi DP83865",
1499 4,
1500 (struct phy_cmd[]){ /* config */
1501 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1502 {miim_end,}
1503 },
1504 (struct phy_cmd[]){ /* startup */
1505 /* Status is read once to clear old link state */
1506 {MIIM_STATUS, miim_read, NULL},
1507 /* Auto-negotiate */
1508 {MIIM_STATUS, miim_read, &mii_parse_sr},
1509 /* Read the link and auto-neg status */
1510 {MIIM_DP83865_LANR, miim_read,
1511 &mii_parse_dp83865_lanr},
1512 {miim_end,}
1513 },
1514 (struct phy_cmd[]){ /* shutdown */
1515 {miim_end,}
1516 },
1517 };
1518
1519 struct phy_info phy_info_rtl8211b = {
1520 0x001cc91,
1521 "RealTek RTL8211B",
1522 4,
1523 (struct phy_cmd[]){ /* config */
1524 /* Reset and configure the PHY */
1525 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1526 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1527 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1528 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1529 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1530 {miim_end,}
1531 },
1532 (struct phy_cmd[]){ /* startup */
1533 /* Status is read once to clear old link state */
1534 {MIIM_STATUS, miim_read, NULL},
1535 /* Auto-negotiate */
1536 {MIIM_STATUS, miim_read, &mii_parse_sr},
1537 /* Read the status */
1538 {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1539 {miim_end,}
1540 },
1541 (struct phy_cmd[]){ /* shutdown */
1542 {miim_end,}
1543 },
1544 };
1545
1546 struct phy_info *phy_info[] = {
1547 &phy_info_cis8204,
1548 &phy_info_cis8201,
1549 &phy_info_BCM5461S,
1550 &phy_info_BCM5464S,
1551 &phy_info_M88E1011S,
1552 &phy_info_M88E1111S,
1553 &phy_info_M88E1118,
1554 &phy_info_M88E1121R,
1555 &phy_info_M88E1145,
1556 &phy_info_M88E1149S,
1557 &phy_info_dm9161,
1558 &phy_info_lxt971,
1559 &phy_info_VSC8244,
1560 &phy_info_VSC8601,
1561 &phy_info_dp83865,
1562 &phy_info_rtl8211b,
1563 &phy_info_generic,
1564 NULL
1565 };
1566
1567 /* Grab the identifier of the device's PHY, and search through
1568 * all of the known PHYs to see if one matches. If so, return
1569 * it, if not, return NULL
1570 */
1571 struct phy_info *get_phy_info(struct eth_device *dev)
1572 {
1573 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1574 uint phy_reg, phy_ID;
1575 int i;
1576 struct phy_info *theInfo = NULL;
1577
1578 /* Grab the bits from PHYIR1, and put them in the upper half */
1579 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1580 phy_ID = (phy_reg & 0xffff) << 16;
1581
1582 /* Grab the bits from PHYIR2, and put them in the lower half */
1583 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1584 phy_ID |= (phy_reg & 0xffff);
1585
1586 /* loop through all the known PHY types, and find one that */
1587 /* matches the ID we read from the PHY. */
1588 for (i = 0; phy_info[i]; i++) {
1589 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1590 theInfo = phy_info[i];
1591 break;
1592 }
1593 }
1594
1595 if (theInfo == NULL) {
1596 printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1597 return NULL;
1598 } else {
1599 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1600 }
1601
1602 return theInfo;
1603 }
1604
1605 /* Execute the given series of commands on the given device's
1606 * PHY, running functions as necessary
1607 */
1608 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1609 {
1610 int i;
1611 uint result;
1612 volatile tsec_t *phyregs = priv->phyregs;
1613
1614 phyregs->miimcfg = MIIMCFG_RESET;
1615
1616 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1617
1618 while (phyregs->miimind & MIIMIND_BUSY) ;
1619
1620 for (i = 0; cmd->mii_reg != miim_end; i++) {
1621 if (cmd->mii_data == miim_read) {
1622 result = read_phy_reg(priv, cmd->mii_reg);
1623
1624 if (cmd->funct != NULL)
1625 (*(cmd->funct)) (result, priv);
1626
1627 } else {
1628 if (cmd->funct != NULL)
1629 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1630 else
1631 result = cmd->mii_data;
1632
1633 write_phy_reg(priv, cmd->mii_reg, result);
1634
1635 }
1636 cmd++;
1637 }
1638 }
1639
1640 /* Relocate the function pointers in the phy cmd lists */
1641 static void relocate_cmds(void)
1642 {
1643 struct phy_cmd **cmdlistptr;
1644 struct phy_cmd *cmd;
1645 int i, j, k;
1646
1647 for (i = 0; phy_info[i]; i++) {
1648 /* First thing's first: relocate the pointers to the
1649 * PHY command structures (the structs were done) */
1650 phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1651 + gd->reloc_off);
1652 phy_info[i]->name += gd->reloc_off;
1653 phy_info[i]->config =
1654 (struct phy_cmd *)((uint) phy_info[i]->config
1655 + gd->reloc_off);
1656 phy_info[i]->startup =
1657 (struct phy_cmd *)((uint) phy_info[i]->startup
1658 + gd->reloc_off);
1659 phy_info[i]->shutdown =
1660 (struct phy_cmd *)((uint) phy_info[i]->shutdown
1661 + gd->reloc_off);
1662
1663 cmdlistptr = &phy_info[i]->config;
1664 j = 0;
1665 for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1666 k = 0;
1667 for (cmd = *cmdlistptr;
1668 cmd->mii_reg != miim_end;
1669 cmd++) {
1670 /* Only relocate non-NULL pointers */
1671 if (cmd->funct)
1672 cmd->funct += gd->reloc_off;
1673
1674 k++;
1675 }
1676 j++;
1677 }
1678 }
1679
1680 relocated = 1;
1681 }
1682
1683 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1684 && !defined(BITBANGMII)
1685
1686 /*
1687 * Read a MII PHY register.
1688 *
1689 * Returns:
1690 * 0 on success
1691 */
1692 static int tsec_miiphy_read(char *devname, unsigned char addr,
1693 unsigned char reg, unsigned short *value)
1694 {
1695 unsigned short ret;
1696 struct tsec_private *priv = privlist[0];
1697
1698 if (NULL == priv) {
1699 printf("Can't read PHY at address %d\n", addr);
1700 return -1;
1701 }
1702
1703 ret = (unsigned short)read_any_phy_reg(priv, addr, reg);
1704 *value = ret;
1705
1706 return 0;
1707 }
1708
1709 /*
1710 * Write a MII PHY register.
1711 *
1712 * Returns:
1713 * 0 on success
1714 */
1715 static int tsec_miiphy_write(char *devname, unsigned char addr,
1716 unsigned char reg, unsigned short value)
1717 {
1718 struct tsec_private *priv = privlist[0];
1719
1720 if (NULL == priv) {
1721 printf("Can't write PHY at address %d\n", addr);
1722 return -1;
1723 }
1724
1725 write_any_phy_reg(priv, addr, reg, value);
1726
1727 return 0;
1728 }
1729
1730 #endif
1731
1732 #ifdef CONFIG_MCAST_TFTP
1733
1734 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1735
1736 /* Set the appropriate hash bit for the given addr */
1737
1738 /* The algorithm works like so:
1739 * 1) Take the Destination Address (ie the multicast address), and
1740 * do a CRC on it (little endian), and reverse the bits of the
1741 * result.
1742 * 2) Use the 8 most significant bits as a hash into a 256-entry
1743 * table. The table is controlled through 8 32-bit registers:
1744 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1745 * gaddr7. This means that the 3 most significant bits in the
1746 * hash index which gaddr register to use, and the 5 other bits
1747 * indicate which bit (assuming an IBM numbering scheme, which
1748 * for PowerPC (tm) is usually the case) in the tregister holds
1749 * the entry. */
1750 static int
1751 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1752 {
1753 struct tsec_private *priv = privlist[1];
1754 volatile tsec_t *regs = priv->regs;
1755 volatile u32 *reg_array, value;
1756 u8 result, whichbit, whichreg;
1757
1758 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1759 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1760 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1761 value = (1 << (31-whichbit));
1762
1763 reg_array = &(regs->hash.gaddr0);
1764
1765 if (set) {
1766 reg_array[whichreg] |= value;
1767 } else {
1768 reg_array[whichreg] &= ~value;
1769 }
1770 return 0;
1771 }
1772 #endif /* Multicast TFTP ? */