]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
Merge branch 'master' of git://git.denx.de/u-boot-mpc83xx
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20
21 #include "miiphy.h"
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 #define TX_BUF_CNT 2
26
27 static uint rxIdx; /* index of the current RX buffer */
28 static uint txIdx; /* index of the current TX buffer */
29
30 typedef volatile struct rtxbd {
31 txbd8_t txbd[TX_BUF_CNT];
32 rxbd8_t rxbd[PKTBUFSRX];
33 } RTXBD;
34
35 #define MAXCONTROLLERS (8)
36
37 static int relocated = 0;
38
39 static struct tsec_private *privlist[MAXCONTROLLERS];
40 static int num_tsecs = 0;
41
42 #ifdef __GNUC__
43 static RTXBD rtx __attribute__ ((aligned(8)));
44 #else
45 #error "rtx must be 64-bit aligned"
46 #endif
47
48 static int tsec_send(struct eth_device *dev,
49 volatile void *packet, int length);
50 static int tsec_recv(struct eth_device *dev);
51 static int tsec_init(struct eth_device *dev, bd_t * bd);
52 static void tsec_halt(struct eth_device *dev);
53 static void init_registers(volatile tsec_t * regs);
54 static void startup_tsec(struct eth_device *dev);
55 static int init_phy(struct eth_device *dev);
56 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
57 uint read_phy_reg(struct tsec_private *priv, uint regnum);
58 struct phy_info *get_phy_info(struct eth_device *dev);
59 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
60 static void adjust_link(struct eth_device *dev);
61 static void relocate_cmds(void);
62 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
63 && !defined(BITBANGMII)
64 static int tsec_miiphy_write(char *devname, unsigned char addr,
65 unsigned char reg, unsigned short value);
66 static int tsec_miiphy_read(char *devname, unsigned char addr,
67 unsigned char reg, unsigned short *value);
68 #endif
69 #ifdef CONFIG_MCAST_TFTP
70 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
71 #endif
72
73 /* Default initializations for TSEC controllers. */
74
75 static struct tsec_info_struct tsec_info[] = {
76 #ifdef CONFIG_TSEC1
77 STD_TSEC_INFO(1), /* TSEC1 */
78 #endif
79 #ifdef CONFIG_TSEC2
80 STD_TSEC_INFO(2), /* TSEC2 */
81 #endif
82 #ifdef CONFIG_MPC85XX_FEC
83 {
84 .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
85 .miiregs = (tsec_t *)(TSEC_BASE_ADDR),
86 .devname = CONFIG_MPC85XX_FEC_NAME,
87 .phyaddr = FEC_PHY_ADDR,
88 .flags = FEC_FLAGS
89 }, /* FEC */
90 #endif
91 #ifdef CONFIG_TSEC3
92 STD_TSEC_INFO(3), /* TSEC3 */
93 #endif
94 #ifdef CONFIG_TSEC4
95 STD_TSEC_INFO(4), /* TSEC4 */
96 #endif
97 };
98
99 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
100 {
101 int i;
102
103 for (i = 0; i < num; i++)
104 tsec_initialize(bis, &tsecs[i]);
105
106 return 0;
107 }
108
109 int tsec_standard_init(bd_t *bis)
110 {
111 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
112 }
113
114 /* Initialize device structure. Returns success if PHY
115 * initialization succeeded (i.e. if it recognizes the PHY)
116 */
117 int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info)
118 {
119 struct eth_device *dev;
120 int i;
121 struct tsec_private *priv;
122
123 dev = (struct eth_device *)malloc(sizeof *dev);
124
125 if (NULL == dev)
126 return 0;
127
128 memset(dev, 0, sizeof *dev);
129
130 priv = (struct tsec_private *)malloc(sizeof(*priv));
131
132 if (NULL == priv)
133 return 0;
134
135 privlist[num_tsecs++] = priv;
136 priv->regs = tsec_info->regs;
137 priv->phyregs = tsec_info->miiregs;
138
139 priv->phyaddr = tsec_info->phyaddr;
140 priv->flags = tsec_info->flags;
141
142 sprintf(dev->name, tsec_info->devname);
143 dev->iobase = 0;
144 dev->priv = priv;
145 dev->init = tsec_init;
146 dev->halt = tsec_halt;
147 dev->send = tsec_send;
148 dev->recv = tsec_recv;
149 #ifdef CONFIG_MCAST_TFTP
150 dev->mcast = tsec_mcast_addr;
151 #endif
152
153 /* Tell u-boot to get the addr from the env */
154 for (i = 0; i < 6; i++)
155 dev->enetaddr[i] = 0;
156
157 eth_register(dev);
158
159 /* Reset the MAC */
160 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
161 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
162
163 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
164 && !defined(BITBANGMII)
165 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
166 #endif
167
168 /* Try to initialize PHY here, and return */
169 return init_phy(dev);
170 }
171
172 /* Initializes data structures and registers for the controller,
173 * and brings the interface up. Returns the link status, meaning
174 * that it returns success if the link is up, failure otherwise.
175 * This allows u-boot to find the first active controller.
176 */
177 int tsec_init(struct eth_device *dev, bd_t * bd)
178 {
179 uint tempval;
180 char tmpbuf[MAC_ADDR_LEN];
181 int i;
182 struct tsec_private *priv = (struct tsec_private *)dev->priv;
183 volatile tsec_t *regs = priv->regs;
184
185 /* Make sure the controller is stopped */
186 tsec_halt(dev);
187
188 /* Init MACCFG2. Defaults to GMII */
189 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
190
191 /* Init ECNTRL */
192 regs->ecntrl = ECNTRL_INIT_SETTINGS;
193
194 /* Copy the station address into the address registers.
195 * Backwards, because little endian MACS are dumb */
196 for (i = 0; i < MAC_ADDR_LEN; i++) {
197 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
198 }
199 regs->macstnaddr1 = *((uint *) (tmpbuf));
200
201 tempval = *((uint *) (tmpbuf + 4));
202
203 regs->macstnaddr2 = tempval;
204
205 /* reset the indices to zero */
206 rxIdx = 0;
207 txIdx = 0;
208
209 /* Clear out (for the most part) the other registers */
210 init_registers(regs);
211
212 /* Ready the device for tx/rx */
213 startup_tsec(dev);
214
215 /* If there's no link, fail */
216 return (priv->link ? 0 : -1);
217 }
218
219 /* Writes the given phy's reg with value, using the specified MDIO regs */
220 static void tsec_local_mdio_write(volatile tsec_t *phyregs, uint addr,
221 uint reg, uint value)
222 {
223 int timeout = 1000000;
224
225 phyregs->miimadd = (addr << 8) | reg;
226 phyregs->miimcon = value;
227 asm("sync");
228
229 timeout = 1000000;
230 while ((phyregs->miimind & MIIMIND_BUSY) && timeout--) ;
231 }
232
233
234 /* Provide the default behavior of writing the PHY of this ethernet device */
235 #define write_phy_reg(priv, regnum, value) tsec_local_mdio_write(priv->phyregs,priv->phyaddr,regnum,value)
236
237 /* Reads register regnum on the device's PHY through the
238 * specified registers. It lowers and raises the read
239 * command, and waits for the data to become valid (miimind
240 * notvalid bit cleared), and the bus to cease activity (miimind
241 * busy bit cleared), and then returns the value
242 */
243 uint tsec_local_mdio_read(volatile tsec_t *phyregs, uint phyid, uint regnum)
244 {
245 uint value;
246
247 /* Put the address of the phy, and the register
248 * number into MIIMADD */
249 phyregs->miimadd = (phyid << 8) | regnum;
250
251 /* Clear the command register, and wait */
252 phyregs->miimcom = 0;
253 asm("sync");
254
255 /* Initiate a read command, and wait */
256 phyregs->miimcom = MIIM_READ_COMMAND;
257 asm("sync");
258
259 /* Wait for the the indication that the read is done */
260 while ((phyregs->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
261
262 /* Grab the value read from the PHY */
263 value = phyregs->miimstat;
264
265 return value;
266 }
267
268 /* #define to provide old read_phy_reg functionality without duplicating code */
269 #define read_phy_reg(priv,regnum) tsec_local_mdio_read(priv->phyregs,priv->phyaddr,regnum)
270
271 #define TBIANA_SETTINGS ( \
272 TBIANA_ASYMMETRIC_PAUSE \
273 | TBIANA_SYMMETRIC_PAUSE \
274 | TBIANA_FULL_DUPLEX \
275 )
276
277 #define TBICR_SETTINGS ( \
278 TBICR_PHY_RESET \
279 | TBICR_ANEG_ENABLE \
280 | TBICR_FULL_DUPLEX \
281 | TBICR_SPEED1_SET \
282 )
283 /* Configure the TBI for SGMII operation */
284 static void tsec_configure_serdes(struct tsec_private *priv)
285 {
286 tsec_local_mdio_write(priv->phyregs, CFG_TBIPA_VALUE, TBI_ANA,
287 TBIANA_SETTINGS);
288 tsec_local_mdio_write(priv->phyregs, CFG_TBIPA_VALUE, TBI_TBICON,
289 TBICON_CLK_SELECT);
290 tsec_local_mdio_write(priv->phyregs, CFG_TBIPA_VALUE, TBI_CR,
291 TBICR_SETTINGS);
292 }
293
294 /* Discover which PHY is attached to the device, and configure it
295 * properly. If the PHY is not recognized, then return 0
296 * (failure). Otherwise, return 1
297 */
298 static int init_phy(struct eth_device *dev)
299 {
300 struct tsec_private *priv = (struct tsec_private *)dev->priv;
301 struct phy_info *curphy;
302 volatile tsec_t *phyregs = priv->phyregs;
303 volatile tsec_t *regs = priv->regs;
304
305 /* Assign a Physical address to the TBI */
306 regs->tbipa = CFG_TBIPA_VALUE;
307 phyregs->tbipa = CFG_TBIPA_VALUE;
308 asm("sync");
309
310 /* Reset MII (due to new addresses) */
311 priv->phyregs->miimcfg = MIIMCFG_RESET;
312 asm("sync");
313 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
314 asm("sync");
315 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
316
317 if (0 == relocated)
318 relocate_cmds();
319
320 /* Get the cmd structure corresponding to the attached
321 * PHY */
322 curphy = get_phy_info(dev);
323
324 if (curphy == NULL) {
325 priv->phyinfo = NULL;
326 printf("%s: No PHY found\n", dev->name);
327
328 return 0;
329 }
330
331 if (regs->ecntrl & ECNTRL_SGMII_MODE)
332 tsec_configure_serdes(priv);
333
334 priv->phyinfo = curphy;
335
336 phy_run_commands(priv, priv->phyinfo->config);
337
338 return 1;
339 }
340
341 /*
342 * Returns which value to write to the control register.
343 * For 10/100, the value is slightly different
344 */
345 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
346 {
347 if (priv->flags & TSEC_GIGABIT)
348 return MIIM_CONTROL_INIT;
349 else
350 return MIIM_CR_INIT;
351 }
352
353 /* Parse the status register for link, and then do
354 * auto-negotiation
355 */
356 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
357 {
358 /*
359 * Wait if the link is up, and autonegotiation is in progress
360 * (ie - we're capable and it's not done)
361 */
362 mii_reg = read_phy_reg(priv, MIIM_STATUS);
363 if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
364 && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
365 int i = 0;
366
367 puts("Waiting for PHY auto negotiation to complete");
368 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
369 /*
370 * Timeout reached ?
371 */
372 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
373 puts(" TIMEOUT !\n");
374 priv->link = 0;
375 return 0;
376 }
377
378 if ((i++ % 1000) == 0) {
379 putc('.');
380 }
381 udelay(1000); /* 1 ms */
382 mii_reg = read_phy_reg(priv, MIIM_STATUS);
383 }
384 puts(" done\n");
385 priv->link = 1;
386 udelay(500000); /* another 500 ms (results in faster booting) */
387 } else {
388 if (mii_reg & MIIM_STATUS_LINK)
389 priv->link = 1;
390 else
391 priv->link = 0;
392 }
393
394 return 0;
395 }
396
397 /* Generic function which updates the speed and duplex. If
398 * autonegotiation is enabled, it uses the AND of the link
399 * partner's advertised capabilities and our advertised
400 * capabilities. If autonegotiation is disabled, we use the
401 * appropriate bits in the control register.
402 *
403 * Stolen from Linux's mii.c and phy_device.c
404 */
405 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
406 {
407 /* We're using autonegotiation */
408 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
409 uint lpa = 0;
410 uint gblpa = 0;
411
412 /* Check for gigabit capability */
413 if (mii_reg & PHY_BMSR_EXT) {
414 /* We want a list of states supported by
415 * both PHYs in the link
416 */
417 gblpa = read_phy_reg(priv, PHY_1000BTSR);
418 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
419 }
420
421 /* Set the baseline so we only have to set them
422 * if they're different
423 */
424 priv->speed = 10;
425 priv->duplexity = 0;
426
427 /* Check the gigabit fields */
428 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
429 priv->speed = 1000;
430
431 if (gblpa & PHY_1000BTSR_1000FD)
432 priv->duplexity = 1;
433
434 /* We're done! */
435 return 0;
436 }
437
438 lpa = read_phy_reg(priv, PHY_ANAR);
439 lpa &= read_phy_reg(priv, PHY_ANLPAR);
440
441 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
442 priv->speed = 100;
443
444 if (lpa & PHY_ANLPAR_TXFD)
445 priv->duplexity = 1;
446
447 } else if (lpa & PHY_ANLPAR_10FD)
448 priv->duplexity = 1;
449 } else {
450 uint bmcr = read_phy_reg(priv, PHY_BMCR);
451
452 priv->speed = 10;
453 priv->duplexity = 0;
454
455 if (bmcr & PHY_BMCR_DPLX)
456 priv->duplexity = 1;
457
458 if (bmcr & PHY_BMCR_1000_MBPS)
459 priv->speed = 1000;
460 else if (bmcr & PHY_BMCR_100_MBPS)
461 priv->speed = 100;
462 }
463
464 return 0;
465 }
466
467 /*
468 * Parse the BCM54xx status register for speed and duplex information.
469 * The linux sungem_phy has this information, but in a table format.
470 */
471 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
472 {
473
474 switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
475
476 case 1:
477 printf("Enet starting in 10BT/HD\n");
478 priv->duplexity = 0;
479 priv->speed = 10;
480 break;
481
482 case 2:
483 printf("Enet starting in 10BT/FD\n");
484 priv->duplexity = 1;
485 priv->speed = 10;
486 break;
487
488 case 3:
489 printf("Enet starting in 100BT/HD\n");
490 priv->duplexity = 0;
491 priv->speed = 100;
492 break;
493
494 case 5:
495 printf("Enet starting in 100BT/FD\n");
496 priv->duplexity = 1;
497 priv->speed = 100;
498 break;
499
500 case 6:
501 printf("Enet starting in 1000BT/HD\n");
502 priv->duplexity = 0;
503 priv->speed = 1000;
504 break;
505
506 case 7:
507 printf("Enet starting in 1000BT/FD\n");
508 priv->duplexity = 1;
509 priv->speed = 1000;
510 break;
511
512 default:
513 printf("Auto-neg error, defaulting to 10BT/HD\n");
514 priv->duplexity = 0;
515 priv->speed = 10;
516 break;
517 }
518
519 return 0;
520
521 }
522 /* Parse the 88E1011's status register for speed and duplex
523 * information
524 */
525 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
526 {
527 uint speed;
528
529 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
530
531 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
532 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
533 int i = 0;
534
535 puts("Waiting for PHY realtime link");
536 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
537 /* Timeout reached ? */
538 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
539 puts(" TIMEOUT !\n");
540 priv->link = 0;
541 break;
542 }
543
544 if ((i++ % 1000) == 0) {
545 putc('.');
546 }
547 udelay(1000); /* 1 ms */
548 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
549 }
550 puts(" done\n");
551 udelay(500000); /* another 500 ms (results in faster booting) */
552 } else {
553 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
554 priv->link = 1;
555 else
556 priv->link = 0;
557 }
558
559 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
560 priv->duplexity = 1;
561 else
562 priv->duplexity = 0;
563
564 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
565
566 switch (speed) {
567 case MIIM_88E1011_PHYSTAT_GBIT:
568 priv->speed = 1000;
569 break;
570 case MIIM_88E1011_PHYSTAT_100:
571 priv->speed = 100;
572 break;
573 default:
574 priv->speed = 10;
575 }
576
577 return 0;
578 }
579
580 /* Parse the RTL8211B's status register for speed and duplex
581 * information
582 */
583 uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
584 {
585 uint speed;
586
587 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
588 if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
589 int i = 0;
590
591 /* in case of timeout ->link is cleared */
592 priv->link = 1;
593 puts("Waiting for PHY realtime link");
594 while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
595 /* Timeout reached ? */
596 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
597 puts(" TIMEOUT !\n");
598 priv->link = 0;
599 break;
600 }
601
602 if ((i++ % 1000) == 0) {
603 putc('.');
604 }
605 udelay(1000); /* 1 ms */
606 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
607 }
608 puts(" done\n");
609 udelay(500000); /* another 500 ms (results in faster booting) */
610 } else {
611 if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
612 priv->link = 1;
613 else
614 priv->link = 0;
615 }
616
617 if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
618 priv->duplexity = 1;
619 else
620 priv->duplexity = 0;
621
622 speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
623
624 switch (speed) {
625 case MIIM_RTL8211B_PHYSTAT_GBIT:
626 priv->speed = 1000;
627 break;
628 case MIIM_RTL8211B_PHYSTAT_100:
629 priv->speed = 100;
630 break;
631 default:
632 priv->speed = 10;
633 }
634
635 return 0;
636 }
637
638 /* Parse the cis8201's status register for speed and duplex
639 * information
640 */
641 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
642 {
643 uint speed;
644
645 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
646 priv->duplexity = 1;
647 else
648 priv->duplexity = 0;
649
650 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
651 switch (speed) {
652 case MIIM_CIS8201_AUXCONSTAT_GBIT:
653 priv->speed = 1000;
654 break;
655 case MIIM_CIS8201_AUXCONSTAT_100:
656 priv->speed = 100;
657 break;
658 default:
659 priv->speed = 10;
660 break;
661 }
662
663 return 0;
664 }
665
666 /* Parse the vsc8244's status register for speed and duplex
667 * information
668 */
669 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
670 {
671 uint speed;
672
673 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
674 priv->duplexity = 1;
675 else
676 priv->duplexity = 0;
677
678 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
679 switch (speed) {
680 case MIIM_VSC8244_AUXCONSTAT_GBIT:
681 priv->speed = 1000;
682 break;
683 case MIIM_VSC8244_AUXCONSTAT_100:
684 priv->speed = 100;
685 break;
686 default:
687 priv->speed = 10;
688 break;
689 }
690
691 return 0;
692 }
693
694 /* Parse the DM9161's status register for speed and duplex
695 * information
696 */
697 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
698 {
699 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
700 priv->speed = 100;
701 else
702 priv->speed = 10;
703
704 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
705 priv->duplexity = 1;
706 else
707 priv->duplexity = 0;
708
709 return 0;
710 }
711
712 /*
713 * Hack to write all 4 PHYs with the LED values
714 */
715 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
716 {
717 uint phyid;
718 volatile tsec_t *regbase = priv->phyregs;
719 int timeout = 1000000;
720
721 for (phyid = 0; phyid < 4; phyid++) {
722 regbase->miimadd = (phyid << 8) | mii_reg;
723 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
724 asm("sync");
725
726 timeout = 1000000;
727 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
728 }
729
730 return MIIM_CIS8204_SLEDCON_INIT;
731 }
732
733 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
734 {
735 if (priv->flags & TSEC_REDUCED)
736 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
737 else
738 return MIIM_CIS8204_EPHYCON_INIT;
739 }
740
741 uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
742 {
743 uint mii_data = read_phy_reg(priv, mii_reg);
744
745 if (priv->flags & TSEC_REDUCED)
746 mii_data = (mii_data & 0xfff0) | 0x000b;
747 return mii_data;
748 }
749
750 /* Initialized required registers to appropriate values, zeroing
751 * those we don't care about (unless zero is bad, in which case,
752 * choose a more appropriate value)
753 */
754 static void init_registers(volatile tsec_t * regs)
755 {
756 /* Clear IEVENT */
757 regs->ievent = IEVENT_INIT_CLEAR;
758
759 regs->imask = IMASK_INIT_CLEAR;
760
761 regs->hash.iaddr0 = 0;
762 regs->hash.iaddr1 = 0;
763 regs->hash.iaddr2 = 0;
764 regs->hash.iaddr3 = 0;
765 regs->hash.iaddr4 = 0;
766 regs->hash.iaddr5 = 0;
767 regs->hash.iaddr6 = 0;
768 regs->hash.iaddr7 = 0;
769
770 regs->hash.gaddr0 = 0;
771 regs->hash.gaddr1 = 0;
772 regs->hash.gaddr2 = 0;
773 regs->hash.gaddr3 = 0;
774 regs->hash.gaddr4 = 0;
775 regs->hash.gaddr5 = 0;
776 regs->hash.gaddr6 = 0;
777 regs->hash.gaddr7 = 0;
778
779 regs->rctrl = 0x00000000;
780
781 /* Init RMON mib registers */
782 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
783
784 regs->rmon.cam1 = 0xffffffff;
785 regs->rmon.cam2 = 0xffffffff;
786
787 regs->mrblr = MRBLR_INIT_SETTINGS;
788
789 regs->minflr = MINFLR_INIT_SETTINGS;
790
791 regs->attr = ATTR_INIT_SETTINGS;
792 regs->attreli = ATTRELI_INIT_SETTINGS;
793
794 }
795
796 /* Configure maccfg2 based on negotiated speed and duplex
797 * reported by PHY handling code
798 */
799 static void adjust_link(struct eth_device *dev)
800 {
801 struct tsec_private *priv = (struct tsec_private *)dev->priv;
802 volatile tsec_t *regs = priv->regs;
803
804 if (priv->link) {
805 if (priv->duplexity != 0)
806 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
807 else
808 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
809
810 switch (priv->speed) {
811 case 1000:
812 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
813 | MACCFG2_GMII);
814 break;
815 case 100:
816 case 10:
817 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
818 | MACCFG2_MII);
819
820 /* Set R100 bit in all modes although
821 * it is only used in RGMII mode
822 */
823 if (priv->speed == 100)
824 regs->ecntrl |= ECNTRL_R100;
825 else
826 regs->ecntrl &= ~(ECNTRL_R100);
827 break;
828 default:
829 printf("%s: Speed was bad\n", dev->name);
830 break;
831 }
832
833 printf("Speed: %d, %s duplex\n", priv->speed,
834 (priv->duplexity) ? "full" : "half");
835
836 } else {
837 printf("%s: No link.\n", dev->name);
838 }
839 }
840
841 /* Set up the buffers and their descriptors, and bring up the
842 * interface
843 */
844 static void startup_tsec(struct eth_device *dev)
845 {
846 int i;
847 struct tsec_private *priv = (struct tsec_private *)dev->priv;
848 volatile tsec_t *regs = priv->regs;
849
850 /* Point to the buffer descriptors */
851 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
852 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
853
854 /* Initialize the Rx Buffer descriptors */
855 for (i = 0; i < PKTBUFSRX; i++) {
856 rtx.rxbd[i].status = RXBD_EMPTY;
857 rtx.rxbd[i].length = 0;
858 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
859 }
860 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
861
862 /* Initialize the TX Buffer Descriptors */
863 for (i = 0; i < TX_BUF_CNT; i++) {
864 rtx.txbd[i].status = 0;
865 rtx.txbd[i].length = 0;
866 rtx.txbd[i].bufPtr = 0;
867 }
868 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
869
870 /* Start up the PHY */
871 if(priv->phyinfo)
872 phy_run_commands(priv, priv->phyinfo->startup);
873
874 adjust_link(dev);
875
876 /* Enable Transmit and Receive */
877 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
878
879 /* Tell the DMA it is clear to go */
880 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
881 regs->tstat = TSTAT_CLEAR_THALT;
882 regs->rstat = RSTAT_CLEAR_RHALT;
883 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
884 }
885
886 /* This returns the status bits of the device. The return value
887 * is never checked, and this is what the 8260 driver did, so we
888 * do the same. Presumably, this would be zero if there were no
889 * errors
890 */
891 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
892 {
893 int i;
894 int result = 0;
895 struct tsec_private *priv = (struct tsec_private *)dev->priv;
896 volatile tsec_t *regs = priv->regs;
897
898 /* Find an empty buffer descriptor */
899 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
900 if (i >= TOUT_LOOP) {
901 debug("%s: tsec: tx buffers full\n", dev->name);
902 return result;
903 }
904 }
905
906 rtx.txbd[txIdx].bufPtr = (uint) packet;
907 rtx.txbd[txIdx].length = length;
908 rtx.txbd[txIdx].status |=
909 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
910
911 /* Tell the DMA to go */
912 regs->tstat = TSTAT_CLEAR_THALT;
913
914 /* Wait for buffer to be transmitted */
915 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
916 if (i >= TOUT_LOOP) {
917 debug("%s: tsec: tx error\n", dev->name);
918 return result;
919 }
920 }
921
922 txIdx = (txIdx + 1) % TX_BUF_CNT;
923 result = rtx.txbd[txIdx].status & TXBD_STATS;
924
925 return result;
926 }
927
928 static int tsec_recv(struct eth_device *dev)
929 {
930 int length;
931 struct tsec_private *priv = (struct tsec_private *)dev->priv;
932 volatile tsec_t *regs = priv->regs;
933
934 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
935
936 length = rtx.rxbd[rxIdx].length;
937
938 /* Send the packet up if there were no errors */
939 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
940 NetReceive(NetRxPackets[rxIdx], length - 4);
941 } else {
942 printf("Got error %x\n",
943 (rtx.rxbd[rxIdx].status & RXBD_STATS));
944 }
945
946 rtx.rxbd[rxIdx].length = 0;
947
948 /* Set the wrap bit if this is the last element in the list */
949 rtx.rxbd[rxIdx].status =
950 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
951
952 rxIdx = (rxIdx + 1) % PKTBUFSRX;
953 }
954
955 if (regs->ievent & IEVENT_BSY) {
956 regs->ievent = IEVENT_BSY;
957 regs->rstat = RSTAT_CLEAR_RHALT;
958 }
959
960 return -1;
961
962 }
963
964 /* Stop the interface */
965 static void tsec_halt(struct eth_device *dev)
966 {
967 struct tsec_private *priv = (struct tsec_private *)dev->priv;
968 volatile tsec_t *regs = priv->regs;
969
970 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
971 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
972
973 while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
974
975 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
976
977 /* Shut down the PHY, as needed */
978 if(priv->phyinfo)
979 phy_run_commands(priv, priv->phyinfo->shutdown);
980 }
981
982 struct phy_info phy_info_M88E1149S = {
983 0x1410ca,
984 "Marvell 88E1149S",
985 4,
986 (struct phy_cmd[]){ /* config */
987 /* Reset and configure the PHY */
988 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
989 {0x1d, 0x1f, NULL},
990 {0x1e, 0x200c, NULL},
991 {0x1d, 0x5, NULL},
992 {0x1e, 0x0, NULL},
993 {0x1e, 0x100, NULL},
994 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
995 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
996 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
997 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
998 {miim_end,}
999 },
1000 (struct phy_cmd[]){ /* startup */
1001 /* Status is read once to clear old link state */
1002 {MIIM_STATUS, miim_read, NULL},
1003 /* Auto-negotiate */
1004 {MIIM_STATUS, miim_read, &mii_parse_sr},
1005 /* Read the status */
1006 {MIIM_88E1011_PHY_STATUS, miim_read,
1007 &mii_parse_88E1011_psr},
1008 {miim_end,}
1009 },
1010 (struct phy_cmd[]){ /* shutdown */
1011 {miim_end,}
1012 },
1013 };
1014
1015 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1016 struct phy_info phy_info_BCM5461S = {
1017 0x02060c1, /* 5461 ID */
1018 "Broadcom BCM5461S",
1019 0, /* not clear to me what minor revisions we can shift away */
1020 (struct phy_cmd[]) { /* config */
1021 /* Reset and configure the PHY */
1022 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1023 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1024 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1025 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1026 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1027 {miim_end,}
1028 },
1029 (struct phy_cmd[]) { /* startup */
1030 /* Status is read once to clear old link state */
1031 {MIIM_STATUS, miim_read, NULL},
1032 /* Auto-negotiate */
1033 {MIIM_STATUS, miim_read, &mii_parse_sr},
1034 /* Read the status */
1035 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1036 {miim_end,}
1037 },
1038 (struct phy_cmd[]) { /* shutdown */
1039 {miim_end,}
1040 },
1041 };
1042
1043 struct phy_info phy_info_BCM5464S = {
1044 0x02060b1, /* 5464 ID */
1045 "Broadcom BCM5464S",
1046 0, /* not clear to me what minor revisions we can shift away */
1047 (struct phy_cmd[]) { /* config */
1048 /* Reset and configure the PHY */
1049 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1050 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1051 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1052 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1053 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1054 {miim_end,}
1055 },
1056 (struct phy_cmd[]) { /* startup */
1057 /* Status is read once to clear old link state */
1058 {MIIM_STATUS, miim_read, NULL},
1059 /* Auto-negotiate */
1060 {MIIM_STATUS, miim_read, &mii_parse_sr},
1061 /* Read the status */
1062 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1063 {miim_end,}
1064 },
1065 (struct phy_cmd[]) { /* shutdown */
1066 {miim_end,}
1067 },
1068 };
1069
1070 struct phy_info phy_info_M88E1011S = {
1071 0x01410c6,
1072 "Marvell 88E1011S",
1073 4,
1074 (struct phy_cmd[]){ /* config */
1075 /* Reset and configure the PHY */
1076 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1077 {0x1d, 0x1f, NULL},
1078 {0x1e, 0x200c, NULL},
1079 {0x1d, 0x5, NULL},
1080 {0x1e, 0x0, NULL},
1081 {0x1e, 0x100, NULL},
1082 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1083 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1084 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1085 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1086 {miim_end,}
1087 },
1088 (struct phy_cmd[]){ /* startup */
1089 /* Status is read once to clear old link state */
1090 {MIIM_STATUS, miim_read, NULL},
1091 /* Auto-negotiate */
1092 {MIIM_STATUS, miim_read, &mii_parse_sr},
1093 /* Read the status */
1094 {MIIM_88E1011_PHY_STATUS, miim_read,
1095 &mii_parse_88E1011_psr},
1096 {miim_end,}
1097 },
1098 (struct phy_cmd[]){ /* shutdown */
1099 {miim_end,}
1100 },
1101 };
1102
1103 struct phy_info phy_info_M88E1111S = {
1104 0x01410cc,
1105 "Marvell 88E1111S",
1106 4,
1107 (struct phy_cmd[]){ /* config */
1108 /* Reset and configure the PHY */
1109 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1110 {0x1b, 0x848f, &mii_m88e1111s_setmode},
1111 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1112 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1113 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1114 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1115 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1116 {miim_end,}
1117 },
1118 (struct phy_cmd[]){ /* startup */
1119 /* Status is read once to clear old link state */
1120 {MIIM_STATUS, miim_read, NULL},
1121 /* Auto-negotiate */
1122 {MIIM_STATUS, miim_read, &mii_parse_sr},
1123 /* Read the status */
1124 {MIIM_88E1011_PHY_STATUS, miim_read,
1125 &mii_parse_88E1011_psr},
1126 {miim_end,}
1127 },
1128 (struct phy_cmd[]){ /* shutdown */
1129 {miim_end,}
1130 },
1131 };
1132
1133 struct phy_info phy_info_M88E1118 = {
1134 0x01410e1,
1135 "Marvell 88E1118",
1136 4,
1137 (struct phy_cmd[]){ /* config */
1138 /* Reset and configure the PHY */
1139 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1140 {0x16, 0x0002, NULL}, /* Change Page Number */
1141 {0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1142 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1143 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1144 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1145 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1146 {miim_end,}
1147 },
1148 (struct phy_cmd[]){ /* startup */
1149 {0x16, 0x0000, NULL}, /* Change Page Number */
1150 /* Status is read once to clear old link state */
1151 {MIIM_STATUS, miim_read, NULL},
1152 /* Auto-negotiate */
1153 /* Read the status */
1154 {MIIM_88E1011_PHY_STATUS, miim_read,
1155 &mii_parse_88E1011_psr},
1156 {miim_end,}
1157 },
1158 (struct phy_cmd[]){ /* shutdown */
1159 {miim_end,}
1160 },
1161 };
1162
1163 /*
1164 * Since to access LED register we need do switch the page, we
1165 * do LED configuring in the miim_read-like function as follows
1166 */
1167 uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv)
1168 {
1169 uint pg;
1170
1171 /* Switch the page to access the led register */
1172 pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE);
1173 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE);
1174
1175 /* Configure leds */
1176 write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL,
1177 MIIM_88E1121_PHY_LED_DEF);
1178
1179 /* Restore the page pointer */
1180 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg);
1181 return 0;
1182 }
1183
1184 struct phy_info phy_info_M88E1121R = {
1185 0x01410cb,
1186 "Marvell 88E1121R",
1187 4,
1188 (struct phy_cmd[]){ /* config */
1189 /* Reset and configure the PHY */
1190 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1191 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1192 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1193 /* Configure leds */
1194 {MIIM_88E1121_PHY_LED_CTRL, miim_read,
1195 &mii_88E1121_set_led},
1196 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1197 {miim_end,}
1198 },
1199 (struct phy_cmd[]){ /* startup */
1200 /* Status is read once to clear old link state */
1201 {MIIM_STATUS, miim_read, NULL},
1202 {MIIM_STATUS, miim_read, &mii_parse_sr},
1203 {MIIM_STATUS, miim_read, &mii_parse_link},
1204 {miim_end,}
1205 },
1206 (struct phy_cmd[]){ /* shutdown */
1207 {miim_end,}
1208 },
1209 };
1210
1211 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1212 {
1213 uint mii_data = read_phy_reg(priv, mii_reg);
1214
1215 /* Setting MIIM_88E1145_PHY_EXT_CR */
1216 if (priv->flags & TSEC_REDUCED)
1217 return mii_data |
1218 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1219 else
1220 return mii_data;
1221 }
1222
1223 static struct phy_info phy_info_M88E1145 = {
1224 0x01410cd,
1225 "Marvell 88E1145",
1226 4,
1227 (struct phy_cmd[]){ /* config */
1228 /* Reset the PHY */
1229 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1230
1231 /* Errata E0, E1 */
1232 {29, 0x001b, NULL},
1233 {30, 0x418f, NULL},
1234 {29, 0x0016, NULL},
1235 {30, 0xa2da, NULL},
1236
1237 /* Configure the PHY */
1238 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1239 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1240 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1241 NULL},
1242 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1243 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1244 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1245 {miim_end,}
1246 },
1247 (struct phy_cmd[]){ /* startup */
1248 /* Status is read once to clear old link state */
1249 {MIIM_STATUS, miim_read, NULL},
1250 /* Auto-negotiate */
1251 {MIIM_STATUS, miim_read, &mii_parse_sr},
1252 {MIIM_88E1111_PHY_LED_CONTROL,
1253 MIIM_88E1111_PHY_LED_DIRECT, NULL},
1254 /* Read the Status */
1255 {MIIM_88E1011_PHY_STATUS, miim_read,
1256 &mii_parse_88E1011_psr},
1257 {miim_end,}
1258 },
1259 (struct phy_cmd[]){ /* shutdown */
1260 {miim_end,}
1261 },
1262 };
1263
1264 struct phy_info phy_info_cis8204 = {
1265 0x3f11,
1266 "Cicada Cis8204",
1267 6,
1268 (struct phy_cmd[]){ /* config */
1269 /* Override PHY config settings */
1270 {MIIM_CIS8201_AUX_CONSTAT,
1271 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1272 /* Configure some basic stuff */
1273 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1274 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1275 &mii_cis8204_fixled},
1276 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1277 &mii_cis8204_setmode},
1278 {miim_end,}
1279 },
1280 (struct phy_cmd[]){ /* startup */
1281 /* Read the Status (2x to make sure link is right) */
1282 {MIIM_STATUS, miim_read, NULL},
1283 /* Auto-negotiate */
1284 {MIIM_STATUS, miim_read, &mii_parse_sr},
1285 /* Read the status */
1286 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1287 &mii_parse_cis8201},
1288 {miim_end,}
1289 },
1290 (struct phy_cmd[]){ /* shutdown */
1291 {miim_end,}
1292 },
1293 };
1294
1295 /* Cicada 8201 */
1296 struct phy_info phy_info_cis8201 = {
1297 0xfc41,
1298 "CIS8201",
1299 4,
1300 (struct phy_cmd[]){ /* config */
1301 /* Override PHY config settings */
1302 {MIIM_CIS8201_AUX_CONSTAT,
1303 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1304 /* Set up the interface mode */
1305 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1306 NULL},
1307 /* Configure some basic stuff */
1308 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1309 {miim_end,}
1310 },
1311 (struct phy_cmd[]){ /* startup */
1312 /* Read the Status (2x to make sure link is right) */
1313 {MIIM_STATUS, miim_read, NULL},
1314 /* Auto-negotiate */
1315 {MIIM_STATUS, miim_read, &mii_parse_sr},
1316 /* Read the status */
1317 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1318 &mii_parse_cis8201},
1319 {miim_end,}
1320 },
1321 (struct phy_cmd[]){ /* shutdown */
1322 {miim_end,}
1323 },
1324 };
1325 struct phy_info phy_info_VSC8244 = {
1326 0x3f1b,
1327 "Vitesse VSC8244",
1328 6,
1329 (struct phy_cmd[]){ /* config */
1330 /* Override PHY config settings */
1331 /* Configure some basic stuff */
1332 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1333 {miim_end,}
1334 },
1335 (struct phy_cmd[]){ /* startup */
1336 /* Read the Status (2x to make sure link is right) */
1337 {MIIM_STATUS, miim_read, NULL},
1338 /* Auto-negotiate */
1339 {MIIM_STATUS, miim_read, &mii_parse_sr},
1340 /* Read the status */
1341 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1342 &mii_parse_vsc8244},
1343 {miim_end,}
1344 },
1345 (struct phy_cmd[]){ /* shutdown */
1346 {miim_end,}
1347 },
1348 };
1349
1350 struct phy_info phy_info_VSC8601 = {
1351 0x00007042,
1352 "Vitesse VSC8601",
1353 4,
1354 (struct phy_cmd[]){ /* config */
1355 /* Override PHY config settings */
1356 /* Configure some basic stuff */
1357 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1358 #ifdef CFG_VSC8601_SKEWFIX
1359 {MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1360 #if defined(CFG_VSC8601_SKEW_TX) && defined(CFG_VSC8601_SKEW_RX)
1361 {MIIM_EXT_PAGE_ACCESS,1,NULL},
1362 #define VSC8101_SKEW (CFG_VSC8601_SKEW_TX<<14)|(CFG_VSC8601_SKEW_RX<<12)
1363 {MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1364 {MIIM_EXT_PAGE_ACCESS,0,NULL},
1365 #endif
1366 #endif
1367 {miim_end,}
1368 },
1369 (struct phy_cmd[]){ /* startup */
1370 /* Read the Status (2x to make sure link is right) */
1371 {MIIM_STATUS, miim_read, NULL},
1372 /* Auto-negotiate */
1373 {MIIM_STATUS, miim_read, &mii_parse_sr},
1374 /* Read the status */
1375 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1376 &mii_parse_vsc8244},
1377 {miim_end,}
1378 },
1379 (struct phy_cmd[]){ /* shutdown */
1380 {miim_end,}
1381 },
1382 };
1383
1384
1385 struct phy_info phy_info_dm9161 = {
1386 0x0181b88,
1387 "Davicom DM9161E",
1388 4,
1389 (struct phy_cmd[]){ /* config */
1390 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1391 /* Do not bypass the scrambler/descrambler */
1392 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1393 /* Clear 10BTCSR to default */
1394 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1395 NULL},
1396 /* Configure some basic stuff */
1397 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1398 /* Restart Auto Negotiation */
1399 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1400 {miim_end,}
1401 },
1402 (struct phy_cmd[]){ /* startup */
1403 /* Status is read once to clear old link state */
1404 {MIIM_STATUS, miim_read, NULL},
1405 /* Auto-negotiate */
1406 {MIIM_STATUS, miim_read, &mii_parse_sr},
1407 /* Read the status */
1408 {MIIM_DM9161_SCSR, miim_read,
1409 &mii_parse_dm9161_scsr},
1410 {miim_end,}
1411 },
1412 (struct phy_cmd[]){ /* shutdown */
1413 {miim_end,}
1414 },
1415 };
1416 /* a generic flavor. */
1417 struct phy_info phy_info_generic = {
1418 0,
1419 "Unknown/Generic PHY",
1420 32,
1421 (struct phy_cmd[]) { /* config */
1422 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1423 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1424 {miim_end,}
1425 },
1426 (struct phy_cmd[]) { /* startup */
1427 {PHY_BMSR, miim_read, NULL},
1428 {PHY_BMSR, miim_read, &mii_parse_sr},
1429 {PHY_BMSR, miim_read, &mii_parse_link},
1430 {miim_end,}
1431 },
1432 (struct phy_cmd[]) { /* shutdown */
1433 {miim_end,}
1434 }
1435 };
1436
1437
1438 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1439 {
1440 unsigned int speed;
1441 if (priv->link) {
1442 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1443
1444 switch (speed) {
1445 case MIIM_LXT971_SR2_10HDX:
1446 priv->speed = 10;
1447 priv->duplexity = 0;
1448 break;
1449 case MIIM_LXT971_SR2_10FDX:
1450 priv->speed = 10;
1451 priv->duplexity = 1;
1452 break;
1453 case MIIM_LXT971_SR2_100HDX:
1454 priv->speed = 100;
1455 priv->duplexity = 0;
1456 break;
1457 default:
1458 priv->speed = 100;
1459 priv->duplexity = 1;
1460 }
1461 } else {
1462 priv->speed = 0;
1463 priv->duplexity = 0;
1464 }
1465
1466 return 0;
1467 }
1468
1469 static struct phy_info phy_info_lxt971 = {
1470 0x0001378e,
1471 "LXT971",
1472 4,
1473 (struct phy_cmd[]){ /* config */
1474 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1475 {miim_end,}
1476 },
1477 (struct phy_cmd[]){ /* startup - enable interrupts */
1478 /* { 0x12, 0x00f2, NULL }, */
1479 {MIIM_STATUS, miim_read, NULL},
1480 {MIIM_STATUS, miim_read, &mii_parse_sr},
1481 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1482 {miim_end,}
1483 },
1484 (struct phy_cmd[]){ /* shutdown - disable interrupts */
1485 {miim_end,}
1486 },
1487 };
1488
1489 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1490 * information
1491 */
1492 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1493 {
1494 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1495
1496 case MIIM_DP83865_SPD_1000:
1497 priv->speed = 1000;
1498 break;
1499
1500 case MIIM_DP83865_SPD_100:
1501 priv->speed = 100;
1502 break;
1503
1504 default:
1505 priv->speed = 10;
1506 break;
1507
1508 }
1509
1510 if (mii_reg & MIIM_DP83865_DPX_FULL)
1511 priv->duplexity = 1;
1512 else
1513 priv->duplexity = 0;
1514
1515 return 0;
1516 }
1517
1518 struct phy_info phy_info_dp83865 = {
1519 0x20005c7,
1520 "NatSemi DP83865",
1521 4,
1522 (struct phy_cmd[]){ /* config */
1523 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1524 {miim_end,}
1525 },
1526 (struct phy_cmd[]){ /* startup */
1527 /* Status is read once to clear old link state */
1528 {MIIM_STATUS, miim_read, NULL},
1529 /* Auto-negotiate */
1530 {MIIM_STATUS, miim_read, &mii_parse_sr},
1531 /* Read the link and auto-neg status */
1532 {MIIM_DP83865_LANR, miim_read,
1533 &mii_parse_dp83865_lanr},
1534 {miim_end,}
1535 },
1536 (struct phy_cmd[]){ /* shutdown */
1537 {miim_end,}
1538 },
1539 };
1540
1541 struct phy_info phy_info_rtl8211b = {
1542 0x001cc91,
1543 "RealTek RTL8211B",
1544 4,
1545 (struct phy_cmd[]){ /* config */
1546 /* Reset and configure the PHY */
1547 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1548 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1549 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1550 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1551 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1552 {miim_end,}
1553 },
1554 (struct phy_cmd[]){ /* startup */
1555 /* Status is read once to clear old link state */
1556 {MIIM_STATUS, miim_read, NULL},
1557 /* Auto-negotiate */
1558 {MIIM_STATUS, miim_read, &mii_parse_sr},
1559 /* Read the status */
1560 {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1561 {miim_end,}
1562 },
1563 (struct phy_cmd[]){ /* shutdown */
1564 {miim_end,}
1565 },
1566 };
1567
1568 struct phy_info *phy_info[] = {
1569 &phy_info_cis8204,
1570 &phy_info_cis8201,
1571 &phy_info_BCM5461S,
1572 &phy_info_BCM5464S,
1573 &phy_info_M88E1011S,
1574 &phy_info_M88E1111S,
1575 &phy_info_M88E1118,
1576 &phy_info_M88E1121R,
1577 &phy_info_M88E1145,
1578 &phy_info_M88E1149S,
1579 &phy_info_dm9161,
1580 &phy_info_lxt971,
1581 &phy_info_VSC8244,
1582 &phy_info_VSC8601,
1583 &phy_info_dp83865,
1584 &phy_info_rtl8211b,
1585 &phy_info_generic,
1586 NULL
1587 };
1588
1589 /* Grab the identifier of the device's PHY, and search through
1590 * all of the known PHYs to see if one matches. If so, return
1591 * it, if not, return NULL
1592 */
1593 struct phy_info *get_phy_info(struct eth_device *dev)
1594 {
1595 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1596 uint phy_reg, phy_ID;
1597 int i;
1598 struct phy_info *theInfo = NULL;
1599
1600 /* Grab the bits from PHYIR1, and put them in the upper half */
1601 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1602 phy_ID = (phy_reg & 0xffff) << 16;
1603
1604 /* Grab the bits from PHYIR2, and put them in the lower half */
1605 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1606 phy_ID |= (phy_reg & 0xffff);
1607
1608 /* loop through all the known PHY types, and find one that */
1609 /* matches the ID we read from the PHY. */
1610 for (i = 0; phy_info[i]; i++) {
1611 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1612 theInfo = phy_info[i];
1613 break;
1614 }
1615 }
1616
1617 if (theInfo == NULL) {
1618 printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1619 return NULL;
1620 } else {
1621 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1622 }
1623
1624 return theInfo;
1625 }
1626
1627 /* Execute the given series of commands on the given device's
1628 * PHY, running functions as necessary
1629 */
1630 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1631 {
1632 int i;
1633 uint result;
1634 volatile tsec_t *phyregs = priv->phyregs;
1635
1636 phyregs->miimcfg = MIIMCFG_RESET;
1637
1638 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1639
1640 while (phyregs->miimind & MIIMIND_BUSY) ;
1641
1642 for (i = 0; cmd->mii_reg != miim_end; i++) {
1643 if (cmd->mii_data == miim_read) {
1644 result = read_phy_reg(priv, cmd->mii_reg);
1645
1646 if (cmd->funct != NULL)
1647 (*(cmd->funct)) (result, priv);
1648
1649 } else {
1650 if (cmd->funct != NULL)
1651 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1652 else
1653 result = cmd->mii_data;
1654
1655 write_phy_reg(priv, cmd->mii_reg, result);
1656
1657 }
1658 cmd++;
1659 }
1660 }
1661
1662 /* Relocate the function pointers in the phy cmd lists */
1663 static void relocate_cmds(void)
1664 {
1665 struct phy_cmd **cmdlistptr;
1666 struct phy_cmd *cmd;
1667 int i, j, k;
1668
1669 for (i = 0; phy_info[i]; i++) {
1670 /* First thing's first: relocate the pointers to the
1671 * PHY command structures (the structs were done) */
1672 phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1673 + gd->reloc_off);
1674 phy_info[i]->name += gd->reloc_off;
1675 phy_info[i]->config =
1676 (struct phy_cmd *)((uint) phy_info[i]->config
1677 + gd->reloc_off);
1678 phy_info[i]->startup =
1679 (struct phy_cmd *)((uint) phy_info[i]->startup
1680 + gd->reloc_off);
1681 phy_info[i]->shutdown =
1682 (struct phy_cmd *)((uint) phy_info[i]->shutdown
1683 + gd->reloc_off);
1684
1685 cmdlistptr = &phy_info[i]->config;
1686 j = 0;
1687 for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1688 k = 0;
1689 for (cmd = *cmdlistptr;
1690 cmd->mii_reg != miim_end;
1691 cmd++) {
1692 /* Only relocate non-NULL pointers */
1693 if (cmd->funct)
1694 cmd->funct += gd->reloc_off;
1695
1696 k++;
1697 }
1698 j++;
1699 }
1700 }
1701
1702 relocated = 1;
1703 }
1704
1705 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1706 && !defined(BITBANGMII)
1707
1708 /*
1709 * Read a MII PHY register.
1710 *
1711 * Returns:
1712 * 0 on success
1713 */
1714 static int tsec_miiphy_read(char *devname, unsigned char addr,
1715 unsigned char reg, unsigned short *value)
1716 {
1717 unsigned short ret;
1718 struct tsec_private *priv = privlist[0];
1719
1720 if (NULL == priv) {
1721 printf("Can't read PHY at address %d\n", addr);
1722 return -1;
1723 }
1724
1725 ret = (unsigned short)tsec_local_mdio_read(priv->phyregs, addr, reg);
1726 *value = ret;
1727
1728 return 0;
1729 }
1730
1731 /*
1732 * Write a MII PHY register.
1733 *
1734 * Returns:
1735 * 0 on success
1736 */
1737 static int tsec_miiphy_write(char *devname, unsigned char addr,
1738 unsigned char reg, unsigned short value)
1739 {
1740 struct tsec_private *priv = privlist[0];
1741
1742 if (NULL == priv) {
1743 printf("Can't write PHY at address %d\n", addr);
1744 return -1;
1745 }
1746
1747 tsec_local_mdio_write(priv->phyregs, addr, reg, value);
1748
1749 return 0;
1750 }
1751
1752 #endif
1753
1754 #ifdef CONFIG_MCAST_TFTP
1755
1756 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1757
1758 /* Set the appropriate hash bit for the given addr */
1759
1760 /* The algorithm works like so:
1761 * 1) Take the Destination Address (ie the multicast address), and
1762 * do a CRC on it (little endian), and reverse the bits of the
1763 * result.
1764 * 2) Use the 8 most significant bits as a hash into a 256-entry
1765 * table. The table is controlled through 8 32-bit registers:
1766 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1767 * gaddr7. This means that the 3 most significant bits in the
1768 * hash index which gaddr register to use, and the 5 other bits
1769 * indicate which bit (assuming an IBM numbering scheme, which
1770 * for PowerPC (tm) is usually the case) in the tregister holds
1771 * the entry. */
1772 static int
1773 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1774 {
1775 struct tsec_private *priv = privlist[1];
1776 volatile tsec_t *regs = priv->regs;
1777 volatile u32 *reg_array, value;
1778 u8 result, whichbit, whichreg;
1779
1780 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1781 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1782 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1783 value = (1 << (31-whichbit));
1784
1785 reg_array = &(regs->hash.gaddr0);
1786
1787 if (set) {
1788 reg_array[whichreg] |= value;
1789 } else {
1790 reg_array[whichreg] &= ~value;
1791 }
1792 return 0;
1793 }
1794 #endif /* Multicast TFTP ? */