]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/vrf.c
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / drivers / net / vrf.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ip.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24
25 #include <linux/inetdevice.h>
26 #include <net/arp.h>
27 #include <net/ip.h>
28 #include <net/ip_fib.h>
29 #include <net/ip6_fib.h>
30 #include <net/ip6_route.h>
31 #include <net/route.h>
32 #include <net/addrconf.h>
33 #include <net/l3mdev.h>
34 #include <net/fib_rules.h>
35 #include <net/netns/generic.h>
36
37 #define DRV_NAME "vrf"
38 #define DRV_VERSION "1.0"
39
40 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
41
42 static unsigned int vrf_net_id;
43
44 struct net_vrf {
45 struct rtable __rcu *rth;
46 struct rt6_info __rcu *rt6;
47 #if IS_ENABLED(CONFIG_IPV6)
48 struct fib6_table *fib6_table;
49 #endif
50 u32 tb_id;
51 };
52
53 struct pcpu_dstats {
54 u64 tx_pkts;
55 u64 tx_bytes;
56 u64 tx_drps;
57 u64 rx_pkts;
58 u64 rx_bytes;
59 u64 rx_drps;
60 struct u64_stats_sync syncp;
61 };
62
63 static void vrf_rx_stats(struct net_device *dev, int len)
64 {
65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
66
67 u64_stats_update_begin(&dstats->syncp);
68 dstats->rx_pkts++;
69 dstats->rx_bytes += len;
70 u64_stats_update_end(&dstats->syncp);
71 }
72
73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
74 {
75 vrf_dev->stats.tx_errors++;
76 kfree_skb(skb);
77 }
78
79 static void vrf_get_stats64(struct net_device *dev,
80 struct rtnl_link_stats64 *stats)
81 {
82 int i;
83
84 for_each_possible_cpu(i) {
85 const struct pcpu_dstats *dstats;
86 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
87 unsigned int start;
88
89 dstats = per_cpu_ptr(dev->dstats, i);
90 do {
91 start = u64_stats_fetch_begin_irq(&dstats->syncp);
92 tbytes = dstats->tx_bytes;
93 tpkts = dstats->tx_pkts;
94 tdrops = dstats->tx_drps;
95 rbytes = dstats->rx_bytes;
96 rpkts = dstats->rx_pkts;
97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
98 stats->tx_bytes += tbytes;
99 stats->tx_packets += tpkts;
100 stats->tx_dropped += tdrops;
101 stats->rx_bytes += rbytes;
102 stats->rx_packets += rpkts;
103 }
104 }
105
106 /* by default VRF devices do not have a qdisc and are expected
107 * to be created with only a single queue.
108 */
109 static bool qdisc_tx_is_default(const struct net_device *dev)
110 {
111 struct netdev_queue *txq;
112 struct Qdisc *qdisc;
113
114 if (dev->num_tx_queues > 1)
115 return false;
116
117 txq = netdev_get_tx_queue(dev, 0);
118 qdisc = rcu_access_pointer(txq->qdisc);
119
120 return !qdisc->enqueue;
121 }
122
123 /* Local traffic destined to local address. Reinsert the packet to rx
124 * path, similar to loopback handling.
125 */
126 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
127 struct dst_entry *dst)
128 {
129 int len = skb->len;
130
131 skb_orphan(skb);
132
133 skb_dst_set(skb, dst);
134
135 /* set pkt_type to avoid skb hitting packet taps twice -
136 * once on Tx and again in Rx processing
137 */
138 skb->pkt_type = PACKET_LOOPBACK;
139
140 skb->protocol = eth_type_trans(skb, dev);
141
142 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
143 vrf_rx_stats(dev, len);
144 else
145 this_cpu_inc(dev->dstats->rx_drps);
146
147 return NETDEV_TX_OK;
148 }
149
150 #if IS_ENABLED(CONFIG_IPV6)
151 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
152 struct sk_buff *skb)
153 {
154 int err;
155
156 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
157 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
158
159 if (likely(err == 1))
160 err = dst_output(net, sk, skb);
161
162 return err;
163 }
164
165 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
166 struct net_device *dev)
167 {
168 const struct ipv6hdr *iph;
169 struct net *net = dev_net(skb->dev);
170 struct flowi6 fl6;
171 int ret = NET_XMIT_DROP;
172 struct dst_entry *dst;
173 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
174
175 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
176 goto err;
177
178 iph = ipv6_hdr(skb);
179
180 memset(&fl6, 0, sizeof(fl6));
181 /* needed to match OIF rule */
182 fl6.flowi6_oif = dev->ifindex;
183 fl6.flowi6_iif = LOOPBACK_IFINDEX;
184 fl6.daddr = iph->daddr;
185 fl6.saddr = iph->saddr;
186 fl6.flowlabel = ip6_flowinfo(iph);
187 fl6.flowi6_mark = skb->mark;
188 fl6.flowi6_proto = iph->nexthdr;
189 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
190
191 dst = ip6_route_output(net, NULL, &fl6);
192 if (dst == dst_null)
193 goto err;
194
195 skb_dst_drop(skb);
196
197 /* if dst.dev is loopback or the VRF device again this is locally
198 * originated traffic destined to a local address. Short circuit
199 * to Rx path
200 */
201 if (dst->dev == dev)
202 return vrf_local_xmit(skb, dev, dst);
203
204 skb_dst_set(skb, dst);
205
206 /* strip the ethernet header added for pass through VRF device */
207 __skb_pull(skb, skb_network_offset(skb));
208
209 ret = vrf_ip6_local_out(net, skb->sk, skb);
210 if (unlikely(net_xmit_eval(ret)))
211 dev->stats.tx_errors++;
212 else
213 ret = NET_XMIT_SUCCESS;
214
215 return ret;
216 err:
217 vrf_tx_error(dev, skb);
218 return NET_XMIT_DROP;
219 }
220 #else
221 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
222 struct net_device *dev)
223 {
224 vrf_tx_error(dev, skb);
225 return NET_XMIT_DROP;
226 }
227 #endif
228
229 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
230 static int vrf_ip_local_out(struct net *net, struct sock *sk,
231 struct sk_buff *skb)
232 {
233 int err;
234
235 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
236 skb, NULL, skb_dst(skb)->dev, dst_output);
237 if (likely(err == 1))
238 err = dst_output(net, sk, skb);
239
240 return err;
241 }
242
243 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
244 struct net_device *vrf_dev)
245 {
246 struct iphdr *ip4h;
247 int ret = NET_XMIT_DROP;
248 struct flowi4 fl4;
249 struct net *net = dev_net(vrf_dev);
250 struct rtable *rt;
251
252 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
253 goto err;
254
255 ip4h = ip_hdr(skb);
256
257 memset(&fl4, 0, sizeof(fl4));
258 /* needed to match OIF rule */
259 fl4.flowi4_oif = vrf_dev->ifindex;
260 fl4.flowi4_iif = LOOPBACK_IFINDEX;
261 fl4.flowi4_tos = RT_TOS(ip4h->tos);
262 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
263 fl4.flowi4_proto = ip4h->protocol;
264 fl4.daddr = ip4h->daddr;
265 fl4.saddr = ip4h->saddr;
266
267 rt = ip_route_output_flow(net, &fl4, NULL);
268 if (IS_ERR(rt))
269 goto err;
270
271 skb_dst_drop(skb);
272
273 /* if dst.dev is loopback or the VRF device again this is locally
274 * originated traffic destined to a local address. Short circuit
275 * to Rx path
276 */
277 if (rt->dst.dev == vrf_dev)
278 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
279
280 skb_dst_set(skb, &rt->dst);
281
282 /* strip the ethernet header added for pass through VRF device */
283 __skb_pull(skb, skb_network_offset(skb));
284
285 if (!ip4h->saddr) {
286 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
287 RT_SCOPE_LINK);
288 }
289
290 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
291 if (unlikely(net_xmit_eval(ret)))
292 vrf_dev->stats.tx_errors++;
293 else
294 ret = NET_XMIT_SUCCESS;
295
296 out:
297 return ret;
298 err:
299 vrf_tx_error(vrf_dev, skb);
300 goto out;
301 }
302
303 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
304 {
305 switch (skb->protocol) {
306 case htons(ETH_P_IP):
307 return vrf_process_v4_outbound(skb, dev);
308 case htons(ETH_P_IPV6):
309 return vrf_process_v6_outbound(skb, dev);
310 default:
311 vrf_tx_error(dev, skb);
312 return NET_XMIT_DROP;
313 }
314 }
315
316 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
317 {
318 int len = skb->len;
319 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
320
321 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
322 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
323
324 u64_stats_update_begin(&dstats->syncp);
325 dstats->tx_pkts++;
326 dstats->tx_bytes += len;
327 u64_stats_update_end(&dstats->syncp);
328 } else {
329 this_cpu_inc(dev->dstats->tx_drps);
330 }
331
332 return ret;
333 }
334
335 static int vrf_finish_direct(struct net *net, struct sock *sk,
336 struct sk_buff *skb)
337 {
338 struct net_device *vrf_dev = skb->dev;
339
340 if (!list_empty(&vrf_dev->ptype_all) &&
341 likely(skb_headroom(skb) >= ETH_HLEN)) {
342 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
343
344 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
345 eth_zero_addr(eth->h_dest);
346 eth->h_proto = skb->protocol;
347
348 rcu_read_lock_bh();
349 dev_queue_xmit_nit(skb, vrf_dev);
350 rcu_read_unlock_bh();
351
352 skb_pull(skb, ETH_HLEN);
353 }
354
355 return 1;
356 }
357
358 #if IS_ENABLED(CONFIG_IPV6)
359 /* modelled after ip6_finish_output2 */
360 static int vrf_finish_output6(struct net *net, struct sock *sk,
361 struct sk_buff *skb)
362 {
363 struct dst_entry *dst = skb_dst(skb);
364 struct net_device *dev = dst->dev;
365 const struct in6_addr *nexthop;
366 struct neighbour *neigh;
367 int ret;
368
369 nf_reset(skb);
370
371 skb->protocol = htons(ETH_P_IPV6);
372 skb->dev = dev;
373
374 rcu_read_lock_bh();
375 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
376 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
377 if (unlikely(!neigh))
378 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
379 if (!IS_ERR(neigh)) {
380 sock_confirm_neigh(skb, neigh);
381 ret = neigh_output(neigh, skb, false);
382 rcu_read_unlock_bh();
383 return ret;
384 }
385 rcu_read_unlock_bh();
386
387 IP6_INC_STATS(dev_net(dst->dev),
388 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
389 kfree_skb(skb);
390 return -EINVAL;
391 }
392
393 /* modelled after ip6_output */
394 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
395 {
396 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
397 net, sk, skb, NULL, skb_dst(skb)->dev,
398 vrf_finish_output6,
399 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
400 }
401
402 /* set dst on skb to send packet to us via dev_xmit path. Allows
403 * packet to go through device based features such as qdisc, netfilter
404 * hooks and packet sockets with skb->dev set to vrf device.
405 */
406 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
407 struct sk_buff *skb)
408 {
409 struct net_vrf *vrf = netdev_priv(vrf_dev);
410 struct dst_entry *dst = NULL;
411 struct rt6_info *rt6;
412
413 rcu_read_lock();
414
415 rt6 = rcu_dereference(vrf->rt6);
416 if (likely(rt6)) {
417 dst = &rt6->dst;
418 dst_hold(dst);
419 }
420
421 rcu_read_unlock();
422
423 if (unlikely(!dst)) {
424 vrf_tx_error(vrf_dev, skb);
425 return NULL;
426 }
427
428 skb_dst_drop(skb);
429 skb_dst_set(skb, dst);
430
431 return skb;
432 }
433
434 static int vrf_output6_direct(struct net *net, struct sock *sk,
435 struct sk_buff *skb)
436 {
437 skb->protocol = htons(ETH_P_IPV6);
438
439 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
440 net, sk, skb, NULL, skb->dev,
441 vrf_finish_direct,
442 !(IPCB(skb)->flags & IPSKB_REROUTED));
443 }
444
445 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
446 struct sock *sk,
447 struct sk_buff *skb)
448 {
449 struct net *net = dev_net(vrf_dev);
450 int err;
451
452 skb->dev = vrf_dev;
453
454 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
455 skb, NULL, vrf_dev, vrf_output6_direct);
456
457 if (likely(err == 1))
458 err = vrf_output6_direct(net, sk, skb);
459
460 /* reset skb device */
461 if (likely(err == 1))
462 nf_reset(skb);
463 else
464 skb = NULL;
465
466 return skb;
467 }
468
469 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
470 struct sock *sk,
471 struct sk_buff *skb)
472 {
473 /* don't divert link scope packets */
474 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
475 return skb;
476
477 if (qdisc_tx_is_default(vrf_dev))
478 return vrf_ip6_out_direct(vrf_dev, sk, skb);
479
480 return vrf_ip6_out_redirect(vrf_dev, skb);
481 }
482
483 /* holding rtnl */
484 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
485 {
486 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
487 struct net *net = dev_net(dev);
488 struct dst_entry *dst;
489
490 RCU_INIT_POINTER(vrf->rt6, NULL);
491 synchronize_rcu();
492
493 /* move dev in dst's to loopback so this VRF device can be deleted
494 * - based on dst_ifdown
495 */
496 if (rt6) {
497 dst = &rt6->dst;
498 dev_put(dst->dev);
499 dst->dev = net->loopback_dev;
500 dev_hold(dst->dev);
501 dst_release(dst);
502 }
503 }
504
505 static int vrf_rt6_create(struct net_device *dev)
506 {
507 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
508 struct net_vrf *vrf = netdev_priv(dev);
509 struct net *net = dev_net(dev);
510 struct rt6_info *rt6;
511 int rc = -ENOMEM;
512
513 /* IPv6 can be CONFIG enabled and then disabled runtime */
514 if (!ipv6_mod_enabled())
515 return 0;
516
517 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
518 if (!vrf->fib6_table)
519 goto out;
520
521 /* create a dst for routing packets out a VRF device */
522 rt6 = ip6_dst_alloc(net, dev, flags);
523 if (!rt6)
524 goto out;
525
526 rt6->dst.output = vrf_output6;
527
528 rcu_assign_pointer(vrf->rt6, rt6);
529
530 rc = 0;
531 out:
532 return rc;
533 }
534 #else
535 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
536 struct sock *sk,
537 struct sk_buff *skb)
538 {
539 return skb;
540 }
541
542 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
543 {
544 }
545
546 static int vrf_rt6_create(struct net_device *dev)
547 {
548 return 0;
549 }
550 #endif
551
552 /* modelled after ip_finish_output2 */
553 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
554 {
555 struct dst_entry *dst = skb_dst(skb);
556 struct rtable *rt = (struct rtable *)dst;
557 struct net_device *dev = dst->dev;
558 unsigned int hh_len = LL_RESERVED_SPACE(dev);
559 struct neighbour *neigh;
560 bool is_v6gw = false;
561 int ret = -EINVAL;
562
563 nf_reset(skb);
564
565 /* Be paranoid, rather than too clever. */
566 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
567 struct sk_buff *skb2;
568
569 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
570 if (!skb2) {
571 ret = -ENOMEM;
572 goto err;
573 }
574 if (skb->sk)
575 skb_set_owner_w(skb2, skb->sk);
576
577 consume_skb(skb);
578 skb = skb2;
579 }
580
581 rcu_read_lock_bh();
582
583 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
584 if (!IS_ERR(neigh)) {
585 sock_confirm_neigh(skb, neigh);
586 /* if crossing protocols, can not use the cached header */
587 ret = neigh_output(neigh, skb, is_v6gw);
588 rcu_read_unlock_bh();
589 return ret;
590 }
591
592 rcu_read_unlock_bh();
593 err:
594 vrf_tx_error(skb->dev, skb);
595 return ret;
596 }
597
598 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
599 {
600 struct net_device *dev = skb_dst(skb)->dev;
601
602 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
603
604 skb->dev = dev;
605 skb->protocol = htons(ETH_P_IP);
606
607 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
608 net, sk, skb, NULL, dev,
609 vrf_finish_output,
610 !(IPCB(skb)->flags & IPSKB_REROUTED));
611 }
612
613 /* set dst on skb to send packet to us via dev_xmit path. Allows
614 * packet to go through device based features such as qdisc, netfilter
615 * hooks and packet sockets with skb->dev set to vrf device.
616 */
617 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
618 struct sk_buff *skb)
619 {
620 struct net_vrf *vrf = netdev_priv(vrf_dev);
621 struct dst_entry *dst = NULL;
622 struct rtable *rth;
623
624 rcu_read_lock();
625
626 rth = rcu_dereference(vrf->rth);
627 if (likely(rth)) {
628 dst = &rth->dst;
629 dst_hold(dst);
630 }
631
632 rcu_read_unlock();
633
634 if (unlikely(!dst)) {
635 vrf_tx_error(vrf_dev, skb);
636 return NULL;
637 }
638
639 skb_dst_drop(skb);
640 skb_dst_set(skb, dst);
641
642 return skb;
643 }
644
645 static int vrf_output_direct(struct net *net, struct sock *sk,
646 struct sk_buff *skb)
647 {
648 skb->protocol = htons(ETH_P_IP);
649
650 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
651 net, sk, skb, NULL, skb->dev,
652 vrf_finish_direct,
653 !(IPCB(skb)->flags & IPSKB_REROUTED));
654 }
655
656 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
657 struct sock *sk,
658 struct sk_buff *skb)
659 {
660 struct net *net = dev_net(vrf_dev);
661 int err;
662
663 skb->dev = vrf_dev;
664
665 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
666 skb, NULL, vrf_dev, vrf_output_direct);
667
668 if (likely(err == 1))
669 err = vrf_output_direct(net, sk, skb);
670
671 /* reset skb device */
672 if (likely(err == 1))
673 nf_reset(skb);
674 else
675 skb = NULL;
676
677 return skb;
678 }
679
680 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
681 struct sock *sk,
682 struct sk_buff *skb)
683 {
684 /* don't divert multicast or local broadcast */
685 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
686 ipv4_is_lbcast(ip_hdr(skb)->daddr))
687 return skb;
688
689 if (qdisc_tx_is_default(vrf_dev))
690 return vrf_ip_out_direct(vrf_dev, sk, skb);
691
692 return vrf_ip_out_redirect(vrf_dev, skb);
693 }
694
695 /* called with rcu lock held */
696 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
697 struct sock *sk,
698 struct sk_buff *skb,
699 u16 proto)
700 {
701 switch (proto) {
702 case AF_INET:
703 return vrf_ip_out(vrf_dev, sk, skb);
704 case AF_INET6:
705 return vrf_ip6_out(vrf_dev, sk, skb);
706 }
707
708 return skb;
709 }
710
711 /* holding rtnl */
712 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
713 {
714 struct rtable *rth = rtnl_dereference(vrf->rth);
715 struct net *net = dev_net(dev);
716 struct dst_entry *dst;
717
718 RCU_INIT_POINTER(vrf->rth, NULL);
719 synchronize_rcu();
720
721 /* move dev in dst's to loopback so this VRF device can be deleted
722 * - based on dst_ifdown
723 */
724 if (rth) {
725 dst = &rth->dst;
726 dev_put(dst->dev);
727 dst->dev = net->loopback_dev;
728 dev_hold(dst->dev);
729 dst_release(dst);
730 }
731 }
732
733 static int vrf_rtable_create(struct net_device *dev)
734 {
735 struct net_vrf *vrf = netdev_priv(dev);
736 struct rtable *rth;
737
738 if (!fib_new_table(dev_net(dev), vrf->tb_id))
739 return -ENOMEM;
740
741 /* create a dst for routing packets out through a VRF device */
742 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
743 if (!rth)
744 return -ENOMEM;
745
746 rth->dst.output = vrf_output;
747
748 rcu_assign_pointer(vrf->rth, rth);
749
750 return 0;
751 }
752
753 /**************************** device handling ********************/
754
755 /* cycle interface to flush neighbor cache and move routes across tables */
756 static void cycle_netdev(struct net_device *dev,
757 struct netlink_ext_ack *extack)
758 {
759 unsigned int flags = dev->flags;
760 int ret;
761
762 if (!netif_running(dev))
763 return;
764
765 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
766 if (ret >= 0)
767 ret = dev_change_flags(dev, flags, extack);
768
769 if (ret < 0) {
770 netdev_err(dev,
771 "Failed to cycle device %s; route tables might be wrong!\n",
772 dev->name);
773 }
774 }
775
776 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
777 struct netlink_ext_ack *extack)
778 {
779 int ret;
780
781 /* do not allow loopback device to be enslaved to a VRF.
782 * The vrf device acts as the loopback for the vrf.
783 */
784 if (port_dev == dev_net(dev)->loopback_dev) {
785 NL_SET_ERR_MSG(extack,
786 "Can not enslave loopback device to a VRF");
787 return -EOPNOTSUPP;
788 }
789
790 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
791 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
792 if (ret < 0)
793 goto err;
794
795 cycle_netdev(port_dev, extack);
796
797 return 0;
798
799 err:
800 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
801 return ret;
802 }
803
804 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
805 struct netlink_ext_ack *extack)
806 {
807 if (netif_is_l3_master(port_dev)) {
808 NL_SET_ERR_MSG(extack,
809 "Can not enslave an L3 master device to a VRF");
810 return -EINVAL;
811 }
812
813 if (netif_is_l3_slave(port_dev))
814 return -EINVAL;
815
816 return do_vrf_add_slave(dev, port_dev, extack);
817 }
818
819 /* inverse of do_vrf_add_slave */
820 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
821 {
822 netdev_upper_dev_unlink(port_dev, dev);
823 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
824
825 cycle_netdev(port_dev, NULL);
826
827 return 0;
828 }
829
830 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
831 {
832 return do_vrf_del_slave(dev, port_dev);
833 }
834
835 static void vrf_dev_uninit(struct net_device *dev)
836 {
837 struct net_vrf *vrf = netdev_priv(dev);
838
839 vrf_rtable_release(dev, vrf);
840 vrf_rt6_release(dev, vrf);
841
842 free_percpu(dev->dstats);
843 dev->dstats = NULL;
844 }
845
846 static int vrf_dev_init(struct net_device *dev)
847 {
848 struct net_vrf *vrf = netdev_priv(dev);
849
850 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
851 if (!dev->dstats)
852 goto out_nomem;
853
854 /* create the default dst which points back to us */
855 if (vrf_rtable_create(dev) != 0)
856 goto out_stats;
857
858 if (vrf_rt6_create(dev) != 0)
859 goto out_rth;
860
861 dev->flags = IFF_MASTER | IFF_NOARP;
862
863 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
864 dev->mtu = 64 * 1024;
865
866 /* similarly, oper state is irrelevant; set to up to avoid confusion */
867 dev->operstate = IF_OPER_UP;
868 netdev_lockdep_set_classes(dev);
869 return 0;
870
871 out_rth:
872 vrf_rtable_release(dev, vrf);
873 out_stats:
874 free_percpu(dev->dstats);
875 dev->dstats = NULL;
876 out_nomem:
877 return -ENOMEM;
878 }
879
880 static const struct net_device_ops vrf_netdev_ops = {
881 .ndo_init = vrf_dev_init,
882 .ndo_uninit = vrf_dev_uninit,
883 .ndo_start_xmit = vrf_xmit,
884 .ndo_set_mac_address = eth_mac_addr,
885 .ndo_get_stats64 = vrf_get_stats64,
886 .ndo_add_slave = vrf_add_slave,
887 .ndo_del_slave = vrf_del_slave,
888 };
889
890 static u32 vrf_fib_table(const struct net_device *dev)
891 {
892 struct net_vrf *vrf = netdev_priv(dev);
893
894 return vrf->tb_id;
895 }
896
897 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
898 {
899 kfree_skb(skb);
900 return 0;
901 }
902
903 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
904 struct sk_buff *skb,
905 struct net_device *dev)
906 {
907 struct net *net = dev_net(dev);
908
909 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
910 skb = NULL; /* kfree_skb(skb) handled by nf code */
911
912 return skb;
913 }
914
915 #if IS_ENABLED(CONFIG_IPV6)
916 /* neighbor handling is done with actual device; do not want
917 * to flip skb->dev for those ndisc packets. This really fails
918 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
919 * a start.
920 */
921 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
922 {
923 const struct ipv6hdr *iph = ipv6_hdr(skb);
924 bool rc = false;
925
926 if (iph->nexthdr == NEXTHDR_ICMP) {
927 const struct icmp6hdr *icmph;
928 struct icmp6hdr _icmph;
929
930 icmph = skb_header_pointer(skb, sizeof(*iph),
931 sizeof(_icmph), &_icmph);
932 if (!icmph)
933 goto out;
934
935 switch (icmph->icmp6_type) {
936 case NDISC_ROUTER_SOLICITATION:
937 case NDISC_ROUTER_ADVERTISEMENT:
938 case NDISC_NEIGHBOUR_SOLICITATION:
939 case NDISC_NEIGHBOUR_ADVERTISEMENT:
940 case NDISC_REDIRECT:
941 rc = true;
942 break;
943 }
944 }
945
946 out:
947 return rc;
948 }
949
950 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
951 const struct net_device *dev,
952 struct flowi6 *fl6,
953 int ifindex,
954 const struct sk_buff *skb,
955 int flags)
956 {
957 struct net_vrf *vrf = netdev_priv(dev);
958
959 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
960 }
961
962 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
963 int ifindex)
964 {
965 const struct ipv6hdr *iph = ipv6_hdr(skb);
966 struct flowi6 fl6 = {
967 .flowi6_iif = ifindex,
968 .flowi6_mark = skb->mark,
969 .flowi6_proto = iph->nexthdr,
970 .daddr = iph->daddr,
971 .saddr = iph->saddr,
972 .flowlabel = ip6_flowinfo(iph),
973 };
974 struct net *net = dev_net(vrf_dev);
975 struct rt6_info *rt6;
976
977 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
978 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
979 if (unlikely(!rt6))
980 return;
981
982 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
983 return;
984
985 skb_dst_set(skb, &rt6->dst);
986 }
987
988 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
989 struct sk_buff *skb)
990 {
991 int orig_iif = skb->skb_iif;
992 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
993 bool is_ndisc = ipv6_ndisc_frame(skb);
994
995 /* loopback, multicast & non-ND link-local traffic; do not push through
996 * packet taps again. Reset pkt_type for upper layers to process skb
997 */
998 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
999 skb->dev = vrf_dev;
1000 skb->skb_iif = vrf_dev->ifindex;
1001 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1002 if (skb->pkt_type == PACKET_LOOPBACK)
1003 skb->pkt_type = PACKET_HOST;
1004 goto out;
1005 }
1006
1007 /* if packet is NDISC then keep the ingress interface */
1008 if (!is_ndisc) {
1009 vrf_rx_stats(vrf_dev, skb->len);
1010 skb->dev = vrf_dev;
1011 skb->skb_iif = vrf_dev->ifindex;
1012
1013 if (!list_empty(&vrf_dev->ptype_all)) {
1014 skb_push(skb, skb->mac_len);
1015 dev_queue_xmit_nit(skb, vrf_dev);
1016 skb_pull(skb, skb->mac_len);
1017 }
1018
1019 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1020 }
1021
1022 if (need_strict)
1023 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1024
1025 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1026 out:
1027 return skb;
1028 }
1029
1030 #else
1031 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1032 struct sk_buff *skb)
1033 {
1034 return skb;
1035 }
1036 #endif
1037
1038 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1039 struct sk_buff *skb)
1040 {
1041 skb->dev = vrf_dev;
1042 skb->skb_iif = vrf_dev->ifindex;
1043 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1044
1045 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1046 goto out;
1047
1048 /* loopback traffic; do not push through packet taps again.
1049 * Reset pkt_type for upper layers to process skb
1050 */
1051 if (skb->pkt_type == PACKET_LOOPBACK) {
1052 skb->pkt_type = PACKET_HOST;
1053 goto out;
1054 }
1055
1056 vrf_rx_stats(vrf_dev, skb->len);
1057
1058 if (!list_empty(&vrf_dev->ptype_all)) {
1059 skb_push(skb, skb->mac_len);
1060 dev_queue_xmit_nit(skb, vrf_dev);
1061 skb_pull(skb, skb->mac_len);
1062 }
1063
1064 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1065 out:
1066 return skb;
1067 }
1068
1069 /* called with rcu lock held */
1070 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1071 struct sk_buff *skb,
1072 u16 proto)
1073 {
1074 switch (proto) {
1075 case AF_INET:
1076 return vrf_ip_rcv(vrf_dev, skb);
1077 case AF_INET6:
1078 return vrf_ip6_rcv(vrf_dev, skb);
1079 }
1080
1081 return skb;
1082 }
1083
1084 #if IS_ENABLED(CONFIG_IPV6)
1085 /* send to link-local or multicast address via interface enslaved to
1086 * VRF device. Force lookup to VRF table without changing flow struct
1087 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1088 * is taken on the dst by this function.
1089 */
1090 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1091 struct flowi6 *fl6)
1092 {
1093 struct net *net = dev_net(dev);
1094 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1095 struct dst_entry *dst = NULL;
1096 struct rt6_info *rt;
1097
1098 /* VRF device does not have a link-local address and
1099 * sending packets to link-local or mcast addresses over
1100 * a VRF device does not make sense
1101 */
1102 if (fl6->flowi6_oif == dev->ifindex) {
1103 dst = &net->ipv6.ip6_null_entry->dst;
1104 return dst;
1105 }
1106
1107 if (!ipv6_addr_any(&fl6->saddr))
1108 flags |= RT6_LOOKUP_F_HAS_SADDR;
1109
1110 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1111 if (rt)
1112 dst = &rt->dst;
1113
1114 return dst;
1115 }
1116 #endif
1117
1118 static const struct l3mdev_ops vrf_l3mdev_ops = {
1119 .l3mdev_fib_table = vrf_fib_table,
1120 .l3mdev_l3_rcv = vrf_l3_rcv,
1121 .l3mdev_l3_out = vrf_l3_out,
1122 #if IS_ENABLED(CONFIG_IPV6)
1123 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1124 #endif
1125 };
1126
1127 static void vrf_get_drvinfo(struct net_device *dev,
1128 struct ethtool_drvinfo *info)
1129 {
1130 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1131 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1132 }
1133
1134 static const struct ethtool_ops vrf_ethtool_ops = {
1135 .get_drvinfo = vrf_get_drvinfo,
1136 };
1137
1138 static inline size_t vrf_fib_rule_nl_size(void)
1139 {
1140 size_t sz;
1141
1142 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1143 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1144 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1145 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1146
1147 return sz;
1148 }
1149
1150 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1151 {
1152 struct fib_rule_hdr *frh;
1153 struct nlmsghdr *nlh;
1154 struct sk_buff *skb;
1155 int err;
1156
1157 if (family == AF_INET6 && !ipv6_mod_enabled())
1158 return 0;
1159
1160 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1161 if (!skb)
1162 return -ENOMEM;
1163
1164 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1165 if (!nlh)
1166 goto nla_put_failure;
1167
1168 /* rule only needs to appear once */
1169 nlh->nlmsg_flags |= NLM_F_EXCL;
1170
1171 frh = nlmsg_data(nlh);
1172 memset(frh, 0, sizeof(*frh));
1173 frh->family = family;
1174 frh->action = FR_ACT_TO_TBL;
1175
1176 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1177 goto nla_put_failure;
1178
1179 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1180 goto nla_put_failure;
1181
1182 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1183 goto nla_put_failure;
1184
1185 nlmsg_end(skb, nlh);
1186
1187 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1188 skb->sk = dev_net(dev)->rtnl;
1189 if (add_it) {
1190 err = fib_nl_newrule(skb, nlh, NULL);
1191 if (err == -EEXIST)
1192 err = 0;
1193 } else {
1194 err = fib_nl_delrule(skb, nlh, NULL);
1195 if (err == -ENOENT)
1196 err = 0;
1197 }
1198 nlmsg_free(skb);
1199
1200 return err;
1201
1202 nla_put_failure:
1203 nlmsg_free(skb);
1204
1205 return -EMSGSIZE;
1206 }
1207
1208 static int vrf_add_fib_rules(const struct net_device *dev)
1209 {
1210 int err;
1211
1212 err = vrf_fib_rule(dev, AF_INET, true);
1213 if (err < 0)
1214 goto out_err;
1215
1216 err = vrf_fib_rule(dev, AF_INET6, true);
1217 if (err < 0)
1218 goto ipv6_err;
1219
1220 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1221 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1222 if (err < 0)
1223 goto ipmr_err;
1224 #endif
1225
1226 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1227 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1228 if (err < 0)
1229 goto ip6mr_err;
1230 #endif
1231
1232 return 0;
1233
1234 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1235 ip6mr_err:
1236 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1237 #endif
1238
1239 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1240 ipmr_err:
1241 vrf_fib_rule(dev, AF_INET6, false);
1242 #endif
1243
1244 ipv6_err:
1245 vrf_fib_rule(dev, AF_INET, false);
1246
1247 out_err:
1248 netdev_err(dev, "Failed to add FIB rules.\n");
1249 return err;
1250 }
1251
1252 static void vrf_setup(struct net_device *dev)
1253 {
1254 ether_setup(dev);
1255
1256 /* Initialize the device structure. */
1257 dev->netdev_ops = &vrf_netdev_ops;
1258 dev->l3mdev_ops = &vrf_l3mdev_ops;
1259 dev->ethtool_ops = &vrf_ethtool_ops;
1260 dev->needs_free_netdev = true;
1261
1262 /* Fill in device structure with ethernet-generic values. */
1263 eth_hw_addr_random(dev);
1264
1265 /* don't acquire vrf device's netif_tx_lock when transmitting */
1266 dev->features |= NETIF_F_LLTX;
1267
1268 /* don't allow vrf devices to change network namespaces. */
1269 dev->features |= NETIF_F_NETNS_LOCAL;
1270
1271 /* does not make sense for a VLAN to be added to a vrf device */
1272 dev->features |= NETIF_F_VLAN_CHALLENGED;
1273
1274 /* enable offload features */
1275 dev->features |= NETIF_F_GSO_SOFTWARE;
1276 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1277 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1278
1279 dev->hw_features = dev->features;
1280 dev->hw_enc_features = dev->features;
1281
1282 /* default to no qdisc; user can add if desired */
1283 dev->priv_flags |= IFF_NO_QUEUE;
1284 dev->priv_flags |= IFF_NO_RX_HANDLER;
1285 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1286
1287 /* VRF devices do not care about MTU, but if the MTU is set
1288 * too low then the ipv4 and ipv6 protocols are disabled
1289 * which breaks networking.
1290 */
1291 dev->min_mtu = IPV6_MIN_MTU;
1292 dev->max_mtu = ETH_MAX_MTU;
1293 }
1294
1295 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1296 struct netlink_ext_ack *extack)
1297 {
1298 if (tb[IFLA_ADDRESS]) {
1299 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1300 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1301 return -EINVAL;
1302 }
1303 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1304 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1305 return -EADDRNOTAVAIL;
1306 }
1307 }
1308 return 0;
1309 }
1310
1311 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1312 {
1313 struct net_device *port_dev;
1314 struct list_head *iter;
1315
1316 netdev_for_each_lower_dev(dev, port_dev, iter)
1317 vrf_del_slave(dev, port_dev);
1318
1319 unregister_netdevice_queue(dev, head);
1320 }
1321
1322 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1323 struct nlattr *tb[], struct nlattr *data[],
1324 struct netlink_ext_ack *extack)
1325 {
1326 struct net_vrf *vrf = netdev_priv(dev);
1327 bool *add_fib_rules;
1328 struct net *net;
1329 int err;
1330
1331 if (!data || !data[IFLA_VRF_TABLE]) {
1332 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1333 return -EINVAL;
1334 }
1335
1336 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1337 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1338 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1339 "Invalid VRF table id");
1340 return -EINVAL;
1341 }
1342
1343 dev->priv_flags |= IFF_L3MDEV_MASTER;
1344
1345 err = register_netdevice(dev);
1346 if (err)
1347 goto out;
1348
1349 net = dev_net(dev);
1350 add_fib_rules = net_generic(net, vrf_net_id);
1351 if (*add_fib_rules) {
1352 err = vrf_add_fib_rules(dev);
1353 if (err) {
1354 unregister_netdevice(dev);
1355 goto out;
1356 }
1357 *add_fib_rules = false;
1358 }
1359
1360 out:
1361 return err;
1362 }
1363
1364 static size_t vrf_nl_getsize(const struct net_device *dev)
1365 {
1366 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1367 }
1368
1369 static int vrf_fillinfo(struct sk_buff *skb,
1370 const struct net_device *dev)
1371 {
1372 struct net_vrf *vrf = netdev_priv(dev);
1373
1374 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1375 }
1376
1377 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1378 const struct net_device *slave_dev)
1379 {
1380 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1381 }
1382
1383 static int vrf_fill_slave_info(struct sk_buff *skb,
1384 const struct net_device *vrf_dev,
1385 const struct net_device *slave_dev)
1386 {
1387 struct net_vrf *vrf = netdev_priv(vrf_dev);
1388
1389 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1390 return -EMSGSIZE;
1391
1392 return 0;
1393 }
1394
1395 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1396 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1397 };
1398
1399 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1400 .kind = DRV_NAME,
1401 .priv_size = sizeof(struct net_vrf),
1402
1403 .get_size = vrf_nl_getsize,
1404 .policy = vrf_nl_policy,
1405 .validate = vrf_validate,
1406 .fill_info = vrf_fillinfo,
1407
1408 .get_slave_size = vrf_get_slave_size,
1409 .fill_slave_info = vrf_fill_slave_info,
1410
1411 .newlink = vrf_newlink,
1412 .dellink = vrf_dellink,
1413 .setup = vrf_setup,
1414 .maxtype = IFLA_VRF_MAX,
1415 };
1416
1417 static int vrf_device_event(struct notifier_block *unused,
1418 unsigned long event, void *ptr)
1419 {
1420 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1421
1422 /* only care about unregister events to drop slave references */
1423 if (event == NETDEV_UNREGISTER) {
1424 struct net_device *vrf_dev;
1425
1426 if (!netif_is_l3_slave(dev))
1427 goto out;
1428
1429 vrf_dev = netdev_master_upper_dev_get(dev);
1430 vrf_del_slave(vrf_dev, dev);
1431 }
1432 out:
1433 return NOTIFY_DONE;
1434 }
1435
1436 static struct notifier_block vrf_notifier_block __read_mostly = {
1437 .notifier_call = vrf_device_event,
1438 };
1439
1440 /* Initialize per network namespace state */
1441 static int __net_init vrf_netns_init(struct net *net)
1442 {
1443 bool *add_fib_rules = net_generic(net, vrf_net_id);
1444
1445 *add_fib_rules = true;
1446
1447 return 0;
1448 }
1449
1450 static struct pernet_operations vrf_net_ops __net_initdata = {
1451 .init = vrf_netns_init,
1452 .id = &vrf_net_id,
1453 .size = sizeof(bool),
1454 };
1455
1456 static int __init vrf_init_module(void)
1457 {
1458 int rc;
1459
1460 register_netdevice_notifier(&vrf_notifier_block);
1461
1462 rc = register_pernet_subsys(&vrf_net_ops);
1463 if (rc < 0)
1464 goto error;
1465
1466 rc = rtnl_link_register(&vrf_link_ops);
1467 if (rc < 0) {
1468 unregister_pernet_subsys(&vrf_net_ops);
1469 goto error;
1470 }
1471
1472 return 0;
1473
1474 error:
1475 unregister_netdevice_notifier(&vrf_notifier_block);
1476 return rc;
1477 }
1478
1479 module_init(vrf_init_module);
1480 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1481 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1482 MODULE_LICENSE("GPL");
1483 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1484 MODULE_VERSION(DRV_VERSION);