]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/wireguard/send.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / net / wireguard / send.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 */
5
6 #include "queueing.h"
7 #include "timers.h"
8 #include "device.h"
9 #include "peer.h"
10 #include "socket.h"
11 #include "messages.h"
12 #include "cookie.h"
13
14 #include <linux/uio.h>
15 #include <linux/inetdevice.h>
16 #include <linux/socket.h>
17 #include <net/ip_tunnels.h>
18 #include <net/udp.h>
19 #include <net/sock.h>
20
21 static void wg_packet_send_handshake_initiation(struct wg_peer *peer)
22 {
23 struct message_handshake_initiation packet;
24
25 if (!wg_birthdate_has_expired(atomic64_read(&peer->last_sent_handshake),
26 REKEY_TIMEOUT))
27 return; /* This function is rate limited. */
28
29 atomic64_set(&peer->last_sent_handshake, ktime_get_coarse_boottime_ns());
30 net_dbg_ratelimited("%s: Sending handshake initiation to peer %llu (%pISpfsc)\n",
31 peer->device->dev->name, peer->internal_id,
32 &peer->endpoint.addr);
33
34 if (wg_noise_handshake_create_initiation(&packet, &peer->handshake)) {
35 wg_cookie_add_mac_to_packet(&packet, sizeof(packet), peer);
36 wg_timers_any_authenticated_packet_traversal(peer);
37 wg_timers_any_authenticated_packet_sent(peer);
38 atomic64_set(&peer->last_sent_handshake,
39 ktime_get_coarse_boottime_ns());
40 wg_socket_send_buffer_to_peer(peer, &packet, sizeof(packet),
41 HANDSHAKE_DSCP);
42 wg_timers_handshake_initiated(peer);
43 }
44 }
45
46 void wg_packet_handshake_send_worker(struct work_struct *work)
47 {
48 struct wg_peer *peer = container_of(work, struct wg_peer,
49 transmit_handshake_work);
50
51 wg_packet_send_handshake_initiation(peer);
52 wg_peer_put(peer);
53 }
54
55 void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer,
56 bool is_retry)
57 {
58 if (!is_retry)
59 peer->timer_handshake_attempts = 0;
60
61 rcu_read_lock_bh();
62 /* We check last_sent_handshake here in addition to the actual function
63 * we're queueing up, so that we don't queue things if not strictly
64 * necessary:
65 */
66 if (!wg_birthdate_has_expired(atomic64_read(&peer->last_sent_handshake),
67 REKEY_TIMEOUT) ||
68 unlikely(READ_ONCE(peer->is_dead)))
69 goto out;
70
71 wg_peer_get(peer);
72 /* Queues up calling packet_send_queued_handshakes(peer), where we do a
73 * peer_put(peer) after:
74 */
75 if (!queue_work(peer->device->handshake_send_wq,
76 &peer->transmit_handshake_work))
77 /* If the work was already queued, we want to drop the
78 * extra reference:
79 */
80 wg_peer_put(peer);
81 out:
82 rcu_read_unlock_bh();
83 }
84
85 void wg_packet_send_handshake_response(struct wg_peer *peer)
86 {
87 struct message_handshake_response packet;
88
89 atomic64_set(&peer->last_sent_handshake, ktime_get_coarse_boottime_ns());
90 net_dbg_ratelimited("%s: Sending handshake response to peer %llu (%pISpfsc)\n",
91 peer->device->dev->name, peer->internal_id,
92 &peer->endpoint.addr);
93
94 if (wg_noise_handshake_create_response(&packet, &peer->handshake)) {
95 wg_cookie_add_mac_to_packet(&packet, sizeof(packet), peer);
96 if (wg_noise_handshake_begin_session(&peer->handshake,
97 &peer->keypairs)) {
98 wg_timers_session_derived(peer);
99 wg_timers_any_authenticated_packet_traversal(peer);
100 wg_timers_any_authenticated_packet_sent(peer);
101 atomic64_set(&peer->last_sent_handshake,
102 ktime_get_coarse_boottime_ns());
103 wg_socket_send_buffer_to_peer(peer, &packet,
104 sizeof(packet),
105 HANDSHAKE_DSCP);
106 }
107 }
108 }
109
110 void wg_packet_send_handshake_cookie(struct wg_device *wg,
111 struct sk_buff *initiating_skb,
112 __le32 sender_index)
113 {
114 struct message_handshake_cookie packet;
115
116 net_dbg_skb_ratelimited("%s: Sending cookie response for denied handshake message for %pISpfsc\n",
117 wg->dev->name, initiating_skb);
118 wg_cookie_message_create(&packet, initiating_skb, sender_index,
119 &wg->cookie_checker);
120 wg_socket_send_buffer_as_reply_to_skb(wg, initiating_skb, &packet,
121 sizeof(packet));
122 }
123
124 static void keep_key_fresh(struct wg_peer *peer)
125 {
126 struct noise_keypair *keypair;
127 bool send = false;
128
129 rcu_read_lock_bh();
130 keypair = rcu_dereference_bh(peer->keypairs.current_keypair);
131 if (likely(keypair && READ_ONCE(keypair->sending.is_valid)) &&
132 (unlikely(atomic64_read(&keypair->sending.counter.counter) >
133 REKEY_AFTER_MESSAGES) ||
134 (keypair->i_am_the_initiator &&
135 unlikely(wg_birthdate_has_expired(keypair->sending.birthdate,
136 REKEY_AFTER_TIME)))))
137 send = true;
138 rcu_read_unlock_bh();
139
140 if (send)
141 wg_packet_send_queued_handshake_initiation(peer, false);
142 }
143
144 static unsigned int calculate_skb_padding(struct sk_buff *skb)
145 {
146 unsigned int padded_size, last_unit = skb->len;
147
148 if (unlikely(!PACKET_CB(skb)->mtu))
149 return ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE) - last_unit;
150
151 /* We do this modulo business with the MTU, just in case the networking
152 * layer gives us a packet that's bigger than the MTU. In that case, we
153 * wouldn't want the final subtraction to overflow in the case of the
154 * padded_size being clamped. Fortunately, that's very rarely the case,
155 * so we optimize for that not happening.
156 */
157 if (unlikely(last_unit > PACKET_CB(skb)->mtu))
158 last_unit %= PACKET_CB(skb)->mtu;
159
160 padded_size = min(PACKET_CB(skb)->mtu,
161 ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE));
162 return padded_size - last_unit;
163 }
164
165 static bool encrypt_packet(struct sk_buff *skb, struct noise_keypair *keypair)
166 {
167 unsigned int padding_len, plaintext_len, trailer_len;
168 struct scatterlist sg[MAX_SKB_FRAGS + 8];
169 struct message_data *header;
170 struct sk_buff *trailer;
171 int num_frags;
172
173 /* Calculate lengths. */
174 padding_len = calculate_skb_padding(skb);
175 trailer_len = padding_len + noise_encrypted_len(0);
176 plaintext_len = skb->len + padding_len;
177
178 /* Expand data section to have room for padding and auth tag. */
179 num_frags = skb_cow_data(skb, trailer_len, &trailer);
180 if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
181 return false;
182
183 /* Set the padding to zeros, and make sure it and the auth tag are part
184 * of the skb.
185 */
186 memset(skb_tail_pointer(trailer), 0, padding_len);
187
188 /* Expand head section to have room for our header and the network
189 * stack's headers.
190 */
191 if (unlikely(skb_cow_head(skb, DATA_PACKET_HEAD_ROOM) < 0))
192 return false;
193
194 /* Finalize checksum calculation for the inner packet, if required. */
195 if (unlikely(skb->ip_summed == CHECKSUM_PARTIAL &&
196 skb_checksum_help(skb)))
197 return false;
198
199 /* Only after checksumming can we safely add on the padding at the end
200 * and the header.
201 */
202 skb_set_inner_network_header(skb, 0);
203 header = (struct message_data *)skb_push(skb, sizeof(*header));
204 header->header.type = cpu_to_le32(MESSAGE_DATA);
205 header->key_idx = keypair->remote_index;
206 header->counter = cpu_to_le64(PACKET_CB(skb)->nonce);
207 pskb_put(skb, trailer, trailer_len);
208
209 /* Now we can encrypt the scattergather segments */
210 sg_init_table(sg, num_frags);
211 if (skb_to_sgvec(skb, sg, sizeof(struct message_data),
212 noise_encrypted_len(plaintext_len)) <= 0)
213 return false;
214 return chacha20poly1305_encrypt_sg_inplace(sg, plaintext_len, NULL, 0,
215 PACKET_CB(skb)->nonce,
216 keypair->sending.key);
217 }
218
219 void wg_packet_send_keepalive(struct wg_peer *peer)
220 {
221 struct sk_buff *skb;
222
223 if (skb_queue_empty(&peer->staged_packet_queue)) {
224 skb = alloc_skb(DATA_PACKET_HEAD_ROOM + MESSAGE_MINIMUM_LENGTH,
225 GFP_ATOMIC);
226 if (unlikely(!skb))
227 return;
228 skb_reserve(skb, DATA_PACKET_HEAD_ROOM);
229 skb->dev = peer->device->dev;
230 PACKET_CB(skb)->mtu = skb->dev->mtu;
231 skb_queue_tail(&peer->staged_packet_queue, skb);
232 net_dbg_ratelimited("%s: Sending keepalive packet to peer %llu (%pISpfsc)\n",
233 peer->device->dev->name, peer->internal_id,
234 &peer->endpoint.addr);
235 }
236
237 wg_packet_send_staged_packets(peer);
238 }
239
240 static void wg_packet_create_data_done(struct sk_buff *first,
241 struct wg_peer *peer)
242 {
243 struct sk_buff *skb, *next;
244 bool is_keepalive, data_sent = false;
245
246 wg_timers_any_authenticated_packet_traversal(peer);
247 wg_timers_any_authenticated_packet_sent(peer);
248 skb_list_walk_safe(first, skb, next) {
249 is_keepalive = skb->len == message_data_len(0);
250 if (likely(!wg_socket_send_skb_to_peer(peer, skb,
251 PACKET_CB(skb)->ds) && !is_keepalive))
252 data_sent = true;
253 }
254
255 if (likely(data_sent))
256 wg_timers_data_sent(peer);
257
258 keep_key_fresh(peer);
259 }
260
261 void wg_packet_tx_worker(struct work_struct *work)
262 {
263 struct crypt_queue *queue = container_of(work, struct crypt_queue,
264 work);
265 struct noise_keypair *keypair;
266 enum packet_state state;
267 struct sk_buff *first;
268 struct wg_peer *peer;
269
270 while ((first = __ptr_ring_peek(&queue->ring)) != NULL &&
271 (state = atomic_read_acquire(&PACKET_CB(first)->state)) !=
272 PACKET_STATE_UNCRYPTED) {
273 __ptr_ring_discard_one(&queue->ring);
274 peer = PACKET_PEER(first);
275 keypair = PACKET_CB(first)->keypair;
276
277 if (likely(state == PACKET_STATE_CRYPTED))
278 wg_packet_create_data_done(first, peer);
279 else
280 kfree_skb_list(first);
281
282 wg_noise_keypair_put(keypair, false);
283 wg_peer_put(peer);
284 }
285 }
286
287 void wg_packet_encrypt_worker(struct work_struct *work)
288 {
289 struct crypt_queue *queue = container_of(work, struct multicore_worker,
290 work)->ptr;
291 struct sk_buff *first, *skb, *next;
292
293 while ((first = ptr_ring_consume_bh(&queue->ring)) != NULL) {
294 enum packet_state state = PACKET_STATE_CRYPTED;
295
296 skb_list_walk_safe(first, skb, next) {
297 if (likely(encrypt_packet(skb,
298 PACKET_CB(first)->keypair))) {
299 wg_reset_packet(skb);
300 } else {
301 state = PACKET_STATE_DEAD;
302 break;
303 }
304 }
305 wg_queue_enqueue_per_peer(&PACKET_PEER(first)->tx_queue, first,
306 state);
307
308 }
309 }
310
311 static void wg_packet_create_data(struct sk_buff *first)
312 {
313 struct wg_peer *peer = PACKET_PEER(first);
314 struct wg_device *wg = peer->device;
315 int ret = -EINVAL;
316
317 rcu_read_lock_bh();
318 if (unlikely(READ_ONCE(peer->is_dead)))
319 goto err;
320
321 ret = wg_queue_enqueue_per_device_and_peer(&wg->encrypt_queue,
322 &peer->tx_queue, first,
323 wg->packet_crypt_wq,
324 &wg->encrypt_queue.last_cpu);
325 if (unlikely(ret == -EPIPE))
326 wg_queue_enqueue_per_peer(&peer->tx_queue, first,
327 PACKET_STATE_DEAD);
328 err:
329 rcu_read_unlock_bh();
330 if (likely(!ret || ret == -EPIPE))
331 return;
332 wg_noise_keypair_put(PACKET_CB(first)->keypair, false);
333 wg_peer_put(peer);
334 kfree_skb_list(first);
335 }
336
337 void wg_packet_purge_staged_packets(struct wg_peer *peer)
338 {
339 spin_lock_bh(&peer->staged_packet_queue.lock);
340 peer->device->dev->stats.tx_dropped += peer->staged_packet_queue.qlen;
341 __skb_queue_purge(&peer->staged_packet_queue);
342 spin_unlock_bh(&peer->staged_packet_queue.lock);
343 }
344
345 void wg_packet_send_staged_packets(struct wg_peer *peer)
346 {
347 struct noise_symmetric_key *key;
348 struct noise_keypair *keypair;
349 struct sk_buff_head packets;
350 struct sk_buff *skb;
351
352 /* Steal the current queue into our local one. */
353 __skb_queue_head_init(&packets);
354 spin_lock_bh(&peer->staged_packet_queue.lock);
355 skb_queue_splice_init(&peer->staged_packet_queue, &packets);
356 spin_unlock_bh(&peer->staged_packet_queue.lock);
357 if (unlikely(skb_queue_empty(&packets)))
358 return;
359
360 /* First we make sure we have a valid reference to a valid key. */
361 rcu_read_lock_bh();
362 keypair = wg_noise_keypair_get(
363 rcu_dereference_bh(peer->keypairs.current_keypair));
364 rcu_read_unlock_bh();
365 if (unlikely(!keypair))
366 goto out_nokey;
367 key = &keypair->sending;
368 if (unlikely(!READ_ONCE(key->is_valid)))
369 goto out_nokey;
370 if (unlikely(wg_birthdate_has_expired(key->birthdate,
371 REJECT_AFTER_TIME)))
372 goto out_invalid;
373
374 /* After we know we have a somewhat valid key, we now try to assign
375 * nonces to all of the packets in the queue. If we can't assign nonces
376 * for all of them, we just consider it a failure and wait for the next
377 * handshake.
378 */
379 skb_queue_walk(&packets, skb) {
380 /* 0 for no outer TOS: no leak. TODO: at some later point, we
381 * might consider using flowi->tos as outer instead.
382 */
383 PACKET_CB(skb)->ds = ip_tunnel_ecn_encap(0, ip_hdr(skb), skb);
384 PACKET_CB(skb)->nonce =
385 atomic64_inc_return(&key->counter.counter) - 1;
386 if (unlikely(PACKET_CB(skb)->nonce >= REJECT_AFTER_MESSAGES))
387 goto out_invalid;
388 }
389
390 packets.prev->next = NULL;
391 wg_peer_get(keypair->entry.peer);
392 PACKET_CB(packets.next)->keypair = keypair;
393 wg_packet_create_data(packets.next);
394 return;
395
396 out_invalid:
397 WRITE_ONCE(key->is_valid, false);
398 out_nokey:
399 wg_noise_keypair_put(keypair, false);
400
401 /* We orphan the packets if we're waiting on a handshake, so that they
402 * don't block a socket's pool.
403 */
404 skb_queue_walk(&packets, skb)
405 skb_orphan(skb);
406 /* Then we put them back on the top of the queue. We're not too
407 * concerned about accidentally getting things a little out of order if
408 * packets are being added really fast, because this queue is for before
409 * packets can even be sent and it's small anyway.
410 */
411 spin_lock_bh(&peer->staged_packet_queue.lock);
412 skb_queue_splice(&packets, &peer->staged_packet_queue);
413 spin_unlock_bh(&peer->staged_packet_queue.lock);
414
415 /* If we're exiting because there's something wrong with the key, it
416 * means we should initiate a new handshake.
417 */
418 wg_packet_send_queued_handshake_initiation(peer, false);
419 }