]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/vrf.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[thirdparty/linux.git] / drivers / net / vrf.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ip.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24
25 #include <linux/inetdevice.h>
26 #include <net/arp.h>
27 #include <net/ip.h>
28 #include <net/ip_fib.h>
29 #include <net/ip6_fib.h>
30 #include <net/ip6_route.h>
31 #include <net/route.h>
32 #include <net/addrconf.h>
33 #include <net/l3mdev.h>
34 #include <net/fib_rules.h>
35 #include <net/netns/generic.h>
36
37 #define DRV_NAME "vrf"
38 #define DRV_VERSION "1.0"
39
40 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
41
42 static unsigned int vrf_net_id;
43
44 struct net_vrf {
45 struct rtable __rcu *rth;
46 struct rt6_info __rcu *rt6;
47 #if IS_ENABLED(CONFIG_IPV6)
48 struct fib6_table *fib6_table;
49 #endif
50 u32 tb_id;
51 };
52
53 struct pcpu_dstats {
54 u64 tx_pkts;
55 u64 tx_bytes;
56 u64 tx_drps;
57 u64 rx_pkts;
58 u64 rx_bytes;
59 u64 rx_drps;
60 struct u64_stats_sync syncp;
61 };
62
63 static void vrf_rx_stats(struct net_device *dev, int len)
64 {
65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
66
67 u64_stats_update_begin(&dstats->syncp);
68 dstats->rx_pkts++;
69 dstats->rx_bytes += len;
70 u64_stats_update_end(&dstats->syncp);
71 }
72
73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
74 {
75 vrf_dev->stats.tx_errors++;
76 kfree_skb(skb);
77 }
78
79 static void vrf_get_stats64(struct net_device *dev,
80 struct rtnl_link_stats64 *stats)
81 {
82 int i;
83
84 for_each_possible_cpu(i) {
85 const struct pcpu_dstats *dstats;
86 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
87 unsigned int start;
88
89 dstats = per_cpu_ptr(dev->dstats, i);
90 do {
91 start = u64_stats_fetch_begin_irq(&dstats->syncp);
92 tbytes = dstats->tx_bytes;
93 tpkts = dstats->tx_pkts;
94 tdrops = dstats->tx_drps;
95 rbytes = dstats->rx_bytes;
96 rpkts = dstats->rx_pkts;
97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
98 stats->tx_bytes += tbytes;
99 stats->tx_packets += tpkts;
100 stats->tx_dropped += tdrops;
101 stats->rx_bytes += rbytes;
102 stats->rx_packets += rpkts;
103 }
104 }
105
106 /* by default VRF devices do not have a qdisc and are expected
107 * to be created with only a single queue.
108 */
109 static bool qdisc_tx_is_default(const struct net_device *dev)
110 {
111 struct netdev_queue *txq;
112 struct Qdisc *qdisc;
113
114 if (dev->num_tx_queues > 1)
115 return false;
116
117 txq = netdev_get_tx_queue(dev, 0);
118 qdisc = rcu_access_pointer(txq->qdisc);
119
120 return !qdisc->enqueue;
121 }
122
123 /* Local traffic destined to local address. Reinsert the packet to rx
124 * path, similar to loopback handling.
125 */
126 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
127 struct dst_entry *dst)
128 {
129 int len = skb->len;
130
131 skb_orphan(skb);
132
133 skb_dst_set(skb, dst);
134
135 /* set pkt_type to avoid skb hitting packet taps twice -
136 * once on Tx and again in Rx processing
137 */
138 skb->pkt_type = PACKET_LOOPBACK;
139
140 skb->protocol = eth_type_trans(skb, dev);
141
142 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
143 vrf_rx_stats(dev, len);
144 else
145 this_cpu_inc(dev->dstats->rx_drps);
146
147 return NETDEV_TX_OK;
148 }
149
150 #if IS_ENABLED(CONFIG_IPV6)
151 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
152 struct sk_buff *skb)
153 {
154 int err;
155
156 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
157 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
158
159 if (likely(err == 1))
160 err = dst_output(net, sk, skb);
161
162 return err;
163 }
164
165 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
166 struct net_device *dev)
167 {
168 const struct ipv6hdr *iph = ipv6_hdr(skb);
169 struct net *net = dev_net(skb->dev);
170 struct flowi6 fl6 = {
171 /* needed to match OIF rule */
172 .flowi6_oif = dev->ifindex,
173 .flowi6_iif = LOOPBACK_IFINDEX,
174 .daddr = iph->daddr,
175 .saddr = iph->saddr,
176 .flowlabel = ip6_flowinfo(iph),
177 .flowi6_mark = skb->mark,
178 .flowi6_proto = iph->nexthdr,
179 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
180 };
181 int ret = NET_XMIT_DROP;
182 struct dst_entry *dst;
183 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
184
185 dst = ip6_route_output(net, NULL, &fl6);
186 if (dst == dst_null)
187 goto err;
188
189 skb_dst_drop(skb);
190
191 /* if dst.dev is loopback or the VRF device again this is locally
192 * originated traffic destined to a local address. Short circuit
193 * to Rx path
194 */
195 if (dst->dev == dev)
196 return vrf_local_xmit(skb, dev, dst);
197
198 skb_dst_set(skb, dst);
199
200 /* strip the ethernet header added for pass through VRF device */
201 __skb_pull(skb, skb_network_offset(skb));
202
203 ret = vrf_ip6_local_out(net, skb->sk, skb);
204 if (unlikely(net_xmit_eval(ret)))
205 dev->stats.tx_errors++;
206 else
207 ret = NET_XMIT_SUCCESS;
208
209 return ret;
210 err:
211 vrf_tx_error(dev, skb);
212 return NET_XMIT_DROP;
213 }
214 #else
215 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
216 struct net_device *dev)
217 {
218 vrf_tx_error(dev, skb);
219 return NET_XMIT_DROP;
220 }
221 #endif
222
223 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
224 static int vrf_ip_local_out(struct net *net, struct sock *sk,
225 struct sk_buff *skb)
226 {
227 int err;
228
229 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
230 skb, NULL, skb_dst(skb)->dev, dst_output);
231 if (likely(err == 1))
232 err = dst_output(net, sk, skb);
233
234 return err;
235 }
236
237 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
238 struct net_device *vrf_dev)
239 {
240 struct iphdr *ip4h = ip_hdr(skb);
241 int ret = NET_XMIT_DROP;
242 struct flowi4 fl4 = {
243 /* needed to match OIF rule */
244 .flowi4_oif = vrf_dev->ifindex,
245 .flowi4_iif = LOOPBACK_IFINDEX,
246 .flowi4_tos = RT_TOS(ip4h->tos),
247 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
248 .flowi4_proto = ip4h->protocol,
249 .daddr = ip4h->daddr,
250 .saddr = ip4h->saddr,
251 };
252 struct net *net = dev_net(vrf_dev);
253 struct rtable *rt;
254
255 rt = ip_route_output_flow(net, &fl4, NULL);
256 if (IS_ERR(rt))
257 goto err;
258
259 skb_dst_drop(skb);
260
261 /* if dst.dev is loopback or the VRF device again this is locally
262 * originated traffic destined to a local address. Short circuit
263 * to Rx path
264 */
265 if (rt->dst.dev == vrf_dev)
266 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
267
268 skb_dst_set(skb, &rt->dst);
269
270 /* strip the ethernet header added for pass through VRF device */
271 __skb_pull(skb, skb_network_offset(skb));
272
273 if (!ip4h->saddr) {
274 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
275 RT_SCOPE_LINK);
276 }
277
278 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
279 if (unlikely(net_xmit_eval(ret)))
280 vrf_dev->stats.tx_errors++;
281 else
282 ret = NET_XMIT_SUCCESS;
283
284 out:
285 return ret;
286 err:
287 vrf_tx_error(vrf_dev, skb);
288 goto out;
289 }
290
291 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
292 {
293 switch (skb->protocol) {
294 case htons(ETH_P_IP):
295 return vrf_process_v4_outbound(skb, dev);
296 case htons(ETH_P_IPV6):
297 return vrf_process_v6_outbound(skb, dev);
298 default:
299 vrf_tx_error(dev, skb);
300 return NET_XMIT_DROP;
301 }
302 }
303
304 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
305 {
306 int len = skb->len;
307 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
308
309 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
310 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
311
312 u64_stats_update_begin(&dstats->syncp);
313 dstats->tx_pkts++;
314 dstats->tx_bytes += len;
315 u64_stats_update_end(&dstats->syncp);
316 } else {
317 this_cpu_inc(dev->dstats->tx_drps);
318 }
319
320 return ret;
321 }
322
323 static int vrf_finish_direct(struct net *net, struct sock *sk,
324 struct sk_buff *skb)
325 {
326 struct net_device *vrf_dev = skb->dev;
327
328 if (!list_empty(&vrf_dev->ptype_all) &&
329 likely(skb_headroom(skb) >= ETH_HLEN)) {
330 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
331
332 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
333 eth_zero_addr(eth->h_dest);
334 eth->h_proto = skb->protocol;
335
336 rcu_read_lock_bh();
337 dev_queue_xmit_nit(skb, vrf_dev);
338 rcu_read_unlock_bh();
339
340 skb_pull(skb, ETH_HLEN);
341 }
342
343 return 1;
344 }
345
346 #if IS_ENABLED(CONFIG_IPV6)
347 /* modelled after ip6_finish_output2 */
348 static int vrf_finish_output6(struct net *net, struct sock *sk,
349 struct sk_buff *skb)
350 {
351 struct dst_entry *dst = skb_dst(skb);
352 struct net_device *dev = dst->dev;
353 const struct in6_addr *nexthop;
354 struct neighbour *neigh;
355 int ret;
356
357 nf_reset(skb);
358
359 skb->protocol = htons(ETH_P_IPV6);
360 skb->dev = dev;
361
362 rcu_read_lock_bh();
363 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
364 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
365 if (unlikely(!neigh))
366 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
367 if (!IS_ERR(neigh)) {
368 sock_confirm_neigh(skb, neigh);
369 ret = neigh_output(neigh, skb, false);
370 rcu_read_unlock_bh();
371 return ret;
372 }
373 rcu_read_unlock_bh();
374
375 IP6_INC_STATS(dev_net(dst->dev),
376 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
377 kfree_skb(skb);
378 return -EINVAL;
379 }
380
381 /* modelled after ip6_output */
382 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
383 {
384 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
385 net, sk, skb, NULL, skb_dst(skb)->dev,
386 vrf_finish_output6,
387 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
388 }
389
390 /* set dst on skb to send packet to us via dev_xmit path. Allows
391 * packet to go through device based features such as qdisc, netfilter
392 * hooks and packet sockets with skb->dev set to vrf device.
393 */
394 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
395 struct sk_buff *skb)
396 {
397 struct net_vrf *vrf = netdev_priv(vrf_dev);
398 struct dst_entry *dst = NULL;
399 struct rt6_info *rt6;
400
401 rcu_read_lock();
402
403 rt6 = rcu_dereference(vrf->rt6);
404 if (likely(rt6)) {
405 dst = &rt6->dst;
406 dst_hold(dst);
407 }
408
409 rcu_read_unlock();
410
411 if (unlikely(!dst)) {
412 vrf_tx_error(vrf_dev, skb);
413 return NULL;
414 }
415
416 skb_dst_drop(skb);
417 skb_dst_set(skb, dst);
418
419 return skb;
420 }
421
422 static int vrf_output6_direct(struct net *net, struct sock *sk,
423 struct sk_buff *skb)
424 {
425 skb->protocol = htons(ETH_P_IPV6);
426
427 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
428 net, sk, skb, NULL, skb->dev,
429 vrf_finish_direct,
430 !(IPCB(skb)->flags & IPSKB_REROUTED));
431 }
432
433 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
434 struct sock *sk,
435 struct sk_buff *skb)
436 {
437 struct net *net = dev_net(vrf_dev);
438 int err;
439
440 skb->dev = vrf_dev;
441
442 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
443 skb, NULL, vrf_dev, vrf_output6_direct);
444
445 if (likely(err == 1))
446 err = vrf_output6_direct(net, sk, skb);
447
448 /* reset skb device */
449 if (likely(err == 1))
450 nf_reset(skb);
451 else
452 skb = NULL;
453
454 return skb;
455 }
456
457 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
458 struct sock *sk,
459 struct sk_buff *skb)
460 {
461 /* don't divert link scope packets */
462 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
463 return skb;
464
465 if (qdisc_tx_is_default(vrf_dev))
466 return vrf_ip6_out_direct(vrf_dev, sk, skb);
467
468 return vrf_ip6_out_redirect(vrf_dev, skb);
469 }
470
471 /* holding rtnl */
472 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
473 {
474 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
475 struct net *net = dev_net(dev);
476 struct dst_entry *dst;
477
478 RCU_INIT_POINTER(vrf->rt6, NULL);
479 synchronize_rcu();
480
481 /* move dev in dst's to loopback so this VRF device can be deleted
482 * - based on dst_ifdown
483 */
484 if (rt6) {
485 dst = &rt6->dst;
486 dev_put(dst->dev);
487 dst->dev = net->loopback_dev;
488 dev_hold(dst->dev);
489 dst_release(dst);
490 }
491 }
492
493 static int vrf_rt6_create(struct net_device *dev)
494 {
495 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
496 struct net_vrf *vrf = netdev_priv(dev);
497 struct net *net = dev_net(dev);
498 struct rt6_info *rt6;
499 int rc = -ENOMEM;
500
501 /* IPv6 can be CONFIG enabled and then disabled runtime */
502 if (!ipv6_mod_enabled())
503 return 0;
504
505 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
506 if (!vrf->fib6_table)
507 goto out;
508
509 /* create a dst for routing packets out a VRF device */
510 rt6 = ip6_dst_alloc(net, dev, flags);
511 if (!rt6)
512 goto out;
513
514 rt6->dst.output = vrf_output6;
515
516 rcu_assign_pointer(vrf->rt6, rt6);
517
518 rc = 0;
519 out:
520 return rc;
521 }
522 #else
523 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
524 struct sock *sk,
525 struct sk_buff *skb)
526 {
527 return skb;
528 }
529
530 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
531 {
532 }
533
534 static int vrf_rt6_create(struct net_device *dev)
535 {
536 return 0;
537 }
538 #endif
539
540 /* modelled after ip_finish_output2 */
541 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
542 {
543 struct dst_entry *dst = skb_dst(skb);
544 struct rtable *rt = (struct rtable *)dst;
545 struct net_device *dev = dst->dev;
546 unsigned int hh_len = LL_RESERVED_SPACE(dev);
547 struct neighbour *neigh;
548 bool is_v6gw = false;
549 int ret = -EINVAL;
550
551 nf_reset(skb);
552
553 /* Be paranoid, rather than too clever. */
554 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
555 struct sk_buff *skb2;
556
557 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
558 if (!skb2) {
559 ret = -ENOMEM;
560 goto err;
561 }
562 if (skb->sk)
563 skb_set_owner_w(skb2, skb->sk);
564
565 consume_skb(skb);
566 skb = skb2;
567 }
568
569 rcu_read_lock_bh();
570
571 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
572 if (!IS_ERR(neigh)) {
573 sock_confirm_neigh(skb, neigh);
574 /* if crossing protocols, can not use the cached header */
575 ret = neigh_output(neigh, skb, is_v6gw);
576 rcu_read_unlock_bh();
577 return ret;
578 }
579
580 rcu_read_unlock_bh();
581 err:
582 vrf_tx_error(skb->dev, skb);
583 return ret;
584 }
585
586 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
587 {
588 struct net_device *dev = skb_dst(skb)->dev;
589
590 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
591
592 skb->dev = dev;
593 skb->protocol = htons(ETH_P_IP);
594
595 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
596 net, sk, skb, NULL, dev,
597 vrf_finish_output,
598 !(IPCB(skb)->flags & IPSKB_REROUTED));
599 }
600
601 /* set dst on skb to send packet to us via dev_xmit path. Allows
602 * packet to go through device based features such as qdisc, netfilter
603 * hooks and packet sockets with skb->dev set to vrf device.
604 */
605 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
606 struct sk_buff *skb)
607 {
608 struct net_vrf *vrf = netdev_priv(vrf_dev);
609 struct dst_entry *dst = NULL;
610 struct rtable *rth;
611
612 rcu_read_lock();
613
614 rth = rcu_dereference(vrf->rth);
615 if (likely(rth)) {
616 dst = &rth->dst;
617 dst_hold(dst);
618 }
619
620 rcu_read_unlock();
621
622 if (unlikely(!dst)) {
623 vrf_tx_error(vrf_dev, skb);
624 return NULL;
625 }
626
627 skb_dst_drop(skb);
628 skb_dst_set(skb, dst);
629
630 return skb;
631 }
632
633 static int vrf_output_direct(struct net *net, struct sock *sk,
634 struct sk_buff *skb)
635 {
636 skb->protocol = htons(ETH_P_IP);
637
638 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
639 net, sk, skb, NULL, skb->dev,
640 vrf_finish_direct,
641 !(IPCB(skb)->flags & IPSKB_REROUTED));
642 }
643
644 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
645 struct sock *sk,
646 struct sk_buff *skb)
647 {
648 struct net *net = dev_net(vrf_dev);
649 int err;
650
651 skb->dev = vrf_dev;
652
653 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
654 skb, NULL, vrf_dev, vrf_output_direct);
655
656 if (likely(err == 1))
657 err = vrf_output_direct(net, sk, skb);
658
659 /* reset skb device */
660 if (likely(err == 1))
661 nf_reset(skb);
662 else
663 skb = NULL;
664
665 return skb;
666 }
667
668 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
669 struct sock *sk,
670 struct sk_buff *skb)
671 {
672 /* don't divert multicast or local broadcast */
673 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
674 ipv4_is_lbcast(ip_hdr(skb)->daddr))
675 return skb;
676
677 if (qdisc_tx_is_default(vrf_dev))
678 return vrf_ip_out_direct(vrf_dev, sk, skb);
679
680 return vrf_ip_out_redirect(vrf_dev, skb);
681 }
682
683 /* called with rcu lock held */
684 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
685 struct sock *sk,
686 struct sk_buff *skb,
687 u16 proto)
688 {
689 switch (proto) {
690 case AF_INET:
691 return vrf_ip_out(vrf_dev, sk, skb);
692 case AF_INET6:
693 return vrf_ip6_out(vrf_dev, sk, skb);
694 }
695
696 return skb;
697 }
698
699 /* holding rtnl */
700 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
701 {
702 struct rtable *rth = rtnl_dereference(vrf->rth);
703 struct net *net = dev_net(dev);
704 struct dst_entry *dst;
705
706 RCU_INIT_POINTER(vrf->rth, NULL);
707 synchronize_rcu();
708
709 /* move dev in dst's to loopback so this VRF device can be deleted
710 * - based on dst_ifdown
711 */
712 if (rth) {
713 dst = &rth->dst;
714 dev_put(dst->dev);
715 dst->dev = net->loopback_dev;
716 dev_hold(dst->dev);
717 dst_release(dst);
718 }
719 }
720
721 static int vrf_rtable_create(struct net_device *dev)
722 {
723 struct net_vrf *vrf = netdev_priv(dev);
724 struct rtable *rth;
725
726 if (!fib_new_table(dev_net(dev), vrf->tb_id))
727 return -ENOMEM;
728
729 /* create a dst for routing packets out through a VRF device */
730 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
731 if (!rth)
732 return -ENOMEM;
733
734 rth->dst.output = vrf_output;
735
736 rcu_assign_pointer(vrf->rth, rth);
737
738 return 0;
739 }
740
741 /**************************** device handling ********************/
742
743 /* cycle interface to flush neighbor cache and move routes across tables */
744 static void cycle_netdev(struct net_device *dev,
745 struct netlink_ext_ack *extack)
746 {
747 unsigned int flags = dev->flags;
748 int ret;
749
750 if (!netif_running(dev))
751 return;
752
753 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
754 if (ret >= 0)
755 ret = dev_change_flags(dev, flags, extack);
756
757 if (ret < 0) {
758 netdev_err(dev,
759 "Failed to cycle device %s; route tables might be wrong!\n",
760 dev->name);
761 }
762 }
763
764 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
765 struct netlink_ext_ack *extack)
766 {
767 int ret;
768
769 /* do not allow loopback device to be enslaved to a VRF.
770 * The vrf device acts as the loopback for the vrf.
771 */
772 if (port_dev == dev_net(dev)->loopback_dev) {
773 NL_SET_ERR_MSG(extack,
774 "Can not enslave loopback device to a VRF");
775 return -EOPNOTSUPP;
776 }
777
778 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
779 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
780 if (ret < 0)
781 goto err;
782
783 cycle_netdev(port_dev, extack);
784
785 return 0;
786
787 err:
788 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
789 return ret;
790 }
791
792 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
793 struct netlink_ext_ack *extack)
794 {
795 if (netif_is_l3_master(port_dev)) {
796 NL_SET_ERR_MSG(extack,
797 "Can not enslave an L3 master device to a VRF");
798 return -EINVAL;
799 }
800
801 if (netif_is_l3_slave(port_dev))
802 return -EINVAL;
803
804 return do_vrf_add_slave(dev, port_dev, extack);
805 }
806
807 /* inverse of do_vrf_add_slave */
808 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
809 {
810 netdev_upper_dev_unlink(port_dev, dev);
811 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
812
813 cycle_netdev(port_dev, NULL);
814
815 return 0;
816 }
817
818 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
819 {
820 return do_vrf_del_slave(dev, port_dev);
821 }
822
823 static void vrf_dev_uninit(struct net_device *dev)
824 {
825 struct net_vrf *vrf = netdev_priv(dev);
826
827 vrf_rtable_release(dev, vrf);
828 vrf_rt6_release(dev, vrf);
829
830 free_percpu(dev->dstats);
831 dev->dstats = NULL;
832 }
833
834 static int vrf_dev_init(struct net_device *dev)
835 {
836 struct net_vrf *vrf = netdev_priv(dev);
837
838 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
839 if (!dev->dstats)
840 goto out_nomem;
841
842 /* create the default dst which points back to us */
843 if (vrf_rtable_create(dev) != 0)
844 goto out_stats;
845
846 if (vrf_rt6_create(dev) != 0)
847 goto out_rth;
848
849 dev->flags = IFF_MASTER | IFF_NOARP;
850
851 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
852 dev->mtu = 64 * 1024;
853
854 /* similarly, oper state is irrelevant; set to up to avoid confusion */
855 dev->operstate = IF_OPER_UP;
856 netdev_lockdep_set_classes(dev);
857 return 0;
858
859 out_rth:
860 vrf_rtable_release(dev, vrf);
861 out_stats:
862 free_percpu(dev->dstats);
863 dev->dstats = NULL;
864 out_nomem:
865 return -ENOMEM;
866 }
867
868 static const struct net_device_ops vrf_netdev_ops = {
869 .ndo_init = vrf_dev_init,
870 .ndo_uninit = vrf_dev_uninit,
871 .ndo_start_xmit = vrf_xmit,
872 .ndo_set_mac_address = eth_mac_addr,
873 .ndo_get_stats64 = vrf_get_stats64,
874 .ndo_add_slave = vrf_add_slave,
875 .ndo_del_slave = vrf_del_slave,
876 };
877
878 static u32 vrf_fib_table(const struct net_device *dev)
879 {
880 struct net_vrf *vrf = netdev_priv(dev);
881
882 return vrf->tb_id;
883 }
884
885 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
886 {
887 kfree_skb(skb);
888 return 0;
889 }
890
891 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
892 struct sk_buff *skb,
893 struct net_device *dev)
894 {
895 struct net *net = dev_net(dev);
896
897 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
898 skb = NULL; /* kfree_skb(skb) handled by nf code */
899
900 return skb;
901 }
902
903 #if IS_ENABLED(CONFIG_IPV6)
904 /* neighbor handling is done with actual device; do not want
905 * to flip skb->dev for those ndisc packets. This really fails
906 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
907 * a start.
908 */
909 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
910 {
911 const struct ipv6hdr *iph = ipv6_hdr(skb);
912 bool rc = false;
913
914 if (iph->nexthdr == NEXTHDR_ICMP) {
915 const struct icmp6hdr *icmph;
916 struct icmp6hdr _icmph;
917
918 icmph = skb_header_pointer(skb, sizeof(*iph),
919 sizeof(_icmph), &_icmph);
920 if (!icmph)
921 goto out;
922
923 switch (icmph->icmp6_type) {
924 case NDISC_ROUTER_SOLICITATION:
925 case NDISC_ROUTER_ADVERTISEMENT:
926 case NDISC_NEIGHBOUR_SOLICITATION:
927 case NDISC_NEIGHBOUR_ADVERTISEMENT:
928 case NDISC_REDIRECT:
929 rc = true;
930 break;
931 }
932 }
933
934 out:
935 return rc;
936 }
937
938 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
939 const struct net_device *dev,
940 struct flowi6 *fl6,
941 int ifindex,
942 const struct sk_buff *skb,
943 int flags)
944 {
945 struct net_vrf *vrf = netdev_priv(dev);
946
947 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
948 }
949
950 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
951 int ifindex)
952 {
953 const struct ipv6hdr *iph = ipv6_hdr(skb);
954 struct flowi6 fl6 = {
955 .flowi6_iif = ifindex,
956 .flowi6_mark = skb->mark,
957 .flowi6_proto = iph->nexthdr,
958 .daddr = iph->daddr,
959 .saddr = iph->saddr,
960 .flowlabel = ip6_flowinfo(iph),
961 };
962 struct net *net = dev_net(vrf_dev);
963 struct rt6_info *rt6;
964
965 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
966 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
967 if (unlikely(!rt6))
968 return;
969
970 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
971 return;
972
973 skb_dst_set(skb, &rt6->dst);
974 }
975
976 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
977 struct sk_buff *skb)
978 {
979 int orig_iif = skb->skb_iif;
980 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
981 bool is_ndisc = ipv6_ndisc_frame(skb);
982
983 /* loopback, multicast & non-ND link-local traffic; do not push through
984 * packet taps again. Reset pkt_type for upper layers to process skb
985 */
986 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
987 skb->dev = vrf_dev;
988 skb->skb_iif = vrf_dev->ifindex;
989 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
990 if (skb->pkt_type == PACKET_LOOPBACK)
991 skb->pkt_type = PACKET_HOST;
992 goto out;
993 }
994
995 /* if packet is NDISC then keep the ingress interface */
996 if (!is_ndisc) {
997 vrf_rx_stats(vrf_dev, skb->len);
998 skb->dev = vrf_dev;
999 skb->skb_iif = vrf_dev->ifindex;
1000
1001 if (!list_empty(&vrf_dev->ptype_all)) {
1002 skb_push(skb, skb->mac_len);
1003 dev_queue_xmit_nit(skb, vrf_dev);
1004 skb_pull(skb, skb->mac_len);
1005 }
1006
1007 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1008 }
1009
1010 if (need_strict)
1011 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1012
1013 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1014 out:
1015 return skb;
1016 }
1017
1018 #else
1019 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1020 struct sk_buff *skb)
1021 {
1022 return skb;
1023 }
1024 #endif
1025
1026 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1027 struct sk_buff *skb)
1028 {
1029 skb->dev = vrf_dev;
1030 skb->skb_iif = vrf_dev->ifindex;
1031 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1032
1033 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1034 goto out;
1035
1036 /* loopback traffic; do not push through packet taps again.
1037 * Reset pkt_type for upper layers to process skb
1038 */
1039 if (skb->pkt_type == PACKET_LOOPBACK) {
1040 skb->pkt_type = PACKET_HOST;
1041 goto out;
1042 }
1043
1044 vrf_rx_stats(vrf_dev, skb->len);
1045
1046 if (!list_empty(&vrf_dev->ptype_all)) {
1047 skb_push(skb, skb->mac_len);
1048 dev_queue_xmit_nit(skb, vrf_dev);
1049 skb_pull(skb, skb->mac_len);
1050 }
1051
1052 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1053 out:
1054 return skb;
1055 }
1056
1057 /* called with rcu lock held */
1058 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1059 struct sk_buff *skb,
1060 u16 proto)
1061 {
1062 switch (proto) {
1063 case AF_INET:
1064 return vrf_ip_rcv(vrf_dev, skb);
1065 case AF_INET6:
1066 return vrf_ip6_rcv(vrf_dev, skb);
1067 }
1068
1069 return skb;
1070 }
1071
1072 #if IS_ENABLED(CONFIG_IPV6)
1073 /* send to link-local or multicast address via interface enslaved to
1074 * VRF device. Force lookup to VRF table without changing flow struct
1075 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1076 * is taken on the dst by this function.
1077 */
1078 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1079 struct flowi6 *fl6)
1080 {
1081 struct net *net = dev_net(dev);
1082 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1083 struct dst_entry *dst = NULL;
1084 struct rt6_info *rt;
1085
1086 /* VRF device does not have a link-local address and
1087 * sending packets to link-local or mcast addresses over
1088 * a VRF device does not make sense
1089 */
1090 if (fl6->flowi6_oif == dev->ifindex) {
1091 dst = &net->ipv6.ip6_null_entry->dst;
1092 return dst;
1093 }
1094
1095 if (!ipv6_addr_any(&fl6->saddr))
1096 flags |= RT6_LOOKUP_F_HAS_SADDR;
1097
1098 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1099 if (rt)
1100 dst = &rt->dst;
1101
1102 return dst;
1103 }
1104 #endif
1105
1106 static const struct l3mdev_ops vrf_l3mdev_ops = {
1107 .l3mdev_fib_table = vrf_fib_table,
1108 .l3mdev_l3_rcv = vrf_l3_rcv,
1109 .l3mdev_l3_out = vrf_l3_out,
1110 #if IS_ENABLED(CONFIG_IPV6)
1111 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1112 #endif
1113 };
1114
1115 static void vrf_get_drvinfo(struct net_device *dev,
1116 struct ethtool_drvinfo *info)
1117 {
1118 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1119 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1120 }
1121
1122 static const struct ethtool_ops vrf_ethtool_ops = {
1123 .get_drvinfo = vrf_get_drvinfo,
1124 };
1125
1126 static inline size_t vrf_fib_rule_nl_size(void)
1127 {
1128 size_t sz;
1129
1130 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1131 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1132 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1133 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1134
1135 return sz;
1136 }
1137
1138 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1139 {
1140 struct fib_rule_hdr *frh;
1141 struct nlmsghdr *nlh;
1142 struct sk_buff *skb;
1143 int err;
1144
1145 if (family == AF_INET6 && !ipv6_mod_enabled())
1146 return 0;
1147
1148 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1149 if (!skb)
1150 return -ENOMEM;
1151
1152 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1153 if (!nlh)
1154 goto nla_put_failure;
1155
1156 /* rule only needs to appear once */
1157 nlh->nlmsg_flags |= NLM_F_EXCL;
1158
1159 frh = nlmsg_data(nlh);
1160 memset(frh, 0, sizeof(*frh));
1161 frh->family = family;
1162 frh->action = FR_ACT_TO_TBL;
1163
1164 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1165 goto nla_put_failure;
1166
1167 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1168 goto nla_put_failure;
1169
1170 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1171 goto nla_put_failure;
1172
1173 nlmsg_end(skb, nlh);
1174
1175 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1176 skb->sk = dev_net(dev)->rtnl;
1177 if (add_it) {
1178 err = fib_nl_newrule(skb, nlh, NULL);
1179 if (err == -EEXIST)
1180 err = 0;
1181 } else {
1182 err = fib_nl_delrule(skb, nlh, NULL);
1183 if (err == -ENOENT)
1184 err = 0;
1185 }
1186 nlmsg_free(skb);
1187
1188 return err;
1189
1190 nla_put_failure:
1191 nlmsg_free(skb);
1192
1193 return -EMSGSIZE;
1194 }
1195
1196 static int vrf_add_fib_rules(const struct net_device *dev)
1197 {
1198 int err;
1199
1200 err = vrf_fib_rule(dev, AF_INET, true);
1201 if (err < 0)
1202 goto out_err;
1203
1204 err = vrf_fib_rule(dev, AF_INET6, true);
1205 if (err < 0)
1206 goto ipv6_err;
1207
1208 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1209 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1210 if (err < 0)
1211 goto ipmr_err;
1212 #endif
1213
1214 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1215 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1216 if (err < 0)
1217 goto ip6mr_err;
1218 #endif
1219
1220 return 0;
1221
1222 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1223 ip6mr_err:
1224 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1225 #endif
1226
1227 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1228 ipmr_err:
1229 vrf_fib_rule(dev, AF_INET6, false);
1230 #endif
1231
1232 ipv6_err:
1233 vrf_fib_rule(dev, AF_INET, false);
1234
1235 out_err:
1236 netdev_err(dev, "Failed to add FIB rules.\n");
1237 return err;
1238 }
1239
1240 static void vrf_setup(struct net_device *dev)
1241 {
1242 ether_setup(dev);
1243
1244 /* Initialize the device structure. */
1245 dev->netdev_ops = &vrf_netdev_ops;
1246 dev->l3mdev_ops = &vrf_l3mdev_ops;
1247 dev->ethtool_ops = &vrf_ethtool_ops;
1248 dev->needs_free_netdev = true;
1249
1250 /* Fill in device structure with ethernet-generic values. */
1251 eth_hw_addr_random(dev);
1252
1253 /* don't acquire vrf device's netif_tx_lock when transmitting */
1254 dev->features |= NETIF_F_LLTX;
1255
1256 /* don't allow vrf devices to change network namespaces. */
1257 dev->features |= NETIF_F_NETNS_LOCAL;
1258
1259 /* does not make sense for a VLAN to be added to a vrf device */
1260 dev->features |= NETIF_F_VLAN_CHALLENGED;
1261
1262 /* enable offload features */
1263 dev->features |= NETIF_F_GSO_SOFTWARE;
1264 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1265 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1266
1267 dev->hw_features = dev->features;
1268 dev->hw_enc_features = dev->features;
1269
1270 /* default to no qdisc; user can add if desired */
1271 dev->priv_flags |= IFF_NO_QUEUE;
1272 dev->priv_flags |= IFF_NO_RX_HANDLER;
1273 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1274
1275 /* VRF devices do not care about MTU, but if the MTU is set
1276 * too low then the ipv4 and ipv6 protocols are disabled
1277 * which breaks networking.
1278 */
1279 dev->min_mtu = IPV6_MIN_MTU;
1280 dev->max_mtu = ETH_MAX_MTU;
1281 }
1282
1283 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1284 struct netlink_ext_ack *extack)
1285 {
1286 if (tb[IFLA_ADDRESS]) {
1287 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1288 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1289 return -EINVAL;
1290 }
1291 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1292 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1293 return -EADDRNOTAVAIL;
1294 }
1295 }
1296 return 0;
1297 }
1298
1299 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1300 {
1301 struct net_device *port_dev;
1302 struct list_head *iter;
1303
1304 netdev_for_each_lower_dev(dev, port_dev, iter)
1305 vrf_del_slave(dev, port_dev);
1306
1307 unregister_netdevice_queue(dev, head);
1308 }
1309
1310 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1311 struct nlattr *tb[], struct nlattr *data[],
1312 struct netlink_ext_ack *extack)
1313 {
1314 struct net_vrf *vrf = netdev_priv(dev);
1315 bool *add_fib_rules;
1316 struct net *net;
1317 int err;
1318
1319 if (!data || !data[IFLA_VRF_TABLE]) {
1320 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1321 return -EINVAL;
1322 }
1323
1324 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1325 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1326 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1327 "Invalid VRF table id");
1328 return -EINVAL;
1329 }
1330
1331 dev->priv_flags |= IFF_L3MDEV_MASTER;
1332
1333 err = register_netdevice(dev);
1334 if (err)
1335 goto out;
1336
1337 net = dev_net(dev);
1338 add_fib_rules = net_generic(net, vrf_net_id);
1339 if (*add_fib_rules) {
1340 err = vrf_add_fib_rules(dev);
1341 if (err) {
1342 unregister_netdevice(dev);
1343 goto out;
1344 }
1345 *add_fib_rules = false;
1346 }
1347
1348 out:
1349 return err;
1350 }
1351
1352 static size_t vrf_nl_getsize(const struct net_device *dev)
1353 {
1354 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1355 }
1356
1357 static int vrf_fillinfo(struct sk_buff *skb,
1358 const struct net_device *dev)
1359 {
1360 struct net_vrf *vrf = netdev_priv(dev);
1361
1362 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1363 }
1364
1365 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1366 const struct net_device *slave_dev)
1367 {
1368 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1369 }
1370
1371 static int vrf_fill_slave_info(struct sk_buff *skb,
1372 const struct net_device *vrf_dev,
1373 const struct net_device *slave_dev)
1374 {
1375 struct net_vrf *vrf = netdev_priv(vrf_dev);
1376
1377 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1378 return -EMSGSIZE;
1379
1380 return 0;
1381 }
1382
1383 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1384 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1385 };
1386
1387 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1388 .kind = DRV_NAME,
1389 .priv_size = sizeof(struct net_vrf),
1390
1391 .get_size = vrf_nl_getsize,
1392 .policy = vrf_nl_policy,
1393 .validate = vrf_validate,
1394 .fill_info = vrf_fillinfo,
1395
1396 .get_slave_size = vrf_get_slave_size,
1397 .fill_slave_info = vrf_fill_slave_info,
1398
1399 .newlink = vrf_newlink,
1400 .dellink = vrf_dellink,
1401 .setup = vrf_setup,
1402 .maxtype = IFLA_VRF_MAX,
1403 };
1404
1405 static int vrf_device_event(struct notifier_block *unused,
1406 unsigned long event, void *ptr)
1407 {
1408 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1409
1410 /* only care about unregister events to drop slave references */
1411 if (event == NETDEV_UNREGISTER) {
1412 struct net_device *vrf_dev;
1413
1414 if (!netif_is_l3_slave(dev))
1415 goto out;
1416
1417 vrf_dev = netdev_master_upper_dev_get(dev);
1418 vrf_del_slave(vrf_dev, dev);
1419 }
1420 out:
1421 return NOTIFY_DONE;
1422 }
1423
1424 static struct notifier_block vrf_notifier_block __read_mostly = {
1425 .notifier_call = vrf_device_event,
1426 };
1427
1428 /* Initialize per network namespace state */
1429 static int __net_init vrf_netns_init(struct net *net)
1430 {
1431 bool *add_fib_rules = net_generic(net, vrf_net_id);
1432
1433 *add_fib_rules = true;
1434
1435 return 0;
1436 }
1437
1438 static struct pernet_operations vrf_net_ops __net_initdata = {
1439 .init = vrf_netns_init,
1440 .id = &vrf_net_id,
1441 .size = sizeof(bool),
1442 };
1443
1444 static int __init vrf_init_module(void)
1445 {
1446 int rc;
1447
1448 register_netdevice_notifier(&vrf_notifier_block);
1449
1450 rc = register_pernet_subsys(&vrf_net_ops);
1451 if (rc < 0)
1452 goto error;
1453
1454 rc = rtnl_link_register(&vrf_link_ops);
1455 if (rc < 0) {
1456 unregister_pernet_subsys(&vrf_net_ops);
1457 goto error;
1458 }
1459
1460 return 0;
1461
1462 error:
1463 unregister_netdevice_notifier(&vrf_notifier_block);
1464 return rc;
1465 }
1466
1467 module_init(vrf_init_module);
1468 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1469 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1470 MODULE_LICENSE("GPL");
1471 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1472 MODULE_VERSION(DRV_VERSION);