]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/wireless/intel/iwlwifi/pcie/rx.c
iwlwifi: fix RF-Kill interrupt while FW load for gen2 devices
[thirdparty/kernel/stable.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2019 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
21 *
22 * The full GNU General Public License is included in this distribution in the
23 * file called COPYING.
24 *
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2019 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *
63 *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
67
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
73
74 /******************************************************************************
75 *
76 * RX path functions
77 *
78 ******************************************************************************/
79
80 /*
81 * Rx theory of operation
82 *
83 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84 * each of which point to Receive Buffers to be filled by the NIC. These get
85 * used not only for Rx frames, but for any command response or notification
86 * from the NIC. The driver and NIC manage the Rx buffers by means
87 * of indexes into the circular buffer.
88 *
89 * Rx Queue Indexes
90 * The host/firmware share two index registers for managing the Rx buffers.
91 *
92 * The READ index maps to the first position that the firmware may be writing
93 * to -- the driver can read up to (but not including) this position and get
94 * good data.
95 * The READ index is managed by the firmware once the card is enabled.
96 *
97 * The WRITE index maps to the last position the driver has read from -- the
98 * position preceding WRITE is the last slot the firmware can place a packet.
99 *
100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101 * WRITE = READ.
102 *
103 * During initialization, the host sets up the READ queue position to the first
104 * INDEX position, and WRITE to the last (READ - 1 wrapped)
105 *
106 * When the firmware places a packet in a buffer, it will advance the READ index
107 * and fire the RX interrupt. The driver can then query the READ index and
108 * process as many packets as possible, moving the WRITE index forward as it
109 * resets the Rx queue buffers with new memory.
110 *
111 * The management in the driver is as follows:
112 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113 * When the interrupt handler is called, the request is processed.
114 * The page is either stolen - transferred to the upper layer
115 * or reused - added immediately to the iwl->rxq->rx_free list.
116 * + When the page is stolen - the driver updates the matching queue's used
117 * count, detaches the RBD and transfers it to the queue used list.
118 * When there are two used RBDs - they are transferred to the allocator empty
119 * list. Work is then scheduled for the allocator to start allocating
120 * eight buffers.
121 * When there are another 6 used RBDs - they are transferred to the allocator
122 * empty list and the driver tries to claim the pre-allocated buffers and
123 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124 * until ready.
125 * When there are 8+ buffers in the free list - either from allocation or from
126 * 8 reused unstolen pages - restock is called to update the FW and indexes.
127 * + In order to make sure the allocator always has RBDs to use for allocation
128 * the allocator has initial pool in the size of num_queues*(8-2) - the
129 * maximum missing RBDs per allocation request (request posted with 2
130 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131 * The queues supplies the recycle of the rest of the RBDs.
132 * + A received packet is processed and handed to the kernel network stack,
133 * detached from the iwl->rxq. The driver 'processed' index is updated.
134 * + If there are no allocated buffers in iwl->rxq->rx_free,
135 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136 * If there were enough free buffers and RX_STALLED is set it is cleared.
137 *
138 *
139 * Driver sequence:
140 *
141 * iwl_rxq_alloc() Allocates rx_free
142 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
143 * iwl_pcie_rxq_restock.
144 * Used only during initialization.
145 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
146 * queue, updates firmware pointers, and updates
147 * the WRITE index.
148 * iwl_pcie_rx_allocator() Background work for allocating pages.
149 *
150 * -- enable interrupts --
151 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
152 * READ INDEX, detaching the SKB from the pool.
153 * Moves the packet buffer from queue to rx_used.
154 * Posts and claims requests to the allocator.
155 * Calls iwl_pcie_rxq_restock to refill any empty
156 * slots.
157 *
158 * RBD life-cycle:
159 *
160 * Init:
161 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
162 *
163 * Regular Receive interrupt:
164 * Page Stolen:
165 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167 * Page not Stolen:
168 * rxq.queue -> rxq.rx_free -> rxq.queue
169 * ...
170 *
171 */
172
173 /*
174 * iwl_rxq_space - Return number of free slots available in queue.
175 */
176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
177 {
178 /* Make sure rx queue size is a power of 2 */
179 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
180
181 /*
182 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183 * between empty and completely full queues.
184 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185 * defined for negative dividends.
186 */
187 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
188 }
189
190 /*
191 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
192 */
193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
194 {
195 return cpu_to_le32((u32)(dma_addr >> 8));
196 }
197
198 /*
199 * iwl_pcie_rx_stop - stops the Rx DMA
200 */
201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
202 {
203 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
204 /* TODO: remove this for 22560 once fw does it */
205 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208 } else if (trans->cfg->mq_rx_supported) {
209 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212 } else {
213 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216 1000);
217 }
218 }
219
220 /*
221 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
222 */
223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224 struct iwl_rxq *rxq)
225 {
226 u32 reg;
227
228 lockdep_assert_held(&rxq->lock);
229
230 /*
231 * explicitly wake up the NIC if:
232 * 1. shadow registers aren't enabled
233 * 2. there is a chance that the NIC is asleep
234 */
235 if (!trans->cfg->base_params->shadow_reg_enable &&
236 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
238
239 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241 reg);
242 iwl_set_bit(trans, CSR_GP_CNTRL,
243 BIT(trans->cfg->csr->flag_mac_access_req));
244 rxq->need_update = true;
245 return;
246 }
247 }
248
249 rxq->write_actual = round_down(rxq->write, 8);
250 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_22560)
251 iwl_write32(trans, HBUS_TARG_WRPTR,
252 (rxq->write_actual |
253 ((FIRST_RX_QUEUE + rxq->id) << 16)));
254 else if (trans->cfg->mq_rx_supported)
255 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
256 rxq->write_actual);
257 else
258 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
259 }
260
261 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
262 {
263 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
264 int i;
265
266 for (i = 0; i < trans->num_rx_queues; i++) {
267 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
268
269 if (!rxq->need_update)
270 continue;
271 spin_lock(&rxq->lock);
272 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
273 rxq->need_update = false;
274 spin_unlock(&rxq->lock);
275 }
276 }
277
278 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
279 struct iwl_rxq *rxq,
280 struct iwl_rx_mem_buffer *rxb)
281 {
282 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
283 struct iwl_rx_transfer_desc *bd = rxq->bd;
284
285 bd[rxq->write].type_n_size =
286 cpu_to_le32((IWL_RX_TD_TYPE & IWL_RX_TD_TYPE_MSK) |
287 ((IWL_RX_TD_SIZE_2K >> 8) & IWL_RX_TD_SIZE_MSK));
288 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
289 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
290 } else {
291 __le64 *bd = rxq->bd;
292
293 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
294 }
295
296 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
297 (u32)rxb->vid, rxq->id, rxq->write);
298 }
299
300 /*
301 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
302 */
303 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
304 struct iwl_rxq *rxq)
305 {
306 struct iwl_rx_mem_buffer *rxb;
307
308 /*
309 * If the device isn't enabled - no need to try to add buffers...
310 * This can happen when we stop the device and still have an interrupt
311 * pending. We stop the APM before we sync the interrupts because we
312 * have to (see comment there). On the other hand, since the APM is
313 * stopped, we cannot access the HW (in particular not prph).
314 * So don't try to restock if the APM has been already stopped.
315 */
316 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
317 return;
318
319 spin_lock(&rxq->lock);
320 while (rxq->free_count) {
321 /* Get next free Rx buffer, remove from free list */
322 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
323 list);
324 list_del(&rxb->list);
325 rxb->invalid = false;
326 /* 12 first bits are expected to be empty */
327 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
328 /* Point to Rx buffer via next RBD in circular buffer */
329 iwl_pcie_restock_bd(trans, rxq, rxb);
330 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
331 rxq->free_count--;
332 }
333 spin_unlock(&rxq->lock);
334
335 /*
336 * If we've added more space for the firmware to place data, tell it.
337 * Increment device's write pointer in multiples of 8.
338 */
339 if (rxq->write_actual != (rxq->write & ~0x7)) {
340 spin_lock(&rxq->lock);
341 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
342 spin_unlock(&rxq->lock);
343 }
344 }
345
346 /*
347 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
348 */
349 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
350 struct iwl_rxq *rxq)
351 {
352 struct iwl_rx_mem_buffer *rxb;
353
354 /*
355 * If the device isn't enabled - not need to try to add buffers...
356 * This can happen when we stop the device and still have an interrupt
357 * pending. We stop the APM before we sync the interrupts because we
358 * have to (see comment there). On the other hand, since the APM is
359 * stopped, we cannot access the HW (in particular not prph).
360 * So don't try to restock if the APM has been already stopped.
361 */
362 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
363 return;
364
365 spin_lock(&rxq->lock);
366 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
367 __le32 *bd = (__le32 *)rxq->bd;
368 /* The overwritten rxb must be a used one */
369 rxb = rxq->queue[rxq->write];
370 BUG_ON(rxb && rxb->page);
371
372 /* Get next free Rx buffer, remove from free list */
373 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
374 list);
375 list_del(&rxb->list);
376 rxb->invalid = false;
377
378 /* Point to Rx buffer via next RBD in circular buffer */
379 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
380 rxq->queue[rxq->write] = rxb;
381 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
382 rxq->free_count--;
383 }
384 spin_unlock(&rxq->lock);
385
386 /* If we've added more space for the firmware to place data, tell it.
387 * Increment device's write pointer in multiples of 8. */
388 if (rxq->write_actual != (rxq->write & ~0x7)) {
389 spin_lock(&rxq->lock);
390 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
391 spin_unlock(&rxq->lock);
392 }
393 }
394
395 /*
396 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
397 *
398 * If there are slots in the RX queue that need to be restocked,
399 * and we have free pre-allocated buffers, fill the ranks as much
400 * as we can, pulling from rx_free.
401 *
402 * This moves the 'write' index forward to catch up with 'processed', and
403 * also updates the memory address in the firmware to reference the new
404 * target buffer.
405 */
406 static
407 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
408 {
409 if (trans->cfg->mq_rx_supported)
410 iwl_pcie_rxmq_restock(trans, rxq);
411 else
412 iwl_pcie_rxsq_restock(trans, rxq);
413 }
414
415 /*
416 * iwl_pcie_rx_alloc_page - allocates and returns a page.
417 *
418 */
419 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
420 gfp_t priority)
421 {
422 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
423 struct page *page;
424 gfp_t gfp_mask = priority;
425
426 if (trans_pcie->rx_page_order > 0)
427 gfp_mask |= __GFP_COMP;
428
429 /* Alloc a new receive buffer */
430 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
431 if (!page) {
432 if (net_ratelimit())
433 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
434 trans_pcie->rx_page_order);
435 /*
436 * Issue an error if we don't have enough pre-allocated
437 * buffers.
438 ` */
439 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
440 IWL_CRIT(trans,
441 "Failed to alloc_pages\n");
442 return NULL;
443 }
444 return page;
445 }
446
447 /*
448 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
449 *
450 * A used RBD is an Rx buffer that has been given to the stack. To use it again
451 * a page must be allocated and the RBD must point to the page. This function
452 * doesn't change the HW pointer but handles the list of pages that is used by
453 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
454 * allocated buffers.
455 */
456 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
457 struct iwl_rxq *rxq)
458 {
459 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
460 struct iwl_rx_mem_buffer *rxb;
461 struct page *page;
462
463 while (1) {
464 spin_lock(&rxq->lock);
465 if (list_empty(&rxq->rx_used)) {
466 spin_unlock(&rxq->lock);
467 return;
468 }
469 spin_unlock(&rxq->lock);
470
471 /* Alloc a new receive buffer */
472 page = iwl_pcie_rx_alloc_page(trans, priority);
473 if (!page)
474 return;
475
476 spin_lock(&rxq->lock);
477
478 if (list_empty(&rxq->rx_used)) {
479 spin_unlock(&rxq->lock);
480 __free_pages(page, trans_pcie->rx_page_order);
481 return;
482 }
483 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
484 list);
485 list_del(&rxb->list);
486 spin_unlock(&rxq->lock);
487
488 BUG_ON(rxb->page);
489 rxb->page = page;
490 /* Get physical address of the RB */
491 rxb->page_dma =
492 dma_map_page(trans->dev, page, 0,
493 PAGE_SIZE << trans_pcie->rx_page_order,
494 DMA_FROM_DEVICE);
495 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
496 rxb->page = NULL;
497 spin_lock(&rxq->lock);
498 list_add(&rxb->list, &rxq->rx_used);
499 spin_unlock(&rxq->lock);
500 __free_pages(page, trans_pcie->rx_page_order);
501 return;
502 }
503
504 spin_lock(&rxq->lock);
505
506 list_add_tail(&rxb->list, &rxq->rx_free);
507 rxq->free_count++;
508
509 spin_unlock(&rxq->lock);
510 }
511 }
512
513 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
514 {
515 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
516 int i;
517
518 for (i = 0; i < RX_POOL_SIZE; i++) {
519 if (!trans_pcie->rx_pool[i].page)
520 continue;
521 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
522 PAGE_SIZE << trans_pcie->rx_page_order,
523 DMA_FROM_DEVICE);
524 __free_pages(trans_pcie->rx_pool[i].page,
525 trans_pcie->rx_page_order);
526 trans_pcie->rx_pool[i].page = NULL;
527 }
528 }
529
530 /*
531 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
532 *
533 * Allocates for each received request 8 pages
534 * Called as a scheduled work item.
535 */
536 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
537 {
538 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
539 struct iwl_rb_allocator *rba = &trans_pcie->rba;
540 struct list_head local_empty;
541 int pending = atomic_read(&rba->req_pending);
542
543 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
544
545 /* If we were scheduled - there is at least one request */
546 spin_lock(&rba->lock);
547 /* swap out the rba->rbd_empty to a local list */
548 list_replace_init(&rba->rbd_empty, &local_empty);
549 spin_unlock(&rba->lock);
550
551 while (pending) {
552 int i;
553 LIST_HEAD(local_allocated);
554 gfp_t gfp_mask = GFP_KERNEL;
555
556 /* Do not post a warning if there are only a few requests */
557 if (pending < RX_PENDING_WATERMARK)
558 gfp_mask |= __GFP_NOWARN;
559
560 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
561 struct iwl_rx_mem_buffer *rxb;
562 struct page *page;
563
564 /* List should never be empty - each reused RBD is
565 * returned to the list, and initial pool covers any
566 * possible gap between the time the page is allocated
567 * to the time the RBD is added.
568 */
569 BUG_ON(list_empty(&local_empty));
570 /* Get the first rxb from the rbd list */
571 rxb = list_first_entry(&local_empty,
572 struct iwl_rx_mem_buffer, list);
573 BUG_ON(rxb->page);
574
575 /* Alloc a new receive buffer */
576 page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
577 if (!page)
578 continue;
579 rxb->page = page;
580
581 /* Get physical address of the RB */
582 rxb->page_dma = dma_map_page(trans->dev, page, 0,
583 PAGE_SIZE << trans_pcie->rx_page_order,
584 DMA_FROM_DEVICE);
585 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
586 rxb->page = NULL;
587 __free_pages(page, trans_pcie->rx_page_order);
588 continue;
589 }
590
591 /* move the allocated entry to the out list */
592 list_move(&rxb->list, &local_allocated);
593 i++;
594 }
595
596 atomic_dec(&rba->req_pending);
597 pending--;
598
599 if (!pending) {
600 pending = atomic_read(&rba->req_pending);
601 if (pending)
602 IWL_DEBUG_TPT(trans,
603 "Got more pending allocation requests = %d\n",
604 pending);
605 }
606
607 spin_lock(&rba->lock);
608 /* add the allocated rbds to the allocator allocated list */
609 list_splice_tail(&local_allocated, &rba->rbd_allocated);
610 /* get more empty RBDs for current pending requests */
611 list_splice_tail_init(&rba->rbd_empty, &local_empty);
612 spin_unlock(&rba->lock);
613
614 atomic_inc(&rba->req_ready);
615
616 }
617
618 spin_lock(&rba->lock);
619 /* return unused rbds to the allocator empty list */
620 list_splice_tail(&local_empty, &rba->rbd_empty);
621 spin_unlock(&rba->lock);
622
623 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
624 }
625
626 /*
627 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
628 .*
629 .* Called by queue when the queue posted allocation request and
630 * has freed 8 RBDs in order to restock itself.
631 * This function directly moves the allocated RBs to the queue's ownership
632 * and updates the relevant counters.
633 */
634 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
635 struct iwl_rxq *rxq)
636 {
637 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
638 struct iwl_rb_allocator *rba = &trans_pcie->rba;
639 int i;
640
641 lockdep_assert_held(&rxq->lock);
642
643 /*
644 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
645 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
646 * function will return early, as there are no ready requests.
647 * atomic_dec_if_positive will perofrm the *actual* decrement only if
648 * req_ready > 0, i.e. - there are ready requests and the function
649 * hands one request to the caller.
650 */
651 if (atomic_dec_if_positive(&rba->req_ready) < 0)
652 return;
653
654 spin_lock(&rba->lock);
655 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
656 /* Get next free Rx buffer, remove it from free list */
657 struct iwl_rx_mem_buffer *rxb =
658 list_first_entry(&rba->rbd_allocated,
659 struct iwl_rx_mem_buffer, list);
660
661 list_move(&rxb->list, &rxq->rx_free);
662 }
663 spin_unlock(&rba->lock);
664
665 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
666 rxq->free_count += RX_CLAIM_REQ_ALLOC;
667 }
668
669 void iwl_pcie_rx_allocator_work(struct work_struct *data)
670 {
671 struct iwl_rb_allocator *rba_p =
672 container_of(data, struct iwl_rb_allocator, rx_alloc);
673 struct iwl_trans_pcie *trans_pcie =
674 container_of(rba_p, struct iwl_trans_pcie, rba);
675
676 iwl_pcie_rx_allocator(trans_pcie->trans);
677 }
678
679 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
680 {
681 struct iwl_rx_transfer_desc *rx_td;
682
683 if (use_rx_td)
684 return sizeof(*rx_td);
685 else
686 return trans->cfg->mq_rx_supported ? sizeof(__le64) :
687 sizeof(__le32);
688 }
689
690 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
691 struct iwl_rxq *rxq)
692 {
693 struct device *dev = trans->dev;
694 bool use_rx_td = (trans->cfg->device_family >=
695 IWL_DEVICE_FAMILY_22560);
696 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
697
698 if (rxq->bd)
699 dma_free_coherent(trans->dev,
700 free_size * rxq->queue_size,
701 rxq->bd, rxq->bd_dma);
702 rxq->bd_dma = 0;
703 rxq->bd = NULL;
704
705 rxq->rb_stts_dma = 0;
706 rxq->rb_stts = NULL;
707
708 if (rxq->used_bd)
709 dma_free_coherent(trans->dev,
710 (use_rx_td ? sizeof(*rxq->cd) :
711 sizeof(__le32)) * rxq->queue_size,
712 rxq->used_bd, rxq->used_bd_dma);
713 rxq->used_bd_dma = 0;
714 rxq->used_bd = NULL;
715
716 if (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560)
717 return;
718
719 if (rxq->tr_tail)
720 dma_free_coherent(dev, sizeof(__le16),
721 rxq->tr_tail, rxq->tr_tail_dma);
722 rxq->tr_tail_dma = 0;
723 rxq->tr_tail = NULL;
724
725 if (rxq->cr_tail)
726 dma_free_coherent(dev, sizeof(__le16),
727 rxq->cr_tail, rxq->cr_tail_dma);
728 rxq->cr_tail_dma = 0;
729 rxq->cr_tail = NULL;
730 }
731
732 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
733 struct iwl_rxq *rxq)
734 {
735 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
736 struct device *dev = trans->dev;
737 int i;
738 int free_size;
739 bool use_rx_td = (trans->cfg->device_family >=
740 IWL_DEVICE_FAMILY_22560);
741 size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
742 sizeof(struct iwl_rb_status);
743
744 spin_lock_init(&rxq->lock);
745 if (trans->cfg->mq_rx_supported)
746 rxq->queue_size = MQ_RX_TABLE_SIZE;
747 else
748 rxq->queue_size = RX_QUEUE_SIZE;
749
750 free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
751
752 /*
753 * Allocate the circular buffer of Read Buffer Descriptors
754 * (RBDs)
755 */
756 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
757 &rxq->bd_dma, GFP_KERNEL);
758 if (!rxq->bd)
759 goto err;
760
761 if (trans->cfg->mq_rx_supported) {
762 rxq->used_bd = dma_alloc_coherent(dev,
763 (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
764 &rxq->used_bd_dma,
765 GFP_KERNEL);
766 if (!rxq->used_bd)
767 goto err;
768 }
769
770 rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
771 rxq->rb_stts_dma =
772 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
773
774 if (!use_rx_td)
775 return 0;
776
777 /* Allocate the driver's pointer to TR tail */
778 rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
779 &rxq->tr_tail_dma, GFP_KERNEL);
780 if (!rxq->tr_tail)
781 goto err;
782
783 /* Allocate the driver's pointer to CR tail */
784 rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
785 &rxq->cr_tail_dma, GFP_KERNEL);
786 if (!rxq->cr_tail)
787 goto err;
788 /*
789 * W/A 22560 device step Z0 must be non zero bug
790 * TODO: remove this when stop supporting Z0
791 */
792 *rxq->cr_tail = cpu_to_le16(500);
793
794 return 0;
795
796 err:
797 for (i = 0; i < trans->num_rx_queues; i++) {
798 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
799
800 iwl_pcie_free_rxq_dma(trans, rxq);
801 }
802
803 return -ENOMEM;
804 }
805
806 int iwl_pcie_rx_alloc(struct iwl_trans *trans)
807 {
808 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
809 struct iwl_rb_allocator *rba = &trans_pcie->rba;
810 int i, ret;
811 size_t rb_stts_size = trans->cfg->device_family >=
812 IWL_DEVICE_FAMILY_22560 ?
813 sizeof(__le16) : sizeof(struct iwl_rb_status);
814
815 if (WARN_ON(trans_pcie->rxq))
816 return -EINVAL;
817
818 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
819 GFP_KERNEL);
820 if (!trans_pcie->rxq)
821 return -ENOMEM;
822
823 spin_lock_init(&rba->lock);
824
825 /*
826 * Allocate the driver's pointer to receive buffer status.
827 * Allocate for all queues continuously (HW requirement).
828 */
829 trans_pcie->base_rb_stts =
830 dma_alloc_coherent(trans->dev,
831 rb_stts_size * trans->num_rx_queues,
832 &trans_pcie->base_rb_stts_dma,
833 GFP_KERNEL);
834 if (!trans_pcie->base_rb_stts) {
835 ret = -ENOMEM;
836 goto err;
837 }
838
839 for (i = 0; i < trans->num_rx_queues; i++) {
840 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
841
842 rxq->id = i;
843 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
844 if (ret)
845 goto err;
846 }
847 return 0;
848
849 err:
850 if (trans_pcie->base_rb_stts) {
851 dma_free_coherent(trans->dev,
852 rb_stts_size * trans->num_rx_queues,
853 trans_pcie->base_rb_stts,
854 trans_pcie->base_rb_stts_dma);
855 trans_pcie->base_rb_stts = NULL;
856 trans_pcie->base_rb_stts_dma = 0;
857 }
858 kfree(trans_pcie->rxq);
859
860 return ret;
861 }
862
863 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
864 {
865 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
866 u32 rb_size;
867 unsigned long flags;
868 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
869
870 switch (trans_pcie->rx_buf_size) {
871 case IWL_AMSDU_4K:
872 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
873 break;
874 case IWL_AMSDU_8K:
875 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
876 break;
877 case IWL_AMSDU_12K:
878 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
879 break;
880 default:
881 WARN_ON(1);
882 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
883 }
884
885 if (!iwl_trans_grab_nic_access(trans, &flags))
886 return;
887
888 /* Stop Rx DMA */
889 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
890 /* reset and flush pointers */
891 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
892 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
893 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
894
895 /* Reset driver's Rx queue write index */
896 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
897
898 /* Tell device where to find RBD circular buffer in DRAM */
899 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
900 (u32)(rxq->bd_dma >> 8));
901
902 /* Tell device where in DRAM to update its Rx status */
903 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
904 rxq->rb_stts_dma >> 4);
905
906 /* Enable Rx DMA
907 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
908 * the credit mechanism in 5000 HW RX FIFO
909 * Direct rx interrupts to hosts
910 * Rx buffer size 4 or 8k or 12k
911 * RB timeout 0x10
912 * 256 RBDs
913 */
914 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
915 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
916 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
917 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
918 rb_size |
919 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
920 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
921
922 iwl_trans_release_nic_access(trans, &flags);
923
924 /* Set interrupt coalescing timer to default (2048 usecs) */
925 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
926
927 /* W/A for interrupt coalescing bug in 7260 and 3160 */
928 if (trans->cfg->host_interrupt_operation_mode)
929 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
930 }
931
932 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
933 {
934 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
935 u32 rb_size, enabled = 0;
936 unsigned long flags;
937 int i;
938
939 switch (trans_pcie->rx_buf_size) {
940 case IWL_AMSDU_2K:
941 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
942 break;
943 case IWL_AMSDU_4K:
944 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
945 break;
946 case IWL_AMSDU_8K:
947 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
948 break;
949 case IWL_AMSDU_12K:
950 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
951 break;
952 default:
953 WARN_ON(1);
954 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
955 }
956
957 if (!iwl_trans_grab_nic_access(trans, &flags))
958 return;
959
960 /* Stop Rx DMA */
961 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
962 /* disable free amd used rx queue operation */
963 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
964
965 for (i = 0; i < trans->num_rx_queues; i++) {
966 /* Tell device where to find RBD free table in DRAM */
967 iwl_write_prph64_no_grab(trans,
968 RFH_Q_FRBDCB_BA_LSB(i),
969 trans_pcie->rxq[i].bd_dma);
970 /* Tell device where to find RBD used table in DRAM */
971 iwl_write_prph64_no_grab(trans,
972 RFH_Q_URBDCB_BA_LSB(i),
973 trans_pcie->rxq[i].used_bd_dma);
974 /* Tell device where in DRAM to update its Rx status */
975 iwl_write_prph64_no_grab(trans,
976 RFH_Q_URBD_STTS_WPTR_LSB(i),
977 trans_pcie->rxq[i].rb_stts_dma);
978 /* Reset device indice tables */
979 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
980 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
981 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
982
983 enabled |= BIT(i) | BIT(i + 16);
984 }
985
986 /*
987 * Enable Rx DMA
988 * Rx buffer size 4 or 8k or 12k
989 * Min RB size 4 or 8
990 * Drop frames that exceed RB size
991 * 512 RBDs
992 */
993 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
994 RFH_DMA_EN_ENABLE_VAL | rb_size |
995 RFH_RXF_DMA_MIN_RB_4_8 |
996 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
997 RFH_RXF_DMA_RBDCB_SIZE_512);
998
999 /*
1000 * Activate DMA snooping.
1001 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1002 * Default queue is 0
1003 */
1004 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1005 RFH_GEN_CFG_RFH_DMA_SNOOP |
1006 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1007 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1008 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1009 trans->cfg->integrated ?
1010 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1011 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1012 /* Enable the relevant rx queues */
1013 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1014
1015 iwl_trans_release_nic_access(trans, &flags);
1016
1017 /* Set interrupt coalescing timer to default (2048 usecs) */
1018 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1019 }
1020
1021 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1022 {
1023 lockdep_assert_held(&rxq->lock);
1024
1025 INIT_LIST_HEAD(&rxq->rx_free);
1026 INIT_LIST_HEAD(&rxq->rx_used);
1027 rxq->free_count = 0;
1028 rxq->used_count = 0;
1029 }
1030
1031 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1032 {
1033 WARN_ON(1);
1034 return 0;
1035 }
1036
1037 int _iwl_pcie_rx_init(struct iwl_trans *trans)
1038 {
1039 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1040 struct iwl_rxq *def_rxq;
1041 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1042 int i, err, queue_size, allocator_pool_size, num_alloc;
1043
1044 if (!trans_pcie->rxq) {
1045 err = iwl_pcie_rx_alloc(trans);
1046 if (err)
1047 return err;
1048 }
1049 def_rxq = trans_pcie->rxq;
1050
1051 cancel_work_sync(&rba->rx_alloc);
1052
1053 spin_lock(&rba->lock);
1054 atomic_set(&rba->req_pending, 0);
1055 atomic_set(&rba->req_ready, 0);
1056 INIT_LIST_HEAD(&rba->rbd_allocated);
1057 INIT_LIST_HEAD(&rba->rbd_empty);
1058 spin_unlock(&rba->lock);
1059
1060 /* free all first - we might be reconfigured for a different size */
1061 iwl_pcie_free_rbs_pool(trans);
1062
1063 for (i = 0; i < RX_QUEUE_SIZE; i++)
1064 def_rxq->queue[i] = NULL;
1065
1066 for (i = 0; i < trans->num_rx_queues; i++) {
1067 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1068
1069 spin_lock(&rxq->lock);
1070 /*
1071 * Set read write pointer to reflect that we have processed
1072 * and used all buffers, but have not restocked the Rx queue
1073 * with fresh buffers
1074 */
1075 rxq->read = 0;
1076 rxq->write = 0;
1077 rxq->write_actual = 0;
1078 memset(rxq->rb_stts, 0,
1079 (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) ?
1080 sizeof(__le16) : sizeof(struct iwl_rb_status));
1081
1082 iwl_pcie_rx_init_rxb_lists(rxq);
1083
1084 if (!rxq->napi.poll)
1085 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1086 iwl_pcie_dummy_napi_poll, 64);
1087
1088 spin_unlock(&rxq->lock);
1089 }
1090
1091 /* move the pool to the default queue and allocator ownerships */
1092 queue_size = trans->cfg->mq_rx_supported ?
1093 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1094 allocator_pool_size = trans->num_rx_queues *
1095 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1096 num_alloc = queue_size + allocator_pool_size;
1097 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1098 ARRAY_SIZE(trans_pcie->rx_pool));
1099 for (i = 0; i < num_alloc; i++) {
1100 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1101
1102 if (i < allocator_pool_size)
1103 list_add(&rxb->list, &rba->rbd_empty);
1104 else
1105 list_add(&rxb->list, &def_rxq->rx_used);
1106 trans_pcie->global_table[i] = rxb;
1107 rxb->vid = (u16)(i + 1);
1108 rxb->invalid = true;
1109 }
1110
1111 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1112
1113 return 0;
1114 }
1115
1116 int iwl_pcie_rx_init(struct iwl_trans *trans)
1117 {
1118 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1119 int ret = _iwl_pcie_rx_init(trans);
1120
1121 if (ret)
1122 return ret;
1123
1124 if (trans->cfg->mq_rx_supported)
1125 iwl_pcie_rx_mq_hw_init(trans);
1126 else
1127 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1128
1129 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1130
1131 spin_lock(&trans_pcie->rxq->lock);
1132 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1133 spin_unlock(&trans_pcie->rxq->lock);
1134
1135 return 0;
1136 }
1137
1138 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1139 {
1140 /* Set interrupt coalescing timer to default (2048 usecs) */
1141 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1142
1143 /*
1144 * We don't configure the RFH.
1145 * Restock will be done at alive, after firmware configured the RFH.
1146 */
1147 return _iwl_pcie_rx_init(trans);
1148 }
1149
1150 void iwl_pcie_rx_free(struct iwl_trans *trans)
1151 {
1152 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1153 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1154 int i;
1155 size_t rb_stts_size = trans->cfg->device_family >=
1156 IWL_DEVICE_FAMILY_22560 ?
1157 sizeof(__le16) : sizeof(struct iwl_rb_status);
1158
1159 /*
1160 * if rxq is NULL, it means that nothing has been allocated,
1161 * exit now
1162 */
1163 if (!trans_pcie->rxq) {
1164 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1165 return;
1166 }
1167
1168 cancel_work_sync(&rba->rx_alloc);
1169
1170 iwl_pcie_free_rbs_pool(trans);
1171
1172 if (trans_pcie->base_rb_stts) {
1173 dma_free_coherent(trans->dev,
1174 rb_stts_size * trans->num_rx_queues,
1175 trans_pcie->base_rb_stts,
1176 trans_pcie->base_rb_stts_dma);
1177 trans_pcie->base_rb_stts = NULL;
1178 trans_pcie->base_rb_stts_dma = 0;
1179 }
1180
1181 for (i = 0; i < trans->num_rx_queues; i++) {
1182 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1183
1184 iwl_pcie_free_rxq_dma(trans, rxq);
1185
1186 if (rxq->napi.poll)
1187 netif_napi_del(&rxq->napi);
1188 }
1189 kfree(trans_pcie->rxq);
1190 }
1191
1192 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1193 struct iwl_rb_allocator *rba)
1194 {
1195 spin_lock(&rba->lock);
1196 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1197 spin_unlock(&rba->lock);
1198 }
1199
1200 /*
1201 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1202 *
1203 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1204 * When there are 2 empty RBDs - a request for allocation is posted
1205 */
1206 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1207 struct iwl_rx_mem_buffer *rxb,
1208 struct iwl_rxq *rxq, bool emergency)
1209 {
1210 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1211 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1212
1213 /* Move the RBD to the used list, will be moved to allocator in batches
1214 * before claiming or posting a request*/
1215 list_add_tail(&rxb->list, &rxq->rx_used);
1216
1217 if (unlikely(emergency))
1218 return;
1219
1220 /* Count the allocator owned RBDs */
1221 rxq->used_count++;
1222
1223 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1224 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1225 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1226 * after but we still need to post another request.
1227 */
1228 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1229 /* Move the 2 RBDs to the allocator ownership.
1230 Allocator has another 6 from pool for the request completion*/
1231 iwl_pcie_rx_move_to_allocator(rxq, rba);
1232
1233 atomic_inc(&rba->req_pending);
1234 queue_work(rba->alloc_wq, &rba->rx_alloc);
1235 }
1236 }
1237
1238 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1239 struct iwl_rxq *rxq,
1240 struct iwl_rx_mem_buffer *rxb,
1241 bool emergency,
1242 int i)
1243 {
1244 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1245 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1246 bool page_stolen = false;
1247 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1248 u32 offset = 0;
1249
1250 if (WARN_ON(!rxb))
1251 return;
1252
1253 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1254
1255 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1256 struct iwl_rx_packet *pkt;
1257 u16 sequence;
1258 bool reclaim;
1259 int index, cmd_index, len;
1260 struct iwl_rx_cmd_buffer rxcb = {
1261 ._offset = offset,
1262 ._rx_page_order = trans_pcie->rx_page_order,
1263 ._page = rxb->page,
1264 ._page_stolen = false,
1265 .truesize = max_len,
1266 };
1267
1268 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1269 rxcb.status = rxq->cd[i].status;
1270
1271 pkt = rxb_addr(&rxcb);
1272
1273 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1274 IWL_DEBUG_RX(trans,
1275 "Q %d: RB end marker at offset %d\n",
1276 rxq->id, offset);
1277 break;
1278 }
1279
1280 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1281 FH_RSCSR_RXQ_POS != rxq->id,
1282 "frame on invalid queue - is on %d and indicates %d\n",
1283 rxq->id,
1284 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1285 FH_RSCSR_RXQ_POS);
1286
1287 IWL_DEBUG_RX(trans,
1288 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1289 rxq->id, offset,
1290 iwl_get_cmd_string(trans,
1291 iwl_cmd_id(pkt->hdr.cmd,
1292 pkt->hdr.group_id,
1293 0)),
1294 pkt->hdr.group_id, pkt->hdr.cmd,
1295 le16_to_cpu(pkt->hdr.sequence));
1296
1297 len = iwl_rx_packet_len(pkt);
1298 len += sizeof(u32); /* account for status word */
1299 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1300 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1301
1302 /* Reclaim a command buffer only if this packet is a response
1303 * to a (driver-originated) command.
1304 * If the packet (e.g. Rx frame) originated from uCode,
1305 * there is no command buffer to reclaim.
1306 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1307 * but apparently a few don't get set; catch them here. */
1308 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1309 if (reclaim && !pkt->hdr.group_id) {
1310 int i;
1311
1312 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1313 if (trans_pcie->no_reclaim_cmds[i] ==
1314 pkt->hdr.cmd) {
1315 reclaim = false;
1316 break;
1317 }
1318 }
1319 }
1320
1321 sequence = le16_to_cpu(pkt->hdr.sequence);
1322 index = SEQ_TO_INDEX(sequence);
1323 cmd_index = iwl_pcie_get_cmd_index(txq, index);
1324
1325 if (rxq->id == trans_pcie->def_rx_queue)
1326 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1327 &rxcb);
1328 else
1329 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1330 &rxcb, rxq->id);
1331
1332 if (reclaim) {
1333 kzfree(txq->entries[cmd_index].free_buf);
1334 txq->entries[cmd_index].free_buf = NULL;
1335 }
1336
1337 /*
1338 * After here, we should always check rxcb._page_stolen,
1339 * if it is true then one of the handlers took the page.
1340 */
1341
1342 if (reclaim) {
1343 /* Invoke any callbacks, transfer the buffer to caller,
1344 * and fire off the (possibly) blocking
1345 * iwl_trans_send_cmd()
1346 * as we reclaim the driver command queue */
1347 if (!rxcb._page_stolen)
1348 iwl_pcie_hcmd_complete(trans, &rxcb);
1349 else
1350 IWL_WARN(trans, "Claim null rxb?\n");
1351 }
1352
1353 page_stolen |= rxcb._page_stolen;
1354 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1355 break;
1356 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1357 }
1358
1359 /* page was stolen from us -- free our reference */
1360 if (page_stolen) {
1361 __free_pages(rxb->page, trans_pcie->rx_page_order);
1362 rxb->page = NULL;
1363 }
1364
1365 /* Reuse the page if possible. For notification packets and
1366 * SKBs that fail to Rx correctly, add them back into the
1367 * rx_free list for reuse later. */
1368 if (rxb->page != NULL) {
1369 rxb->page_dma =
1370 dma_map_page(trans->dev, rxb->page, 0,
1371 PAGE_SIZE << trans_pcie->rx_page_order,
1372 DMA_FROM_DEVICE);
1373 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1374 /*
1375 * free the page(s) as well to not break
1376 * the invariant that the items on the used
1377 * list have no page(s)
1378 */
1379 __free_pages(rxb->page, trans_pcie->rx_page_order);
1380 rxb->page = NULL;
1381 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1382 } else {
1383 list_add_tail(&rxb->list, &rxq->rx_free);
1384 rxq->free_count++;
1385 }
1386 } else
1387 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1388 }
1389
1390 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1391 struct iwl_rxq *rxq, int i)
1392 {
1393 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1394 struct iwl_rx_mem_buffer *rxb;
1395 u16 vid;
1396
1397 if (!trans->cfg->mq_rx_supported) {
1398 rxb = rxq->queue[i];
1399 rxq->queue[i] = NULL;
1400 return rxb;
1401 }
1402
1403 /* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1404 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1405 vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1406 else
1407 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
1408
1409 if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1410 goto out_err;
1411
1412 rxb = trans_pcie->global_table[vid - 1];
1413 if (rxb->invalid)
1414 goto out_err;
1415
1416 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1417
1418 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1419 rxb->size = le32_to_cpu(rxq->cd[i].size) & IWL_RX_CD_SIZE;
1420
1421 rxb->invalid = true;
1422
1423 return rxb;
1424
1425 out_err:
1426 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1427 iwl_force_nmi(trans);
1428 return NULL;
1429 }
1430
1431 /*
1432 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1433 */
1434 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1435 {
1436 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1437 struct iwl_rxq *rxq;
1438 u32 r, i, count = 0;
1439 bool emergency = false;
1440
1441 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1442 return;
1443
1444 rxq = &trans_pcie->rxq[queue];
1445
1446 restart:
1447 spin_lock(&rxq->lock);
1448 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1449 * buffer that the driver may process (last buffer filled by ucode). */
1450 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1451 i = rxq->read;
1452
1453 /* W/A 9000 device step A0 wrap-around bug */
1454 r &= (rxq->queue_size - 1);
1455
1456 /* Rx interrupt, but nothing sent from uCode */
1457 if (i == r)
1458 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1459
1460 while (i != r) {
1461 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1462 struct iwl_rx_mem_buffer *rxb;
1463 /* number of RBDs still waiting for page allocation */
1464 u32 rb_pending_alloc =
1465 atomic_read(&trans_pcie->rba.req_pending) *
1466 RX_CLAIM_REQ_ALLOC;
1467
1468 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1469 !emergency)) {
1470 iwl_pcie_rx_move_to_allocator(rxq, rba);
1471 emergency = true;
1472 IWL_DEBUG_TPT(trans,
1473 "RX path is in emergency. Pending allocations %d\n",
1474 rb_pending_alloc);
1475 }
1476
1477 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1478
1479 rxb = iwl_pcie_get_rxb(trans, rxq, i);
1480 if (!rxb)
1481 goto out;
1482
1483 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1484
1485 i = (i + 1) & (rxq->queue_size - 1);
1486
1487 /*
1488 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1489 * try to claim the pre-allocated buffers from the allocator.
1490 * If not ready - will try to reclaim next time.
1491 * There is no need to reschedule work - allocator exits only
1492 * on success
1493 */
1494 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1495 iwl_pcie_rx_allocator_get(trans, rxq);
1496
1497 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1498 /* Add the remaining empty RBDs for allocator use */
1499 iwl_pcie_rx_move_to_allocator(rxq, rba);
1500 } else if (emergency) {
1501 count++;
1502 if (count == 8) {
1503 count = 0;
1504 if (rb_pending_alloc < rxq->queue_size / 3) {
1505 IWL_DEBUG_TPT(trans,
1506 "RX path exited emergency. Pending allocations %d\n",
1507 rb_pending_alloc);
1508 emergency = false;
1509 }
1510
1511 rxq->read = i;
1512 spin_unlock(&rxq->lock);
1513 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1514 iwl_pcie_rxq_restock(trans, rxq);
1515 goto restart;
1516 }
1517 }
1518 }
1519 out:
1520 /* Backtrack one entry */
1521 rxq->read = i;
1522 /* update cr tail with the rxq read pointer */
1523 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1524 *rxq->cr_tail = cpu_to_le16(r);
1525 spin_unlock(&rxq->lock);
1526
1527 /*
1528 * handle a case where in emergency there are some unallocated RBDs.
1529 * those RBDs are in the used list, but are not tracked by the queue's
1530 * used_count which counts allocator owned RBDs.
1531 * unallocated emergency RBDs must be allocated on exit, otherwise
1532 * when called again the function may not be in emergency mode and
1533 * they will be handed to the allocator with no tracking in the RBD
1534 * allocator counters, which will lead to them never being claimed back
1535 * by the queue.
1536 * by allocating them here, they are now in the queue free list, and
1537 * will be restocked by the next call of iwl_pcie_rxq_restock.
1538 */
1539 if (unlikely(emergency && count))
1540 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1541
1542 if (rxq->napi.poll)
1543 napi_gro_flush(&rxq->napi, false);
1544
1545 iwl_pcie_rxq_restock(trans, rxq);
1546 }
1547
1548 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1549 {
1550 u8 queue = entry->entry;
1551 struct msix_entry *entries = entry - queue;
1552
1553 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1554 }
1555
1556 /*
1557 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1558 * This interrupt handler should be used with RSS queue only.
1559 */
1560 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1561 {
1562 struct msix_entry *entry = dev_id;
1563 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1564 struct iwl_trans *trans = trans_pcie->trans;
1565
1566 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1567
1568 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1569 return IRQ_NONE;
1570
1571 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1572
1573 local_bh_disable();
1574 iwl_pcie_rx_handle(trans, entry->entry);
1575 local_bh_enable();
1576
1577 iwl_pcie_clear_irq(trans, entry);
1578
1579 lock_map_release(&trans->sync_cmd_lockdep_map);
1580
1581 return IRQ_HANDLED;
1582 }
1583
1584 /*
1585 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1586 */
1587 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1588 {
1589 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1590 int i;
1591
1592 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1593 if (trans->cfg->internal_wimax_coex &&
1594 !trans->cfg->apmg_not_supported &&
1595 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1596 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1597 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1598 APMG_PS_CTRL_VAL_RESET_REQ))) {
1599 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1600 iwl_op_mode_wimax_active(trans->op_mode);
1601 wake_up(&trans_pcie->wait_command_queue);
1602 return;
1603 }
1604
1605 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1606 if (!trans_pcie->txq[i])
1607 continue;
1608 del_timer(&trans_pcie->txq[i]->stuck_timer);
1609 }
1610
1611 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1612 * before we wake up the command caller, to ensure a proper cleanup. */
1613 iwl_trans_fw_error(trans);
1614
1615 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1616 wake_up(&trans_pcie->wait_command_queue);
1617 }
1618
1619 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1620 {
1621 u32 inta;
1622
1623 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1624
1625 trace_iwlwifi_dev_irq(trans->dev);
1626
1627 /* Discover which interrupts are active/pending */
1628 inta = iwl_read32(trans, CSR_INT);
1629
1630 /* the thread will service interrupts and re-enable them */
1631 return inta;
1632 }
1633
1634 /* a device (PCI-E) page is 4096 bytes long */
1635 #define ICT_SHIFT 12
1636 #define ICT_SIZE (1 << ICT_SHIFT)
1637 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1638
1639 /* interrupt handler using ict table, with this interrupt driver will
1640 * stop using INTA register to get device's interrupt, reading this register
1641 * is expensive, device will write interrupts in ICT dram table, increment
1642 * index then will fire interrupt to driver, driver will OR all ICT table
1643 * entries from current index up to table entry with 0 value. the result is
1644 * the interrupt we need to service, driver will set the entries back to 0 and
1645 * set index.
1646 */
1647 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1648 {
1649 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1650 u32 inta;
1651 u32 val = 0;
1652 u32 read;
1653
1654 trace_iwlwifi_dev_irq(trans->dev);
1655
1656 /* Ignore interrupt if there's nothing in NIC to service.
1657 * This may be due to IRQ shared with another device,
1658 * or due to sporadic interrupts thrown from our NIC. */
1659 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1660 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1661 if (!read)
1662 return 0;
1663
1664 /*
1665 * Collect all entries up to the first 0, starting from ict_index;
1666 * note we already read at ict_index.
1667 */
1668 do {
1669 val |= read;
1670 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1671 trans_pcie->ict_index, read);
1672 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1673 trans_pcie->ict_index =
1674 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1675
1676 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1677 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1678 read);
1679 } while (read);
1680
1681 /* We should not get this value, just ignore it. */
1682 if (val == 0xffffffff)
1683 val = 0;
1684
1685 /*
1686 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1687 * (bit 15 before shifting it to 31) to clear when using interrupt
1688 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1689 * so we use them to decide on the real state of the Rx bit.
1690 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1691 */
1692 if (val & 0xC0000)
1693 val |= 0x8000;
1694
1695 inta = (0xff & val) | ((0xff00 & val) << 16);
1696 return inta;
1697 }
1698
1699 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1700 {
1701 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1702 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1703 bool hw_rfkill, prev, report;
1704
1705 mutex_lock(&trans_pcie->mutex);
1706 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1707 hw_rfkill = iwl_is_rfkill_set(trans);
1708 if (hw_rfkill) {
1709 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1710 set_bit(STATUS_RFKILL_HW, &trans->status);
1711 }
1712 if (trans_pcie->opmode_down)
1713 report = hw_rfkill;
1714 else
1715 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1716
1717 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1718 hw_rfkill ? "disable radio" : "enable radio");
1719
1720 isr_stats->rfkill++;
1721
1722 if (prev != report)
1723 iwl_trans_pcie_rf_kill(trans, report);
1724 mutex_unlock(&trans_pcie->mutex);
1725
1726 if (hw_rfkill) {
1727 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1728 &trans->status))
1729 IWL_DEBUG_RF_KILL(trans,
1730 "Rfkill while SYNC HCMD in flight\n");
1731 wake_up(&trans_pcie->wait_command_queue);
1732 } else {
1733 clear_bit(STATUS_RFKILL_HW, &trans->status);
1734 if (trans_pcie->opmode_down)
1735 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1736 }
1737 }
1738
1739 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1740 {
1741 struct iwl_trans *trans = dev_id;
1742 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1743 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1744 u32 inta = 0;
1745 u32 handled = 0;
1746
1747 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1748
1749 spin_lock(&trans_pcie->irq_lock);
1750
1751 /* dram interrupt table not set yet,
1752 * use legacy interrupt.
1753 */
1754 if (likely(trans_pcie->use_ict))
1755 inta = iwl_pcie_int_cause_ict(trans);
1756 else
1757 inta = iwl_pcie_int_cause_non_ict(trans);
1758
1759 if (iwl_have_debug_level(IWL_DL_ISR)) {
1760 IWL_DEBUG_ISR(trans,
1761 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1762 inta, trans_pcie->inta_mask,
1763 iwl_read32(trans, CSR_INT_MASK),
1764 iwl_read32(trans, CSR_FH_INT_STATUS));
1765 if (inta & (~trans_pcie->inta_mask))
1766 IWL_DEBUG_ISR(trans,
1767 "We got a masked interrupt (0x%08x)\n",
1768 inta & (~trans_pcie->inta_mask));
1769 }
1770
1771 inta &= trans_pcie->inta_mask;
1772
1773 /*
1774 * Ignore interrupt if there's nothing in NIC to service.
1775 * This may be due to IRQ shared with another device,
1776 * or due to sporadic interrupts thrown from our NIC.
1777 */
1778 if (unlikely(!inta)) {
1779 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1780 /*
1781 * Re-enable interrupts here since we don't
1782 * have anything to service
1783 */
1784 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1785 _iwl_enable_interrupts(trans);
1786 spin_unlock(&trans_pcie->irq_lock);
1787 lock_map_release(&trans->sync_cmd_lockdep_map);
1788 return IRQ_NONE;
1789 }
1790
1791 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1792 /*
1793 * Hardware disappeared. It might have
1794 * already raised an interrupt.
1795 */
1796 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1797 spin_unlock(&trans_pcie->irq_lock);
1798 goto out;
1799 }
1800
1801 /* Ack/clear/reset pending uCode interrupts.
1802 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1803 */
1804 /* There is a hardware bug in the interrupt mask function that some
1805 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1806 * they are disabled in the CSR_INT_MASK register. Furthermore the
1807 * ICT interrupt handling mechanism has another bug that might cause
1808 * these unmasked interrupts fail to be detected. We workaround the
1809 * hardware bugs here by ACKing all the possible interrupts so that
1810 * interrupt coalescing can still be achieved.
1811 */
1812 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1813
1814 if (iwl_have_debug_level(IWL_DL_ISR))
1815 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1816 inta, iwl_read32(trans, CSR_INT_MASK));
1817
1818 spin_unlock(&trans_pcie->irq_lock);
1819
1820 /* Now service all interrupt bits discovered above. */
1821 if (inta & CSR_INT_BIT_HW_ERR) {
1822 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1823
1824 /* Tell the device to stop sending interrupts */
1825 iwl_disable_interrupts(trans);
1826
1827 isr_stats->hw++;
1828 iwl_pcie_irq_handle_error(trans);
1829
1830 handled |= CSR_INT_BIT_HW_ERR;
1831
1832 goto out;
1833 }
1834
1835 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1836 if (inta & CSR_INT_BIT_SCD) {
1837 IWL_DEBUG_ISR(trans,
1838 "Scheduler finished to transmit the frame/frames.\n");
1839 isr_stats->sch++;
1840 }
1841
1842 /* Alive notification via Rx interrupt will do the real work */
1843 if (inta & CSR_INT_BIT_ALIVE) {
1844 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1845 isr_stats->alive++;
1846 if (trans->cfg->gen2) {
1847 /*
1848 * We can restock, since firmware configured
1849 * the RFH
1850 */
1851 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1852 }
1853
1854 handled |= CSR_INT_BIT_ALIVE;
1855 }
1856
1857 /* Safely ignore these bits for debug checks below */
1858 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1859
1860 /* HW RF KILL switch toggled */
1861 if (inta & CSR_INT_BIT_RF_KILL) {
1862 iwl_pcie_handle_rfkill_irq(trans);
1863 handled |= CSR_INT_BIT_RF_KILL;
1864 }
1865
1866 /* Chip got too hot and stopped itself */
1867 if (inta & CSR_INT_BIT_CT_KILL) {
1868 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1869 isr_stats->ctkill++;
1870 handled |= CSR_INT_BIT_CT_KILL;
1871 }
1872
1873 /* Error detected by uCode */
1874 if (inta & CSR_INT_BIT_SW_ERR) {
1875 IWL_ERR(trans, "Microcode SW error detected. "
1876 " Restarting 0x%X.\n", inta);
1877 isr_stats->sw++;
1878 iwl_pcie_irq_handle_error(trans);
1879 handled |= CSR_INT_BIT_SW_ERR;
1880 }
1881
1882 /* uCode wakes up after power-down sleep */
1883 if (inta & CSR_INT_BIT_WAKEUP) {
1884 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1885 iwl_pcie_rxq_check_wrptr(trans);
1886 iwl_pcie_txq_check_wrptrs(trans);
1887
1888 isr_stats->wakeup++;
1889
1890 handled |= CSR_INT_BIT_WAKEUP;
1891 }
1892
1893 /* All uCode command responses, including Tx command responses,
1894 * Rx "responses" (frame-received notification), and other
1895 * notifications from uCode come through here*/
1896 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1897 CSR_INT_BIT_RX_PERIODIC)) {
1898 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1899 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1900 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1901 iwl_write32(trans, CSR_FH_INT_STATUS,
1902 CSR_FH_INT_RX_MASK);
1903 }
1904 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1905 handled |= CSR_INT_BIT_RX_PERIODIC;
1906 iwl_write32(trans,
1907 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1908 }
1909 /* Sending RX interrupt require many steps to be done in the
1910 * the device:
1911 * 1- write interrupt to current index in ICT table.
1912 * 2- dma RX frame.
1913 * 3- update RX shared data to indicate last write index.
1914 * 4- send interrupt.
1915 * This could lead to RX race, driver could receive RX interrupt
1916 * but the shared data changes does not reflect this;
1917 * periodic interrupt will detect any dangling Rx activity.
1918 */
1919
1920 /* Disable periodic interrupt; we use it as just a one-shot. */
1921 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1922 CSR_INT_PERIODIC_DIS);
1923
1924 /*
1925 * Enable periodic interrupt in 8 msec only if we received
1926 * real RX interrupt (instead of just periodic int), to catch
1927 * any dangling Rx interrupt. If it was just the periodic
1928 * interrupt, there was no dangling Rx activity, and no need
1929 * to extend the periodic interrupt; one-shot is enough.
1930 */
1931 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1932 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1933 CSR_INT_PERIODIC_ENA);
1934
1935 isr_stats->rx++;
1936
1937 local_bh_disable();
1938 iwl_pcie_rx_handle(trans, 0);
1939 local_bh_enable();
1940 }
1941
1942 /* This "Tx" DMA channel is used only for loading uCode */
1943 if (inta & CSR_INT_BIT_FH_TX) {
1944 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1945 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1946 isr_stats->tx++;
1947 handled |= CSR_INT_BIT_FH_TX;
1948 /* Wake up uCode load routine, now that load is complete */
1949 trans_pcie->ucode_write_complete = true;
1950 wake_up(&trans_pcie->ucode_write_waitq);
1951 }
1952
1953 if (inta & ~handled) {
1954 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1955 isr_stats->unhandled++;
1956 }
1957
1958 if (inta & ~(trans_pcie->inta_mask)) {
1959 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1960 inta & ~trans_pcie->inta_mask);
1961 }
1962
1963 spin_lock(&trans_pcie->irq_lock);
1964 /* only Re-enable all interrupt if disabled by irq */
1965 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1966 _iwl_enable_interrupts(trans);
1967 /* we are loading the firmware, enable FH_TX interrupt only */
1968 else if (handled & CSR_INT_BIT_FH_TX)
1969 iwl_enable_fw_load_int(trans);
1970 /* Re-enable RF_KILL if it occurred */
1971 else if (handled & CSR_INT_BIT_RF_KILL)
1972 iwl_enable_rfkill_int(trans);
1973 /* Re-enable the ALIVE / Rx interrupt if it occurred */
1974 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
1975 iwl_enable_fw_load_int_ctx_info(trans);
1976 spin_unlock(&trans_pcie->irq_lock);
1977
1978 out:
1979 lock_map_release(&trans->sync_cmd_lockdep_map);
1980 return IRQ_HANDLED;
1981 }
1982
1983 /******************************************************************************
1984 *
1985 * ICT functions
1986 *
1987 ******************************************************************************/
1988
1989 /* Free dram table */
1990 void iwl_pcie_free_ict(struct iwl_trans *trans)
1991 {
1992 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1993
1994 if (trans_pcie->ict_tbl) {
1995 dma_free_coherent(trans->dev, ICT_SIZE,
1996 trans_pcie->ict_tbl,
1997 trans_pcie->ict_tbl_dma);
1998 trans_pcie->ict_tbl = NULL;
1999 trans_pcie->ict_tbl_dma = 0;
2000 }
2001 }
2002
2003 /*
2004 * allocate dram shared table, it is an aligned memory
2005 * block of ICT_SIZE.
2006 * also reset all data related to ICT table interrupt.
2007 */
2008 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2009 {
2010 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2011
2012 trans_pcie->ict_tbl =
2013 dma_alloc_coherent(trans->dev, ICT_SIZE,
2014 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2015 if (!trans_pcie->ict_tbl)
2016 return -ENOMEM;
2017
2018 /* just an API sanity check ... it is guaranteed to be aligned */
2019 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2020 iwl_pcie_free_ict(trans);
2021 return -EINVAL;
2022 }
2023
2024 return 0;
2025 }
2026
2027 /* Device is going up inform it about using ICT interrupt table,
2028 * also we need to tell the driver to start using ICT interrupt.
2029 */
2030 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2031 {
2032 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2033 u32 val;
2034
2035 if (!trans_pcie->ict_tbl)
2036 return;
2037
2038 spin_lock(&trans_pcie->irq_lock);
2039 _iwl_disable_interrupts(trans);
2040
2041 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2042
2043 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2044
2045 val |= CSR_DRAM_INT_TBL_ENABLE |
2046 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2047 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2048
2049 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2050
2051 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2052 trans_pcie->use_ict = true;
2053 trans_pcie->ict_index = 0;
2054 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2055 _iwl_enable_interrupts(trans);
2056 spin_unlock(&trans_pcie->irq_lock);
2057 }
2058
2059 /* Device is going down disable ict interrupt usage */
2060 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2061 {
2062 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2063
2064 spin_lock(&trans_pcie->irq_lock);
2065 trans_pcie->use_ict = false;
2066 spin_unlock(&trans_pcie->irq_lock);
2067 }
2068
2069 irqreturn_t iwl_pcie_isr(int irq, void *data)
2070 {
2071 struct iwl_trans *trans = data;
2072
2073 if (!trans)
2074 return IRQ_NONE;
2075
2076 /* Disable (but don't clear!) interrupts here to avoid
2077 * back-to-back ISRs and sporadic interrupts from our NIC.
2078 * If we have something to service, the tasklet will re-enable ints.
2079 * If we *don't* have something, we'll re-enable before leaving here.
2080 */
2081 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2082
2083 return IRQ_WAKE_THREAD;
2084 }
2085
2086 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2087 {
2088 return IRQ_WAKE_THREAD;
2089 }
2090
2091 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2092 {
2093 struct msix_entry *entry = dev_id;
2094 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2095 struct iwl_trans *trans = trans_pcie->trans;
2096 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2097 u32 inta_fh, inta_hw;
2098
2099 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2100
2101 spin_lock(&trans_pcie->irq_lock);
2102 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2103 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2104 /*
2105 * Clear causes registers to avoid being handling the same cause.
2106 */
2107 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2108 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2109 spin_unlock(&trans_pcie->irq_lock);
2110
2111 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2112
2113 if (unlikely(!(inta_fh | inta_hw))) {
2114 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2115 lock_map_release(&trans->sync_cmd_lockdep_map);
2116 return IRQ_NONE;
2117 }
2118
2119 if (iwl_have_debug_level(IWL_DL_ISR)) {
2120 IWL_DEBUG_ISR(trans,
2121 "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2122 inta_fh, trans_pcie->fh_mask,
2123 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2124 if (inta_fh & ~trans_pcie->fh_mask)
2125 IWL_DEBUG_ISR(trans,
2126 "We got a masked interrupt (0x%08x)\n",
2127 inta_fh & ~trans_pcie->fh_mask);
2128 }
2129
2130 inta_fh &= trans_pcie->fh_mask;
2131
2132 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2133 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2134 local_bh_disable();
2135 iwl_pcie_rx_handle(trans, 0);
2136 local_bh_enable();
2137 }
2138
2139 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2140 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2141 local_bh_disable();
2142 iwl_pcie_rx_handle(trans, 1);
2143 local_bh_enable();
2144 }
2145
2146 /* This "Tx" DMA channel is used only for loading uCode */
2147 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2148 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2149 isr_stats->tx++;
2150 /*
2151 * Wake up uCode load routine,
2152 * now that load is complete
2153 */
2154 trans_pcie->ucode_write_complete = true;
2155 wake_up(&trans_pcie->ucode_write_waitq);
2156 }
2157
2158 /* Error detected by uCode */
2159 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2160 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
2161 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
2162 IWL_ERR(trans,
2163 "Microcode SW error detected. Restarting 0x%X.\n",
2164 inta_fh);
2165 isr_stats->sw++;
2166 iwl_pcie_irq_handle_error(trans);
2167 }
2168
2169 /* After checking FH register check HW register */
2170 if (iwl_have_debug_level(IWL_DL_ISR)) {
2171 IWL_DEBUG_ISR(trans,
2172 "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2173 inta_hw, trans_pcie->hw_mask,
2174 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2175 if (inta_hw & ~trans_pcie->hw_mask)
2176 IWL_DEBUG_ISR(trans,
2177 "We got a masked interrupt 0x%08x\n",
2178 inta_hw & ~trans_pcie->hw_mask);
2179 }
2180
2181 inta_hw &= trans_pcie->hw_mask;
2182
2183 /* Alive notification via Rx interrupt will do the real work */
2184 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2185 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2186 isr_stats->alive++;
2187 if (trans->cfg->gen2) {
2188 /* We can restock, since firmware configured the RFH */
2189 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2190 }
2191 }
2192
2193 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_22560 &&
2194 inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) {
2195 /* Reflect IML transfer status */
2196 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2197
2198 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2199 if (res == IWL_IMAGE_RESP_FAIL) {
2200 isr_stats->sw++;
2201 iwl_pcie_irq_handle_error(trans);
2202 }
2203 } else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2204 /* uCode wakes up after power-down sleep */
2205 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2206 iwl_pcie_rxq_check_wrptr(trans);
2207 iwl_pcie_txq_check_wrptrs(trans);
2208
2209 isr_stats->wakeup++;
2210 }
2211
2212 if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2213 /* Reflect IML transfer status */
2214 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2215
2216 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2217 if (res == IWL_IMAGE_RESP_FAIL) {
2218 isr_stats->sw++;
2219 iwl_pcie_irq_handle_error(trans);
2220 }
2221 }
2222
2223 /* Chip got too hot and stopped itself */
2224 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2225 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2226 isr_stats->ctkill++;
2227 }
2228
2229 /* HW RF KILL switch toggled */
2230 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2231 iwl_pcie_handle_rfkill_irq(trans);
2232
2233 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2234 IWL_ERR(trans,
2235 "Hardware error detected. Restarting.\n");
2236
2237 isr_stats->hw++;
2238 iwl_pcie_irq_handle_error(trans);
2239 }
2240
2241 iwl_pcie_clear_irq(trans, entry);
2242
2243 lock_map_release(&trans->sync_cmd_lockdep_map);
2244
2245 return IRQ_HANDLED;
2246 }